1
|
Luo J, Zheng Y, Chen J, Xiong X, Shen J, Hong D, Jiang N, Li W, Zhao J, Wu J. Neuroprotective role of Da Qin Jiu decoction in ischemic stroke: Mitochondrial rescue through PI3K/Akt-mediated UPR mt activation. JOURNAL OF ETHNOPHARMACOLOGY 2025; 343:119433. [PMID: 39894416 DOI: 10.1016/j.jep.2025.119433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/21/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ischemic stroke (IS) is a highly debilitating neurological condition with limited treatment options and suboptimal outcomes. The traditional Chinese medicine formula Da Qin Jiu Decoction (DQJD) has been widely used for its neuroprotective effects. However, its potential mechanisms of action in IS remain unclear. AIM OF THE STUDY This study aims to investigate the therapeutic effects of DQJD on IS and elucidate its underlying mechanisms of action. MATERIALS AND METHODS The neuroprotective effects of DQJD were evaluated in a mouse model of middle cerebral artery occlusion/reperfusion (MCAO/R). Neurological recovery was assessed using behavioral tests and tissue analysis, including TTC staining, MRI, and HE & Nissl staining. Mitochondrial function was examined through Western blot, JC-1 assay, ROS staining, and electron microscopy. Additionally, network pharmacology, bioinformatics analyses, and Mendelian randomization were employed to identify key molecular targets and mechanisms. Molecular docking was conducted to explore interactions between active components of DQJD and relevant pathways, focusing on PI3K/Akt signaling. RESULTS Treatment with DQJD significantly reduced infarct volume, alleviated tissue damage and improved neurological outcomes. Molecular analyses revealed the upregulation of ATF5 and mitochondrial unfolded protein response (UPRmt)-related proteins, including HSP60, LONP1, and ClpP, indicating UPRmt activation. Enhanced mitochondrial membrane potential (ΔΨm), reduced ROS levels, and restoration of mitochondrial dynamics further demonstrated the rescue of mitochondrial function. Network pharmacology and molecular docking analyses highlighted the central role of PI3K/Akt signaling in DQJD-mediated neuroprotection. CONCLUSIONS DQJD exerts neuroprotective effects in IS by restoring mitochondrial function through UPRmt activation via the PI3K/Akt pathway. These findings support further exploration of DQJD as a therapeutic option for IS.
Collapse
Affiliation(s)
- Jing Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Pathology, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yaling Zheng
- Department of Pathology and Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Jialei Chen
- Department of Otolaryngology Head and Neck Surgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders. China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China; Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, China
| | - Xin Xiong
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiashu Shen
- Respiratory Medicine Unit and NIHR Oxford BRC, University of Oxford, Oxford, UK
| | - Dou Hong
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Interdisciplinary Bioscience DTP, University of Oxford, Oxford, UK
| | - Ning Jiang
- Department of Pathology, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenlu Li
- Departments of Radiology and Neurology, Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| | - Jing Zhao
- Department of Pathology and Pathophysiology, Chongqing Medical University, Chongqing, China.
| | - Jingxian Wu
- Department of Pathology, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Ekinci Akdemir FN, Güler MC, Eraslan E, Tanyeli A, Yildirim S. Caftaric acid attenuates kidney and remote organ damage induced by renal ischemia-reperfusion injury. Sci Rep 2024; 14:31385. [PMID: 39732968 PMCID: PMC11682263 DOI: 10.1038/s41598-024-82912-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/10/2024] [Indexed: 12/30/2024] Open
Abstract
Oxidative stress and inflammation are indispensable components of ischemia-reperfusion (IR) injury. In this study, we investigated the effects of low and high doses of caftaric acid (CA) on reducing kidney and remote organ damage induced by IR. We divided Wistar rats into four groups: sham, IR, low (40 mg/kg body weight (BW)), and high (80 mg/kg BW) CA groups. IR (1 h ischemia, 24 h reperfusion) was applied to all groups, except the sham one. Following the experimental period, we removed kidney and lung tissues to assess biochemical, histopathological, and immunohistochemical parameters. In the IR group, oxidant parameters (malondialdehyde (MDA), myeloperoxidase (MPO), total oxidant status (TOS), oxidative stress index (OSI)) increased, and antioxidant level parameters (superoxide dismutase (SOD) and total antioxidant status (TAS)) diminished. In addition, Microtubule-associated protein light chain 3 (LC3), cyclooxygenase-2 (COX-2), and caspase-3 immunopositivity were severe in the IR group. CA treatment improved the LC3, COX-2, and caspase-3 immunopositivity, lowered the oxidant level, and enhanced the antioxidant capacity. Histopathological findings were consistent with the data. In light of all our results, CA is effective against oxidative stress, autophagy, apoptosis, and inflammation in the renal IR experimental model.
Collapse
Affiliation(s)
- Fazile Nur Ekinci Akdemir
- Department of Nutrition and Dietetics, Faculty of Health Science, Ağrı İbrahim Çeçen University, Ağrı, Turkey
| | - Mustafa Can Güler
- Department of Physiology, Faculty of Medicine, Atatürk University, Erzurum, 25240, Turkey
| | - Ersen Eraslan
- Department of Physiology, Faculty of Medicine, Bandırma OnYedi Eylül University, Balıkesir, Turkey
| | - Ayhan Tanyeli
- Department of Physiology, Faculty of Medicine, Atatürk University, Erzurum, 25240, Turkey.
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| |
Collapse
|
3
|
Luo J, Luo Y, Chen J, Gao Y, Tan J, Yang Y, Yang C, Jiang N, Luo Y. Intestinal metabolite UroB alleviates cerebral ischemia/reperfusion injury by promoting competition between TRIM65 and TXNIP for binding to NLRP3 inflammasome in response to neuroinflammation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167056. [PMID: 38360072 DOI: 10.1016/j.bbadis.2024.167056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/17/2024]
Abstract
Our previous research suggests that targeting NLRP3 inflammasomes holds promise for mitigating cerebral ischemia/reperfusion injury. The gut metabolite Urolithin B (UroB) has been shown to inhibit the neuroinflammation. However, the specific role of UroB in cerebral ischemia/reperfusion injury and its potential impact on NLRP3 inflammasome remain unclear. In this study, acute stroke was simulated using the MCAO model in male Sprague-Dawley rats. UroB was intraperitoneally administered after 1 h of reperfusion. The effects of UroB on brain tissue were evaluated, including infarct volume, brain edema, and neurobehavioral changes. Western blotting and immunofluorescence were performed to investigate the effect of UroB on inflammation-related proteins. Furthermore, TRIM65 knockdown and TXNIP overexpression experiments elucidated the role of UroB in NLRP3 inflammasome activation. The ( demonstrate the neuroprotective effect of UroB in acute stroke, reducing brain tissue damage and improving motor function. Mechanistically, UroB modulated neuroinflammation by influencing TXNIP and TRIM65 protein expression, as well as competitive binding to the NLRP3 inflammasome, attenuating cerebral ischemia/reperfusion injury. In conclusion, the potential of UroB as a protective agent against cerebral ischemia/reperfusion injury in acute stroke stands out as it regulates TRIM65 and TXNIP competitive binding to the NLRP3 inflammasome. These findings suggest that UroB is a promising drug candidate for the treatment of acute stroke.
Collapse
Affiliation(s)
- Jing Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Pathology, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yujia Luo
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jialei Chen
- Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China; Department of Pathology and Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Yu Gao
- Department of Pathology, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junyi Tan
- Department of Pathology and Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Yongkang Yang
- Department of Clinical Medicine, Clinical Medical College of Chengdu University, Chengdu, China
| | - Changhong Yang
- Department of Bioinformatics, Chongqing Medical University, Chongqing, China
| | - Ning Jiang
- Department of Pathology, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Yong Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
4
|
Yuan ZL, Mo YZ, Li DL, Xie L, Chen MH. Inhibition of ERK downregulates autophagy via mitigating mitochondrial fragmentation to protect SH-SY5Y cells from OGD/R injury. Cell Commun Signal 2023; 21:204. [PMID: 37580749 PMCID: PMC10426156 DOI: 10.1186/s12964-023-01211-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/01/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Cerebral ischemia-reperfusion injury (CIRI) is the main cause leading to high mortality and neurological disability in patients with cardiac arrest/cardiopulmonary resuscitation (CA/CPR). Our previous study found that extracellular signal-regulated kinase (ERK) activation, dynamin-related protein1 (Drp1)/Mitofusin2 (Mfn2)-dependent mitochondrial dynamics imbalance, and excessive autophagy were involved in the mechanism of nerve injury after CA/CPR. However, the specific pathological signaling pathway is still unknown. This study aimed to explore the molecular function changes of ERK-Drp1/Mfn2-autophagy signaling pathway in SH-SY5Y cell oxygen-glucose deprivation/reoxygenation (OGD/R) model, to further clarify the pathophysiological mechanism of CIRI, and to provide a new strategy for cerebral protection after CIRI. METHODS SH-SY5Y cells were pretreated with drugs 24 h before OGD/R. The Drp1 and Mfn2 knockdown were adopted small interfering RNAs. The overexpression of p-Drp1S616 and Mfn2 were used recombinant plasmids. The expression levels of mitochondrial dynamics proteins (p-Drp1, Drp1, Mfn2, Mfn1 and Opa1) and autophagy markers (LC3, Beclin1 and p62) were measured with the Western blotting. The mRNA levels after transfection were determined by PCR. Cell injury and viability were evaluated with released LDH activity and CCK8 assay kits. Mitochondria morphology and autophagosome were observed under transmission electron microscopy. Mitochondrial function was detected by the mitochondrial permeability transition pore assay kit. The co-expression of p-ERK, p-Drp1 and LC3 was assessed with multiple immunofluorescences. One-way analysis of variance followed by least significance difference post hoc analysis (for equal homogeneity) or Dunnett's T3 test (for unequal homogeneity) were used for statistical tests. RESULTS ERK inhibitor-PD98059 (PD) protects SH-SY5Y cells from OGD/R-induced injury; while ERK activator-TPA had the opposite effect. Similar to autophagy inhibitor 3-MA, PD downregulated autophagy to improve cell viability; while autophagy activator-rapamycin further aggravated cell death. PD and Drp1-knockdown synergistically attenuated OGD/R-induced Drp1 activation, mPTP opening and cell injury; overexpression of Drp1S616E or ablating Mfn2 partly abolished the protective effects of PD. Multiple immunofluorescences showed that p-ERK, p-Drp1 and LC3 were co-expressed. CONCLUSION Inhibition of ERK downregulates autophagy via reducing Drp1/Mfn2-dependent mitochondrial fragmentation to antagonize mitochondrial dysfunction and promotes cell survival in the SH-SY5Y cells OGD/R model. Video Abstract.
Collapse
Affiliation(s)
- Zhang-Li Yuan
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, People's Republic of China
| | - Yan-Zi Mo
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, 166 Daxuedong Road, Guangxi, 530007, Nanning, People's Republic of China
| | - De-Li Li
- Guangxi Medical University, 22 Shuangyong Road, Guangxi, 530021, Nanning, People's Republic of China
| | - Lu Xie
- Guangxi Medical University, 22 Shuangyong Road, Guangxi, 530021, Nanning, People's Republic of China.
| | - Meng-Hua Chen
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, 166 Daxuedong Road, Guangxi, 530007, Nanning, People's Republic of China.
| |
Collapse
|
5
|
Tang Y, Xie J, Chen X, Sun L, Xu L, Chen X. A novel link between silent information regulator 1 and autophagy in cerebral ischemia-reperfusion. Front Neurosci 2022; 16:1040182. [PMID: 36507335 PMCID: PMC9726917 DOI: 10.3389/fnins.2022.1040182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/03/2022] [Indexed: 11/24/2022] Open
Abstract
Cerebral ischemia is one of the leading causes of death and disability worldwide. Although revascularization via reperfusion combined with advanced anticoagulant therapy is currently a gold standard treatment for patients, the reperfusion itself also results in a serious dysfunction termed cerebral ischemia-reperfusion (I/R) injury. Silent information regulator 1 (sirtuin 1, SIRT1), is a classic NAD+-dependent deacetylase, which has been proposed as an important mediator in the alleviation of cerebral ischemia through modulating multiple physiological processes, including apoptosis, inflammation, DNA repair, oxidative stress, and autophagy. Recent growing evidence suggests that SIRT1-mediated autophagy plays a key role in the pathophysiological process of cerebral I/R injury. SIRT1 could both activate and inhibit the autophagy process by mediating different autophagy pathways, such as the SIRT1-FOXOs pathway, SIRT1-AMPK pathway, and SIRT1-p53 pathway. However, the autophagic roles of SIRT1 in cerebral I/R injury have not been systematically summarized. Here, in this review, we will first introduce the molecular mechanisms and effects of SIRT1 in cerebral ischemia and I/R injury. Next, we will discuss the involvement of autophagy in the pathogenesis of cerebral I/R injury. Finally, we will summarize the latest advances in the interaction between SIRT1 and autophagy in cerebral I/R injury. A good understanding of these relationships would serve to consolidate a framework of mechanisms underlying SIRT1's neuroprotective effects and provides evidence for the development of drugs targeting SIRT1.
Collapse
|
6
|
Luo J, Jiang N, Chen J, Yu G, Zhao J, Yang C, Zhao Y. Inhibition of miR-423-5p Exerts Neuroprotective Effects in an Experimental Rat Model of Cerebral Ischemia/Reperfusion Injury. Neuroscience 2022; 503:95-106. [PMID: 36067951 DOI: 10.1016/j.neuroscience.2022.08.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022]
Abstract
MicroRNAs (miRNAs) are widely acknowledged to play a unique role in cerebrovascular disease. This research investigates the function of microRNAs in ischemic stroke via a middle cerebral artery occlusion (MCAO) model. Four differentially expressed microRNAs in rat brains were identified by bioinformatics analysis, and qRT-PCR showed that miR-423-5p exhibited the highest expression in cerebral ischemia/reperfusion injury in rats, with peak levels observed at 24 hours. After microRNA inhibitors and mimics were administrated in the rat model of MCAO, the neurological scores and brain water content were detected, and triphenyltetrazolium chloride (TTC), Hematoxylin and Eosin (H&E), and Nissl staining were conducted to explore the influence of miR-423-5p on ischemic stroke. Subsequently, western blot, ELISA, MPO, TUNEL and commercial assay kits were applied to assess the influence of miR-423-5p on NLRP3 inflammasome, apoptosis, and oxidative stress levels in ischemic penumbra tissue. The results showed that miR-423-5p knockdown could effectively improve neurological indicators, such as cerebral infarct volume, brain water content, neurological scores, and nerve tissue damage, and inhibit the NLRP3 inflammasome, apoptosis, and oxidative stress. In contrast, the miR-423-5p mimic yielded opposite results. In conclusion, inhibition of miR-423-5p expression could effectively attenuate ischemic stroke and might be considered a promising target for stroke.
Collapse
Affiliation(s)
- Jing Luo
- Department of Pathology, Chongqing Medical University, Chongqing 400016, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ning Jiang
- Department of Pathology, Chongqing Medical University, Chongqing 400016, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jialei Chen
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Gao Yu
- Department of Pathology, Chongqing Medical University, Chongqing 400016, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jing Zhao
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400016, China
| | - Changhong Yang
- Department of Bioinformatics, Chongqing Medical University, Chongqing, 400016, China.
| | - Yong Zhao
- Department of Pathology, Chongqing Medical University, Chongqing 400016, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|