1
|
Sanchez-Cano A, Luesma-Bartolomé MJ, Solanas E, Orduna-Hospital E. Comparative Effects of Red and Blue LED Light on Melatonin Levels During Three-Hour Exposure in Healthy Adults. Life (Basel) 2025; 15:715. [PMID: 40430143 DOI: 10.3390/life15050715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/25/2025] [Accepted: 04/26/2025] [Indexed: 05/29/2025] Open
Abstract
Circadian rhythms, essential for regulating human physiology and behavior, are influenced by light exposure, particularly at night. This study examined the impact of red (631 nm) and blue (464 nm) LED light on melatonin secretion, a key circadian marker. Twelve participants aged 19-55 years were exposed to red and blue light for three hours (9:00 p.m.-midnight), with hourly saliva samples analyzed via ELISA to track melatonin levels. Initially, melatonin levels were comparable under both light conditions. After one hour, both lights suppressed melatonin, but differences emerged after two hours: blue light-maintained suppression, with levels at 7.5 pg/mL, while red light allowed recovery to 26.0 pg/mL (p = 0.019). This pattern persisted at the third hour. Blue light had stronger suppression effects, particularly in younger participants and men. These results underscore blue light's disruptive effects on circadian health and highlight red light as a less disruptive alternative for nighttime environments.
Collapse
Affiliation(s)
- Ana Sanchez-Cano
- Department of Applied Physics, University of Zaragoza, 50009 Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragon), 50009 Zaragoza, Spain
| | | | - Estela Solanas
- Department of Human Anatomy and Histology, University of Zaragoza, 50009 Zaragoza, Spain
| | - Elvira Orduna-Hospital
- Department of Applied Physics, University of Zaragoza, 50009 Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragon), 50009 Zaragoza, Spain
| |
Collapse
|
2
|
Lewis P, Christoforou R, Ha PP, Wild U, Schweiker M, Erren TC. Architecture, light, and circadian biology: A scoping review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177212. [PMID: 39490394 DOI: 10.1016/j.scitotenv.2024.177212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Light-dark (LD) can support or challenge the circadian organization of physiology and health. As an indoor species, the built environment inevitably influences the patterns and intensities of our LD exposures, thereby affecting health. We reviewed to what extent architectural features have been studied alongside LD and circadian biology. Systematic screening of literature from thirty-one databases identified n = 11 relevant human- and n = 19 relevant field- and simulation- studies; the latter included exploration of LD and architectural details with pertinent reference to circadian biology. Charting and synthesis concerned architecture, LD sources and metrics, circadian biology-related parameters, and health more generally. Human studies that investigate architecture, LD, and circadian biology together are limited by few participants, few architectural features, and few measurements. Most emphasis is on window-related aspects but must be judged as first explorations (i.e., not suitable to compare e.g., glazing vs shading vs position). Novel findings include the potential for time-specific alteration of blue light transmittance through windows. Circadian-light metrics (e.g., the Circadian Stimulus) are in use but analyses of links between architecture and circadian-light metrics together with biology are lacking. In conclusion, first empirical evidence links elements of LD, architecture, and circadian biology. Novel and necessary avenues of research are discussed.
Collapse
Affiliation(s)
- Philip Lewis
- Institute and Policlinic for Occupational Medicine, Environmental Medicine and Prevention Research, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Germany.
| | - Rania Christoforou
- Healthy Living Spaces Lab, Institute for Occupational, Social, and Environmental Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Peiman Pilehchi Ha
- Healthy Living Spaces Lab, Institute for Occupational, Social, and Environmental Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Ursula Wild
- Institute and Policlinic for Occupational Medicine, Environmental Medicine and Prevention Research, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Germany
| | - Marcel Schweiker
- Healthy Living Spaces Lab, Institute for Occupational, Social, and Environmental Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany; Chair of Healthy Living Spaces, Faculty of Architecture, RWTH Aachen University, Aachen, Germany
| | - Thomas C Erren
- Institute and Policlinic for Occupational Medicine, Environmental Medicine and Prevention Research, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Germany
| |
Collapse
|
3
|
Desmettre T, Baillif S, Mathis T, Gatinel D, Mainster M. [Blue light and intraocular lenses (IOLs): Beliefs and realities]. J Fr Ophtalmol 2024; 47:104043. [PMID: 38241770 DOI: 10.1016/j.jfo.2023.104043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/18/2023] [Accepted: 10/22/2023] [Indexed: 01/21/2024]
Abstract
The first intraocular lenses (IOLs) used for cataract surgery transmitted both ultraviolet (UV) radiation and visible light to the retina. Colorless UV-blocking IOLs were introduced and rapidly adopted in the 1980s. Yellow-tinted blue-blocking (also known as blue-filtering) IOLs were marketed in the early 1990s. Blue-blocking IOLs were intended to simulate age-related crystalline lens yellowing to reduce the cyanopsia that some patients experienced after cataract surgery. When blue-filtering IOLs were introduced in North America, however, blue-blocking chromophores were advocated as a way to protect patients from age-related macular degeneration (AMD) despite the lack of evidence that normal environmental light exposure causes AMD. The "blue light hazard" is a term that describes the experimental finding that acute, abnormally intense light exposures are potentially more phototoxic to the retina when short rather than long wavelengths are used. Thus, in brief exposures to intense light sources such as welding arcs, ultraviolet radiation is more hazardous than blue light, which is more hazardous than longer wavelength green or red light. International commissions have cautioned that the blue light hazard does not apply to normal indoor or outdoor light exposures. Nonetheless, the hazard is used for commercial purposes to suggest misleadingly that ambient environmental light can cause acute retinal phototoxicity and increase the risk of AMD. Very large epidemiological studies show that blue-blocking IOLs do not reduce the risk or progression of AMD. Additionally, blue-filtering IOLs or spectacles cannot decrease glare disability, because they decrease image and glare illuminance in the same proportion. Blue light is essential for older adults' scotopic photoreception needed to reduce the risk of nighttime falling and related injuries. It is also critical for circadian photoreception that is essential for good health, sleep and cognitive performance. Unfortunately, age-related pupillary miosis, retinal rod and ganglion cell photoreceptor degeneration and decreased outdoor activity all reduce the amount of healthful blue light available to older adults. Blue-restricting IOLs further reduce the available blue light at a time when older adults need it most. Patients and ophthalmologists are exposed to hypothesis-based advertisements for blue-filtering optical devices that suppress short wavelength light critical for vision in dim lighting and for good physical and mental health. Spectacle and intraocular lens selections should be based on scientific fact, not conjecture. Ideal IOLs should improve photoreception rather than limit it permanently. Practice efficiency, surgical convenience and physician-manufacturer relationships may eliminate a patient's opportunity to choose between colorless blue-transmitting IOLs and yellow-tinted, blue-restricting IOLs. Cataract surgeons ultimately determine whether their patients have the opportunity to make an informed choice about their future photoreception.
Collapse
Affiliation(s)
- T Desmettre
- Centre de rétine médicale, 187, rue de Menin, 59520 Marquette-Lez-Lille, France.
| | - S Baillif
- Département d'ophtalmologie, hôpital Pasteur, 30, voie Romaine, 06000 Nice cedex 1, France
| | - T Mathis
- Service d'ophtalmologie, hôpital de la Croix-Rousse, hospices civils de Lyon, 69004 Lyon, France
| | - D Gatinel
- Service d'ophtalmologie, fondation A.-de-Rothschild, 25, rue Manin, 75940 Paris cedex 19, France
| | - M Mainster
- Department of Ophthalmology, University of Kansas School of Medicine, Prairie Village, Kansas, États-Unis
| |
Collapse
|
4
|
Figueiro MG, Pedler D, Plitnick B, Zecena E, Leahy S. Tailored lighting intervention (TLI) for improving sleep-wake cycles in older adults living with dementia. Front Physiol 2023; 14:1290678. [PMID: 38169838 PMCID: PMC10759231 DOI: 10.3389/fphys.2023.1290678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction: Sleep disturbance is a hallmark of Alzheimer's disease and related dementias, and caregiver stress caused by patients' nighttime wandering, injuries, and agitation are frequently at the root of decisions to move them to assisted living facilities, where typically dim institutional lighting can further exacerbate their sleep problems. This study explored the effects of a circadian-effective lighting intervention on actigraphic sleep measures and subjective assessments of sleep disturbance, depression, and sleep-disturbed behaviors. Methods: Fourteen older adult (≥60 years) participants (11 females, mean age = 84.1 [SD 8.9]), all diagnosed with moderate to severe dementia and sleep disturbance, were recruited from 3 assisted living and memory care facilities. Following a crossover, placebo-controlled design, 3 different lighting modes were used to deliver high levels of circadian stimulus to the participants' eyes for two 8-week intervention periods in a counter balanced order with a 4-week washout between the study's 2 conditions (dim light control vs. active intervention). Actigraphy and questionnaire data were collected over 7-day assessment periods that preceded (baseline weeks 1 and 9) and concluded (post-intervention week 9 and 22) the intervention periods. Actigraphic outcomes included sleep duration, sleep time, sleep efficiency, sleep start time, and sleep end time. Subjective assessments included the Cornell Scale for Depression in Dementia (CSDD), Pittsburgh Sleep Quality Index (PSQI), and Sleep Disorders Inventory (SDI) instruments. Results: Under the active condition, sleep duration significantly (p = 0.018) increased and sleep start time significantly (p = 0.012) advanced after the intervention compared to baseline. Also under the active condition, PSQI (p = 0.012), CSDD (p = 0.007), Sleep Disorders Inventory frequency (p = 0.015), and SDI severity (p = 0.015) scores were significantly lower after the intervention compared to baseline. Discussion: This study demonstrates that a circadian-effective lighting intervention delivering bright days and dark nights improves measures of sleep and mood in dementia patients living in controlled environments.
Collapse
Affiliation(s)
- Mariana G. Figueiro
- Department of Population Health Science and Policy, Light and Health Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | | | | | | |
Collapse
|
5
|
Uğurlu AK, Bideci A, Demirel AM, Kaplanoğlu GT, Dayanır D, Gülbahar Ö, Bulut TSD, Döğer E, Çamurdan MO. Is blue light exposure a cause of precocious puberty in male rats? Front Endocrinol (Lausanne) 2023; 14:1190445. [PMID: 37409230 PMCID: PMC10319012 DOI: 10.3389/fendo.2023.1190445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/24/2023] [Indexed: 07/07/2023] Open
Abstract
Purpose Our study aimed to examine the effects of blue light exposure on prepubertal male rats' puberty and testis tissue. Methods Eighteen 21-day-old male Sprague Dawley rats were divided into three groups consisting of six rats in each group: Control Group (CG), Blue Light-6 hours (BL-6), and Blue Light-12 hours (BL-12). CG rats were maintained with 12/12-hour light-dark cycles. The rats of BL-6 and BL-12 were exposed to blue light (450-470nm/irradiance level 0.03uW/cm2) for 6 hours and 12 hours, respectively. Rats were exposed to blue light until the first signs of puberty. The ELISA method was used to analyze the serum levels of FSH, LH, testosterone, DHEA-S, leptin, ghrelin, melatonin, glutathione, glutathione peroxidase, and malondialdehyde. Testes were dissected for histomorphological examination. Results The medians of the pubertal entry days of the CG, BL-6, and BL-12 were 38th, 30th, and 28th days, respectively. (p:0.001) The FSH, LH, and testosterone concentrations of all groups were similar. The FSH concentration increased as the LH concentration increased (r: 0.82 p: 0.001). The serum LH concentration increased as serum testosterone, and DHEAS decreased, respectively (r: -0.561, p: 0.01) (r:-0.55 p:0.01). Testicular lengths and weights of the BL groups were smaller compared to CG (p: 0.03),(p: 0.04). GPx was higher for BL-6 and BL-12 than the CG (p:0.021, p:0.024). Testis tissue was compatible with the pubertal period in all groups. As the blue light exposure time increased, spermatogenesis was suppressed, and capillary dilatation and edema in the testis tissue increased. Conclusion Our study is the first to show the effects of blue light exposure on male rats' puberty process. And we showed that exposure to blue light and the duration of exposure lead to precocious puberty in male rats. The blue light exposure suppressed spermatogenesis, marked vasodilatation in the interstitial area of the testis, and disrupted the integrity of the basement membrane. These findings intensified with increasing exposure time.
Collapse
Affiliation(s)
| | - Aysun Bideci
- Department of Pediatric Endocrinology, Faculty of Medicine, Gazi University, Ankara, Türkiye
| | - Ayşe Mürşide Demirel
- Department of Basic Pharmaceutical Sciences Faculty of Pharmacy, Laboratory Animals Breeding and Experimental Research Center, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - Gülnur Take Kaplanoğlu
- Department of Histology and Embryology, Faculty of Medicine, Gazi University, Ankara, Türkiye
| | - Duygu Dayanır
- Department of Histology and Embryology, Faculty of Medicine, Gazi University, Ankara, Türkiye
| | - Özlem Gülbahar
- Department of Medical Biochemistry, Faculty of Medicine, Gazi University, Ankara, Türkiye
| | | | - Esra Döğer
- Department of Pediatric Endocrinology, Faculty of Medicine, Gazi University, Ankara, Türkiye
| | - Mahmut Orhun Çamurdan
- Department of Pediatric Endocrinology, Faculty of Medicine, Gazi University, Ankara, Türkiye
| |
Collapse
|
6
|
Wen P, Tan F, Wu M, Cai Q, Xu R, Zhang X, Wang Y, Li S, Lei M, Chen H, Khan MSA, Zou Q, Hu X. Proper use of light environments for mitigating the effects of COVID-19 and other prospective public health emergency lockdowns on sleep quality and fatigue in adolescents. Heliyon 2023; 9:e14627. [PMID: 37064435 PMCID: PMC10027303 DOI: 10.1016/j.heliyon.2023.e14627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 04/18/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) remains a public health emergency of international concern, and some countries still implement strict regional lockdowns. Further, the upcoming 2023 Asian Games and World University Games will implement a closed-loop management system. Quarantine can harm mental and physical health, to which adolescents are more vulnerable compared with adults. Previous studies indicated that light can affect our psychology and physiology, and adolescents were exposed to the artificial light environment in the evening during the lockdown. Thus, this study aimed to establish and assess appropriate residential light environments to mitigate the effects of lockdowns on sleep quality and fatigue in adolescents. The participants were 66 adolescents (12.15 ± 2.45 years of age) in a closed-loop management environment, who participated in a 28-day (7-day baseline, 21-day light intervention) randomized controlled trial of a light-emitting diode (LED) light intervention. The adolescents were exposed to different correlated color temperature (CCT) LED light environments (2000 K or 8000 K) for 1 h each evening. The results for self-reported daily sleep quality indicated that the low CCT LED light environment significantly improved sleep quality (p < 0.05), and the blood test results for serum urea and hemoglobin indicated that this environment also significantly reduced fatigue (p < 0.05) and moderately increased performance, compared to the high CCT LED light environment. These findings can serve as a springboard for further research that aims to develop interventions to reduce the effects of public health emergency lockdowns on mental and physical health in adolescents, and provide a reference for participants in the upcoming Asian Games and World University Games.
Collapse
Affiliation(s)
- Peijun Wen
- School of Physical Education, South China University of Technology, Guangzhou, 510641, China
| | - Fuyun Tan
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Meng Wu
- Guangzhou Institute of Sport Science, Guangzhou, 510620, China
| | - Qijun Cai
- Guangzhou Institute of Sport Science, Guangzhou, 510620, China
| | - Ruiping Xu
- Guangzhou Institute of Sport Science, Guangzhou, 510620, China
| | - Xiaowen Zhang
- Guangzhou Institute of Sport Science, Guangzhou, 510620, China
| | - Yongzhi Wang
- Dongguan Institute of Optoelectronics, Peking University, Dongguan, 523808, China
| | - Shukun Li
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Menglai Lei
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Huanqing Chen
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Muhammad Saddique Akbar Khan
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Qihong Zou
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Xiaodong Hu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| |
Collapse
|
7
|
Xu W, Wu P, Yao Q, Zhang R, Li P, Bao L, Wang C, Chen S, Zhang Y, Shen Y. Does the smartphone's eye protection mode work? OPTICS EXPRESS 2023; 31:10420-10433. [PMID: 37157589 DOI: 10.1364/oe.485195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
People spend about 5-8 hours per day on phones, causing circadian disruption and eye fatigue, thus raising a great need for comfort and health. Most phones have eye protection modes, claiming a potential eye protection effect. To examine the effectiveness, we investigated the color quality, namely gamut area and just noticeable color difference (JNCD), and circadian effect, namely equivalent melanopic lux (EML) and melanopic daylight efficacy ratio (MDER), characteristics of two smartphones: iPhone 13 and HUAWEI P30, in normal and eye protection mode. The results show that the circadian effect is inversely proportional to color quality when the iPhone 13 and HUAWEI P30 changed from normal to eye protection mode. The gamut area changed from 102.51% to 82.5% sRGB and 100.36% to 84.55% sRGB, respectively. The EML and MDER decreased by 13 and 15, and, 0.50 and 0.38, respectively, affected by the eye protection mode and screen luminance. The EML and JNCD results in different modes show that the eye protection mode benefits the nighttime circadian effect at the cost of the image quality. This study provides a way to precisely assess the image quality and circadian effect of displays and elucidates the tradeoff relationship between them.
Collapse
|
8
|
Cheng X, Yan Y, Hu T, Lv Y, Zeng Y. A review of the effect of the light environment of the VDT workspace on the "learning to learn" effect of video game training. Front Neurosci 2023; 17:1093602. [PMID: 36908803 PMCID: PMC9998512 DOI: 10.3389/fnins.2023.1093602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/30/2023] [Indexed: 03/14/2023] Open
Abstract
In recent years, the role of video games in enhancing brain plasticity and learning ability has been verified, and this learning transfer is known as the "learning to learn" effect of video game training. At the same time, against the background of healthy lighting, the influence of non-visual effects of light environment on the human rhythmic system has been gradually confirmed. As a special operation form of Visual Display Terminal (VDT) operation, video game training has a high dependence on VDT equipment and the VDT screen, and the background usually has a huge difference in brightness. Compared with the light environment of ordinary operation space, the light environment of VDT operation space is more complex. This complex light environment's non-visual effects cause human emotions, alertness, fatigue, cognitive ability, and other changes, which may affect the efficiency of the "learning to learn" effect of video game training. This article focuses on the impact of the light environment in the VDT workspace on the "learning to learn" effect of video game training. It first traces the factors that trigger the "learning to learn" effect of video game training, that is, the improvement of people's attention, perception, and cognitive ability. Then, the influencing mechanism and the evaluation method of the VDT workspace space light environment on the human rhythm system are discussed based on the basic theory of photobiological effect. In addition, the VDT display lighting light time pattern, photophysical properties, regulation, and protection mechanism on the human rhythm system are studied to demonstrate the VDT workspace light environment's special characteristics. Finally, combined with the progress of artificial lighting technology and the research results of health lighting, given the "learning to learn" effect of video game training, some thoughts on the design of the light environment of the workplace and future research directions are presented.
Collapse
Affiliation(s)
- Xiang Cheng
- Faculty of Architecture and Urban Planning, Chongqing University, Chongqing, China
- Key Laboratory of the Ministry of Education of Mountainous City and Towns Construction and New Technology, Chongqing University, Chongqing, China
| | - Yonghong Yan
- Faculty of Architecture and Urban Planning, Chongqing University, Chongqing, China
- Key Laboratory of the Ministry of Education of Mountainous City and Towns Construction and New Technology, Chongqing University, Chongqing, China
| | - Tao Hu
- Faculty of Architecture and Urban Planning, Chongqing University, Chongqing, China
- Key Laboratory of the Ministry of Education of Mountainous City and Towns Construction and New Technology, Chongqing University, Chongqing, China
| | - Yinghui Lv
- Faculty of Architecture and Urban Planning, Chongqing University, Chongqing, China
- Key Laboratory of the Ministry of Education of Mountainous City and Towns Construction and New Technology, Chongqing University, Chongqing, China
| | - Yue Zeng
- Faculty of Architecture and Urban Planning, Chongqing University, Chongqing, China
- Key Laboratory of the Ministry of Education of Mountainous City and Towns Construction and New Technology, Chongqing University, Chongqing, China
| |
Collapse
|
9
|
Wang J, Zhang L, Tao N, Wang X, Deng S, Li M, Zu Y, Xu C. Small Peptides Isolated from Enzymatic Hydrolyzate of Pneumatophorus japonicus Bone Promote Sleep by Regulating Circadian Rhythms. Foods 2023; 12:foods12030464. [PMID: 36765993 PMCID: PMC9914586 DOI: 10.3390/foods12030464] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
Due to the high addiction and side effects of medicines, people have increasingly inclined to natural and healthy peptides to improve sleep. Herein, we isolated novel peptides with sleep-promoting ability from Pneumatophorus japonicus bone peptides (PBPs) and constructed an insomniac zebrafish model as a demonstration, incorporating behavioral and transcriptomic approaches to reveal the sleep-promoting effect and mechanism of PBPs. Specifically, a sequential targeting isolation approach was developed to refine and identify a peptide with remarkable sleep-promoting activity, namely TG7 (Tyr-Gly-Asn-Pro-Trp-Glu-Lys). TG7 shows comparable effects and a similar action pathway to melatonin in improving sleep. TG7 restores abnormal behavior of insomnia zebrafish to normal levels by upregulating the hnrnpa3 gene. The peptide downregulates per1b gene but upregulates cry1b, cry1ba and per2, improving the circadian rhythm. Furthermore, TG7 upregulates the genes gnb3b, arr3b and opn1mw1 to regulate the visual function. The above results indicate that TG7 improves circadian rhythms and attenuated abnormal alterations in visual function and motility induced by light, allowing for effective sleep promotion. This study isolated sleep-promoting peptides from PBPs, which provides a theoretical basis for the development of subsequent sleep-promoting products based on protein peptides.
Collapse
Affiliation(s)
- Junbao Wang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Lu Zhang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ningping Tao
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture, Shanghai 201306, China
- National R & D Branch Center for Freshwater Aquatic Products Processing Technology, Shanghai 201306, China
| | - Xichang Wang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture, Shanghai 201306, China
- National R & D Branch Center for Freshwater Aquatic Products Processing Technology, Shanghai 201306, China
| | - Shanggui Deng
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Mingyou Li
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Yao Zu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
- Correspondence: (Y.Z.); (C.X.)
| | - Changhua Xu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture, Shanghai 201306, China
- National R & D Branch Center for Freshwater Aquatic Products Processing Technology, Shanghai 201306, China
- Correspondence: (Y.Z.); (C.X.)
| |
Collapse
|
10
|
Nie J, Xu N, Chen Z, Huang L, Jiao F, Chen Y, Pan Z, Deng C, Zhang H, Dong B, Li J, Tao T, Kang X, Chen W, Wang Q, Tong Y, Zhao M, Zhang G, Shen B. More light components and less light damage on rats’ eyes: evidence for the photobiomodulation and spectral opponency. Photochem Photobiol Sci 2022; 22:809-824. [PMID: 36527588 DOI: 10.1007/s43630-022-00354-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
The blue-light hazard (BLH) has raised concerns with the increasing applications of white light-emitting diodes (LEDs). Many researchers believed that the shorter wavelength or more light components generally resulted in more severe retinal damage. In this study, based on the conventional phosphor-coated white LED, we added azure (484 nm), cyan (511 nm), and red (664 nm) light to fabricate the low-hazard light source. The low-hazard light sources and conventional white LED illuminated 68 Sprague-Dawley (SD) rats for 7 days. Before and after light exposure, we measured the retinal function, thickness of retinal layers, and fundus photographs. The expression levels of autophagy-related proteins and the activities of oxidation-related biochemical indicators were also measured to investigate the mechanisms of damaging or protecting the retina. With the same correlated color temperature (CCT), the low-hazard light source results in significantly less damage on the retinal function and photoreceptors, even if it has two times illuminance and blue-light hazard-weighted irradiance ([Formula: see text]) than conventional white LED. The results illustrated that [Formula: see text] proposed by IEC 62471 could not exactly evaluate the light damage on rats' retinas. We also figured out that more light components could result in less light damage, which provided evidence for the photobiomodulation (PBM) and spectral opponency on light damage.
Collapse
Affiliation(s)
- Jingxin Nie
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, No. 209, Chengfu Road, Haidian District, Beijing, 100871, China
| | - Ningda Xu
- Department of Ophthalmology, Peking University People's Hospital Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, No. 11, Xizhimennan Street, Xicheng District, Beijing, 100044, China
| | - Zhizhong Chen
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, No. 209, Chengfu Road, Haidian District, Beijing, 100871, China.
- Dongguan Institute of Optoelectronics, Peking University, Dongguan, 523808, Guangdong, China.
- Semiconductor of PKU, Gao'an, 330800, Jiangxi, China.
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226000, Jiangsu, China.
| | - Lvzhen Huang
- Department of Ophthalmology, Peking University People's Hospital Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, No. 11, Xizhimennan Street, Xicheng District, Beijing, 100044, China.
| | - Fei Jiao
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, No. 209, Chengfu Road, Haidian District, Beijing, 100871, China
| | - Yiyong Chen
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, No. 209, Chengfu Road, Haidian District, Beijing, 100871, China
| | - Zuojian Pan
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, No. 209, Chengfu Road, Haidian District, Beijing, 100871, China
| | - Chuhan Deng
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, No. 209, Chengfu Road, Haidian District, Beijing, 100871, China
| | - Haodong Zhang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, No. 209, Chengfu Road, Haidian District, Beijing, 100871, China
| | - Boyan Dong
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, No. 209, Chengfu Road, Haidian District, Beijing, 100871, China
| | - Jiarui Li
- Department of Ophthalmology, Peking University People's Hospital Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, No. 11, Xizhimennan Street, Xicheng District, Beijing, 100044, China
| | - Tianchang Tao
- Department of Ophthalmology, Peking University People's Hospital Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, No. 11, Xizhimennan Street, Xicheng District, Beijing, 100044, China
| | - Xiangning Kang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, No. 209, Chengfu Road, Haidian District, Beijing, 100871, China
| | - Weihua Chen
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, No. 209, Chengfu Road, Haidian District, Beijing, 100871, China
| | - Qi Wang
- Dongguan Institute of Optoelectronics, Peking University, Dongguan, 523808, Guangdong, China
| | - Yuzhen Tong
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, No. 209, Chengfu Road, Haidian District, Beijing, 100871, China
- Semiconductor of PKU, Gao'an, 330800, Jiangxi, China
| | - Mingwei Zhao
- Department of Ophthalmology, Peking University People's Hospital Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, No. 11, Xizhimennan Street, Xicheng District, Beijing, 100044, China
| | - Guoyi Zhang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, No. 209, Chengfu Road, Haidian District, Beijing, 100871, China
- Dongguan Institute of Optoelectronics, Peking University, Dongguan, 523808, Guangdong, China
| | - Bo Shen
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, No. 209, Chengfu Road, Haidian District, Beijing, 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226000, Jiangsu, China
| |
Collapse
|
11
|
Real-Time Investigations and Simulation on the Impact of Lighting Ambience on Circadian Stimulus. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-07510-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractIndoor lighting, incorporated with visual and circadian needs, is the upcoming goal of lighting designers. In tropical and subtropical regions, where more daylight is available, daylight harvesting is a prime source of ambient lighting indoors. This paper aims to study various cases of lighting ambience to investigate the circadian lighting capability in terms of the circadian stimulus (CS) of the system under consideration. The instances considered are simulation studies in an open office plan and real-time experimentations in a test workbench and a faculty cabin. Daylight integration was undertaken through controlled venetian blinds, tunable sources and a commercially available human-centric lighting system. The result and analysis show the influence of spectrally tunable light sources on CS rather than fixed light sources. Due to the varying CCT of tunable LED luminaire, circadian stimulation for an occupant can be easily incorporated without crossing the limits of vertical and horizontal illuminance, which may lead to visual discomfort. The findings from this study reveal that daylight–artificial light integration scheme with controlled shading and spectrally tunable source provides the optimal solution for glare-free, energy-effective and circadian entrainment, i.e. human-centric lighting (HCL). With the help of simulations, pre-evaluation will aid the lighting engineers in making a better choice among the various lighting-controlled schemes to implement HCL in indoor office spaces.
Collapse
|
12
|
Esposito T, Houser K. Correlated color temperature is not a suitable proxy for the biological potency of light. Sci Rep 2022; 12:20223. [PMID: 36418869 PMCID: PMC9684473 DOI: 10.1038/s41598-022-21755-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022] Open
Abstract
Using a simulation based on a real, five-channel tunable LED lighting system, we show that Correlated Color Temperature (CCT) is not a reasonable predictor of the biological potency of light, whether characterized with CIE melanopic Equivalent Daylight Illuminance (mel-EDI), Equivalent Melanopic Lux (EML) (a scalar multiple of mel-EDI), or Circadian Stimulus (CS). At a photopic corneal illuminance of 300 lx and Rf ≥ 70, spectra can vary in CS from 17 to 41% across CCTs from 2500 to 6000 K, and up to 23% at a single CCT, due to the choice of spectrum alone. The CS range is largest, and notably discontinuous, at a CCT of 3500 K, the location of the inflection point of the CS model. At a photopic corneal illuminance of 300 lx and Rf ≥ 70, mel-EDI can vary from 123 to 354 lx across CCTs from 2500 to 6000 K and can vary by up to 123 lx at a fixed CCT (e.g., 196 to 319 lx at 5000 K). The range of achievable mel-EDI increases as CCT increases and, on average, decreases as color fidelity, characterized with IES TM-30 Rf, increases. These data demonstrate that there is no easy mathematical conversion between CS and mel-EDI when a spectrally diverse spectra set of spectral power distributions is considered.
Collapse
Affiliation(s)
- Tony Esposito
- Lighting Research Solutions LLC, Philadelphia, PA, USA.
| | - Kevin Houser
- School of Civil and Construction Engineering, Oregon State University, Corvallis, OR, USA
- Pacific Northwest National Laboratory, Portland, OR, USA
| |
Collapse
|
13
|
Gabinet NM, Portnov BA. Investigating the combined effect of ALAN and noise on sleep by simultaneous real-time monitoring using low-cost smartphone devices. ENVIRONMENTAL RESEARCH 2022; 214:113941. [PMID: 35931188 DOI: 10.1016/j.envres.2022.113941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/05/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
The association between artificial light at night (ALAN) and noise, on the one hand, and sleep, on the other, is well established. Yet studies investigating these associations have been infrequent and mostly conducted in controlled laboratory conditions. As a result, little is known about the applicability of their results to real-world settings. In this paper, we attempt to bridge this knowledge gap by carrying out an individual-level real-world study, involving 72 volunteers from different urban localities in Israel. The survey participants were asked to use their personal smartphones and smartwatches to monitor sleep patterns for 30 consecutive days, while ALAN and noise exposures were monitored in parallel, with inputs reported each second. The volunteers were also asked to fill in a questionnaire about their individual attributes, daily habits, room settings, and personal health, to serve as individual-level controls. Upon cointegration, the assembled data were co-analyzed using bivariate and multivariate statistical tools. As the study reveals, the effect of ALAN and noise on sleep largely depends on when the exposure occurred, that is, before sleep or during sleep. In particular, the effect of ALAN exposure was found to be most pronounced if it occurred before sleep, while exposure to noise mattered most if it occurred during the sleep phase. As the study also reveals, the effects of ALAN and noise appear to amplify each other, with a 14-15.3% reduction in sleep duration and an 8-9% reduction in sleep efficiency observed at high levels of ALAN-noise exposures. The study helped to assemble a massive amount of real-time observations, enabling a robust individual-level analysis.
Collapse
Affiliation(s)
- Nahum M Gabinet
- Department of Natural Resources and Environmental Management, Faculty of Social Sciences, University of Haifa, Mt. Carmel, Haifa, 3498838, Israel.
| | - Boris A Portnov
- Department of Natural Resources and Environmental Management, Faculty of Social Sciences, University of Haifa, Mt. Carmel, Haifa, 3498838, Israel.
| |
Collapse
|
14
|
Rea MS, Nagare R, Bierman A, Figueiro MG. The circadian stimulus-oscillator model: Improvements to Kronauer’s model of the human circadian pacemaker. Front Neurosci 2022; 16:965525. [PMID: 36238087 PMCID: PMC9552883 DOI: 10.3389/fnins.2022.965525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/01/2022] [Indexed: 12/04/2022] Open
Abstract
Modeling how patterns of light and dark affect circadian phase is important clinically and organizationally (e.g., the military) because circadian disruption can compromise health and performance. Limit-cycle oscillator models in various forms have been used to characterize phase changes to a limited set of light interventions. We approached the analysis of the van der Pol oscillator-based model proposed by Kronauer and colleagues in 1999 and 2000 (Kronauer99) using a well-established framework from experimental psychology whereby the stimulus (S) acts on the organism (O) to produce a response (R). Within that framework, using four independent data sets utilizing calibrated personal light measurements, we conducted a serial analysis of the factors in the Kronauer99 model that could affect prediction accuracy characterized by changes in dim-light melatonin onset. Prediction uncertainty was slightly greater than 1 h for the new data sets using the original Kronauer99 model. The revised model described here reduced prediction uncertainty for these same data sets by roughly half.
Collapse
|
15
|
Ricketts EJ, Joyce DS, Rissman AJ, Burgess HJ, Colwell CS, Lack LC, Gradisar M. Electric lighting, adolescent sleep and circadian outcomes, and recommendations for improving light health. Sleep Med Rev 2022; 64:101667. [PMID: 36064209 PMCID: PMC10693907 DOI: 10.1016/j.smrv.2022.101667] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 01/26/2023]
Abstract
Light is a potent circadian entraining agent. For many people, daily light exposure is fundamentally dysregulated with reduced light during the day and increased light into the late evening. This lighting schedule promotes chronic disruption to circadian physiology resulting in a myriad of impairments. Developmental changes in sleep-wake physiology suggest that such light exposure patterns may be particularly disruptive for adolescents and further compounded by lifestyle factors such as early school start times. This narrative review describes evidence that reduced light exposure during the school day delays the circadian clock, and longer exposure durations to light-emitting electronic devices in the evening suppress melatonin. While home lighting in the evening can suppress melatonin secretion and delay circadian phase, the patterning of light exposure across the day and evening can have moderating effects. Photic countermeasures may be flexibly and scalably implemented to support sleep-wake health; including manipulations of light intensity, spectra, duration and delivery modality across multiple contexts. An integrative approach addressing physiology, attitudes, and behaviors will support optimization of light-driven sleep-wake outcomes in adolescents.
Collapse
Affiliation(s)
- Emily J Ricketts
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, United States.
| | - Daniel S Joyce
- Department of Psychology, University of Nevada, Reno, NV, United States; School of Psychology and Wellbeing, The University of Southern Queensland, Ipswich, QLD, Australia
| | - Ariel J Rissman
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, United States
| | - Helen J Burgess
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Christopher S Colwell
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, United States
| | - Leon C Lack
- Adelaide Institute for Sleep Health, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia; College of Education, Psychology and Social Work, Flinders University, Adelaide, SA, Australia
| | - Michael Gradisar
- WINK Sleep Pty Ltd, Adelaide, SA, Australia; Sleep Cycle AB, Gothenburg, Sweden
| |
Collapse
|
16
|
Babilon S, Myland P, Klabes J, Simon J, Khanh TQ. Study protocol for measuring the impact of (quasi-)monochromatic light on post-awakening cortisol secretion under controlled laboratory conditions. PLoS One 2022; 17:e0267659. [PMID: 35584105 PMCID: PMC9116651 DOI: 10.1371/journal.pone.0267659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 04/11/2022] [Indexed: 11/21/2022] Open
Abstract
Cortisol secretion has a fundamental role in human circadian regulation. The cortisol awakening response (CAR) can be observed as a daily recurring sharp increase in cortisol concentration within the first hour after awakening and is influenced by environmental light conditions. The current work provides the study protocol for an ongoing research project that is intended to explore the spectral dependencies and to discuss measures of emotional state and cognitive functioning potentially related to the CAR. Based on a controlled within-subjects sleep laboratory study, the impact of a two-hour, (quasi-)monochromatic, post-awakening light exposure of different peak wavelength (applied from 6:00 to 8:00 am) on resulting CAR levels should be investigated in a systematic manner to eventually derive a corresponding spectral sensitivity model. As a secondary outcome, it should be explored whether a potentially light-enhanced cortisol secretion might also impact different measures of sleepiness, mood, and vigilance for certain wavelengths. The study protocol described in the present work discusses the various protocol steps using pilot data collected for two different wavelength settings (i.e., short-wavelength blue-light at λmax = 476 nm and long-wavelength red-light at λmax = 649 nm) experienced by a group of four healthy male adults at an average ± SD age of 25.25 ± 3.59 years.
Collapse
Affiliation(s)
- Sebastian Babilon
- Laboratory of Lighting Technology, Technical University of Darmstadt, Darmstadt, Germany
- Light and Health Research Center, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Paul Myland
- Laboratory of Lighting Technology, Technical University of Darmstadt, Darmstadt, Germany
| | - Julian Klabes
- Laboratory of Lighting Technology, Technical University of Darmstadt, Darmstadt, Germany
| | - Joel Simon
- Laboratory of Lighting Technology, Technical University of Darmstadt, Darmstadt, Germany
| | - Tran Quoc Khanh
- Laboratory of Lighting Technology, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
17
|
Processing RGB Color Sensors for Measuring the Circadian Stimulus of Artificial and Daylight Light Sources. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The three main tasks of modern lighting design are to support the visual performance, satisfy color emotion (color quality), and promote positive non-visual outcomes. In view of large-scale applications, the use of simple and inexpensive RGB color sensors to monitor related visual and non-visual illumination parameters seems to be of great promise for the future development of human-centered lighting control systems. In this context, the present work proposes a new methodology to assess the circadian effectiveness of the prevalent lighting conditions for daylight and artificial light sources in terms of the physiologically relevant circadian stimulus (CS) metric using such color sensors. In the case of daylight, the raw sensor readouts were processed in such a way that the CIE daylight model can be applied as an intermediate step to estimate its spectral composition, from which CS can eventually be calculated straightforwardly. Maximal CS prediction errors of less than 0.0025 were observed when tested on real data. For artificial light sources, on the other hand, the CS approximation method of Truong et al. was applied to estimate its circadian effectiveness from the sensor readouts. In this case, a maximal CS prediction error of 0.028 must be reported, which is considerably larger compared to daylight, but still in an acceptable range for typical indoor lighting applications. The use of RGB color sensors is thus shown to be suitable for estimating the circadian effectiveness of both types of illumination with sufficient accuracy for practical applications.
Collapse
|
18
|
St. Hilaire MA. Modeling (circadian). PROGRESS IN BRAIN RESEARCH 2022; 273:181-198. [DOI: 10.1016/bs.pbr.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
Nagare R, Woo M, MacNaughton P, Plitnick B, Tinianov B, Figueiro M. Access to Daylight at Home Improves Circadian Alignment, Sleep, and Mental Health in Healthy Adults: A Crossover Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18199980. [PMID: 34639284 PMCID: PMC8507741 DOI: 10.3390/ijerph18199980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/03/2022]
Abstract
As the primary environmental cue for the body’s master biological clock, light–dark patterns are key for circadian alignment and are ultimately fundamental to multiple dimensions of health including sleep and mental health. Although daylight provides the proper qualities of light for promoting circadian alignment, our modern indoor lifestyles offer fewer opportunities for adequate daylight exposure. This field study explores how increasing circadian-effective light in residences affects circadian phase, sleep, vitality, and mental health. In this crossover study, 20 residents spent one week in their apartments with electrochromic glass windows and another week with functionally standard windows with blinds. Calibrated light sensors revealed higher daytime circadian-effective light levels with the electrochromic glass windows, and participants exhibited consistent melatonin onset, a 22-min earlier sleep onset, and higher sleep regularity. In the blinds condition, participants exhibited a 15-min delay in dim light melatonin onset, a delay in subjective vitality throughout the day, and an overall lower positive affect. This study demonstrates the impact of daytime lighting on the physiological, behavioral, and subjective measures of circadian health in a real-world environment and stresses the importance of designing buildings that optimize daylight for human health and wellbeing.
Collapse
Affiliation(s)
- Rohan Nagare
- Light and Health Research Center, Department of Population Health, Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (B.P.); (M.F.)
- Correspondence:
| | - May Woo
- View, Inc., Milpitas, CA 95035, USA; (M.W.); (P.M.); (B.T.)
| | - Piers MacNaughton
- View, Inc., Milpitas, CA 95035, USA; (M.W.); (P.M.); (B.T.)
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Barbara Plitnick
- Light and Health Research Center, Department of Population Health, Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (B.P.); (M.F.)
| | | | - Mariana Figueiro
- Light and Health Research Center, Department of Population Health, Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (B.P.); (M.F.)
| |
Collapse
|
20
|
Aguilar-Carrasco MT, Domínguez-Amarillo S, Acosta I, Sendra JJ. Indoor lighting design for healthier workplaces: natural and electric light assessment for suitable circadian stimulus. OPTICS EXPRESS 2021; 29:29899-29917. [PMID: 34614725 DOI: 10.1364/oe.430747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Light, especially daylight, plays a critical role in human health as the main timer for circadian rhythms. Indoor environments usually lack the correct exposure to daylight and are highly dependent on electric lighting, disrupting the circadian rhythm and compromising the health of occupants. The methodology proposed assesses the combination of natural and electric lighting on circadian rhythms for operational environments. The case study chosen examines a 24/7 laboratory area representing an open-plan shift-work area. Several electric lighting scenarios under different sky conditions have been assessed, considering a variable window size and resulting in a spectrum which establishes the indoor circadian regulation performance according to the amount of light perceived. A set of configurations is presented to determine optimal electric lighting configuration based on natural light conditions in order to ensure a suitable circadian stimulus and the electric lighting flux threshold for different scenarios, benefiting occupants' health while also ensuring energy conservation.
Collapse
|
21
|
Figueiro MG, Kales HC. Lighting and Alzheimer's Disease and Related Dementias: Spotlight on Sleep and Depression. LIGHTING RESEARCH & TECHNOLOGY (LONDON, ENGLAND : 2001) 2021; 53:405-422. [PMID: 36532710 PMCID: PMC9753196 DOI: 10.1177/14771535211005835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Alzheimer's disease and related dementias is the collective term for a progressive neurodegenerative disease for which there is presently no cure. This paper focuses on two symptoms of the disease, sleep disturbances and depression, and discusses how light can be used as a non-pharmacological intervention to mitigate their negative effects. Bright days and dark nights are needed for health and well-being, but the present components of the built environment, especially those places where older adults spend most of their days, are too dimly illuminated during the day and too bright at night. To be effective light needs to be correctly specified, implemented, and measured. Yet without the appropriate specification and measurement of the stimulus, researchers will not be able to successfully demonstrate positive results in the field, nor will lighting designers and specifiers have the confidence to implement lighting solutions for promoting better sleep and mood in this population.
Collapse
Affiliation(s)
- Mariana G Figueiro
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Helen C Kales
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
22
|
Measurement of Circadian Effectiveness in Lighting for Office Applications. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11156936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
As one factor among others, circadian effectiveness depends on the spatial light distribution of the prevalent lighting conditions. In a typical office context focusing on computer work, the light that is experienced by the office workers is usually composed of a direct component emitted by the room luminaires and the computer monitors as well as by an indirect component reflected from the walls, surfaces, and ceiling. Due to this multi-directional light pattern, spatially resolved light measurements are required for an adequate prediction of non-visual light-induced effects. In this work, we therefore propose a novel methodological framework for spatially resolved light measurements that allows for an estimate of the circadian effectiveness of a lighting situation for variable field of view (FOV) definitions. Results of exemplary in-field office light measurements are reported and compared to those obtained from standard spectral radiometry to validate the accuracy of the proposed approach. The corresponding relative error is found to be of the order of 3–6%, which denotes an acceptable range for most practical applications. In addition, the impact of different FOVs as well as non-zero measurement angles will be investigated.
Collapse
|
23
|
Salamone F, Masullo M, Sibilio S. Wearable Devices for Environmental Monitoring in the Built Environment: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2021; 21:4727. [PMID: 34300467 PMCID: PMC8309593 DOI: 10.3390/s21144727] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 01/16/2023]
Abstract
The so-called Internet of Things (IoT), which is rapidly increasing the number of network-connected and interconnected objects, could have a far-reaching impact in identifying the link between human health, well-being, and environmental concerns. In line with the IoT concept, many commercial wearables have been introduced in recent years, which differ from the usual devices in that they use the term "smart" alongside the terms "watches", "glasses", and "jewellery". Commercially available wearables aim to enhance smartphone functionality by enabling payment for commercial items or monitoring physical activity. However, what is the trend of scientific production about the concept of wearables regarding environmental monitoring issues? What are the main areas of interest covered by scientific production? What are the main findings and limitations of the developed solution in this field? The methodology used to answer the above questions is based on a systematic review. The data were acquired following a reproducible methodology. The main result is that, among the thermal, visual, acoustic, and air quality environmental factors, the last one is the most considered when using wearables even though in combination with some others. Another relevant finding is that of the acquired studies; in only one, the authors shared their wearables as an open-source device, and it will probably be necessary to encourage researchers to consider open-source as a means to promote scalability and proliferation of new wearables customized to cover different domains.
Collapse
Affiliation(s)
- Francesco Salamone
- Construction Technologies Institute, National Research Council of Italy (ITC-CNR), Via Lombardia, 49, San Giuliano Milanese, 20098 Milano, Italy
- Department of Architecture and Industrial Design, Università degli Studi della Campania “Luigi Vanvitelli”, Via San Lorenzo, Abazia di San Lorenzo, 81031 Aversa, Italy; (M.M.); (S.S.)
| | - Massimiliano Masullo
- Department of Architecture and Industrial Design, Università degli Studi della Campania “Luigi Vanvitelli”, Via San Lorenzo, Abazia di San Lorenzo, 81031 Aversa, Italy; (M.M.); (S.S.)
| | - Sergio Sibilio
- Department of Architecture and Industrial Design, Università degli Studi della Campania “Luigi Vanvitelli”, Via San Lorenzo, Abazia di San Lorenzo, 81031 Aversa, Italy; (M.M.); (S.S.)
| |
Collapse
|
24
|
Influences of Spectral Power Distribution on Circadian Energy, Visual Comfort and Work Performance. SUSTAINABILITY 2021. [DOI: 10.3390/su13094852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Spectral power distribution (SPD) is an essential element that has considerable implications on circadian energy and the perception of lit environments. The present study assessed the potential influences of SPD on energy consumption (i.e., considering circadian energy), visual comfort, work performance and mood. Two lighting conditions based on light-emitting diode (LED) and organic light-emitting diode (OLED) were used as proxies for SPDs of different spectral content: dominant peak wavelength of 455 nm (LED) and 618 nm (OLED). Using measured photometric values, the circadian light (CL), melatonin suppression (MS), and circadian efficacy (CE) of the two lighting sources were estimated via a circadian-phototransduction model and compared. Additionally, twenty-six participants were asked to evaluate the said lit environments subjectively in terms of visual comfort and self-reported work performance. Regarding circadian lighting and the associated energy implications, the LED light source induced higher biological actions with relatively less energy than the OLED light source. For visual comfort, OLED lighting-based conditions were preferred to LED lighting-based conditions, while the opposite was true when considering work performance and mood. The current study adds to the on-going debate regarding human-centric lighting, particularly considering the role of SPD in energy-efficient and circadian lighting practices.
Collapse
|
25
|
Rea MS, Nagare R, Figueiro MG. Relative light sensitivities of four retinal hemi-fields for suppressing the synthesis of melatonin at night. Neurobiol Sleep Circadian Rhythms 2021; 10:100066. [PMID: 33997475 PMCID: PMC8099627 DOI: 10.1016/j.nbscr.2021.100066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 01/09/2023] Open
Abstract
The magnitude of the stimulus to the biological clock will depend upon the distribution of circadian phototransduction circuits across the retinae and the spatial distribution of luminous stimuli in the environment. The present study compared nocturnal melatonin suppression for light exposures to the superior, inferior, nasal, and temporal retina in one eye independent of shading from the brow and the nose. The stimulus was a 40° diameter luminous disc, half of which was blue light (LED, λpeak = 470 nm) and the other amber light (LED, λpeak = 590 nm). Experimentally, the orientation of the bipartite disc was rotated to each of the four cardinal points of the visual field. A full, 40° blue disc was also employed by replacing the amber half-disc with another blue half-disc. The blue full- and half-discs always produced 100 photopic lx at the cornea. As hypothesized, nocturnal melatonin suppression was statistically greatest when the blue half-disc was delivered to the nasal hemi-field (35%); the other three hemi-fields were equally affected by the blue half-disc (≈20%). Melatonin suppression for the full-disc was 24%, which was not statistically different than the average suppression for the four hemi-fields of 27%.
Collapse
Key Words
- ANOVA, analysis of variance
- Blue light
- CLA, circadian light
- CS, circadian stimulus
- Circadian phototransduction
- EML, equivalent melanopic lux
- LED, light-emitting diode
- Melatonin suppression
- Monocular
- Nasal retina
- RGB, red, green, blue
- α-opic, alpha-opic
- λpeak, peak wavelength
Collapse
Affiliation(s)
- Mark S. Rea
- Corresponding author. Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, 2nd Floor, New York, NY, 10029, USA.
| | | | | |
Collapse
|
26
|
Vagge A, Ferro Desideri L, Del Noce C, Di Mola I, Sindaco D, Traverso CE. Blue light filtering ophthalmic lenses: A systematic review. Semin Ophthalmol 2021; 36:541-548. [PMID: 33734926 DOI: 10.1080/08820538.2021.1900283] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background: Blue blocking (BB) lenses, including spectacles and intraocular lenses, work by attenuating short-wavelength light. BB glasses are being marketed with the aim to reduce eye fatigue symptoms when using digital devices, improve sleep quality and potentially confer protection from retinal phototoxicity. BB intraocular lenses following cataract surgery may be implanted because they are thought to prevent age-related macular degeneration (AMD) progression.Methods: The present study is a systematic review aiming to analyze BB lenses clinical efficacy in preventing blue light-related ocular disorders, including AMD progression, eye fatigue, and their impact on sleep quality. We searched Medline, PubMed, Web of Science and the Cochrane Library until May 2020.Results:Although several studies have been performed investigating BB lenses, clinical efficacy for preventing or attenuating the above-mentioned ocular disorders is often theorical or based on laboratory or animal experiments. Conclusions: To date, there is a lack of consistent evidence for a larger-sclale introduction of BB lenses in the routine clinical practice.
Collapse
Affiliation(s)
- Aldo Vagge
- IRCCS Polyclinic Hospital San Martino, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (Dinogmi), University of Genoa, Italy
| | - Lorenzo Ferro Desideri
- IRCCS Polyclinic Hospital San Martino, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (Dinogmi), University of Genoa, Italy
| | - Chiara Del Noce
- IRCCS Polyclinic Hospital San Martino, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (Dinogmi), University of Genoa, Italy
| | - Ilaria Di Mola
- IRCCS Polyclinic Hospital San Martino, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (Dinogmi), University of Genoa, Italy
| | - Daniele Sindaco
- IRCCS Polyclinic Hospital San Martino, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (Dinogmi), University of Genoa, Italy
| | - Carlo E Traverso
- IRCCS Polyclinic Hospital San Martino, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (Dinogmi), University of Genoa, Italy
| |
Collapse
|
27
|
Figueiro MG, Leggett S. Intermittent Light Exposures in Humans: A Case for Dual Entrainment in the Treatment of Alzheimer's Disease. Front Neurol 2021; 12:625698. [PMID: 33767659 PMCID: PMC7985540 DOI: 10.3389/fneur.2021.625698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/15/2021] [Indexed: 12/26/2022] Open
Abstract
Circadian sleep disorders are common among American adults and can become especially acute among older adults, especially those living with Alzheimer's disease (AD) and mild cognitive impairment (MCI), leading to the exacerbation of symptoms and contributing to the development and advancement of the diseases. This review explores the connections between circadian sleep disorders, cognition, and neurodegenerative disease, offering insights on rapidly developing therapeutic interventions employing intermittent light stimuli for improving sleep and cognition in persons with AD and MCI. Light therapy has the potential to affect sleep and cognition via at least two pathways: (1) a regular and robust light-dark pattern reaching the retina that promotes circadian phase shifting, which can promote entrainment and (2) 40 Hz flickering light that promotes gamma-wave entrainment. While this is a new area of research, preliminary evidence shows the potential of dual circadian and gamma-wave entrainment as an important therapy not only for those with AD, but for others with cognitive impairment.
Collapse
Affiliation(s)
- Mariana G. Figueiro
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Sagan Leggett
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
28
|
Rea MS, Nagare R, Figueiro MG. Modeling Circadian Phototransduction: Retinal Neurophysiology and Neuroanatomy. Front Neurosci 2021; 14:615305. [PMID: 33613175 PMCID: PMC7892603 DOI: 10.3389/fnins.2020.615305] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/28/2020] [Indexed: 12/11/2022] Open
Abstract
The retina is a complex, but well-organized neural structure that converts optical radiation into neural signals that convey photic information to a wide variety of brain structures. The present paper is concerned with the neural circuits underlying phototransduction for the central pacemaker of the human circadian system. The proposed neural framework adheres to orthodox retinal neuroanatomy and neurophysiology. Several postulated mechanisms are also offered to account for the high threshold and for the subadditive response to polychromatic light exhibited by the human circadian phototransduction circuit. A companion paper, modeling circadian phototransduction: Quantitative predictions of psychophysical data, provides a computational model for predicting psychophysical data associated with nocturnal melatonin suppression while staying within the constraints of the neurophysiology and neuroanatomy offered here.
Collapse
Affiliation(s)
- Mark S. Rea
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, United States
- Icahn School of Medicine, Mount Sinai, New York, NY, United States
| | - Rohan Nagare
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, United States
- Icahn School of Medicine, Mount Sinai, New York, NY, United States
| | - Mariana G. Figueiro
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, United States
- Icahn School of Medicine, Mount Sinai, New York, NY, United States
| |
Collapse
|
29
|
Rea MS, Nagare R, Figueiro MG. Modeling Circadian Phototransduction: Quantitative Predictions of Psychophysical Data. Front Neurosci 2021; 15:615322. [PMID: 33613181 PMCID: PMC7893103 DOI: 10.3389/fnins.2021.615322] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/08/2021] [Indexed: 01/29/2023] Open
Abstract
A revised computational model of circadian phototransduction is presented. The first step was to characterize the spectral sensitivity of the retinal circuit using suppression of the synthesis of melatonin by the pineal gland at night as the outcome measure. From the spectral sensitivity, circadian light was defined. Circadian light, thereby rectifies any spectral power distribution into a single, instantaneous photometric quantity. The second step was to characterize the circuit’s response characteristic to different amounts of circadian light from threshold to saturation. By doing so a more complete instantaneous photometric quantity representing the circadian stimulus was defined in terms of both the spectral sensitivity and the response magnitude characteristic of the circadian phototransduction circuit. To validate the model of the circadian phototransduction circuit, it was necessary to augment the model to account for different durations of the circadian stimulus and distribution of the circadian stimulus across the retina. Two simple modifications to the model accounted for the duration and distribution of continuous light exposure during the early biological night. A companion paper (https://www.frontiersin.org/articles/10.3389/fnins.2020.615305/full) provides a neurophysiological foundation for the model parameters.
Collapse
Affiliation(s)
- Mark S Rea
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, United States.,Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Rohan Nagare
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, United States.,Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mariana G Figueiro
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, United States.,Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
30
|
Youngstedt SD, Kline CE, Reynolds AM, Crowley SK, Burch JB, Khan N, Han S. Bright Light Treatment of Combat-related PTSD: A Randomized Controlled Trial. Mil Med 2021; 187:e435-e444. [PMID: 33511988 DOI: 10.1093/milmed/usab014] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/28/2020] [Accepted: 01/11/2021] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Post-traumatic stress disorder (PTSD) is a prevalent consequence of combat with significant associated morbidity. Available treatments for PTSD have had limitations, suggesting a need to explore alternative or adjuvant treatments. Numerous rationales for bright light treatment of PTSD include its benefits for common PTSD comorbidities of depression, anxiety, and circadian misalignment and its relative ease of use with few side effects. The primary aims of this research were to examine the effects of bright light treatment for combat-related PTSD and associated morbidity. MATERIALS AND METHODS A randomized controlled trial was performed in N = 69 veterans with PTSD attributable to combat in Afghanistan and/or Iraq. Following a 1-week baseline, participants were randomized to 4 weeks of daily morning bright light treatment (10,000 lux for 30 min/day) or a control treatment (inactivated negative ion generator). At baseline and at the end of treatment, participants were rated blindly on the Clinician Assessed PTSD Scale (CAPS), the Clinical Global Impressions Scale (CGI), and the Hamilton Depression Scale and rated themselves on the PTSD Checklist-Military (PCL-M). Following baseline and each treatment week, participants completed self-reported scales of state anxiety, depression, and sleep, and sleep and the circadian rhythm of wrist activity were also assessed with wrist actigraphy. RESULTS Compared with the control treatment, bright light elicited significantly greater improvements in the CAPS and CGI-Improvement. The bright light also elicited a significantly greater rate of treatment response (reduction ≥33%) for the CAPS (44.1% vs. 8.6%) and PCL-M (33% vs. 6%), but no participant had remission from PTSD. Changes in depression, anxiety, and sleep did not differ between treatments. Improvement in CAPS was significantly correlated with a phase advance of the circadian rhythm of wrist activity. CONCLUSIONS The most comprehensive study on the topic to date indicated significant short-term efficacy of bright light treatment on the primary variables (CAPS and CGI) with clinical relevance (i.e., treatment response) in veterans with chronic PTSD who did not report extremely high habitual light exposure. No significant effects were found for anxiety, depression, or sleep disturbance. Further research is warranted, particularly exploration of circadian phase-shifting mechanisms of bright light for PTSD.
Collapse
Affiliation(s)
- Shawn D Youngstedt
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ 85004, USA.,Phoenix VA Health Care System, Phoenix, AZ 85012, USA
| | - Christopher E Kline
- Department of Health and Human Development, Research Service, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Alexandria M Reynolds
- Department of Psychology, University of Virginia's College at Wise, Wise, VA 24293, USA
| | - Shannon K Crowley
- Department of Exercise Science, Department of Health Promotion, North Carolina Wesleyan College, Rocky Mount, NC 27804, USA
| | - James B Burch
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC 29208, USA
| | - Nidha Khan
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - SeungYong Han
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ 85004, USA
| |
Collapse
|
31
|
Houser KW, Esposito T. Human-Centric Lighting: Foundational Considerations and a Five-Step Design Process. Front Neurol 2021; 12:630553. [PMID: 33584531 PMCID: PMC7873560 DOI: 10.3389/fneur.2021.630553] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/06/2021] [Indexed: 12/22/2022] Open
Abstract
At its best, human-centric lighting considers the visual and non-visual effects of light in support of positive human outcomes. At its worst, it is a marketing phrase used to healthwash lighting products or lighting design solutions. There is no doubt that environmental lighting contributes to human health, but how might one practice human-centric lighting given both the credible potential and the implausible hype? Marketing literature is filled with promises. Technical lighting societies have summarized the science but have not yet offered design guidance. Meanwhile, designers are in the middle, attempting to distinguish credible knowledge from that which is dubious to make design decisions that affect people directly. This article is intended to: (1) empower the reader with fundamental understandings of ways in which light affects health; (2) provide a process for human-centric lighting design that can dovetail with the decision-making process that is already a part of a designer's workflow.
Collapse
Affiliation(s)
- Kevin W. Houser
- School of Civil and Construction Engineering, Oregon State University, Corvallis, OR, United States
- Advanced Lighting Team, Pacific Northwest National Laboratory, Portland, OR, United States
| | - Tony Esposito
- Lighting Research Solutions LLC, Cambridge, MA, United States
| |
Collapse
|
32
|
Moyano DB, González Lezcano RA. Indoor Lighting Workplaces. ADVANCES IN CIVIL AND INDUSTRIAL ENGINEERING 2021:243-258. [DOI: 10.4018/978-1-7998-7279-5.ch012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Office work has so far been carried out in company buildings and was largely based on the use of paper on a horizontal surface. Due to multiple reasons, more workers are working in their homes with electronic devices. As a result, both the working environment and personal tools are changing. Since the discovery about 20 years ago of the non-visual ways of light absorption, it was known that apart from the image forming effects (IF) of light from which the criteria for correct lighting have been developed, non-image forming effects (NIF) of light exist. The discovery of NIF has enhanced researcher belief in the importance of daylighting and has raised new criteria to be taken into account for proper interior lighting. Due to all the factors mentioned above, the parameters to be met by a luminaire and its environment for proper lighting of the workstation have been modified and expanded. The rapid advance in the development of new light-emitting diode (LED) luminaires with which the spectral power distribution (SPD) can be practically created opens the door to a genuine technological revolution comparable to the invention of electric lighting around 150 years ago. The authors of this study will review the latest published studies on the importance of light in our lives, IF and NIF effects of light, the parameters which from these effects are suggested to be taken into account for a correct indoor lighting, the regulations in force on indoor lighting workplaces, and proposals to improve indoor lighting and therefore the quality of life of workers.
Collapse
|
33
|
Xiao H, Cai H, Li X. Non-visual effects of indoor light environment on humans: A review ✰. Physiol Behav 2021; 228:113195. [PMID: 33022281 DOI: 10.1016/j.physbeh.2020.113195] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/18/2022]
Abstract
As a result of the desire to improve living standards, increasing attention is paid to creating a comfortable and healthy lighting environment that contributes to human health and well-being. It is crucial to understand the effects of environmental lighting regulation on humans' physical responses and mental activities. In this review, we focus on the scientific research on light-induced non-visual effects on humans, providing a systematic review of how the quantity of light, spectral changes, time of day, and duration have effects on the circadian rhythm, alertness, and mood based on eligible literature. The key findings are as follows: (1) The increase of illuminance and correlated colour temperature (CCT) at night were both positively associated with melatonin suppression, thus affecting the circadian rhythm. Meanwhile, a high CCT is conducive to the stimulation of positive mood. (2) Blue light and high CCT light at night induced delayed phase shift, and the objective alertness was reduced under the condition of lack of blue components. (3) High illuminance was positively correlated with subjective alertness during daytime, and increased the positive mood in the morning and decreased it in the afternoon. These findings serve as an important reference for stakeholders to optimise lighting in constructed environments to improve health and well-being considering the non-visual effects above and beyond visual performance.
Collapse
Affiliation(s)
- Hui Xiao
- Department of Control Science and Engineering, School of Electronics and Information Engineering, Tongji University, Shanghai 201804, China.
| | - Huiling Cai
- Department of Control Science and Engineering, School of Electronics and Information Engineering, Tongji University, Shanghai 201804, China
| | - Xuefeng Li
- Department of Control Science and Engineering, School of Electronics and Information Engineering, Tongji University, Shanghai 201804, China
| |
Collapse
|
34
|
Baeza Moyano D, González Lezcano RA. The Importance of Light in Our Lives. PRACTICE, PROGRESS, AND PROFICIENCY IN SUSTAINABILITY 2021:239-256. [DOI: 10.4018/978-1-7998-7023-4.ch011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The light that enters through our eyes is not only for vision. The human circadian system responds to light differently than the visual system. The timing of each biological function in mammals is directed by the main clock located in the Supraquiasmic Nucleus, which is regulated by light. However, until now, only the interaction of light with our visual system has been taken into account when choosing the parameters of indoor lighting sources, including those in the classroom. In the publications about school lighting, the first concern was the common parameters of indoor lighting such as horizontal workplane illuminance, illuminance uniformity, and avoiding reflections on different surfaces. In this chapter, the authors show publications about new findings on the effects of light on people, studies carried out in different countries aimed at improving classroom lighting, current regulations on lighting related to classroom lighting, and new parameters that are being considered, along with those already used for new and better lighting.
Collapse
|
35
|
Optimization of Lighting Projects Including Photopic and Circadian Criteria: A Simplified Action Protocol. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10228068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lighting projects that consider parameters related to circadian light remain rare. Using controlled lighting on both photopic and melanopic levels, this study aims to simplify the design of circadian lighting projects based on traditional photometric parameters and calculations. A real classroom is used to illustrate the behavior of horizontal (visual stimuli) and vertical (circadian contribution) illuminances under different design parameters, such as the varied reflectance of walls, ceiling, and floor; varied spatial distribution curves, including the number and position of luminaires; and across the spectral power distribution of a variety of LEDs. In this work, we seek to clarify and simplify to the greatest possible extent the meaning and scope of various lighting standards while establishing simple protocols. Our results will enable designers to carry out optimized lighting projects from both the photometric and circadian perspectives.
Collapse
|
36
|
Zhang R, Campanella C, Aristizabal S, Jamrozik A, Zhao J, Porter P, Ly S, Bauer BA. Impacts of Dynamic LED Lighting on the Well-Being and Experience of Office Occupants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17197217. [PMID: 33023141 PMCID: PMC7579128 DOI: 10.3390/ijerph17197217] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/18/2022]
Abstract
As a critical factor in the built environment, lighting presents considerable influence on occupants. Previous research across static lighting conditions has found that both illuminance and correlated color temperature (CCT) affect occupants’ physiological and psychological functioning. However, little research has been conducted on the non-visual impacts of dynamic lighting with daily variation in illuminance and CCT levels. The purpose of this study is to better understand the impact of dynamic lighting on office occupants’ health, well-being and experience at a living lab. Fifteen participants were recruited to work in three office modules for four months. Four lighting conditions were designed and implemented in this study, including two static lighting conditions and two dynamic lighting conditions with a specific predefined control scheme. A prototype lighting system with enhanced control capabilities was configured and implemented to ensure the desired lighting environment protocol. Both objective methods and subjective surveys were used to assess the behavioral and physiological outcomes of interest, including mental stress, sleep, productivity, satisfaction, mood, visual comfort and perceived naturalness. The results showed that the daytime behavioral impacts were either positive or mixed. Specifically, a significant alertness increase was observed in the afternoon, indicating a potential solution to reduce the natural feelings of sleepiness during the workday. There was also a marginal benefit for mood. The nighttime impacts include a significant decrease in perceived sleep quality and sleep time after subjects were exposed to dynamic lighting. No significant differences were observed for mental stress, productivity, visual comfort, or perceived naturalness. The findings present additional insights into the non-visual impacts of dynamic lighting and give recommendations for further investigations.
Collapse
Affiliation(s)
- Rongpeng Zhang
- Well Living Lab, Rochester, MN 55902, USA; (C.C.); (S.A.); (A.J.); (J.Z.); (P.P.); (S.L.); (B.A.B.)
- Delos Labs, Delos Living, New York, NY 10014, USA
- Mayo Clinic, Rochester, MN 55902, USA
- Correspondence:
| | - Carolina Campanella
- Well Living Lab, Rochester, MN 55902, USA; (C.C.); (S.A.); (A.J.); (J.Z.); (P.P.); (S.L.); (B.A.B.)
- Delos Labs, Delos Living, New York, NY 10014, USA
- Mayo Clinic, Rochester, MN 55902, USA
| | - Sara Aristizabal
- Well Living Lab, Rochester, MN 55902, USA; (C.C.); (S.A.); (A.J.); (J.Z.); (P.P.); (S.L.); (B.A.B.)
- Delos Labs, Delos Living, New York, NY 10014, USA
- Mayo Clinic, Rochester, MN 55902, USA
| | - Anja Jamrozik
- Well Living Lab, Rochester, MN 55902, USA; (C.C.); (S.A.); (A.J.); (J.Z.); (P.P.); (S.L.); (B.A.B.)
- Delos Labs, Delos Living, New York, NY 10014, USA
- Mayo Clinic, Rochester, MN 55902, USA
| | - Jie Zhao
- Well Living Lab, Rochester, MN 55902, USA; (C.C.); (S.A.); (A.J.); (J.Z.); (P.P.); (S.L.); (B.A.B.)
- Delos Labs, Delos Living, New York, NY 10014, USA
- Mayo Clinic, Rochester, MN 55902, USA
| | - Paige Porter
- Well Living Lab, Rochester, MN 55902, USA; (C.C.); (S.A.); (A.J.); (J.Z.); (P.P.); (S.L.); (B.A.B.)
- Delos Labs, Delos Living, New York, NY 10014, USA
- Mayo Clinic, Rochester, MN 55902, USA
| | - Shaun Ly
- Well Living Lab, Rochester, MN 55902, USA; (C.C.); (S.A.); (A.J.); (J.Z.); (P.P.); (S.L.); (B.A.B.)
- Delos Labs, Delos Living, New York, NY 10014, USA
- Mayo Clinic, Rochester, MN 55902, USA
| | - Brent A. Bauer
- Well Living Lab, Rochester, MN 55902, USA; (C.C.); (S.A.); (A.J.); (J.Z.); (P.P.); (S.L.); (B.A.B.)
- Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
37
|
Figueiro MG, Pedler D. Red light: A novel, non-pharmacological intervention to promote alertness in shift workers. JOURNAL OF SAFETY RESEARCH 2020; 74:169-177. [PMID: 32951780 PMCID: PMC8059068 DOI: 10.1016/j.jsr.2020.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 03/23/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Night work requires inversion of the natural, diurnal human activity-rest cycle and is associated with decreased alertness and some measures of performance, reduced safety, adverse health effects, and chronic disruption of the melatonin cycle that has been associated with increased risk for several major diseases. Previous studies show that red light exposures at night can promote alertness and improve performance while not negatively affecting melatonin secretion. METHOD This ongoing crossover, mixed (within- and between-subjects) design field study is testing the efficacy and acceptance of red light delivered to day-shift and night-shift workers using personal light glasses while they are at work. Each participant experienced three lighting interventions at the eyes: red light (50 lx, 630 nm, the treatment intervention), blue light (50 lx, 460 nm, the positive control intervention), and dim white light (10 lx, 3,000 K, the placebo control). During the interventions, participants underwent visual performance testing, submitted salivary melatonin and cortisol samples, and provided subjective reports of sleepiness, sleep disturbance, and general health over the 20-week protocol. Due to the ongoing nature of the study, only the performance and subjective reports are presented here. RESULTS Preliminary results indicate that response times were improved by the red and blue interventions, but not accuracy and hit rates. Blue light was associated with improvements to self-reported sleep disturbances compared to dim light. CONCLUSIONS These field results partially support our laboratory results that showed a positive effect of red light for promoting alertness and certain performance outcomes during the day and at night. Practical Applications: Red light may be used to improve response times in shift workers. Continued research will elucidate the lighting interventions' effects on melatonin and objective sleep measures (actigraphy).
Collapse
Affiliation(s)
- Mariana G Figueiro
- Lighting Research Center, Rensselaer Polytechnic Institute, 21 Union Street, Troy, NY 12280, United States.
| | - David Pedler
- Lighting Research Center, Rensselaer Polytechnic Institute, 21 Union Street, Troy, NY 12280, United States
| |
Collapse
|
38
|
Predictions of melatonin suppression during the early biological night and their implications for residential light exposures prior to sleeping. Sci Rep 2020; 10:14114. [PMID: 32839489 PMCID: PMC7445277 DOI: 10.1038/s41598-020-70619-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022] Open
Abstract
The magnitude of nocturnal melatonin suppression depends upon the spectrum, amount, and duration of light exposure. The functional relationship between melatonin suppression and the light spectrum and amount have been previously described. Only one duration-dependent parameter was needed to extend this functional relationship to predict nocturnal melatonin suppression during the early biological night from a variety of published studies. Those predictions suggest that ambient lighting commonly found in North American homes will not suppress melatonin for durations up to 3 h, whereas extended use of self-luminous displays in the home prior to sleep can.
Collapse
|
39
|
Figueiro MG, Sahin L, Kalsher M, Plitnick B, Rea MS. Long-Term, All-Day Exposure to Circadian-Effective Light Improves Sleep, Mood, and Behavior in Persons with Dementia. J Alzheimers Dis Rep 2020; 4:297-312. [PMID: 33024938 PMCID: PMC7504981 DOI: 10.3233/adr-200212] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Persons with Alzheimer's disease and related dementias (ADRD) frequently experience sleep-wake (circadian) cycle disturbances that lead them to remain awake at night, causing stress and fatigue for families and caregivers. Light therapy shows promise as a nonpharmacological treatment for regulating sleep in this population. OBJECTIVE We investigated the long-term impact of a circadian-effective lighting intervention on sleep, mood, and behavior problems in persons with ADRD. METHODS This 25-week clinical trial administered an all-day lighting intervention to 47 patients with ADRD in 9 senior-care facilities, employing wrist-worn actigraphy measures and standardized measures of sleep quality, mood, and behavior. RESULTS The intervention significantly improved Pittsburgh Sleep Quality Index scores, from an estimated mean±SEM of 11.89±0.53 at baseline to 5.36±0.63 at the end of the intervention. Additional improvements were noted for sleep efficiency data from actigraph measurements. The intervention significantly reduced Cornell Scale for Depression in Dementia scores (mean±SEM of 11.36±0.74 at baseline and 4.18±0.88 at the end of the intervention) and Cohen-Mansfield Agitation Inventory scores (mean±SEM of 47.10±1.98 at baseline and 35.33±2.23 at the end of the intervention). CONCLUSION A regular circadian-effective daytime lighting intervention can improve sleep at night and reduce depression and agitation in patients with dementia living in controlled environments. More importantly, the positive effects of the tailored lighting intervention on these outcomes appear to be cumulative over time.
Collapse
Affiliation(s)
| | - Levent Sahin
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Michael Kalsher
- Department of Cognitive Science, School of Humanities, Arts and Social Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Barbara Plitnick
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Mark S. Rea
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
40
|
Yoshimura M, Kitamura S, Eto N, Hida A, Katsunuma R, Ayabe N, Motomura Y, Nishiwaki Y, Negishi K, Tsubota K, Mishima K. Relationship between Indoor Daytime Light Exposure and Circadian Phase Response under Laboratory Free-Living Conditions. BIOL RHYTHM RES 2020. [DOI: 10.1080/09291016.2020.1782691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Michitaka Yoshimura
- Department of Sleep-Wake Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Faculty of Human Health, Aichi Toho University, Nagoya, Japan
| | - Shingo Kitamura
- Department of Sleep-Wake Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Norihito Eto
- Department of Biomedical Engineering, School of Engineering, Tokai University, Kanagawa, Japan
| | - Akiko Hida
- Department of Sleep-Wake Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Ruri Katsunuma
- Department of Sleep-Wake Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Naoko Ayabe
- Department of Sleep-Wake Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yuki Motomura
- Department of Sleep-Wake Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Human Science, Faculty of Design, Kyushu University, Fukuoka, Japan
| | - Yuji Nishiwaki
- Department of Environmental and Occupational Health, School of Medicine, Toho University, Tokyo, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuo Mishima
- Department of Sleep-Wake Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Neuropsychiatry, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
41
|
Daugaard S, Markvart J, Bonde JP, Christoffersen J, Garde AH, Hansen ÅM, Schlünssen V, Vestergaard JM, Vistisen HT, Kolstad HA. Light Exposure during Days with Night, Outdoor, and Indoor Work. Ann Work Expo Health 2020; 63:651-665. [PMID: 30865270 DOI: 10.1093/annweh/wxy110] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/06/2018] [Accepted: 02/27/2019] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To assess light exposure during days with indoor, outdoor, and night work and days off work. METHODS Light intensity was continuously recorded for 7 days across the year among indoor (n = 170), outdoor (n = 151), and night workers (n = 188) in Denmark (55-56°N) equipped with a personal light recorder. White light intensity, duration above 80, 1000, and 2500 lux, and proportion of red, green, and blue light was depicted by time of the day and season for work days and days off work. RESULTS Indoor workers' average light exposure only intermittently exceeded 1000 lux during daytime working hours in summer and never in winter. During daytime working hours, most outdoor workers exceeded 2500 lux in summer and 1000 lux in winter. Night workers spent on average 10-50 min >80 lux when working night shifts. During days off work, indoor and night workers were exposed to higher light intensities than during work days and few differences were seen between indoor, outdoor, and night workers. The spectral composition of light was similar for indoor, outdoor, and night workers during days at and off work. CONCLUSION The night workers of this study were during night hours on average exposed for a limited time to light intensities expected to suppress melatonin. The indoor workers were exposed to light levels during daylight hours that may reduce general well-being and mood, especially in winter. Outdoor workers were during summer daylight hours exposed to light levels comparable to those used for the treatment of depression.
Collapse
Affiliation(s)
- Stine Daugaard
- Department of Occupational Medicine, Danish Ramazinni Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Jakob Markvart
- Department of Energy Performance, Indoor Environment and Sustainability of Buildings, Danish Building Research Institute, Aalborg University, Copenhagen, Denmark
| | - Jens Peter Bonde
- Department of Occupational Medicine, Bispebjerg Hospital, Copenhagen, Denmark
| | | | - Anne Helene Garde
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Åse Marie Hansen
- National Research Centre for the Working Environment, Copenhagen, Denmark.,Department of Public Health, Section of Social Medicine, Institute of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Vivi Schlünssen
- National Research Centre for the Working Environment, Copenhagen, Denmark.,Department of Public Health, Section for Environment, Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - Jesper Medom Vestergaard
- Department of Occupational Medicine, Danish Ramazinni Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Helene Tilma Vistisen
- Department of Occupational Medicine, Danish Ramazinni Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Henrik Albert Kolstad
- Department of Occupational Medicine, Danish Ramazinni Centre, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
42
|
Patterson SS, Kuchenbecker JA, Anderson JR, Neitz M, Neitz J. A Color Vision Circuit for Non-Image-Forming Vision in the Primate Retina. Curr Biol 2020; 30:1269-1274.e2. [PMID: 32084404 PMCID: PMC7141953 DOI: 10.1016/j.cub.2020.01.040] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 12/15/2022]
Abstract
Melanopsin-expressing, intrinsically photosensitive retinal ganglion cells (ipRGCs) synchronize our biological clocks with the external light/dark cycle [1]. In addition to photoentrainment, they mediate the effects of light experience as a central modulator of mood, learning, and health [2]. This makes a complete account of the circuity responsible for ipRGCs' light responses essential to understanding their diverse roles in our well-being. Considerable progress has been made in understanding ipRGCs' melanopsin-mediated responses in rodents [3-5]. However, in primates, ipRGCs also have a rare blue-OFF response mediated by an unknown short-wavelength-sensitive (S)-cone circuit [6]. Identifying this S-cone circuit is particularly important because ipRGCs mediate many of the wide-ranging effects of short-wavelength light on human biology. These effects are often attributed to melanopsin, but there is evidence for an S-cone contribution as well [7, 8]. Here, we tested the hypothesis that the S-OFF response is mediated by the S-ON pathway through inhibitory input from an undiscovered S-cone amacrine cell. Using serial electron microscopy in the macaque retina, we reconstructed the neurons and synapses of the S-cone connectome, revealing a novel inhibitory interneuron, an amacrine cell, receiving excitatory glutamatergic input exclusively from S-ON bipolar cells. This S-cone amacrine cell makes highly selective inhibitory synapses onto ipRGCs, resulting in a blue-OFF response. Identification of the S-cone amacrine cell provides the missing component of an evolutionarily ancient circuit using spectral information for non-image forming visual functions.
Collapse
Affiliation(s)
- Sara S Patterson
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA; Department of Ophthalmology, University of Washington, Seattle WA 98109, USA
| | | | - James R Anderson
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Maureen Neitz
- Department of Ophthalmology, University of Washington, Seattle WA 98109, USA
| | - Jay Neitz
- Department of Ophthalmology, University of Washington, Seattle WA 98109, USA.
| |
Collapse
|
43
|
Figueiro MG, Plitnick B, Roohan C, Sahin L, Kalsher M, Rea MS. Effects of a Tailored Lighting Intervention on Sleep Quality, Rest-Activity, Mood, and Behavior in Older Adults With Alzheimer Disease and Related Dementias: A Randomized Clinical Trial. J Clin Sleep Med 2019; 15:1757-1767. [PMID: 31855161 PMCID: PMC7099185 DOI: 10.5664/jcsm.8078] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 11/13/2022]
Abstract
STUDY OBJECTIVES We investigated the effectiveness of a lighting intervention tailored to maximally affect the circadian system as a nonpharmacological therapy for treating problems with sleep, mood, and behavior in persons with Alzheimer disease and related dementias (ADRD). METHODS This 14-week randomized, placebo-controlled, crossover design clinical trial administered an all-day active or control lighting intervention to 46 patients with ADRD in 8 long-term care facilities for two 4-week periods (separated by a 4-week washout). The study employed wrist-worn actigraphy measures and standardized measures of sleep quality, mood, and behavior. RESULTS The active intervention significantly improved Pittsburgh Sleep Quality Index scores compared to the active baseline and control intervention (mean ± SEM: 6.67 ± 0.48 after active intervention, 10.30 ± 0.40 at active baseline, 8.41 ± 0.47 after control intervention). The active intervention also resulted in significantly greater active versus control differences in intradaily variability. As for secondary outcomes, the active intervention resulted in significant improvements in Cornell Scale for Depression in Dementia scores (mean ± SEM: 10.30 ± 1.02 at baseline, 7.05 ± 0.67 after active intervention) and significantly greater active versus control differences in Cohen-Mansfield Agitation Inventory scores (mean ± SEM: -5.51 ± 1.03 for the active intervention, -1.50 ± 1.24 for the control intervention). CONCLUSIONS A lighting intervention tailored to maximally entrain the circadian system can improve sleep, mood, and behavior in patients with dementia living in controlled environments. CLINICAL TRIAL REGISTRATION Registry: ClinicalTrials.gov, title: Methodology Issues in a Tailored Light Treatment for Persons With Dementia, URL: https://clinicaltrials.gov/ct2/show/NCT01816152, identifier: NCT01816152.
Collapse
Affiliation(s)
- Mariana G. Figueiro
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, New York, United States
| | - Barbara Plitnick
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, New York, United States
| | - Charles Roohan
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, New York, United States
| | - Levent Sahin
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, New York, United States
| | - Michael Kalsher
- Cognitive Science Department, School of Humanities, Arts and Social Sciences, Rensselaer Polytechnic Institute, Troy, New York, United States
| | - Mark S. Rea
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, New York, United States
| |
Collapse
|
44
|
Nagare R, Plitnick B, Figueiro MG. Effect of exposure duration and light spectra on nighttime melatonin suppression in adolescents and adults. LIGHTING RESEARCH & TECHNOLOGY (LONDON, ENGLAND : 2001) 2019; 51:530-543. [PMID: 31191119 PMCID: PMC6561500 DOI: 10.1177/1477153518763003] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study investigated how light exposure duration affects melatonin suppression, a well-established marker of circadian phase, and whether adolescents (13-18 years) are more sensitive to short-wavelength (blue) light than adults (32-51 years). Twenty-four participants (12 adolescents, 12 adults) were exposed to three lighting conditions during successive 4-h study nights that were separated by at least one week. In addition to a dim light (<5 lux) control, participants were exposed to two light spectra (warm (2700 K) and cool (5600 K)) delivering a circadian stimulus of 0.25 at eye level. Repeated measures analysis of variance revealed a significant main effect of exposure duration, indicating that a longer duration exposure suppressed melatonin to a greater degree. The analysis further revealed a significant main effect of spectrum and a significant interaction between spectrum and participant age. For the adolescents, but not the adults, melatonin suppression was significantly greater after exposure to the 5600 K intervention (43%) compared to the 2700 K intervention (29%), suggesting an increased sensitivity to short-wavelength radiation. These results will be used to extend the model of human circadian phototransduction to incorporate factors such as exposure duration and participant age to better predict effective circadian stimulus.
Collapse
Affiliation(s)
- R Nagare
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - B Plitnick
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - M G Figueiro
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
45
|
Nagare R, Plitnick B, Figueiro MG. Does the iPad Night Shift mode reduce melatonin suppression? LIGHTING RESEARCH & TECHNOLOGY (LONDON, ENGLAND : 2001) 2019; 51:373-383. [PMID: 31191118 PMCID: PMC6561503 DOI: 10.1177/1477153517748189] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The increased use of self-luminous displays, especially in the evening prior to bedtime, has been associated with melatonin suppression, delayed sleep and sleep curtailment. The present study set out to investigate whether the Night Shift application provided by Apple Inc. for use on its portable electronic devices is effective for reducing acute melatonin suppression, a well-established marker of circadian phase. Participants experienced four experimental conditions: a dim light control, a high circadian stimulus true positive intervention and two Night Shift interventions delivering low and high correlated colour temperature light from the devices. Melatonin suppression did not significantly differ between the two Night Shift interventions, which indicates that changing the spectral composition of self-luminous displays without changing their brightness settings may be insufficient for preventing impacts on melatonin suppression.
Collapse
Affiliation(s)
- R Nagare
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, USA
| | - B Plitnick
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, USA
| | - M G Figueiro
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, USA
| |
Collapse
|
46
|
Sánchez de Miguel A, Bará S, Aubé M, Cardiel N, Tapia CE, Zamorano J, Gaston KJ. Evaluating Human Photoreceptoral Inputs from Night-Time Lights Using RGB Imaging Photometry. J Imaging 2019; 5:49. [PMID: 34460487 PMCID: PMC8320946 DOI: 10.3390/jimaging5040049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/05/2019] [Accepted: 04/12/2019] [Indexed: 11/25/2022] Open
Abstract
Night-time lights interact with human physiology through different pathways starting at the retinal layers of the eye; from the signals provided by the rods; the S-, L- and M-cones; and the intrinsically photosensitive retinal ganglion cells (ipRGC). These individual photic channels combine in complex ways to modulate important physiological processes, among them the daily entrainment of the neural master oscillator that regulates circadian rhythms. Evaluating the relative excitation of each type of photoreceptor generally requires full knowledge of the spectral power distribution of the incoming light, information that is not easily available in many practical applications. One such instance is wide area sensing of public outdoor lighting; present-day radiometers onboard Earth-orbiting platforms with sufficient nighttime sensitivity are generally panchromatic and lack the required spectral discrimination capacity. In this paper, we show that RGB imagery acquired with off-the-shelf digital single-lens reflex cameras (DSLR) can be a useful tool to evaluate, with reasonable accuracy and high angular resolution, the photoreceptoral inputs associated with a wide range of lamp technologies. The method is based on linear regressions of these inputs against optimum combinations of the associated R, G, and B signals, built for a large set of artificial light sources by means of synthetic photometry. Given the widespread use of RGB imaging devices, this approach is expected to facilitate the monitoring of the physiological effects of light pollution, from ground and space alike, using standard imaging technology.
Collapse
Affiliation(s)
- Alejandro Sánchez de Miguel
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, UK
- Departamento de Física de la Tierra y Astrofísica, Instituto de Física de Partículas y del Cosmos (IPARCOS), Universidad Complutense, 28040 Madrid, Spain
- Instituto de Astrofísica de Andalucía, Glorieta de la Astronomía, s/n, C.P.18008 Granada, Spain
| | - Salvador Bará
- Departamento de Física Aplicada, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - Martin Aubé
- Physics Department, CEGEP de Sherbrooke, Sherbrooke, QC J1E 4K1, Canada
| | - Nicolás Cardiel
- Departamento de Física de la Tierra y Astrofísica, Instituto de Física de Partículas y del Cosmos (IPARCOS), Universidad Complutense, 28040 Madrid, Spain
| | - Carlos E. Tapia
- Departamento de Física de la Tierra y Astrofísica, Instituto de Física de Partículas y del Cosmos (IPARCOS), Universidad Complutense, 28040 Madrid, Spain
| | - Jaime Zamorano
- Departamento de Física de la Tierra y Astrofísica, Instituto de Física de Partículas y del Cosmos (IPARCOS), Universidad Complutense, 28040 Madrid, Spain
| | - Kevin J. Gaston
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| |
Collapse
|
47
|
Nagare R, Rea MS, Plitnick B, Figueiro MG. Effect of White Light Devoid of "Cyan" Spectrum Radiation on Nighttime Melatonin Suppression Over a 1-h Exposure Duration. J Biol Rhythms 2019; 34:195-204. [PMID: 30821188 DOI: 10.1177/0748730419830013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The intrinsically photosensitive retinal ganglion cells are the main conduit of the light signal emanating from the retina to the biological clock located in the suprachiasmatic nuclei of the hypothalamus. Lighting manufacturers are developing white light sources that are devoid of wavelengths around 480 nm ("cyan gap") to reduce their impact on the circadian system. The present study was designed to investigate whether exposure to a "cyan-gap," 3000 K white light source, spectrally tuned to reduce radiant power between 475 and 495 nm (reducing stimulation of the melanopsin-containing photoreceptor), would suppress melatonin less than a conventional 3000 K light source. The study's 2 phases employed a within-subjects experimental design involving the same 16 adult participants. In Phase 1, participants were exposed for 1 h to 3 experimental conditions over the course of 3 consecutive weeks: 1) dim light control (<5 lux at the eyes); 2) 800 lux at the eyes of a 3000 K light source; and 3) 800 lux at the eyes of a 3000 K, "cyan-gap" modified (3000 K mod) light source. The same protocol was repeated in Phase 2, but light levels were reduced to 400 lux at the eyes. As hypothesized, there were significant main effects of light level ( F1,12 = 9.1, p < 0.05, ηp² = 0.43) and exposure duration ( F1,12 = 47.7, p < 0.05, ηp² = 0.80) but there was no significant main effect of spectrum ( F1,12 = 0.16, p > 0.05, ηp² = 0.01). There were no significant interactions with spectrum. Contrary to our model predictions, our results showed that short-term exposures (≤ 1 h) to "cyan-gap" light sources suppressed melatonin similarly to conventional light sources of the same CCT and photopic illuminance at the eyes.
Collapse
Affiliation(s)
- Rohan Nagare
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Mark S Rea
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Barbara Plitnick
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Mariana G Figueiro
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
48
|
Asgari-Targhi A, Klerman EB. Mathematical modeling of circadian rhythms. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2019; 11:e1439. [PMID: 30328684 PMCID: PMC6375788 DOI: 10.1002/wsbm.1439] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 09/05/2018] [Accepted: 09/12/2018] [Indexed: 12/22/2022]
Abstract
Circadian rhythms are endogenous ~24-hr oscillations usually entrained to daily environmental cycles of light/dark. Many biological processes and physiological functions including mammalian body temperature, the cell cycle, sleep/wake cycles, neurobehavioral performance, and a wide range of diseases including metabolic, cardiovascular, and psychiatric disorders are impacted by these rhythms. Circadian clocks are present within individual cells and at tissue and organismal levels as emergent properties from the interaction of cellular oscillators. Mathematical models of circadian rhythms have been proposed to provide a better understanding of and to predict aspects of this complex physiological system. These models can be used to: (a) manipulate the system in silico with specificity that cannot be easily achieved using in vivo and in vitro experimental methods and at lower cost, (b) resolve apparently contradictory empirical results, (c) generate hypotheses, (d) design new experiments, and (e) to design interventions for altering circadian rhythms. Mathematical models differ in structure, the underlying assumptions, the number of parameters and variables, and constraints on variables. Models representing circadian rhythms at different physiologic scales and in different species are reviewed to promote understanding of these models and facilitate their use. This article is categorized under: Physiology > Mammalian Physiology in Health and Disease Models of Systems Properties and Processes > Organ, Tissue, and Physiological Models.
Collapse
|
49
|
Nagare R, Rea MS, Plitnick B, Figueiro MG. Nocturnal Melatonin Suppression by Adolescents and Adults for Different Levels, Spectra, and Durations of Light Exposure. J Biol Rhythms 2019; 34:178-194. [PMID: 30803301 DOI: 10.1177/0748730419828056] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The human circadian system is primarily regulated by the 24-h LD cycle incident on the retina, and nocturnal melatonin suppression is a primary outcome measure for characterizing the biological clock's response to those light exposures. A limited amount of data related to the combined effects of light level, spectrum, and exposure duration on nocturnal melatonin suppression has impeded the development of circadian-effective lighting recommendations and light-treatment methods. The study's primary goal was to measure nocturnal melatonin suppression for a wide range of light levels (40 to 1000 lux), 2 white light spectra (2700 K and 6500 K), and an extended range of nighttime light exposure durations (0.5 to 3.0 h). The study's second purpose was to examine whether differences existed between adolescents' and adults' circadian sensitivity to these lighting characteristics. The third purpose was to provide an estimate of the absolute threshold for the impact of light on acute melatonin suppression. Eighteen adolescents (age range, 13 to 18 years) and 23 adults (age range, 24 to 55 years) participated in the study. Results showed significant main effects of light level, spectrum, and exposure duration on melatonin suppression. Moreover, the data also showed that the relative suppressing effect of light on melatonin diminishes with increasing exposure duration for both age groups and both spectra. The present results do not corroborate our hypothesis that adolescents exhibit greater circadian sensitivity to short-wavelength radiation compared with adults. As for threshold, it takes longer to observe significant melatonin suppression at lower CS levels than at higher CS levels. Dose-response curves (amount and duration) for both white-light spectra and both age groups can guide lighting recommendations when considering circadian-effective light in applications such as offices, schools, residences, and healthcare facilities.
Collapse
Affiliation(s)
- Rohan Nagare
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Mark S Rea
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Barbara Plitnick
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Mariana G Figueiro
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
50
|
Hanifin J, Lockley S, Cecil K, West K, Jablonski M, Warfield B, James M, Ayers M, Byrne B, Gerner E, Pineda C, Rollag M, Brainard G. Randomized trial of polychromatic blue-enriched light for circadian phase shifting, melatonin suppression, and alerting responses. Physiol Behav 2019; 198:57-66. [DOI: 10.1016/j.physbeh.2018.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/06/2018] [Accepted: 10/03/2018] [Indexed: 11/25/2022]
|