1
|
Miklavc P, Frick M. Actin and Myosin in Non-Neuronal Exocytosis. Cells 2020; 9:cells9061455. [PMID: 32545391 PMCID: PMC7348895 DOI: 10.3390/cells9061455] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 12/18/2022] Open
Abstract
Cellular secretion depends on exocytosis of secretory vesicles and discharge of vesicle contents. Actin and myosin are essential for pre-fusion and post-fusion stages of exocytosis. Secretory vesicles depend on actin for transport to and attachment at the cell cortex during the pre-fusion phase. Actin coats on fused vesicles contribute to stabilization of large vesicles, active vesicle contraction and/or retrieval of excess membrane during the post-fusion phase. Myosin molecular motors complement the role of actin. Myosin V is required for vesicle trafficking and attachment to cortical actin. Myosin I and II members engage in local remodeling of cortical actin to allow vesicles to get access to the plasma membrane for membrane fusion. Myosins stabilize open fusion pores and contribute to anchoring and contraction of actin coats to facilitate vesicle content release. Actin and myosin function in secretion is regulated by a plethora of interacting regulatory lipids and proteins. Some of these processes have been first described in non-neuronal cells and reflect adaptations to exocytosis of large secretory vesicles and/or secretion of bulky vesicle cargoes. Here we collate the current knowledge and highlight the role of actomyosin during distinct phases of exocytosis in an attempt to identify unifying molecular mechanisms in non-neuronal secretory cells.
Collapse
Affiliation(s)
- Pika Miklavc
- School of Science, Engineering & Environment, University of Salford, Manchester M5 4WT, UK
- Correspondence: (P.M.); (M.F.); Tel.: +44-0161-295-3395 (P.M.); +49-731-500-23115 (M.F.); Fax: +49-731-500-23242 (M.F.)
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Correspondence: (P.M.); (M.F.); Tel.: +44-0161-295-3395 (P.M.); +49-731-500-23115 (M.F.); Fax: +49-731-500-23242 (M.F.)
| |
Collapse
|
2
|
Ma W, Chang J, Tong J, Ho U, Yau B, Kebede MA, Thorn P. Arp2/3 nucleates F-actin coating of fusing insulin granules in pancreatic β cells to control insulin secretion. J Cell Sci 2020; 133:jcs236794. [PMID: 32079655 DOI: 10.1242/jcs.236794] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 02/05/2020] [Indexed: 01/11/2023] Open
Abstract
F-actin dynamics are known to control insulin secretion, but the point of intersection with the stimulus-secretion cascade is unknown. Here, using multiphoton imaging of β cells isolated from Lifeact-GFP transgenic mice, we show that glucose stimulation does not cause global changes in subcortical F-actin. Instead, we observe spatially discrete and transient F-actin changes around each fusing granule. This F-actin remodelling is dependent on actin nucleation and is observed for granule fusion induced by either glucose or high potassium stimulation. Using GFP-labelled proteins, we identify local enrichment of Arp3, dynamin 2 and clathrin, all occurring after granule fusion, suggesting early recruitment of an endocytic complex to the fusing granules. Block of Arp2/3 activity with drugs or shRNA inhibits F-actin coating, traps granules at the cell membrane and reduces insulin secretion. Block of formin-mediated actin nucleation also blocks F-actin coating, but has no effect on insulin secretion. We conclude that local Arp2/3-dependent actin nucleation at the sites of granule fusion plays an important role in post-fusion granule dynamics and in the regulation of insulin secretion.
Collapse
Affiliation(s)
- Wei Ma
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Camperdown 2006, Australia
| | - Jenny Chang
- School of Biomedical Sciences, University of Queensland, St Lucia 4072, Australia
| | - Jason Tong
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Camperdown 2006, Australia
| | - Uda Ho
- School of Biomedical Sciences, University of Queensland, St Lucia 4072, Australia
| | - Belinda Yau
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Camperdown 2006, Australia
| | - Melkam A Kebede
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Camperdown 2006, Australia
| | - Peter Thorn
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Camperdown 2006, Australia
| |
Collapse
|
3
|
González-Jamett AM, Guerra MJ, Olivares MJ, Haro-Acuña V, Baéz-Matus X, Vásquez-Navarrete J, Momboisse F, Martinez-Quiles N, Cárdenas AM. The F-Actin Binding Protein Cortactin Regulates the Dynamics of the Exocytotic Fusion Pore through its SH3 Domain. Front Cell Neurosci 2017; 11:130. [PMID: 28522963 PMCID: PMC5415606 DOI: 10.3389/fncel.2017.00130] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/18/2017] [Indexed: 11/20/2022] Open
Abstract
Upon cell stimulation, the network of cortical actin filaments is rearranged to facilitate the neurosecretory process. This actin rearrangement includes both disruption of the preexisting actin network and de novo actin polymerization. However, the mechanism by which a Ca2+ signal elicits the formation of new actin filaments remains uncertain. Cortactin, an actin-binding protein that promotes actin polymerization in synergy with the nucleation promoting factor N-WASP, could play a key role in this mechanism. We addressed this hypothesis by analyzing de novo actin polymerization and exocytosis in bovine adrenal chromaffin cells expressing different cortactin or N-WASP domains, or cortactin mutants that fail to interact with proline-rich domain (PRD)-containing proteins, including N-WASP, or to be phosphorylated by Ca2+-dependent kinases, such as ERK1/2 and Src. Our results show that the activation of nicotinic receptors in chromaffin cells promotes cortactin translocation to the cell cortex, where it colocalizes with actin filaments. We further found that, in association with PRD-containing proteins, cortactin contributes to the Ca2+-dependent formation of F-actin, and regulates fusion pore dynamics and the number of exocytotic events induced by activation of nicotinic receptors. However, whereas the actions of cortactin on the fusion pore dynamics seems to depend on the availability of monomeric actin and its phosphorylation by ERK1/2 and Src kinases, cortactin regulates the extent of exocytosis by a mechanism independent of actin polymerization. Together our findings point out a role for cortactin as a critical modulator of actin filament formation and exocytosis in neuroendocrine cells.
Collapse
Affiliation(s)
- Arlek M González-Jamett
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de ValparaísoValparaíso, Chile
| | - María J Guerra
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de ValparaísoValparaíso, Chile
| | - María J Olivares
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de ValparaísoValparaíso, Chile
| | - Valentina Haro-Acuña
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de ValparaísoValparaíso, Chile
| | - Ximena Baéz-Matus
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de ValparaísoValparaíso, Chile
| | - Jacqueline Vásquez-Navarrete
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de ValparaísoValparaíso, Chile
| | - Fanny Momboisse
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de ValparaísoValparaíso, Chile
| | - Narcisa Martinez-Quiles
- Departamento de Microbiología (Inmunología), Facultad de Medicina, Universidad Complutense de MadridMadrid, Spain
| | - Ana M Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de ValparaísoValparaíso, Chile
| |
Collapse
|
4
|
Abstract
Exocytosis is the fundamental process by which cells communicate with each other. The events that lead up to the fusion of a vesicle loaded with chemical messenger with the cell membrane were the subject of a Nobel Prize in 2013. However, the processes occurring after the initial formation of a fusion pore are very much still in debate. The release of chemical messenger has traditionally been thought to occur through full distention of the vesicle membrane, hence assuming exocytosis to be all or none. In contrast to the all or none hypothesis, here we discuss the evidence that during exocytosis the vesicle-membrane pore opens to release only a portion of the transmitter content during exocytosis and then close again. This open and closed exocytosis is distinct from kiss-and-run exocytosis, in that it appears to be the main content released during regular exocytosis. The evidence for this partial release via open and closed exocytosis is presented considering primarily the quantitative evidence obtained with amperometry.
Collapse
|
5
|
Talbot JA, Currie KW, Pearson BJ, Collins EMS. Smed-dynA-1 is a planarian nervous system specific dynamin 1 homolog required for normal locomotion. Biol Open 2014; 3:627-34. [PMID: 24950970 PMCID: PMC4154299 DOI: 10.1242/bio.20147583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dynamins are GTPases that are required for separation of vesicles from the plasma membrane and thus are key regulators of endocytosis in eukaryotic cells. This role for dynamin proteins is especially crucial for the proper function of neurons, where they ensure that synaptic vesicles and their neurotransmitter cargo are recycled in the presynaptic cell. Here we have characterized the dynamin protein family in the freshwater planarian Schmidtea mediterranea and showed that it possesses six dynamins with tissue specific expression profiles. Of these six planarian homologs, two are necessary for normal tissue homeostasis, and the loss of another, Smed-dynA-1, leads to an abnormal behavioral phenotype, which we have quantified using automated center of mass tracking. Smed-dynA-1 is primarily expressed in the planarian nervous system and is a functional homolog of the mammalian Dynamin I. The distinct expression profiles of the six dynamin genes makes planarians an interesting new system to reveal novel dynamin functions, which may be determined by their differential tissue localization. The observed complexity of neurotransmitter regulation combined with the tools of quantitative behavioral assays as a functional readout for neuronal activity, renders planarians an ideal system for studying how the nervous system controls behavior.
Collapse
Affiliation(s)
- Jared A Talbot
- Lewis-Sigler Institute for Integrative Genomics, Carl C. Icahn Laboratory, Princeton University, Princeton, NJ 08544, USA
| | - Ko W Currie
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Bret J Pearson
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Eva-Maria S Collins
- Lewis-Sigler Institute for Integrative Genomics, Carl C. Icahn Laboratory, Princeton University, Princeton, NJ 08544, USA Physics Department, University of California at San Diego, La Jolla, CA 92093, USA Division of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
6
|
Preparation and characterization of SNARE-containing nanodiscs and direct study of cargo release through fusion pores. Nat Protoc 2013; 8:935-48. [PMID: 23598444 DOI: 10.1038/nprot.2013.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This protocol describes an assay that uses suspended nanomembranes called nanodiscs to analyze fusion events. A nanodisc is a lipid bilayer wrapped by membrane scaffold proteins. Fluorescent lipids and a protein that is part of a fusion machinery, VAMP2 in the example detailed herein, are included in the nanodiscs. Upon fusion of a nanodisc with a nonfluorescent liposome containing cognate proteins (for instance, the VAMP2 cognate syntaxin1/SNAP-25 complex), the fluorescent lipids are dispersed in the liposome and the increase in fluorescence, initially quenched in the nanodisc, is monitored on a plate reader. Because the scaffold proteins restrain pore expansion, the fusion pore eventually reseals. A reducing agent, such as dithionite, which can quench the fluorescence of accessible lipids, can then be used to determine the number of fusion events. A fluorescence-based approach can also be used to monitor the release of encapsulated cargo. From data on the total cargo release and the number of the much faster lipid-mixing events, the researcher may determine the amount of cargo released per fusion event. This assay requires 3 d for preparation and 4 h for data acquisition and analysis.
Collapse
|
7
|
Geisler JC, Corbin KL, Li Q, Feranchak AP, Nunemaker CS, Li C. Vesicular nucleotide transporter-mediated ATP release regulates insulin secretion. Endocrinology 2013; 154:675-84. [PMID: 23254199 PMCID: PMC3548185 DOI: 10.1210/en.2012-1818] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Extracellular ATP plays a critical role in regulating insulin secretion in pancreatic β cells. The ATP released from insulin secretory vesicles has been proposed to be a major source of extracellular ATP. Currently, the mechanism by which ATP accumulates into insulin secretory granules remains elusive. In this study, the authors identified the expression of a vesicular nucleotide transporter (VNUT) in mouse pancreas, isolated mouse islets, and MIN6 cells, a mouse β cell line. Immunohistochemistry and immunofluorescence revealed that VNUT colocalized extensively with insulin secretory granules. Functional studies showed that suppressing endogenous VNUT expression in β cells by small hairpin RNA knockdown greatly reduced basal- and glucose-induced ATP release. Importantly, knocking down VNUT expression by VNUT small hairpin RNA in MIN6 cells and isolated mouse islets dramatically suppressed basal insulin release and glucose-stimulated insulin secretion (GSIS). Moreover, acute pharmacologic blockade of VNUT with Evans blue, a VNUT antagonist, greatly attenuated GSIS in a dose-dependent manner. Exogenous ATP treatment effectively reversed the insulin secretion defect induced by both VNUT knockdown and functional inhibition, indicating that VNUT-mediated ATP release is essential for maintaining normal insulin secretion. In contrast to VNUT knockdown, overexpression of VNUT in β cells resulted in excessive ATP release and enhanced basal insulin secretion and GSIS. Elevated insulin secretion induced by VNUT overexpression was reversed by pharmacologic inhibition of P2X but not P2Y purinergic receptors. This study reveals VNUT is expressed in pancreatic β cells and plays an essential and novel role in regulating insulin secretion through vesicular ATP release and extracellular purinergic signaling.
Collapse
Affiliation(s)
- Jessica C Geisler
- Department of Pharmacology, University of Virginia Health System, Charlottesville, VA 22908, USA
| | | | | | | | | | | |
Collapse
|
8
|
Indium Tin Oxide devices for amperometric detection of vesicular release by single cells. Biophys Chem 2012; 162:14-21. [DOI: 10.1016/j.bpc.2011.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 12/09/2011] [Accepted: 12/18/2011] [Indexed: 11/22/2022]
|
9
|
van Kempen GTH, vanderLeest H, van den Berg R, Eilers P, Westerink R. Three distinct modes of exocytosis revealed by amperometry in neuroendocrine cells. Biophys J 2011; 100:968-77. [PMID: 21320441 PMCID: PMC3037570 DOI: 10.1016/j.bpj.2011.01.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 12/30/2010] [Accepted: 01/04/2011] [Indexed: 11/19/2022] Open
Abstract
Neurotransmission requires Ca(2+)-dependent release of secretory products through fusion pores that open and reclose (partial membrane distention) or open irreversibly (complete membrane distention). It has been challenging to distinguish between these release modes; however, in the work presented here, we were able to deduce different modes of depolarization-evoked exocytosis in neuroendocrine chromaffin and PC12 cells solely by analyzing amperometric recordings. After we determined the quantal size (Q), event half-width (t(50)), event amplitude (I(peak)), and event decay time constant (τ(decay)), we fitted scatter plots of log-transformed data with a mixture of one- and two-dimensional Gaussian distributions. Our analysis revealed three distinct and differently shaped clusters of secretory events, likely corresponding to different modes of exocytosis. Complete membrane distention, through fusion pores of widely varying conductances, accounted for 70% of the total amount of released catecholamine. Two different kinds of partial membrane distention (kiss-and-run and kiss-and-stay exocytosis), characterized by mode-specific fusion pores with unitary conductances, accounted for 20% and 10%, respectively. These results show that our novel one- and two-dimensional analysis of amperometric data reveals new release properties and enables one to distinguish at least three different modes of exocytosis solely by analyzing amperometric recordings.
Collapse
Affiliation(s)
- G. Th. H. van Kempen
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - H.T. vanderLeest
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - R.J. van den Berg
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - P. Eilers
- Department of Biostatistics, Erasmus University, Rotterdam, The Netherlands
| | - R.H.S. Westerink
- Neurotoxicology Research Group, Toxicology Division, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
10
|
Amatore C, Arbault S, Bouret Y, Guille M, Lemaître F. Prediction of local pH variations during amperometric monitoring of vesicular exocytotic events at chromaffin cells. Chemphyschem 2010; 11:2931-41. [PMID: 20391459 DOI: 10.1002/cphc.201000102] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Electrochemical monitoring of the exocytosis process is generally performed through amperometric oxidation of the electroactive messengers released by single living cells. Herein, we consider the vesicular release of catecholamines by chromaffin cells. Each exocytotic event is thus detected as a current spike whose morphology (intensity, duration, area, etc.) features the efficiency of the secretion process. However, the electrochemical oxidation of catechols produces quinone derivatives and protons. As a consequence, unless specific mechanisms may be adopted by a cell to regulate the pH near its membrane, the local pH between the cell membrane and the electrode necessarily drops within the electrode-cell cleft. Though this consequence of amperometric detection is generally ignored, it has been investigated in this work through simulation of the local pH drop created during the amperometric recording of a sequence of exocytotic events. This was performed based on frequencies and magnitudes of release detected at chromaffin cells. The corresponding acidification was shown to severely depend on the microelectrode radius. For usual 10 μm diameter carbon fiber electrodes, pH values below six were predicted to be reached within the electrode-cell cleft after monitoring a few current spikes.
Collapse
Affiliation(s)
- Christian Amatore
- Ecole Normale Supérieure, Département de Chimie, UMR CNRS-ENS-UPMC 8640 PASTEUR and LIA CNRS XiamENS, 24 rue Lhomond, 75231 Paris cedex 05, France.
| | | | | | | | | |
Collapse
|
11
|
Amatore C, Oleinick AI, Svir I. Reconstruction of aperture functions during full fusion in vesicular exocytosis of neurotransmitters. Chemphyschem 2010; 11:159-74. [PMID: 19937905 DOI: 10.1002/cphc.200900647] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Individual vesicular exocytosis of adrenaline by dense core vesicles in chromaffin cells is considered here as a paradigm of many situations encountered in biology, nanosciences and drug delivery in which a spherical container releases in the external environment through gradual uncovering of its surface. A procedure for extracting the aperture (opening) function of a biological vesicle fusing with a cell membrane from the released molecular flux of neurotransmitter as monitored by amperometry has been devised based on semi-analytical expressions derived in a former work [C. Amatore, A. I. Oleinick, I. Svir, ChemPhysChem 2009, 10, DOI: 10.1002/cphc.200900646]. This precise analysis shows that in the absence of direct information about the radius of the vesicle or about the concentration of the adrenaline cation stored by the vesicle matrix, current spikes do not contain enough information to determine the maximum aperture angle. Yet, a statistical analysis establishes that this maximum aperture angle is most probably less than a few tens of degrees, which suggests that full fusion is a very improbable event.
Collapse
Affiliation(s)
- Christian Amatore
- Département de Chimie, Ecole Normale Supérieure, UMR CNRS-ENS-UPMC 8640 Pasteur, 24 rue Lhomond, 75231 Paris Cedex 05, France.
| | | | | |
Collapse
|
12
|
Soekmadji C, Thorn P. Secretory control: evidence for agonist regulation of post-fusion vesicle behaviour. Clin Exp Pharmacol Physiol 2009; 37:218-21. [PMID: 19769603 DOI: 10.1111/j.1440-1681.2009.05298.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
1. Here, we review recent work on vesicular secretion, with a focus on the control of post-fusion events as a means of regulating secretory output. 2. In the classical model of secretion, each fused vesicle releases the entirety of its content in an all-or-none manner. In this way, the secretory output of a cell is controlled by regulating the numbers of fused vesicles. The realisation that post-fusion events can control secretory output leads to a distinct model of partial release of vesicle content. 3. Recent work shows that post-fusion events are under cellular control. Further, new data from our laboratory demonstrates agonist-dependent regulation of fusion pore behaviour. 4. We conclude that post-fusion events are not epiphenomena, but are likely an important mechanism of secretory control.
Collapse
Affiliation(s)
- Carolina Soekmadji
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | | |
Collapse
|
13
|
Brunner Y, Schvartz D, Couté Y, Sanchez JC. Proteomics of regulated secretory organelles. MASS SPECTROMETRY REVIEWS 2009; 28:844-867. [PMID: 19301366 DOI: 10.1002/mas.20211] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Regulated secretory organelles are important subcellular structures of living cells that allow the release in the extracellular space of crucial compounds, such as hormones and neurotransmitters. Therefore, the regulation of biogenesis, trafficking, and exocytosis of regulated secretory organelles has been intensively studied during the last 30 years. However, due to the large number of different regulated secretory organelles, only a few of them have been specifically characterized. New insights into regulated secretory organelles open crucial perspectives for a better comprehension of the mechanisms that govern cell secretion. The combination of subcellular fractionation, protein separation, and mass spectrometry is also possible to study regulated secretory organelles at the proteome level. In this review, we present different strategies used to isolate regulated secretory organelles, separate their protein content, and identify the proteins by mass spectrometry. The biological significance of regulated secretory organelles-proteomic analysis is discussed as well.
Collapse
Affiliation(s)
- Yannick Brunner
- Biomedical Proteomics Research Group, University Medical Center, Geneva, Switzerland
| | | | | | | |
Collapse
|
14
|
Abstract
The paradigm for soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) function in mammalian cells has been built on advancements in our understanding of structural and biochemical aspects of synaptic vesicle exocytosis, involving specifically synaptobrevin, syntaxin 1 and SNAP25. Interestingly, a good number of SNAREs which are not directly involved in neurotransmitter exocytosis, are either brain-enriched or have distinct neuron-specific functions. Syntaxins 12/13 regulates glutamate receptor recycling via its interaction with neuron-enriched endosomal protein of 21 kDa (NEEP21). TI-VAMP/VAMP7 is essential for neuronal morphogenesis and mediates the vesicular transport processes underlying neurite outgrowth. Ykt6 is highly enriched in the cerebral cortex and hippocampus and is targeted to a novel compartment in neurons. Syntaxin 16 has a moderate expression level in many tissues, but is rather enriched in the brain. Here, we review and discuss the neuron-specific physiology and possible pathology of these and other (such as SNAP-29 and Vti1a-beta) members of the SNARE family.
Collapse
Affiliation(s)
- Ya Wang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | |
Collapse
|
15
|
Amatore C, Arbault S, Bonifas I, Guille M. Quantitative investigations of amperometric spike feet suggest different controlling factors of the fusion pore in exocytosis at chromaffin cells. Biophys Chem 2009; 143:124-31. [PMID: 19501951 DOI: 10.1016/j.bpc.2009.04.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 04/20/2009] [Accepted: 04/22/2009] [Indexed: 10/20/2022]
Abstract
Around 30% of exocytosis events recorded by amperometry at carbon fiber microelectrodes exhibit a pre-spike feature (PSF) termed a "foot". This wave is associated with the release of the neurotransmitters via a transitory fusion pore, whilst the large, main exocytotic spike is due to complete release. The amperometric data reported herein were obtained using bovine chromaffin cells stimulated with either potassium or barium ions, two commonly-employed elicitors of exocytosis. Identical trends are observed with both activators: (i) they induce the same ratio (close to 30%) of events with a foot in the population of amperometric spikes, and (ii) spikes with a foot can be divided into two primary categories, depending on the temporal variation of the current wave (viz. as a ramp, or a ramp followed by a plateau). Correlations between the characteristics of the whole current spike, and of its observed foot, have been sought; such analyses demonstrate that the maximum current of both foot and spike signals are highly correlated, but, in contrast, the integrated charges of both are poorly correlated. Moreover, the temporal duration of the PSF is fully uncorrelated with any parameter pertaining to the main current spike. On the basis of these reproducible observations, it is hypothesized that the characteristics (dimensions and topology, at least) of each secretory vesicle determine the probability of formation of the fusion pore and its maximum size, whilst molecular factors of the cell membrane control its duration, and, consequently, the amount delivered prior to the massive exocytosis of catecholamines observed as a spike in amperometry.
Collapse
Affiliation(s)
- Christian Amatore
- Laboratoire PASTEUR, Ecole Normale Supérieure, CNRS, UPMC Univ Paris 06, Département de Chimie, 24 Rue Lhomond, Paris, France.
| | | | | | | |
Collapse
|
16
|
Bhat P, Thorn P. Myosin 2 maintains an open exocytic fusion pore in secretory epithelial cells. Mol Biol Cell 2009; 20:1795-803. [PMID: 19158378 DOI: 10.1091/mbc.e08-10-1048] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Many studies have implicated F-actin and myosin 2 in the control of regulated secretion. Most recently, evidence suggests a role for the microfilament network in regulating the postfusion events of vesicle dynamics. This is of potential importance as postfusion behavior can influence the loss of vesicle content and may provide a new target for drug therapy. We have investigated the role of myosin 2 in regulating exocytosis in secretory epithelial cells by using novel assays to determine the behavior of the fusion pore in individual granules. We immunolocalize myosin 2A to the apical region of pancreatic acinar cells, suggesting it is this isoform that plays a role in granule exocytosis. We further show myosin 2 phosphorylation increased on cell stimulation, consistent with a regulatory role in secretion. Importantly, in a single-cell, single-granule secretion assay, neither the myosin 2 inhibitor (-)-blebbistatin nor the myosin light chain kinase inhibitor ML-9 had any effect on the numbers of granules stimulated to fuse after cell stimulation. These data indicate that myosin 2, if it has any action on secretion, must be targeting postfusion granule behavior. This interpretation is supported by direct study of fusion pore opening in which we show that (-)-blebbistatin and ML-9 promote fusion pore closure and decrease fusion pore lifetimes. Our work now adds to a growing body of evidence showing that myosin 2 is an essential regulator of postfusion granule behavior. In particular, in the case of the secretory epithelial cells, myosin 2 activity is necessary to maintain fusion pore opening.
Collapse
Affiliation(s)
- Purnima Bhat
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, QLD 4072, Australia
| | | |
Collapse
|
17
|
Amatore C, Arbault S, Guille M, Lemaître F. Electrochemical Monitoring of Single Cell Secretion: Vesicular Exocytosis and Oxidative Stress. Chem Rev 2008; 108:2585-621. [DOI: 10.1021/cr068062g] [Citation(s) in RCA: 316] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Neco P, Fernández-Peruchena C, Navas S, Gutiérrez LM, de Toledo GA, Alés E. Myosin II contributes to fusion pore expansion during exocytosis. J Biol Chem 2008; 283:10949-57. [PMID: 18283106 DOI: 10.1074/jbc.m709058200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During exocytosis, the fusion pore expands to allow release of neurotransmitters and hormones to the extracellular space. To understand the process of synaptic transmission, it is of outstanding importance to know the properties of the fusion pore and how these properties affect the release process. Many proteins have been implicated in vesicle fusion; however, there is little evidence for proteins involved in fusion pore expansion. Myosin II has been shown to participate in the transport of vesicles and, surprisingly, in the final phases of exocytosis, affecting the kinetics of catecholamine release in adrenal chromaffin cells as measured by amperometry. Here, we have studied single vesicle exocytosis in chromaffin cells overexpressing an unphosphorylatable form (T18AS19A RLC-GFP) of myosin II that produces an inactive protein by patch amperometry. This method allows direct determination of fusion pore expansion by measuring its conductance, whereas the release of catecholamines is recorded simultaneously by amperometry. Here we demonstrated that the fusion pore is of critical importance to control the release of catecholamines during single vesicle secretion in chromaffin cells. We proved that myosin II acts as a molecular motor on the fusion pore expansion by hindering its dilation when it lacks the phosphorylation sites.
Collapse
Affiliation(s)
- Patricia Neco
- Departamento Fisiología Médica y Biofísica, Universidad de Sevilla, Sevilla 41009, Spain
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
G-proteins (guanine nucleotide-binding proteins) are membrane-attached proteins composed of three subunits, alpha, beta, and gamma. They transduce signals from G-protein coupled receptors (GPCRs) to target effector proteins. The agonistactivated receptor induces a conformational change in the G-protein trimer so that the alpha-subunit binds GTP in exchange for GDP and alpha-GTP, and betagamma-subunits separate to interact with the target effector. Effector-interaction is terminated by the alpha-subunit GTPase activity, whereby bound GTP is hydrolyzed to GDP. This is accelerated in situ by RGS proteins, acting as GTPase-activating proteins (GAPs). Galpha-GDP and Gbetagamma then reassociate to form the Galphabetagamma trimer. G-proteins primarily involved in the modulation of neurotransmitter release are G(o), G(q) and G(s). G(o) mediates the widespread presynaptic auto-inhibitory effect of many neurotransmitters (e.g., via M2/M4 muscarinic receptors, alpha(2) adrenoreceptors, micro/delta opioid receptors, GABAB receptors). The G(o) betagamma-subunit acts in two ways: first, and most ubiquitously, by direct binding to CaV2 Ca(2+) channels, resulting in a reduced sensitivity to membrane depolarization and reduced Ca(2+) influx during the terminal action potential; and second, through a direct inhibitory effect on the transmitter release machinery, by binding to proteins of the SNARE complex. G(s) and G(q) are mainly responsible for receptor-mediated facilitatory effects, through activation of target enzymes (adenylate cyclase, AC and phospholipase-C, PLC respectively) by the GTP-bound alpha-subunits.
Collapse
Affiliation(s)
- David A Brown
- Department of Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| | | |
Collapse
|
20
|
Amatore C, Arbault S, Guille M, Lemaître F. The nature and efficiency of neurotransmitter exocytosis also depend on physicochemical parameters. Chemphyschem 2007; 8:1597-605. [PMID: 17577903 DOI: 10.1002/cphc.200700225] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Exocytosis is an important biological process used by cells to deliver messengers or effectors to target cells with high spatial, quantitative, and kinetic precision. This process occurs by interaction and fusion of vesicles containing the (bio)chemical information with the cell membrane to release their contents into the surrounding medium. Because of its importance for life, this mechanism underlies many biological controlling factors, including different families of proteins and enzymes. Tremendous efforts have been made over the last decade toward their determination. However, in parallel, many studies have also shown that the physical and chemical characteristics of the exocytosis actors (vesicle, membrane, and extracellular medium) could directly affect the quantitative or kinetic features of secretion. The major pieces evidence for this influence, which have been reported in the literature, are reviewed herein. It demonstrates undoubtedly that pure biological aspects cannot be segregated from the physicochemical context of living mechanisms.
Collapse
Affiliation(s)
- Christian Amatore
- Laboratoire PASTEUR, Ecole Normale Supérieure, CNRS, Université Pierre et Marie Curie-Paris 6, 24, rue Lhomond, 75231 Paris Cedex 05, France.
| | | | | | | |
Collapse
|
21
|
Abstract
Changes in the response to release of a single synaptic vesicle have generally been attributed to postsynaptic modification of receptor sensitivity, but considerable evidence now demonstrates that alterations in vesicle filling also contribute to changes in quantal size. Receptors are not saturated at many synapses, and changes in the amount of transmitter per vesicle contribute to the physiological regulation of release. On the other hand, the presynaptic factors that determine quantal size remain poorly understood. Aside from regulation of the fusion pore, these mechanisms fall into two general categories: those that affect the accumulation of transmitter inside a vesicle and those that affect vesicle size. This review will summarize current understanding of the neurotransmitter cycle and indicate basic, unanswered questions about the presynaptic regulation of quantal size.
Collapse
Affiliation(s)
- Robert H Edwards
- Department of Neurology and Physiology, UCSF School of Medicine, San Francisco, CA 94158-2517, USA.
| |
Collapse
|
22
|
Eyre MD, Freund TF, Gulyas AI. Quantitative ultrastructural differences between local and medial septal GABAergic axon terminals in the rat hippocampus. Neuroscience 2007; 149:537-48. [PMID: 17913376 PMCID: PMC2206735 DOI: 10.1016/j.neuroscience.2007.08.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 07/30/2007] [Accepted: 08/29/2007] [Indexed: 11/27/2022]
Abstract
Functionally distinct subsets of hippocampal inhibitory neurons exhibit large differences in the frequency, pattern and short-term plasticity of GABA release from their terminals. Heterogeneity is also evident in the ultrastructural features of GABAergic axon terminals examined in the electron microscope, but it is not known if or how this corresponds to interneuron subtypes. We investigated the feasibility of separating morphologically distinct clusters of terminal types, using the approach of measuring several ultrastructural parameters of GABAergic terminals in the CA1 area of the rat hippocampus. Septo-hippocampal axon terminals were anterogradely labeled by biotinylated dextran amine and visualized by pre-embedding immunogold staining to delineate one homogeneous terminal population. Long series (100-150) of ultrathin sections were cut from stratum oriens and stratum radiatum of the CA1 area, and GABAergic terminals were identified by post-embedding immunogold staining. Stereologically unbiased samples of the total GABAergic axon terminal population and a random sample of the septal axon terminals were reconstructed in 3D, and several of their parameters were measured (e.g. bouton volume, synapse surface, volume occupied by vesicles, mitochondria volume). Septal terminals demonstrated significantly larger mean values for most parameters than the total population of local GABAergic terminals. There was no significant difference between terminals reconstructed in the basal and apical dendritic regions of pyramidal cells, neither for the septal nor for the local population. Importantly, almost all parameters were highly correlated, precluding the possibility of clustering the local terminals into non-overlapping subsets. Factor and cluster analysis confirmed these findings. Our results suggest that similarly to excitatory terminals, inhibitory terminals follow an "ultrastructural size principle," and that the terminals of different interneuron subtypes cannot be distinguished by ultrastructure alone.
Collapse
Affiliation(s)
- M D Eyre
- Institute of Experimental Medicine, Hungarian Academy of Sciences, P.O. Box 67, H-1450, Budapest, Hungary.
| | | | | |
Collapse
|
23
|
Ishizuka N, Minami K, Okumachi A, Okuno M, Seino S. Induction by NeuroD of the components required for regulated exocytosis. Biochem Biophys Res Commun 2007; 354:271-7. [PMID: 17217914 DOI: 10.1016/j.bbrc.2006.12.197] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2006] [Accepted: 12/28/2006] [Indexed: 11/17/2022]
Abstract
NeuroD is a transcriptional factor critical in differentiation of neuronal cells, enteroendocrine cells, and pancreatic endocrine cells. However, little is known of its roles in cellular functions. We show here that introduction of NeuroD into human fetal epithelial cell line Intestine 407 cells induces neuron-like morphology. In addition, multiple genes associated with vesicular trafficking and exocytotic machinery, including Sec24D, carboxypeptidase E, myosin Va, SNAP25, syntaxin 1A, Rab, Rims, Munc18-1, and adenylyl cyclase, were up-regulated by NeuroD gene transfer. Moreover, low osmotic pressure-induced exocytosis monitored by FM1-43 was enhanced by overexpression of NeuroD. These results suggest that NeuroD plays an important role in regulated exocytosis by inducing expressions of various components required in the process.
Collapse
Affiliation(s)
- Nobuko Ishizuka
- Department of Experimental Therapeutics, Translational Research Center, Kyoto University Hospital, Kyoto, Japan
| | | | | | | | | |
Collapse
|
24
|
Arthur CP, Serrell DB, Pagratis M, Potter DL, Finch DS, Stowell MHB. Electron tomographic methods for studying the chemical synapse. Methods Cell Biol 2007; 79:241-57. [PMID: 17327160 DOI: 10.1016/s0091-679x(06)79010-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
MacDonald PE, Braun M, Galvanovskis J, Rorsman P. Release of small transmitters through kiss-and-run fusion pores in rat pancreatic beta cells. Cell Metab 2006; 4:283-90. [PMID: 17011501 DOI: 10.1016/j.cmet.2006.08.011] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 05/26/2006] [Accepted: 08/23/2006] [Indexed: 11/25/2022]
Abstract
Exocytosis of secretory vesicles begins with a fusion pore connecting the vesicle lumen to the extracellular space. This pore may then expand or it may close to recapture the vesicle intact. The contribution of the latter, termed kiss-and-run, to exocytosis of pancreatic beta cell large dense-core vesicles (LDCVs) is controversial. Examination of single vesicle fusion pores demonstrated that rat beta cell LDCVs can undergo exocytosis by rapid pore expansion, by the formation of stable pores, or via small transient kiss-and-run fusion pores. Elevation of cAMP shifted LDCV fusion pore openings to the transient mode. Under this condition, the small fusion pores were sufficient for release of ATP, stored within LDCVs together with insulin. Individual ATP release events occurred coincident with amperometric "stand alone feet" representing kiss-and-run. Therefore, the LDCV kiss-and-run fusion pores allow small transmitter release but likely retain the larger insulin peptide. This may represent a mechanism for selective intraislet signaling.
Collapse
Affiliation(s)
- Patrick E MacDonald
- Oxford Centre for Diabetes Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LJ, United Kingdom.
| | | | | | | |
Collapse
|
26
|
Becherer U, Rettig J. Vesicle pools, docking, priming, and release. Cell Tissue Res 2006; 326:393-407. [PMID: 16819626 DOI: 10.1007/s00441-006-0243-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 05/09/2006] [Indexed: 10/24/2022]
Abstract
The release of neurotransmitter from synaptic vesicles represents the final event by which presynapses send their chemical signal to the receiving postsynapses. Prior to fusion, synaptic vesicles undergo a series of maturation events, most notably the membrane-delimited docking and priming steps. Physiological and optical experiments with high-time resolution have allowed the distinction of vesicles in different maturation states with respect to fusion, the so-called vesicle pools. In this review, we define the various vesicle pools and discuss pathways leading into and out of these pools. We also provide an overview of an array of proteins that have been identified or are speculated to play a role in the transition between the various vesicle pools.
Collapse
Affiliation(s)
- Ute Becherer
- Universität des Saarlandes, Physiologisches Institut, Gebäude 59, Kirrberger Strasse 8, 66421, Homburg/Saar, Germany
| | | |
Collapse
|
27
|
Kubista H, Boehm S. Molecular mechanisms underlying the modulation of exocytotic noradrenaline release via presynaptic receptors. Pharmacol Ther 2006; 112:213-42. [PMID: 16730801 DOI: 10.1016/j.pharmthera.2006.04.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 04/10/2006] [Indexed: 10/24/2022]
Abstract
The release of noradrenaline from nerve terminals is modulated by a variety of presynaptic receptors. These receptors belong to one of the following three receptor superfamilies: transmitter-gated ion channels, G protein-coupled receptors (GPCR), and membrane receptors with intracellular enzymatic activities. For representatives of each of these three superfamilies, receptor activation has been reported to cause either an enhancement or a reduction of noradrenaline release. As these receptor classes display greatly diverging structures and functions, a multitude of different molecular mechanisms are involved in the regulation of noradrenaline release via presynaptic receptors. This review gives a short overview of the presynaptic receptors on noradrenergic nerve terminals and summarizes the events involved in vesicle exocytosis in order to finally delineate the most important signaling cascades that mediate the modulation via presynaptic receptors. In addition, the interactions between the various presynaptic receptors are described and the underlying molecular mechanisms are elucidated. Together, these presynaptic signaling mechanisms form a sophisticated network that precisely adapts the amount of noradrenaline being released to a given situation.
Collapse
Affiliation(s)
- Helmut Kubista
- Institute of Pharmacology, Centre of Biomolecular Medicine and Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, A-1090 Vienna, Austria
| | | |
Collapse
|
28
|
Abstract
Neurotransmitters, hormones, or dyes may be released from vesicles via a fusion pore, rather than by full fusion of the vesicle with the plasma membrane. If the lifetime of the fusion pore is comparable to the time required for the substance to exit the vesicle, only a fraction of the total vesicle content may be released during a single pore opening. Assuming 1), fusion pore lifetimes are exponentially distributed (tauP), as expected for simple single channel openings, and 2), vesicle contents are lost through the fusion pore with an exponential time course (tauD), we derive an analytical expression for the probability density function of the fraction of vesicle content released (F): dP/dF=A (1-F)(A-1), where A=tauD/tauP. If A>1, the maximum of the distribution is at F=0; if A<1, the maximum is at F=1; if A=1, the distribution is perfectly flat. Thus, the distribution never has a peak in the middle (0<F<1). This should be considered when interpreting the distribution of miniature synaptic currents, or the fraction of FM dye molecules lost during a single fusion pore opening event.
Collapse
Affiliation(s)
- Stephen W Jones
- Department of Physiology and Biophysics, Case Western University, Cleveland, OH 44106, USA.
| | | |
Collapse
|