1
|
Mohammadi A, Seifzadeh S, Torkamani F, Salehi S. An experimental EEG study of brain activities underlying the Autonomous Sensory Meridian Response. IBRO Neurosci Rep 2025; 18:6-15. [PMID: 39802358 PMCID: PMC11722596 DOI: 10.1016/j.ibneur.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/28/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
Abstract
Autonomous Sensory Meridian Response (ASMR) is an audio-visual phenomenon that has recently become popular. Many people have reported experiencing a tingling-like sensation through their body while watching audio/video clips known as ASMR clips. People capable of having such experiences have also reported improved overall well-being and feeling relaxed. However, the neural activity underlying this phenomenon is not yet well-studied. The present study aims to investigate this issue using electroencephalography (EEG) employing an exploratory approach. We recorded resting-state EEGs from twelve participants before and after watching an ASMR clip and a control video clip. We divided the participants into two groups capable of experiencing ASMR tingling (ASMR group) and not capable of experiencing ASMR tingling (Non-ASMR group), by performing "Jenks Natural Breaks" clustering method on the results of a self-report questionnaire. We calculated the spectral power of EEG recording and compared the resulting values between the groups and sessions. We demonstrated a decline in the power of EEG activities in the delta frequency band in all regions of the brain and an increase in alpha activity in the occipital area of the brain and increases in beta oscillations was noted over the left fronto-temporal region of the brain among ASMR group. We did not observe similar results among the Non-ASMRs participants or among ASMRs in the control group.
Collapse
Affiliation(s)
- Ali Mohammadi
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sahar Seifzadeh
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Torkamani
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Salehi
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Han C, Cheung VCK, Chan RHM. Aging amplifies sex differences in low alpha and low beta EEG oscillations. Neuroimage 2025; 312:121231. [PMID: 40252876 DOI: 10.1016/j.neuroimage.2025.121231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/30/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025] Open
Abstract
Biological sex profoundly shapes brain function, yet its precise influence on neural oscillations was poorly understood. Despite decades of research, studies investigating sex-based variations in electroencephalographic (EEG) signals have yielded inconsistent findings that obstructs what may be a potentially crucial source of inter-individual variability in brain function. To address this, we analyzed five publicly available resting-state datasets, comprising EEG data (n = 445) and iEEG data (n = 103). Three age ranges were defined, young adult (YA, 18-30 years), middle-aged adult (MA, 30-55 years) and older adult (OA, 55-80 years). Our results revealed striking age-dependent sex differences: OA group exhibited robust sex differences, with males showing heightened low alpha (8-9 Hz) activity in temporal regions and attenuated low beta (16-20 Hz) oscillations in parietal-occipital areas compared to females. Intriguingly, these sex-specific patterns were absent in YA group, suggesting a complex interplay between sex and aging in shaping brain dynamics. The MA groups fall in between YA and OA group. The increase of low beta band activity in older female adults is strongly associated with hip size and BMI. Furthermore, we identified consistent sex-related activity in the precentral gyrus with the results of scalp EEG, potentially driving the observed scalp EEG differences. This multi-level analysis allowed us to bridge the gap between cortical and scalp-level observations, providing a more comprehensive picture of sex-related neural dynamics. The distinct associations between sex-specific oscillatory patterns and several lifestyle factors demonstrates the complex interplay between sex, age, and neural oscillations, revealing the variability in brain dynamics. Our findings highlight the importance of careful demographic consideration in EEG research design to ensure fairness in capturing the full spectrum of neurophysiological diversity.
Collapse
Affiliation(s)
- Chuanliang Han
- School of Biomedical Sciences and The Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Vincent C K Cheung
- School of Biomedical Sciences and The Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Rosa H M Chan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
3
|
Miljevic A, Murphy OW, Fitzgerald PB, Bailey NW. Estimating sensor-space EEG connectivity PART 2: Identifying optimal artifact reduction techniques for functional connectivity in real data. Clin Neurophysiol 2025; 174:61-72. [PMID: 40222211 DOI: 10.1016/j.clinph.2025.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/21/2025] [Accepted: 03/29/2025] [Indexed: 04/15/2025]
Abstract
OBJECTIVES Electroencephalography (EEG) can be used to assess functional brain connectivity (FC). However, there is considerable variability in the methods used for FC measurement across different studies, which may contribute to heterogeneity in research outcomes. We aimed to assess how different EEG pre-processing steps impact EEG-FC measurement when applied to real EEG data. METHODS Using the BrainClinics.com open-source EEG data repository we investigated how different pre-processing steps impacted the ability to detect age-related differences in alpha band FC and the test-retest reliability of FC measures. The pre-processing steps tested included artifact reduction techniques (Independent Component Analysis (ICA), wavelet-enhanced ICA (wICA), and Multi-channel Wiener Filters (MWF)), different epoch lengths (epochs that were 2 s versus 6 s in length), and different re-referencing montages (the common average reference (CAR) versus current source density (CSD) re-referencing). We also assessed different FC metrics including imaginary coherence (iCOH), real magnitude squared coherence (rMSC), and weighted phase lag index (wPLI) metrics. RESULTS The best performing pipeline at detecting age-related differences in alpha FC and providing high test-retest reliability included artifact reduction by ICA or wICA, data re-referenced using the CSD method, and FC measured by rMSC. CONCLUSION & SIGNIFICANCE This paper presents evidence for an EEG pre-processing pipeline that provides good detection of meaningful effects and high test-retest reliability for sensor space EEG alpha frequency FC.
Collapse
Affiliation(s)
- Aleksandra Miljevic
- Department of Psychiatry, Central Clinical School, Monash University, Melbourne, VIC, Australia.
| | - Oscar W Murphy
- Department of Psychiatry, Central Clinical School, Monash University, Melbourne, VIC, Australia; Bionics Institute, Melbourne, VIC, Australia.
| | - Paul B Fitzgerald
- Department of Psychiatry, Central Clinical School, Monash University, Melbourne, VIC, Australia; School of Medicine and Psychology, Australian National University, Canberra, ACT, Australia.
| | - Neil W Bailey
- Department of Psychiatry, Central Clinical School, Monash University, Melbourne, VIC, Australia; School of Medicine and Psychology, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
4
|
Karjalainen S, Kujala J, Parviainen T. Neural activity is modulated by spontaneous and volitionally controlled breathing. Biol Psychol 2025; 197:109026. [PMID: 40204086 DOI: 10.1016/j.biopsycho.2025.109026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 04/11/2025]
Abstract
Recent studies have provided evidence regarding respiration-brain coupling, but our understanding of how continuously varying dynamics of breathing modulate neural activity remains incomplete. We examined whether the neural state differs between spontaneous and volitionally controlled breathing and across the phases of breathing, inspiration and expiration. Magnetoencephalography (MEG) with a respiratory belt was used to record cortical oscillatory activity during spontaneous, deep, and square breathing (n = 33). Additionally, self-report measures of mood and arousal were applied to assess changes in the psychological state during the breathing techniques. Alpha power was suppressed during inspiration and increased during expiration (p < .01) indicating dynamically fluctuating neural states across the respiratory cycle. This effect was observed in the sensorimotor areas during both spontaneous and volitionally controlled deep breathing. Compared to spontaneous and volitionally controlled square breathing, alpha power increased during deep breathing (p < .01) within a cortical network extending to frontal and temporal areas. We also observed a steeper aperiodic slope and a broadband shift in the power spectrum in the left superior frontal gyrus during square breathing in comparison with spontaneous breathing suggesting that not only oscillatory activity but also the more general spectral characteristics of ongoing neural activity are modulated by the rate, depth, and pattern of breathing. Self-reported mood and arousal did not differ across the breathing techniques. Altogether, we demonstrate that neural activity is modulated by the phases of breathing and can also be volitionally influenced by varying the rate, depth, and pattern of breathing.
Collapse
Affiliation(s)
- Suvi Karjalainen
- Department of Psychology, University of Jyväskylä, PO Box 35, Jyväskylä FI-40014, Finland; Centre for Interdisciplinary Brain Research, University of Jyväskylä, PO Box 35, Jyväskylä FI-40014, Finland.
| | - Jan Kujala
- Department of Psychology, University of Jyväskylä, PO Box 35, Jyväskylä FI-40014, Finland
| | - Tiina Parviainen
- Department of Psychology, University of Jyväskylä, PO Box 35, Jyväskylä FI-40014, Finland; Centre for Interdisciplinary Brain Research, University of Jyväskylä, PO Box 35, Jyväskylä FI-40014, Finland
| |
Collapse
|
5
|
Liu P, Han C, Zhang T, Xu Y, Yang K, Li Y, Ye Z, Wang C, Zhang H. Alterations of oscillatory activity and cognitive function after aneurysmal subarachnoid hemorrhage. Int J Surg 2025; 111:1919-1928. [PMID: 39715156 DOI: 10.1097/js9.0000000000002190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/04/2024] [Indexed: 12/25/2024]
Abstract
BACKGROUND Aneurysmal subarachnoid hemorrhage (aSAH) can lead to cognitive impairment (CI), but underlying neural mechanisms remain to be elucidated. MATERIALS AND METHODS To predict long-term CI after aSAH, resting electroencephalography (EEG) was measured in 112 patients hospitalized with a diagnosis of aSAH ( n = 66) or unruptured intracranial aneurysms (controls) ( n = 46). A neuropsychological battery was administered 8-24 months after discharge. RESULTS Power spectrum analysis in the parietal-occipital lobe showed significantly higher power theta vs. alpha oscillations in patients with CI after aSAH. The power of theta and alpha oscillations were significantly correlated with multiple cognitive scale scores on the neuropsychological battery. A neural model was established, which showed that connectivity between inhibitory and excitatory neurons in neural circuits contributed to changes in theta and alpha oscillations and CI in aSAH. CONCLUSION The data collection, analysis, and computational model established in this study can serve as a new paradigm for other clinical studies investigating CI.
Collapse
Affiliation(s)
- Peng Liu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, China
| | - Chuanliang Han
- School of Biomedical Sciences and Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tongyu Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yueqiao Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Kun Yang
- Department of Epidemiology and Biostatistics, Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University School of Public Health, Beijing, China
| | - Yuxia Li
- Department of Neurology, Tangshan Central Hospital, Tangshan, China
| | - Zhennan Ye
- Department of Neurosurgery, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Changming Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, College of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Hongqi Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Gyllingberg L, Tian Y, Sumpter DJT. A minimal model of cognition based on oscillatory and current-based reinforcement processes. J R Soc Interface 2025; 22:rsif20240402. [PMID: 39837485 PMCID: PMC11750385 DOI: 10.1098/rsif.2024.0402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/18/2024] [Accepted: 11/06/2024] [Indexed: 01/23/2025] Open
Abstract
Building mathematical models of brains is difficult because of the sheer complexity of the problem. One potential starting point is basal cognition, which gives an abstract representation of a range of organisms without central nervous systems, including fungi, slime moulds and bacteria. We propose one such model, demonstrating how a combination of oscillatory and current-based reinforcement processes can be used to couple resources in an efficient manner, mimicking the way these organisms function. A key ingredient in our model, not found in previous basal cognition models, is that we explicitly model oscillations in the number of particles (i.e. the nutrients, chemical signals or similar, which make up the biological system) and the flow of these particles within the modelled organisms. Using this approach, our model builds efficient solutions, provided the environmental oscillations are sufficiently out of phase. We further demonstrate that amplitude differences can promote efficient solutions and that the system is robust to frequency differences. In the context of these findings, we discuss connections between our model and basal cognition in biological systems and slime moulds, in particular, how oscillations might contribute to self-organized problem-solving by these organisms.
Collapse
Affiliation(s)
- Linnéa Gyllingberg
- Department of Mathematics, University of California, Los Angeles, CA, USA
- Department of Mathematics, Uppsala University, Uppsala, Sweden
| | - Yu Tian
- Nordita, Stockholm University and KTH Royal Institute of Technology, Stockholm, Sweden
| | | |
Collapse
|
7
|
Jaramillo V, Hebron H, Wong S, Atzori G, Bartsch U, Dijk DJ, Violante IR. Closed-loop auditory stimulation targeting alpha and theta oscillations during rapid eye movement sleep induces phase-dependent power and frequency changes. Sleep 2024; 47:zsae193. [PMID: 39208441 DOI: 10.1093/sleep/zsae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
STUDY OBJECTIVES Alpha and theta oscillations characterize the waking human electroencephalogram (EEG) and can be modulated by closed-loop auditory stimulation (CLAS). These oscillations also occur during rapid eye movement (REM) sleep, but their function here remains elusive. CLAS represents a promising tool to pinpoint how these brain oscillations contribute to brain function in humans. Here we investigate whether CLAS can modulate alpha and theta oscillations during REM sleep in a phase-dependent manner. METHODS We recorded high-density EEG during an extended overnight sleep period in 18 healthy young adults. Auditory stimulation was delivered during both phasic and tonic REM sleep in alternating 6-second ON and 6-second OFF windows. During the ON windows, stimuli were phase-locked to four orthogonal phases of ongoing alpha or theta oscillations detected in a frontal electrode. RESULTS The phases of ongoing alpha and theta oscillations were targeted with high accuracy during REM sleep. Alpha and theta CLAS induced phase-dependent changes in power and frequency at the target location. Frequency-specific effects were observed for alpha trough (speeding up) and rising (slowing down) and theta trough (speeding up) conditions. CLAS-induced phase-dependent changes were observed during both REM sleep substages, even though auditory evoked potentials were very much reduced in phasic compared to tonic REM sleep. CONCLUSIONS This study provides evidence that faster REM sleep rhythms can be modulated by CLAS in a phase-dependent manner. This offers a new approach to investigating how modulation of REM sleep oscillations affects the contribution of this vigilance state to brain function.
Collapse
Affiliation(s)
- Valeria Jaramillo
- School of Psychology, University of Surrey, Guildford, UK
- Surrey Sleep Research Centre, University of Surrey, Guildford, UK
- UK Dementia Research Institute Centre for Care Research & Technology, Imperial College London, London and University of Surrey, Guildford, UK
| | - Henry Hebron
- School of Psychology, University of Surrey, Guildford, UK
- UK Dementia Research Institute Centre for Care Research & Technology, Imperial College London, London and University of Surrey, Guildford, UK
| | - Sara Wong
- UK Dementia Research Institute Centre for Care Research & Technology, Imperial College London, London and University of Surrey, Guildford, UK
- UK Dementia Research Institute at Imperial College London, London, UK
| | - Giuseppe Atzori
- Surrey Sleep Research Centre, University of Surrey, Guildford, UK
- UK Dementia Research Institute Centre for Care Research & Technology, Imperial College London, London and University of Surrey, Guildford, UK
| | - Ullrich Bartsch
- Surrey Sleep Research Centre, University of Surrey, Guildford, UK
- UK Dementia Research Institute Centre for Care Research & Technology, Imperial College London, London and University of Surrey, Guildford, UK
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, University of Surrey, Guildford, UK
- UK Dementia Research Institute Centre for Care Research & Technology, Imperial College London, London and University of Surrey, Guildford, UK
| | - Ines R Violante
- School of Psychology, University of Surrey, Guildford, UK
- UK Dementia Research Institute Centre for Care Research & Technology, Imperial College London, London and University of Surrey, Guildford, UK
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|
8
|
Wang Q, Gong A, Feng Z, Bai Y, Ziemann U. Interactions of transcranial magnetic stimulation with brain oscillations: a narrative review. Front Syst Neurosci 2024; 18:1489949. [PMID: 39698203 PMCID: PMC11652484 DOI: 10.3389/fnsys.2024.1489949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
Brain responses to transcranial magnetic stimulation (TMS) can be recorded with electroencephalography (EEG) and comprise TMS-evoked potentials and TMS-induced oscillations. Repetitive TMS may entrain endogenous brain oscillations. In turn, ongoing brain oscillations prior to the TMS pulse can influence the effects of the TMS pulse. These intricate TMS-EEG and EEG-TMS interactions are increasingly attracting the interest of researchers and clinicians. This review surveys the literature of TMS and its interactions with brain oscillations as measured by EEG in health and disease.
Collapse
Affiliation(s)
- Qijun Wang
- Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Anjuan Gong
- Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Zhen Feng
- Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Rehabilitation Medicine Clinical Research Center of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Jiangxi Provincial Health Commission for DOC Rehabilitation, Nanchang, Jiangxi, China
| | - Yang Bai
- Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Rehabilitation Medicine Clinical Research Center of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Jiangxi Provincial Health Commission for DOC Rehabilitation, Nanchang, Jiangxi, China
- Department of Neurology and Stroke, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Ulf Ziemann
- Department of Neurology and Stroke, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
9
|
Erickson MA, Boudewyn MA, Winsler K, Li C, Barch DM, Carter CS, Frank MJ, Gold JM, MacDonald AW, Ragland JD, Silverstein SM, Yonelinas A, Luck SJ. Dysfunctional Alpha Modulation as a Mechanism of Working Memory Impairment in Serious Mental Illness. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:1271-1280. [PMID: 39117276 PMCID: PMC11625623 DOI: 10.1016/j.bpsc.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND People with psychosis and mood disorders experience disruptions in working memory; however, the underlying mechanism remains unknown. We focused on 2 potential mechanisms: poor attentional engagement should be associated with elevated levels of prestimulus alpha-band activity within the electroencephalogram (EEG), whereas impaired working memory encoding should be associated with reduced poststimulus alpha suppression. METHODS We collected EEG data from 68 people with schizophrenia, 43 people with bipolar disorder with a history of psychosis, 53 people with major depressive disorder, and 90 healthy comparison subjects while they completed a spatial working memory task. We quantified attention lapsing, memory precision, and memory capacity from the behavioral responses, and we quantified alpha using traditional wavelet analysis as well as a novel approach for isolating oscillatory alpha power from aperiodic elements of the EEG signal. RESULTS We found that 1) greater prestimulus alpha power estimated using traditional wavelet analysis predicted behavioral errors; 2) poststimulus alpha suppression was reduced in the patient groups; and 3) reduced suppression was associated with a lower likelihood of memory storage. However, we also observed that the prestimulus alpha was larger among healthy control participants than patients, and single-trial analyses showed that it was the aperiodic elements of the prestimulus EEG-not oscillatory alpha-that predicted behavioral errors. DISCUSSION These results suggest that working memory impairments in serious mental illness primarily reflect an impairment in the poststimulus encoding processes rather than reduced attentional engagement prior to stimulus onset.
Collapse
Affiliation(s)
- Molly A Erickson
- Department of Psychiatry & Behavioral Neuroscience, University of Chicago, Chicago, Illinois.
| | - Megan A Boudewyn
- Department of Psychology, University of California, Santa Cruz, California
| | - Kurt Winsler
- Center for Mind & Brain, University of California, Davis, Davis, California
| | - Charlotte Li
- Department of Psychiatry & Behavioral Neuroscience, University of Chicago, Chicago, Illinois
| | - Deanna M Barch
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, Missouri
| | - Cameron S Carter
- Department of Psychiatry, University of California Davis School of Medicine, Davis, California
| | - Michael J Frank
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, Rhode Island
| | - James M Gold
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Catonsville, Maryland
| | - Angus W MacDonald
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | - John D Ragland
- Department of Psychiatry, University of California Davis School of Medicine, Davis, California
| | - Steven M Silverstein
- Department of Psychiatry, University of Rochester Medical Center, Rochester, New York
| | - Andrew Yonelinas
- Center for Mind & Brain, University of California, Davis, Davis, California
| | - Steven J Luck
- Center for Mind & Brain, University of California, Davis, Davis, California
| |
Collapse
|
10
|
Snipes S, Meier E, Accascina S, Huber R. Extended wakefulness alters the relationship between EEG oscillations and performance in a sustained attention task. J Sleep Res 2024; 33:e14230. [PMID: 38705729 PMCID: PMC11596987 DOI: 10.1111/jsr.14230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/10/2024] [Accepted: 04/20/2024] [Indexed: 05/07/2024]
Abstract
During drowsiness, maintaining consistent attention becomes difficult, leading to behavioural lapses. Bursts of oscillations in the electroencephalogram (EEG) might predict such lapses, given that alpha bursts increase during inattention and theta bursts increase with time spent awake. Paradoxically, however, alpha bursts decrease with time awake and theta bursts increase during focussed attention and cognitive tasks. Therefore, we investigated to what extent theta and alpha bursts predicted performance in a sustained attention task, either when well rested (baseline, BL) or following 20 h of extended wakefulness (EW). High-density EEG was measured in 18 young adults, and the timing of bursts was related to trial outcomes (fast, slow, and lapse trials). To increase the likelihood of lapses, the task was performed under soporific conditions. Against expectations, alpha bursts were more likely before fast trials and less likely before lapses at baseline, although the effect was substantially reduced during extended wakefulness. Theta bursts showed no significant relationship to behavioural outcome either at baseline or extended wakefulness. However, following exploratory analyses, we found that large-amplitude theta and alpha bursts were more likely to be followed by lapse trials during extended wakefulness but not baseline. In summary, alpha bursts during baseline anticipated better trial outcomes, whereas large-amplitude theta and alpha bursts during extended wakefulness anticipated worse outcomes. Therefore, neither theta nor alpha bursts maintain a consistent relationship with behaviour under different levels of overall vigilance.
Collapse
Affiliation(s)
- Sophia Snipes
- Child Development CentreUniversity Children's Hospital Zürich, University of ZürichZurichSwitzerland
- Neural Control of Movement LabDepartment of Health Sciences and TechnologyZurichSwitzerland
| | - Elias Meier
- Child Development CentreUniversity Children's Hospital Zürich, University of ZürichZurichSwitzerland
| | | | - Reto Huber
- Child Development CentreUniversity Children's Hospital Zürich, University of ZürichZurichSwitzerland
- Sleep & Health ZürichUniversity of ZürichZurichSwitzerland
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric HospitalUniversity of ZürichZurichSwitzerland
| |
Collapse
|
11
|
Zhang Y, Zhang Z, Du F, Song J, Huang S, Mao J, Xiang W, Wang F, Liang Y, Chen W, Lin Y, Han C. Shared oscillatory mechanisms of alpha-band activity in prefrontal regions in eyes open and closed state using a portable EEG acquisition device. Sci Rep 2024; 14:26719. [PMID: 39496816 PMCID: PMC11535223 DOI: 10.1038/s41598-024-78173-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/29/2024] [Indexed: 11/06/2024] Open
Abstract
Alpha oscillations are associated with various psychiatric disorders, with many studies focusing on the prefrontal cortex, where transcranial alternating current stimulation (TACS) is applied in the alpha frequency band. This approach often involves selecting individualized alpha frequencies to resonate with their endogenous alpha oscillations. While strong alpha oscillations (8-13 Hz) are typically induced when the eyes are closed, they can also occur during the resting state with eyes open. However, it remains unclear whether these alpha oscillations share a common neural generation mechanism. Exploring which of these alpha oscillations is more suitable as a stable alpha peak frequency is a question of significant interest. Therefore, to systematically study this issue, we specifically collected resting-state electroencephalographic (EEG) data from the prefrontal region of 40 individuals, under both eyes-open and closed- eye conditions, with multiple follow-ups extending up to nine months. Through spectral analysis on each person's entire dataset and averaging the results, we observed a significant positive correlation between the alpha-band power in the eyes-open and the eyes-closed states, in terms of both absolute power and relative power. Further analysis revealed that this correlation was primarily contributed by the periodic activity within the alpha band. Upon modelling the oscillatory components, we discovered distinct differences in the oscillatory characteristics-such as number of the alpha sub-oscillations between the eyes-open state and the eyes-closed state. Our study is the first to systematically explored the relationship between alpha oscillations in the prefrontal cortex in the eyes-open and eyes-closed states, identifying both shared part of the neural generation mechanism and some distinct neural mechanisms that are unique to each state.
Collapse
Affiliation(s)
- Yu Zhang
- School of International Police Studies, The People's Public Security University of China, Beijing, China
| | - Zhizhen Zhang
- Department of Mathematics and Statistics, University of Massachusetts at Amherst, Amherst, USA
| | - Fang Du
- School of International Police Studies, The People's Public Security University of China, Beijing, China
| | - Jiayuan Song
- School of International Police Studies, The People's Public Security University of China, Beijing, China
| | - Shaojia Huang
- Shenzhen Shuimu AI Technology Co., Ltd, Shenzhen, China
| | - Jidong Mao
- Shenzhen Shuimu AI Technology Co., Ltd, Shenzhen, China
| | - Weiwen Xiang
- Shenzhen Shuimu AI Technology Co., Ltd, Shenzhen, China
| | - Fang Wang
- Shenzhen Shuimu AI Technology Co., Ltd, Shenzhen, China
| | - Yuping Liang
- Shenzhen Shuimu AI Technology Co., Ltd, Shenzhen, China
| | - Wufang Chen
- Shenzhen Shuimu AI Technology Co., Ltd, Shenzhen, China
| | - Yuchen Lin
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Chuanliang Han
- School of Biomedical Sciences and Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
12
|
Arnau S, Liegel N, Wascher E. Frontal midline theta power during the cue-target-interval reflects increased cognitive effort in rewarded task-switching. Cortex 2024; 180:94-110. [PMID: 39393200 DOI: 10.1016/j.cortex.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/15/2024] [Accepted: 08/26/2024] [Indexed: 10/13/2024]
Abstract
Cognitive performance largely depends on how much effort is invested during task-execution. This also means that we rarely perform as good as we could. Cognitive effort is adjusted to the expected outcome of performance, meaning that it is driven by motivation. The results from recent studies suggest that the expenditure of cognitive control is particularly prone to being affected by modulations of cognitive effort. Although recent EEG studies investigated the neural underpinnings of the interaction of effort and control, reports on how cognitive effort is reflected by oscillatory activity of the EEG are quite sparse. It is the goal of the present study to bridge this gap by performing an exploratory analysis of high-density EEG data from a switching-task using manipulations of monetary incentives. A beamformer approach is used to localize the sensor-level effects in source-space. The results indicate that the manipulation of cognitive effort was successful. The participants reported significantly higher motivation and cognitive effort in high versus low reward trials. Performance was also significantly increased. The analysis of the EEG data revealed that the increase of cognitive effort was reflected by an increased mid-frontal theta activity during the cue-target interval, suggesting an increased use of proactive control. This interpretation is supported by the result from a regression analysis performed on single-trial data, showing higher mid-frontal theta power prior to target-onset being associated with faster responses. Alpha-desynchronization throughout the trial was also more pronounced in high reward trials, signaling a bias of attention towards the processing of external stimuli. Source reconstruction suggests that these effects are located in areas related to cognitive control, and visual processing.
Collapse
Affiliation(s)
- Stefan Arnau
- Leibniz Research Centre for Working Environment and Human Factors Dortmund (IfADo), Germany.
| | - Nathalie Liegel
- Leibniz Research Centre for Working Environment and Human Factors Dortmund (IfADo), Germany
| | - Edmund Wascher
- Leibniz Research Centre for Working Environment and Human Factors Dortmund (IfADo), Germany
| |
Collapse
|
13
|
Benkirane O, Simor P, Mairesse O, Peigneux P. Sleep Fragmentation Modulates the Neurophysiological Correlates of Cognitive Fatigue. Clocks Sleep 2024; 6:602-618. [PMID: 39449315 PMCID: PMC11503390 DOI: 10.3390/clockssleep6040041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Cognitive fatigue (CF) is a critical factor affecting performance and well-being. It can be altered in suboptimal sleep quality conditions, e.g., in patients suffering from obstructive sleep apnea who experience both intermittent hypoxia and sleep fragmentation (SF). Understanding the neurophysiological basis of SF in healthy individuals can provide insights to improve cognitive functioning in disrupted sleep conditions. In this electroencephalographical (EEG) study, we investigated in 16 healthy young participants the impact of experimentally induced SF on the neurophysiological correlates of CF measured before, during, and after practice on the TloadDback, a working memory task tailored to each individual's maximal cognitive resources. The participants spent three consecutive nights in the laboratory two times, once in an undisrupted sleep (UdS) condition and once in an SF condition induced by non-awakening auditory stimulations, counterbalanced and performed the TloadDback task both in a high (HCL) and a low (LCL) cognitive load condition. EEG activity was recorded during wakefulness in the 5 min resting state immediately before and after, as well as during the 16 min of the TloadDback task practice. In the high cognitive load under a sleep-fragmentation (HCL/SF) condition, high beta power increased during the TloadDback, indicating heightened cognitive effort, and the beta and alpha power increased in the post- vs. pre-task resting state, suggesting a relaxation rebound. In the low cognitive load/undisturbed sleep (LCL/UdS) condition, low beta activity increased, suggesting a relaxed focus, as well as mid beta activity associated with active thinking. These findings highlight the dynamic impact of SF on the neurophysiological correlates of CF and underscore the importance of sleep quality and continuity to maintain optimal cognitive functioning.
Collapse
Affiliation(s)
- Oumaïma Benkirane
- UR2NF—Neuropsychology and Functional Neuroimaging Research Unit, at CRCN—Centre for Research in Cognition and Neurosciences and UNI—ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium; (O.B.); (P.S.)
- BBCO—Brain, Body and Cognition, Department of Psychology, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, 1050 Brussel, Belgium;
| | - Peter Simor
- UR2NF—Neuropsychology and Functional Neuroimaging Research Unit, at CRCN—Centre for Research in Cognition and Neurosciences and UNI—ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium; (O.B.); (P.S.)
- Institute of Psychology, ELTE, Eötvös Loránd University, 1053 Budapest, Hungary
- Institute of Behavioural Sciences, Semmelweis University, 1085 Budapest, Hungary
| | - Olivier Mairesse
- BBCO—Brain, Body and Cognition, Department of Psychology, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, 1050 Brussel, Belgium;
| | - Philippe Peigneux
- UR2NF—Neuropsychology and Functional Neuroimaging Research Unit, at CRCN—Centre for Research in Cognition and Neurosciences and UNI—ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium; (O.B.); (P.S.)
| |
Collapse
|
14
|
Yao F, Chang X, Zhou B, Zhou W. Olfaction modulates cortical arousal independent of perceived odor intensity and pleasantness. Neuroimage 2024; 299:120843. [PMID: 39251115 DOI: 10.1016/j.neuroimage.2024.120843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/22/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024] Open
Abstract
Throughout history, various odors have been harnessed to invigorate or relax the mind. The mechanisms underlying odors' diverse arousal effects remain poorly understood. We conducted five experiments (184 participants) to investigate this issue, using pupillometry, electroencephalography, and the attentional blink paradigm, which exemplifies the limit in attentional capacity. Results demonstrated that exposure to citral, compared to vanillin, enlarged pupil size, reduced resting-state alpha oscillations and alpha network efficiency, augmented beta-gamma oscillations, and enhanced the coordination between parietal alpha and frontal beta-gamma activities. In parallel, it attenuated the attentional blink effect. These effects were observed despite citral and vanillin being comparable in perceived odor intensity, pleasantness, and nasal pungency, and were unlikely driven by semantic biases. Our findings reveal that odors differentially alter the small-worldness of brain network architecture, and thereby brain state and arousal. Furthermore, they establish arousal as a unique dimension in olfactory space, distinct from intensity and pleasantness.
Collapse
Affiliation(s)
- Fangshu Yao
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China; School of Psychology, Shanghai University of Sport, Shanghai 200438, China
| | - Xiaoyue Chang
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Zhou
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wen Zhou
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China; Chinese Institute for Brain Research, Beijing 102206, China.
| |
Collapse
|
15
|
Baarbé J, Brown MJN, Saha U, Tran S, Weissbach A, Saravanamuttu J, Cheyne D, Hutchison WD, Chen R. Cortical modulations before lower limb motor blocks are associated with freezing of gait in Parkinson's disease: an EEG source localization study. Neurobiol Dis 2024; 199:106557. [PMID: 38852752 DOI: 10.1016/j.nbd.2024.106557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/15/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND Freezing of gait (FOG) is a debilitating symptom of Parkinson's disease (PD) characterized by paroxysmal episodes in which patients are unable to step forward. A research priority is identifying cortical changes before freezing in PD-FOG. METHODS We tested 19 patients with PD who had been assessed for FOG (n=14 with FOG and 5 without FOG). While seated, patients stepped bilaterally on pedals to progress forward through a virtual hallway while 64-channel EEG was recorded. We assessed cortical activities before and during lower limb motor blocks (LLMB), defined as a break in rhythmic pedaling, and stops, defined as movement cessation following an auditory stop cue. This task was selected because LLMB correlates with FOG severity in PD and allows recording of high-quality EEG. Patients were tested after overnight withdrawal from dopaminergic medications ("off" state) and in the "on" medications state. EEG source activities were evaluated using individual MRI and standardized low resolution brain electromagnetic tomography (sLORETA). Functional connectivity was evaluated by phase lag index between seeds and pre-defined cortical regions of interest. RESULTS EEG source activities for LLMB vs. cued stops localized to right posterior parietal area (Brodmann area 39), lateral premotor area (Brodmann area 6), and inferior frontal gyrus (Brodmann area 47). In these areas, PD-FOG (n=14) increased alpha rhythms (8-12 Hz) before LLMB vs. typical stepping, whereas PD without FOG (n=5) decreased alpha power. Alpha rhythms were linearly correlated with LLMB severity, and the relationship became an inverted U-shape when assessing alpha rhythms as a function of percent time in LLMB in the "off" medication state. Right inferior frontal gyrus and supplementary motor area connectivity was observed before LLMB in the beta band (13-30 Hz). This same pattern of connectivity was seen before stops. Dopaminergic medication improved FOG and led to less alpha synchronization and increased functional connections between frontal and parietal areas. CONCLUSIONS Right inferior parietofrontal structures are implicated in PD-FOG. The predominant changes were in the alpha rhythm, which increased before LLMB and with LLMB severity. Similar connectivity was observed for LLMB and stops between the right inferior frontal gyrus and supplementary motor area, suggesting that FOG may be a form of "unintended stopping." These findings may inform approaches to neurorehabilitation of PD-FOG.
Collapse
Affiliation(s)
- Julianne Baarbé
- Department of Medicine, University of Toronto and Division of Brain, Imaging & Behaviour, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Faculty of Health, York University, Toronto, Ontario, Canada.
| | - Matt J N Brown
- Department of Kinesiology, California State University, Sacramento, CA, USA
| | - Utpal Saha
- Department of Medicine, University of Toronto and Division of Brain, Imaging & Behaviour, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Stephanie Tran
- Department of Medicine, University of Toronto and Division of Brain, Imaging & Behaviour, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Anne Weissbach
- Institute of Systems Motor Science, Center of Brain, Behavior and Metabolism, University of Lübeck, Germany
| | - James Saravanamuttu
- Department of Medicine, University of Toronto and Division of Brain, Imaging & Behaviour, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Douglas Cheyne
- Program in Neurosciences and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - William D Hutchison
- Department of Medicine, University of Toronto and Division of Brain, Imaging & Behaviour, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Robert Chen
- Department of Medicine, University of Toronto and Division of Brain, Imaging & Behaviour, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Pérez-Pacheco A, Rodríguez Morales FY, Misaghian K, Faubert J, Lugo Arce JE. Auditory Noise Facilitates Lower Visual Reaction Times in Humans. BIOLOGY 2024; 13:631. [PMID: 39194569 DOI: 10.3390/biology13080631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 08/29/2024]
Abstract
Noise is commonly seen as a disturbance but can influence any system it interacts with. This influence may not always be desirable, but sometimes it can improve the system's performance. For example, stochastic resonance is a phenomenon where adding the right amount of noise to a weak signal makes it easier to detect. This is known as sub-threshold detection. This sub-threshold detection's natural fingerprint is the fact that the threshold values follow an inverse U-shaped curve as the noise intensity increases. The minimum threshold value is the point of maximum sensitivity and represents the optimal point that divides the dynamics in two. Below that point, we can find the beneficial noise branch, where the noise can facilitate better detection. Above that point, the common detrimental noise concept can be found: adding noise hinders signal detection. The nervous system controls the movements and bodily functions in the human body. By reducing the sensory thresholds, we can improve the balance of these functions. Additionally, researchers have wondered if noise could be applied to different senses or motor mechanisms to enhance our abilities. In this work, noise is used to improve human reaction times. We tested the hypothesis that visual reaction times decrease significantly when the subject's perception is in the beneficial noise branch and closer to the optimal point than outside of this condition. Auditory noise was introduced in 101 human subjects using an interface capable of searching for the right amount of noise to place the subject in the beneficial noise branch close to the optimal point. When comparing the results, the reaction times decreased when the subjects were at the optimal point compared to when the subjects were outside of such conditions. These results reveal the possibility of using this approach to enhance human performance in tasks requiring faster reaction times, such as sports.
Collapse
Affiliation(s)
- Argelia Pérez-Pacheco
- Directorate of Research, Hospital General de México "Dr. Eduardo Liceaga", Mexico City 06720, Mexico
- Research and Technological Development Unit (UIDT), Hospital General de México "Dr. Eduardo Liceaga", Mexico City 06720, Mexico
| | | | - Khashayar Misaghian
- Faubert Laboratory, Université de Montréal, Montreal, QC H3T 1P1, Canada
- Sage-Sentinel Smart Solutions, Onna, Okinawa 904-0495, Japan
| | - Jocelyn Faubert
- Faubert Laboratory, Université de Montréal, Montreal, QC H3T 1P1, Canada
- Sage-Sentinel Smart Solutions, Onna, Okinawa 904-0495, Japan
| | - Jesus Eduardo Lugo Arce
- Faubert Laboratory, Université de Montréal, Montreal, QC H3T 1P1, Canada
- Sage-Sentinel Smart Solutions, Onna, Okinawa 904-0495, Japan
- Facultad de Ciencias Físico-Matematicas, Ciudad Universitaria, Puebla 72570, Mexico
| |
Collapse
|
17
|
Lin Y, Huang S, Mao J, Li M, Haihambo N, Wang F, Liang Y, Chen W, Han C. The neural oscillatory mechanism underlying human brain fingerprint recognition using a portable EEG acquisition device. Neuroimage 2024; 294:120637. [PMID: 38714216 DOI: 10.1016/j.neuroimage.2024.120637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/31/2024] [Accepted: 05/04/2024] [Indexed: 05/09/2024] Open
Abstract
In recent years, brainprint recognition has emerged as a novel method of personal identity verification. Although studies have demonstrated the feasibility of this technology, some limitations hinder its further development into the society, such as insufficient efficiency (extended wear time for multi-channel EEG cap), complex experimental paradigms (more time in learning and completing experiments), and unclear neurobiological characteristics (lack of intuitive biomarkers and an inability to eliminate the impact of noise on individual differences). Overall, these limitations are due to the incomplete understanding of the underlying neural mechanisms. Therefore, this study aims to investigate the neural mechanisms behind brainwave recognition and simplify the operation process. We recorded prefrontal resting-state EEG data from 40 participants, which is followed up over nine months using a single-channel portable brainwave device. We found that portable devices can effectively and stably capture the characteristics of different subjects in the alpha band (8-13Hz) over long periods, as well as capturing their individual differences (no alpha peak, 1 alpha peak, or 2 alpha peaks). Through correlation analysis, alpha-band activity can reveal the uniqueness of the subjects compared to others within one minute. We further used a descriptive model to dissect the oscillatory and non-oscillatory components in the alpha band, demonstrating the different contributions of fine oscillatory features to individual differences (especially amplitude and bandwidth). Our study validated the feasibility of portable brainwave devices in brainwave recognition and the underlying neural oscillation mechanisms. The fine characteristics of various alpha oscillations will contribute to the accuracy of brainwave recognition, providing new insights for the development of future brainwave recognition technology.
Collapse
Affiliation(s)
- Yuchen Lin
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shaojia Huang
- Shenzhen Shuimu AI Technology Co., Ltd, Shenzhen, China
| | - Jidong Mao
- Shenzhen Shuimu AI Technology Co., Ltd, Shenzhen, China
| | - Meijia Li
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels, Belgium
| | - Naem Haihambo
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels, Belgium
| | - Fang Wang
- Shenzhen Shuimu AI Technology Co., Ltd, Shenzhen, China
| | - Yuping Liang
- Shenzhen Shuimu AI Technology Co., Ltd, Shenzhen, China
| | - Wufang Chen
- Shenzhen Shuimu AI Technology Co., Ltd, Shenzhen, China
| | - Chuanliang Han
- School of Biomedical Sciences and Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
18
|
Arutiunian V, Arcara G, Buyanova I, Fedorov M, Davydova E, Pereverzeva D, Sorokin A, Tyushkevich S, Mamokhina U, Danilina K, Dragoy O. Abnormalities in both stimulus-induced and baseline MEG alpha oscillations in the auditory cortex of children with Autism Spectrum Disorder. Brain Struct Funct 2024; 229:1225-1242. [PMID: 38683212 DOI: 10.1007/s00429-024-02802-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
The neurobiology of Autism Spectrum Disorder (ASD) is hypothetically related to the imbalance between neural excitation (E) and inhibition (I). Different studies have revealed that alpha-band (8-12 Hz) activity in magneto- and electroencephalography (MEG and EEG) may reflect E and I processes and, thus, can be of particular interest in ASD research. Previous findings indicated alterations in event-related and baseline alpha activity in different cortical systems in individuals with ASD, and these abnormalities were associated with core and co-occurring conditions of ASD. However, the knowledge on auditory alpha oscillations in this population is limited. This MEG study investigated stimulus-induced (Event-Related Desynchronization, ERD) and baseline alpha-band activity (both periodic and aperiodic) in the auditory cortex and also the relationships between these neural activities and behavioral measures of children with ASD. Ninety amplitude-modulated tones were presented to two groups of children: 20 children with ASD (5 girls, Mage = 10.03, SD = 1.7) and 20 typically developing controls (9 girls, Mage = 9.11, SD = 1.3). Children with ASD had a bilateral reduction of alpha-band ERD, reduced baseline aperiodic-adjusted alpha power, and flattened aperiodic exponent in comparison to TD children. Moreover, lower raw baseline alpha power and aperiodic offset in the language-dominant left auditory cortex were associated with better language skills of children with ASD measured in formal assessment. The findings highlighted the alterations of E / I balance metrics in response to basic auditory stimuli in children with ASD and also provided evidence for the contribution of low-level processing to language difficulties in ASD.
Collapse
Affiliation(s)
- Vardan Arutiunian
- Center for Child Health, Behavior and Development, Seattle Children's Research Institute, 1920 Terry Ave, Seattle, WA, 98101, United States of America.
| | | | - Irina Buyanova
- Center for Language and Brain, HSE University, Moscow, Russia
- University of Otago, Dunedin, New Zealand
| | - Makar Fedorov
- Center for Language and Brain, HSE University, Nizhny Novgorod, Russia
| | - Elizaveta Davydova
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Moscow, Russia
- Chair of Differential Psychology and Psychophysiology, Moscow State University of Psychology and Education, Moscow, Russia
| | - Darya Pereverzeva
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Moscow, Russia
| | - Alexander Sorokin
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Moscow, Russia
- Haskins Laboratories, New Haven, CT, United States of America
| | - Svetlana Tyushkevich
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Moscow, Russia
| | - Uliana Mamokhina
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Moscow, Russia
| | - Kamilla Danilina
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Moscow, Russia
- Scientific Research and Practical Center of Pediatric Psychoneurology, Moscow, Russia
| | - Olga Dragoy
- Center for Language and Brain, HSE University, Moscow, Russia
- Institute of Linguistics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
19
|
Sáringer S, Fehér Á, Sáry G, Kaposvári P. Perceptual Expectations Are Reflected by Early Alpha Power Reduction. J Cogn Neurosci 2024; 36:1282-1296. [PMID: 38652100 DOI: 10.1162/jocn_a_02169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The predictability of a stimulus can be characterized by its transitional probability. Perceptual expectations derived from the transitional probability of the stimulus were found to modulate the early alpha oscillations in the sensory regions of the brain when neural responses to expected versus unexpected stimuli were compared. The objective of our study was to find out the extent to which this low-frequency oscillation reflects stimulus predictability. We aimed to detect the alpha-power difference with smaller differences in transitional probabilities by comparing expected stimuli with neutral ones. We studied the effect of expectation on perception by applying an unsupervised visual statistical learning paradigm with expected and neutral stimuli embedded in an image sequence while recording EEG. Time-frequency analysis showed that expected stimuli elicit lower alpha power in the window of 8-12 Hz and 0-400 msec after stimulus presentation, appearing in the centroparietal region. Comparing previous findings of expectancy-based alpha-band modulation with our results suggests that early alpha oscillation shows an inverse relationship with stimulus predictability. Although current data are insufficient to determine the origin of the alpha power reduction, this could be a potential sign of expectation suppression in cortical oscillatory activity.
Collapse
|
20
|
Hebron H, Lugli B, Dimitrova R, Jaramillo V, Yeh LR, Rhodes E, Grossman N, Dijk DJ, Violante IR. A closed-loop auditory stimulation approach selectively modulates alpha oscillations and sleep onset dynamics in humans. PLoS Biol 2024; 22:e3002651. [PMID: 38889194 PMCID: PMC11185466 DOI: 10.1371/journal.pbio.3002651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/01/2024] [Indexed: 06/20/2024] Open
Abstract
Alpha oscillations play a vital role in managing the brain's resources, inhibiting neural activity as a function of their phase and amplitude, and are changed in many brain disorders. Developing minimally invasive tools to modulate alpha activity and identifying the parameters that determine its response to exogenous modulators is essential for the implementation of focussed interventions. We introduce Alpha Closed-Loop Auditory Stimulation (αCLAS) as an EEG-based method to modulate and investigate these brain rhythms in humans with specificity and selectivity, using targeted auditory stimulation. Across a series of independent experiments, we demonstrate that αCLAS alters alpha power, frequency, and connectivity in a phase, amplitude, and topography-dependent manner. Using single-pulse-αCLAS, we show that the effects of auditory stimuli on alpha oscillations can be explained within the theoretical framework of oscillator theory and a phase-reset mechanism. Finally, we demonstrate the functional relevance of our approach by showing that αCLAS can interfere with sleep onset dynamics in a phase-dependent manner.
Collapse
Affiliation(s)
- Henry Hebron
- School of Psychology, University of Surrey, Guildford, United Kingdom
- Surrey Sleep Research Centre, University of Surrey, Guildford, United Kingdom
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London and the University of Surrey, Guildford, United Kingdom
| | - Beatrice Lugli
- School of Psychology, University of Surrey, Guildford, United Kingdom
| | - Radost Dimitrova
- School of Psychology, University of Surrey, Guildford, United Kingdom
| | - Valeria Jaramillo
- School of Psychology, University of Surrey, Guildford, United Kingdom
- Surrey Sleep Research Centre, University of Surrey, Guildford, United Kingdom
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London and the University of Surrey, Guildford, United Kingdom
| | - Lisa R. Yeh
- School of Psychology, University of Surrey, Guildford, United Kingdom
| | - Edward Rhodes
- Department of Brain Sciences, Imperial College London, London, United Kingdom
- UK Dementia Research Institute Imperial College London, United Kingdom
| | - Nir Grossman
- Department of Brain Sciences, Imperial College London, London, United Kingdom
- UK Dementia Research Institute Imperial College London, United Kingdom
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, University of Surrey, Guildford, United Kingdom
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London and the University of Surrey, Guildford, United Kingdom
| | - Ines R. Violante
- School of Psychology, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
21
|
Neri B, Callara AL, Vanello N, Menicucci D, Zaccaro A, Piarulli A, Laurino M, Norbu N, Kechok J, Sherab N, Gemignani A. Report from a Tibetan Monastery: EEG neural correlates of concentrative and analytical meditation. Front Psychol 2024; 15:1348317. [PMID: 38756494 PMCID: PMC11098278 DOI: 10.3389/fpsyg.2024.1348317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/16/2024] [Indexed: 05/18/2024] Open
Abstract
The positive effects of meditation on human wellbeing are indisputable, ranging from emotion regulation improvement to stress reduction and present-moment awareness enhancement. Changes in brain activity regulate and support these phenomena. However, the heterogeneity of meditation practices and their cultural background, as well as their poor categorization limit the generalization of results to all types of meditation. Here, we took advantage of a collaboration with the very singular and precious community of the Monks and Geshes of the Tibetan University of Sera-Jey in India to study the neural correlates of the two main types of meditation recognized in Tibetan Buddhism, namely concentrative and analytical meditation. Twenty-three meditators with different levels of expertise underwent to an ecological (i.e., within the monastery) EEG acquisition consisting of an analytical and/or concentrative meditation session at "their best," and with the only constraint of performing a 5-min-long baseline at the beginning of the session. Time-varying power-spectral-density estimates of each session were compared against the baseline (i.e., within session) and between conditions (i.e., analytical vs. concentrative). Our results showed that concentrative meditation elicited more numerous and marked changes in the EEG power compared to analytical meditation, and mainly in the form of an increase in the theta, alpha and beta frequency ranges. Moreover, the full immersion in the Monastery life allowed to share the results and discuss their interpretation with the best scholars of the Monastic University, ensuring the identification of the most expert meditators, as well as to highlight better the differences between the different types of meditation practiced by each of them.
Collapse
Affiliation(s)
- Bruno Neri
- Dipartimento di Ingegneria dell’Informazione, University of Pisa, Pisa, Italy
| | - Alejandro Luis Callara
- Dipartimento di Ingegneria dell’Informazione, University of Pisa, Pisa, Italy
- Research Center “E. Piaggio”, University of Pisa, Pisa, Italy
| | - Nicola Vanello
- Dipartimento di Ingegneria dell’Informazione, University of Pisa, Pisa, Italy
- Research Center “E. Piaggio”, University of Pisa, Pisa, Italy
| | - Danilo Menicucci
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Andrea Zaccaro
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Andrea Piarulli
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | | | - Ngawang Norbu
- Sera Jey Monastic University for Advanced Buddhist Studies & Practice, Bylakuppe, Mysore, India
| | - Jampa Kechok
- Sera Jey Monastic University for Advanced Buddhist Studies & Practice, Bylakuppe, Mysore, India
| | - Ngawang Sherab
- Sera Jey Monastic University for Advanced Buddhist Studies & Practice, Bylakuppe, Mysore, India
| | - Angelo Gemignani
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
22
|
Peylo C, Romberg-Taylor C, Behnke L, Sauseng P. Dynamic alpha power modulations and slow negative potentials track natural shifts of spatio-temporal attention. Psychophysiology 2024; 61:e14498. [PMID: 38071405 DOI: 10.1111/psyp.14498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/17/2023] [Accepted: 11/16/2023] [Indexed: 04/17/2024]
Abstract
Alpha power modulations and slow negative potentials have previously been associated with anticipatory processes in spatial and temporal top-down attention. In typical experimental designs, however, neural responses triggered by transient stimulus onsets can interfere with attention-driven activity patterns and our interpretation of such. Here, we investigated these signatures of spatio-temporal attention in a dynamic paradigm free from potentially confounding stimulus-driven activity using electroencephalography. Participants attended the cued side of a bilateral stimulus rotation and mentally counted how often one of two remembered sample orientations (i.e., the target) was displayed while ignoring the uncued side and non-target orientation. Afterwards, participants performed a delayed match-to-sample task, in which they indicated if the orientation of a probe stimulus matched the corresponding sample orientation (previously target or non-target). We observed dynamic alpha power reductions and slow negative waves around task-relevant points in space and time (i.e., onset of the target orientation in the cued hemifield) over posterior electrodes contralateral to the locus of attention. In contrast to static alpha power lateralization, these dynamic signatures correlated with subsequent memory performance (primarily detriments for matching probes of the non-target orientation), suggesting a preferential allocation of attention to task-relevant locations and time points at the expense of reduced resources and impaired performance for information outside the current focus of attention. Our findings suggest that humans can naturally and dynamically focus their attention at relevant points in space and time and that such spatio-temporal attention shifts can be reflected by dynamic alpha power modulations and slow negative potentials.
Collapse
Affiliation(s)
- Charline Peylo
- Department of Psychology, Universität Zürich, Zurich, Switzerland
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Planegg, Germany
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Larissa Behnke
- Department of Psychology, Universität Zürich, Zurich, Switzerland
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Planegg, Germany
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Paul Sauseng
- Department of Psychology, Universität Zürich, Zurich, Switzerland
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
23
|
Kang JH, Bae JH, Jeon YJ. Age-Related Characteristics of Resting-State Electroencephalographic Signals and the Corresponding Analytic Approaches: A Review. Bioengineering (Basel) 2024; 11:418. [PMID: 38790286 PMCID: PMC11118246 DOI: 10.3390/bioengineering11050418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
The study of the effects of aging on neural activity in the human brain has attracted considerable attention in neurophysiological, neuropsychiatric, and neurocognitive research, as it is directly linked to an understanding of the neural mechanisms underlying the disruption of the brain structures and functions that lead to age-related pathological disorders. Electroencephalographic (EEG) signals recorded during resting-state conditions have been widely used because of the significant advantage of non-invasive signal acquisition with higher temporal resolution. These advantages include the capability of a variety of linear and nonlinear signal analyses and state-of-the-art machine-learning and deep-learning techniques. Advances in artificial intelligence (AI) can not only reveal the neural mechanisms underlying aging but also enable the assessment of brain age reliably by means of the age-related characteristics of EEG signals. This paper reviews the literature on the age-related features, available analytic methods, large-scale resting-state EEG databases, interpretations of the resulting findings, and recent advances in age-related AI models.
Collapse
Affiliation(s)
- Jae-Hwan Kang
- Digital Health Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; (J.-H.K.); (J.-H.B.)
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jang-Han Bae
- Digital Health Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; (J.-H.K.); (J.-H.B.)
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Young-Ju Jeon
- Digital Health Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; (J.-H.K.); (J.-H.B.)
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| |
Collapse
|
24
|
Karvat G, Ofir N, Landau AN. Sensory Drive Modifies Brain Dynamics and the Temporal Integration Window. J Cogn Neurosci 2024; 36:614-631. [PMID: 38010294 DOI: 10.1162/jocn_a_02088] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Perception is suggested to occur in discrete temporal windows, clocked by cycles of neural oscillations. An important testable prediction of this theory is that individuals' peak frequencies of oscillations should correlate with their ability to segregate the appearance of two successive stimuli. An influential study tested this prediction and showed that individual peak frequency of spontaneously occurring alpha (8-12 Hz) correlated with the temporal segregation threshold between two successive flashes of light [Samaha, J., & Postle, B. R. The speed of alpha-band oscillations predicts the temporal resolution of visual perception. Current Biology, 25, 2985-2990, 2015]. However, these findings were recently challenged [Buergers, S., & Noppeney, U. The role of alpha oscillations in temporal binding within and across the senses. Nature Human Behaviour, 6, 732-742, 2022]. To advance our understanding of the link between oscillations and temporal segregation, we devised a novel experimental approach. Rather than relying entirely on spontaneous brain dynamics, we presented a visual grating before the flash stimuli that is known to induce continuous oscillations in the gamma band (45-65 Hz). By manipulating the contrast of the grating, we found that high contrast induces a stronger gamma response and a shorter temporal segregation threshold, compared to low-contrast trials. In addition, we used a novel tool to characterize sustained oscillations and found that, for half of the participants, both the low- and high-contrast gratings were accompanied by a sustained and phase-locked alpha oscillation. These participants tended to have longer temporal segregation thresholds. Our results suggest that visual stimulus drive, reflected by oscillations in specific bands, is related to the temporal resolution of visual perception.
Collapse
|
25
|
Riddle J, Schooler JW. Hierarchical consciousness: the Nested Observer Windows model. Neurosci Conscious 2024; 2024:niae010. [PMID: 38504828 PMCID: PMC10949963 DOI: 10.1093/nc/niae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/31/2024] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
Foremost in our experience is the intuition that we possess a unified conscious experience. However, many observations run counter to this intuition: we experience paralyzing indecision when faced with two appealing behavioral choices, we simultaneously hold contradictory beliefs, and the content of our thought is often characterized by an internal debate. Here, we propose the Nested Observer Windows (NOW) Model, a framework for hierarchical consciousness wherein information processed across many spatiotemporal scales of the brain feeds into subjective experience. The model likens the mind to a hierarchy of nested mosaic tiles-where an image is composed of mosaic tiles, and each of these tiles is itself an image composed of mosaic tiles. Unitary consciousness exists at the apex of this nested hierarchy where perceptual constructs become fully integrated and complex behaviors are initiated via abstract commands. We define an observer window as a spatially and temporally constrained system within which information is integrated, e.g. in functional brain regions and neurons. Three principles from the signal analysis of electrical activity describe the nested hierarchy and generate testable predictions. First, nested observer windows disseminate information across spatiotemporal scales with cross-frequency coupling. Second, observer windows are characterized by a high degree of internal synchrony (with zero phase lag). Third, observer windows at the same spatiotemporal level share information with each other through coherence (with non-zero phase lag). The theoretical framework of the NOW Model accounts for a wide range of subjective experiences and a novel approach for integrating prominent theories of consciousness.
Collapse
Affiliation(s)
- Justin Riddle
- Department of Psychology, Florida State University, 1107 W Call St, Tallahassee, FL 32304, USA
| | - Jonathan W Schooler
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Psychological & Brain Sciences, Santa Barbara, CA 93106, USA
| |
Collapse
|
26
|
Wisniewski MG, Joyner CN, Zakrzewski AC, Makeig S. Finding tau rhythms in EEG: An independent component analysis approach. Hum Brain Mapp 2024; 45:e26572. [PMID: 38339905 PMCID: PMC10823759 DOI: 10.1002/hbm.26572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 02/12/2024] Open
Abstract
Tau rhythms are largely defined by sound responsive alpha band (~8-13 Hz) oscillations generated largely within auditory areas of the superior temporal gyri. Studies of tau have mostly employed magnetoencephalography or intracranial recording because of tau's elusiveness in the electroencephalogram. Here, we demonstrate that independent component analysis (ICA) decomposition can be an effective way to identify tau sources and study tau source activities in EEG recordings. Subjects (N = 18) were passively exposed to complex acoustic stimuli while the EEG was recorded from 68 electrodes across the scalp. Subjects' data were split into 60 parallel processing pipelines entailing use of five levels of high-pass filtering (passbands of 0.1, 0.5, 1, 2, and 4 Hz), three levels of low-pass filtering (25, 50, and 100 Hz), and four different ICA algorithms (fastICA, infomax, adaptive mixture ICA [AMICA], and multi-model AMICA [mAMICA]). Tau-related independent component (IC) processes were identified from this data as being localized near the superior temporal gyri with a spectral peak in the 8-13 Hz alpha band. These "tau ICs" showed alpha suppression during sound presentations that was not seen for other commonly observed IC clusters with spectral peaks in the alpha range (e.g., those associated with somatomotor mu, and parietal or occipital alpha). The choice of analysis parameters impacted the likelihood of obtaining tau ICs from an ICA decomposition. Lower cutoff frequencies for high-pass filtering resulted in significantly fewer subjects showing a tau IC than more aggressive high-pass filtering. Decomposition using the fastICA algorithm performed the poorest in this regard, while mAMICA performed best. The best combination of filters and ICA model choice was able to identify at least one tau IC in the data of ~94% of the sample. Altogether, the data reveal close similarities between tau EEG IC dynamics and tau dynamics observed in MEG and intracranial data. Use of relatively aggressive high-pass filters and mAMICA decomposition should allow researchers to identify and characterize tau rhythms in a majority of their subjects. We believe adopting the ICA decomposition approach to EEG analysis can increase the rate and range of discoveries related to auditory responsive tau rhythms.
Collapse
Affiliation(s)
| | | | | | - Scott Makeig
- Swartz Center for Computational NeuroscienceUniversity of California San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
27
|
Issabekov G, Matsumoto T, Hoshi H, Fukasawa K, Ichikawa S, Shigihara Y. Resting-state brain activity distinguishes patients with generalised epilepsy from others. Seizure 2024; 115:50-58. [PMID: 38183828 DOI: 10.1016/j.seizure.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/14/2023] [Accepted: 01/01/2024] [Indexed: 01/08/2024] Open
Abstract
PURPOSE Epilepsy is a prevalent neurological disorder characterised by repetitive seizures. It is categorised into three types: generalised epilepsy (GE), focal epilepsy (FE), and combined generalised and focal epilepsy. Correctly subtyping the epilepsy is important to select appropriate treatments. The types are mainly determined (i.e., diagnosed) by their semiologies supported by clinical examinations, such as electroencephalography and magnetoencephalography (MEG). Although these examinations are traditionally based on visual inspections of interictal epileptic discharges (IEDs), which are not always visible, alternative analyses have been anticipated. We examined if resting-state brain activities can distinguish patients with GE, which would help us to diagnose the type of epilepsy. METHODS The 5 min resting-state brain activities acquired using MEG were obtained retrospectively from 15 patients with GE. The cortical source of the activities was estimated at each frequency band from delta to high-frequency oscillation (HFO). These estimated activities were compared with reference datasets from 133 healthy individuals and control data from 29 patients with FE. RESULTS Patients with GE showed larger theta in the occipital, alpha in the left temporal, HFO in the rostral deep regions, and smaller HFO in the caudal ventral regions. Their area under the curves of the receiver operating characteristic curves was around 0.8-0.9. The distinctive pattern was not found for data from FE. CONCLUSION Patients with GE show distinctive resting-state brain activity, which could be a potential biomarker and used complementarily to classical analysis based on the visual inspection of IEDs.
Collapse
Affiliation(s)
- Galymzhan Issabekov
- Precision Medicine Centre, Kumagaya General Hospital, Kumagaya 360-8567, Japan
| | - Takahiro Matsumoto
- Department of Neurosurgery, Kumagaya General Hospital, Kumagaya 360-8567, Japan
| | - Hideyuki Hoshi
- Precision Medicine Centre, Hokuto Hospital, Obihiro 080-0833, Japan
| | - Keisuke Fukasawa
- Clinical Laboratory, Kumagaya General Hospital, Kumagaya 360-8567, Japan
| | - Sayuri Ichikawa
- Clinical Laboratory, Kumagaya General Hospital, Kumagaya 360-8567, Japan
| | - Yoshihito Shigihara
- Precision Medicine Centre, Kumagaya General Hospital, Kumagaya 360-8567, Japan; Precision Medicine Centre, Hokuto Hospital, Obihiro 080-0833, Japan.
| |
Collapse
|
28
|
Jia S, Meng Y, Gao Y, Ao L, Yang L, Wang H, Liu Y. Romantic relationships attenuated competition between lovers: evidence from brain synchronization. Cereb Cortex 2024; 34:bhae028. [PMID: 38300221 DOI: 10.1093/cercor/bhae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 02/02/2024] Open
Abstract
Competition is an essential component of social interaction and is influenced by interpersonal relationships. This study is based on social exchange theory and explores the relationship between brain synchronization and competition in the binary system of romantic relationships through electroencephalogram hyperscanning technology. The results found that females had a greater win rate in the romantic and friend groups. During the early stage (0-200 ms), when the competitive target appeared, the stranger group exhibited greater interbrain synchronicity in the Alpha frequency band. However, during the later stage (600-800 ms), the romantic group showed higher Alpha band interbrain synchrony when the competitive target appeared. Significant interbrain synchronizations were observed in the Theta frequency band of the stranger and friend groups at 400-600 ms and 800-1000 ms. Moreover, these interbrain synchronizations were significantly positively correlated with the winning rates of females in the competition. These findings suggest a close relationship between interpersonal coordination and interbrain synchronization. Furthermore, romantic relationships reduce participants' willingness to compete, affecting their attention regulation, emotional processing, and goal orientation, thus influencing competition. This study investigated the impact of romantic relationships on competition, providing a theoretical foundation for promoting the positive and healthy development of romantic relationships.
Collapse
Affiliation(s)
- Shuyu Jia
- School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai avenue, Caofeidian district, Tangshan, Hebei province, China
| | - Yujia Meng
- School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai avenue, Caofeidian district, Tangshan, Hebei province, China
| | - Yuan Gao
- School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai avenue, Caofeidian district, Tangshan, Hebei province, China
| | - Lihong Ao
- School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai avenue, Caofeidian district, Tangshan, Hebei province, China
| | - Lei Yang
- School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai avenue, Caofeidian district, Tangshan, Hebei province, China
| | - He Wang
- School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai avenue, Caofeidian district, Tangshan, Hebei province, China
- School of Public Health, School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai avenue, Caofeidian district, Tangshan, Hebei province, China
| | - Yingjie Liu
- School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai avenue, Caofeidian district, Tangshan, Hebei province, China
- School of Public Health, School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai avenue, Caofeidian district, Tangshan, Hebei province, China
| |
Collapse
|
29
|
Nettinga J, Naseem S, Yakobi O, Willoughby T, Danckert J. Exploring EEG resting state as a function of boredom proneness in pre-adolescents and adolescents. Exp Brain Res 2024; 242:123-135. [PMID: 37978080 DOI: 10.1007/s00221-023-06733-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023]
Abstract
Boredom is a prominent experience commonly reported in school settings and associated with poor academic achievement. Little is known, however, about the age-related trajectory of boredom. Here we examined self-reported ratings of boredom in a cross-sectional sample of 8 to 15-year olds (n = 185) as a function of resting state EEG. Results indicated that reports of boredom in school rose as a function of age. Resting state EEG showed a decrease in theta power with age perhaps reflective of increased control. While no effects were evident in beta and alpha bands, we did observe an interaction between boredom and age for frontal asymmetry such that for those higher in boredom, the asymmetry increased with age. Finally, for theta to beta ratios there were main effects of age (i.e., a decrease in theta/beta ratio with age) and boredom such that those higher in boredom had higher theta/beta ratios over frontal and central brain areas. The results are discussed in the context of prior work on school-related boredom and provide several important avenues for further research.
Collapse
Affiliation(s)
- Jamie Nettinga
- Department of Psychology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
| | - Sarah Naseem
- Department of Psychology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Ofir Yakobi
- Department of Psychology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Teena Willoughby
- Department of Psychology, Brock University, St. Catherines, ON, L2S 3A1, Canada
| | - James Danckert
- Department of Psychology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
30
|
Lee CSC, Chen TT, Gao Q, Hua C, Song R, Huang XP. The Effects of Theta/Beta-based Neurofeedback Training on Attention in Children with Attention Deficit Hyperactivity Disorder: A Systematic Review and Meta-analysis. Child Psychiatry Hum Dev 2023; 54:1577-1606. [PMID: 35471754 DOI: 10.1007/s10578-022-01361-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/01/2022] [Indexed: 11/25/2022]
Abstract
Neurofeedback training is a common treatment option for attention deficit hyperactivity disorder (ADHD). Given theta/beta-based neurofeedback (T/B NF) training targets at the electrophysiological characteristics of children with ADHD, benefits for attention may be expected. PsycINFO, PubMed, ScienceDirect, Scopus, and Web of Science were searched through December 31, 2020. Studies were evaluated with Risk of Bias tools. Within-group effects based on Pre- and Post-treatment comparisons of the Intervention Group, and Between-group effects based on the between-group differences from Pre-treatment to Post-treatment were calculated. Nineteen studies met selection criteria for systematic review, 12 of them were included in meta-analysis. Within-group effects were medium at Post-treatment and large at Follow-up. Between-group analyses revealed that T/B NF was superior to waitlist control and physical activities, but not stimulant medication. Results showed that T/B NF has benefits for attention in children with ADHD, however, cautions should be taken when interpreting the findings.
Collapse
Affiliation(s)
- Clara S C Lee
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| | - Ting-Ting Chen
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Qingwen Gao
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Chunzhuo Hua
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Rui Song
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Xiu-Ping Huang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
31
|
Shetty SJ, Shetty S, Shettigar D, Pagilla V, Maiya GA. Effect of transcranial photobiomodulation on electrophysiological activity of brain in healthy individuals: A scoping review. J Clin Neurosci 2023; 117:156-167. [PMID: 37826867 DOI: 10.1016/j.jocn.2023.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND OBJECTIVE Transcranial photobiomodulation (tPBM) is a safe and non-invasive treatment that has recently emerged as an effective technique to apply near-infrared or red light to activate neural tissues. The objective is to review the literature on the effect of tPBM on electrophysiological activity in healthy individuals. METHODS Literature was searched through PubMed, Scopus, Web of Science, Cumulated Index to Nursing and Allied Health Literature (CINAHL), Embase, and Ovid for transcranial photobiomodulation therapy in healthy individuals age group 18-80 years of either gender having electroencephalography as an outcome. Critical appraisal of included Randomized Controlled Trials and non-randomized experimental studies was done using Joanna Briggs Institute (JBI) critical appraisal tool. RESULTS A database search yielded a total of 4156 results. After eliminating 2626 duplicates, 1530 records were left. 32 articles were considered for full-text screening after 1498 records were excluded through title and abstract screening. 10 articles were included in this review. tPBM has been found to increase the higher electrophysiological oscillations and there is inconclusive evidence targeting the lower oscillatory electrophysiological frequencies. CONCLUSION Transcranial photobiomodulation can have promising effects on the electrophysiological activity of the brain in healthy individuals.
Collapse
Affiliation(s)
- Shrija Jaya Shetty
- Centre for Diabetic Foot Care and Research, Department of Physiotherapy, Manipal College of Health Professions (MCHP), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Saidan Shetty
- Department of Basic Medical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Deeksha Shettigar
- Centre for Diabetic Foot Care and Research, Department of Physiotherapy, Manipal College of Health Professions (MCHP), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Vidyasagar Pagilla
- Department of Basic Medical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - G Arun Maiya
- Centre for Diabetic Foot Care and Research, Department of Physiotherapy, Manipal College of Health Professions (MCHP), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India.
| |
Collapse
|
32
|
Azizi L, Polti I, van Wassenhove V. Spontaneous α Brain Dynamics Track the Episodic "When". J Neurosci 2023; 43:7186-7197. [PMID: 37704373 PMCID: PMC10601376 DOI: 10.1523/jneurosci.0816-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/14/2023] [Accepted: 08/06/2023] [Indexed: 09/15/2023] Open
Abstract
Across species, neurons track time over the course of seconds to minutes, which may feed the sense of time passing. Here, we asked whether neural signatures of time-tracking could be found in humans. Participants stayed quietly awake for a few minutes while being recorded with magnetoencephalography (MEG). They were unaware they would be asked how long the recording lasted (retrospective time) or instructed beforehand to estimate how long it will last (prospective timing). At rest, rhythmic brain activity is nonstationary and displays bursts of activity in the alpha range (α: 7-14 Hz). When participants were not instructed to attend to time, the relative duration of α bursts linearly predicted individuals' retrospective estimates of how long their quiet wakefulness lasted. The relative duration of α bursts was a better predictor than α power or burst amplitude. No other rhythmic or arrhythmic activity predicted retrospective duration. However, when participants timed prospectively, the relative duration of α bursts failed to predict their duration estimates. Consistent with this, the amount of α bursts was discriminant between prospective and retrospective timing. Last, with a control experiment, we demonstrate that the relation between α bursts and retrospective time is preserved even when participants are engaged in a visual counting task. Thus, at the time scale of minutes, we report that the relative time of spontaneous α burstiness predicts conscious retrospective time. We conclude that in the absence of overt attention to time, α bursts embody discrete states of awareness constitutive of episodic timing.SIGNIFICANCE STATEMENT The feeling that time passes is a core component of consciousness and episodic memory. A century ago, brain rhythms called "α" were hypothesized to embody an internal clock. However, rhythmic brain activity is nonstationary and displays on-and-off oscillatory bursts, which would serve irregular ticks to the hypothetical clock. Here, we discovered that in a given lapse of time, the relative bursting time of α rhythms is a good indicator of how much time an individual will report to have elapsed. Remarkably, this relation only holds true when the individual does not attend to time and vanishes when attending to it. Our observations suggest that at the scale of minutes, α brain activity tracks episodic time.
Collapse
Affiliation(s)
- Leila Azizi
- Cognitive Neuroimaging Unit, NeuroSpin, Commissariat à l'énergie atomique et aux énergies alternatives, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Gif/Yvette 91191, France
| | - Ignacio Polti
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway 7030
- Department of Psychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany D-04103
| | - Virginie van Wassenhove
- Cognitive Neuroimaging Unit, NeuroSpin, Commissariat à l'énergie atomique et aux énergies alternatives, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Gif/Yvette 91191, France
| |
Collapse
|
33
|
Weise A, Hartmann T, Parmentier F, Weisz N, Ruhnau P. Involuntary shifts of spatial attention contribute to distraction-Evidence from oscillatory alpha power and reaction time data. Psychophysiology 2023; 60:e14353. [PMID: 37246813 DOI: 10.1111/psyp.14353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 02/18/2023] [Accepted: 05/06/2023] [Indexed: 05/30/2023]
Abstract
Imagine you are focusing on the traffic on a busy street to ride your bike safely when suddenly you hear the siren of an ambulance. This unexpected sound involuntarily captures your attention and interferes with ongoing performance. We tested whether this type of distraction involves a spatial shift of attention. We measured behavioral data and magnetoencephalographic alpha power during a cross-modal paradigm that combined an exogenous cueing task and a distraction task. In each trial, a task-irrelevant sound preceded a visual target (left or right). The sound was usually the same animal sound (i.e., standard sound). Rarely, it was replaced by an unexpected environmental sound (i.e., deviant sound). Fifty percent of the deviants occurred on the same side as the target, and 50% occurred on the opposite side. Participants responded to the location of the target. As expected, responses were slower to targets that followed a deviant compared to a standard. Crucially, this distraction effect was mitigated by the spatial relationship between the targets and the deviants: responses were faster when targets followed deviants on the same versus different side, indexing a spatial shift of attention. This was further corroborated by a posterior alpha power modulation that was higher in the hemisphere ipsilateral (vs. contralateral) to the location of the attention-capturing deviant. We suggest that this alpha power lateralization reflects a spatial attention bias. Overall, our data support the contention that spatial shifts of attention contribute to deviant distraction.
Collapse
Affiliation(s)
- Annekathrin Weise
- CCNS and Division of Physiological Psychology, Paris Lodron University of Salzburg, Salzburg, Austria
- Department of Psychology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Thomas Hartmann
- CCNS and Division of Physiological Psychology, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Fabrice Parmentier
- Neuropsychology & Cognition Group, Department of Psychology and Institute of Health Sciences (iUNICS), University of the Balearic Islands, Palma, Spain
- Balearic Islands Health Research Institute (IdISBa), Palma, Spain
- Department of Psychology, University of Western Australia, Perth, Western Australia, Australia
| | - Nathan Weisz
- CCNS and Division of Physiological Psychology, Paris Lodron University of Salzburg, Salzburg, Austria
- Neuroscience Institute, Christian Doppler University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Philipp Ruhnau
- School of Psychology, University of Central Lancashire, Preston, UK
| |
Collapse
|
34
|
Gundlach C, Wehle S, Müller MM. Early sensory gain control is dominated by obligatory and global feature-based attention in top-down shifts of combined spatial and feature-based attention. Cereb Cortex 2023; 33:10286-10302. [PMID: 37536059 DOI: 10.1093/cercor/bhad282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023] Open
Abstract
What are the dynamics of global feature-based and spatial attention, when deployed together? In an attentional shifting experiment, flanked by three control experiments, we investigated neural temporal dynamics of combined attentional shifts. For this purpose, orange- and blue-frequency-tagged spatially overlapping Random Dot Kinematograms were presented in the left and right visual hemifield to elicit continuous steady-state-visual-evoked-potentials. After being initially engaged in a fixation cross task, participants were at some point in time cued to shift attention to one of the Random Dot Kinematograms, to detect and respond to brief coherent motion events, while ignoring all such events in other Random Dot Kinematograms. The analysis of steady-state visual-evoked potentials allowed us to map time courses and dynamics of early sensory-gain modulations by attention. This revealed a time-invariant amplification of the to-be attended color both at the attended and the unattended side, followed by suppression for the to-be-ignored color at attended and unattended sides. Across all experiments, global and obligatory feature-based selection dominated early sensory gain modulations, whereas spatial attention played a minor modulatory role. However, analyses of behavior and neural markers such as alpha-band activity and event-related potentials to target- and distractor-event processing, revealed clear modulations by spatial attention.
Collapse
Affiliation(s)
- Christopher Gundlach
- Experimental Psychology and Methods, Universität Leipzig, Leipzig 04107, Germany
| | - Sebastian Wehle
- Experimental Psychology and Methods, Universität Leipzig, Leipzig 04107, Germany
| | - Matthias M Müller
- Experimental Psychology and Methods, Universität Leipzig, Leipzig 04107, Germany
| |
Collapse
|
35
|
Arutiunian V, Arcara G, Buyanova I, Buivolova O, Davydova E, Pereverzeva D, Sorokin A, Tyushkevich S, Mamokhina U, Danilina K, Dragoy O. Event-Related Desynchronization of MEG Alpha-Band Oscillations during Simultaneous Presentation of Audio and Visual Stimuli in Children with Autism Spectrum Disorder. Brain Sci 2023; 13:1313. [PMID: 37759914 PMCID: PMC10526124 DOI: 10.3390/brainsci13091313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Alpha-band (8-12 Hz) event-related desynchronization (ERD) or a decrease in alpha power in electro- and magnetoencephalography (EEG and MEG) reflects the involvement of a neural tissue in information processing. It is known that most children with autism spectrum disorder (ASD) have difficulties in information processing, and, thus, investigation of alpha oscillations is of particular interest in this population. Previous studies have demonstrated alterations in this neural activity in individuals with ASD; however, little is known about alpha ERD during simultaneous presentation of auditory and visual stimuli in children with and without ASD. As alpha oscillations are intimately related to attention, and attention deficit is one of the common co-occurring conditions of ASD, we predict that children with ASD can have altered alpha ERD in one of the sensory domains. In the present study, we used MEG to investigate alpha ERD in groups of 20 children with ASD and 20 age-matched typically developing controls. Simple amplitude-modulated tones were presented together with a fixation cross appearing on the screen. The results showed that children with ASD had a bilateral reduction in alpha-band ERD in the auditory but not visual cortex. Moreover, alterations in the auditory cortex were associated with a higher presence of autistic traits measured in behavioral assessment.
Collapse
Affiliation(s)
- Vardan Arutiunian
- Center for Child Health, Behavior and Development, Seattle Children’s Research Institute, 1920 Terry Ave., Seattle, WA 98101, USA
| | - Giorgio Arcara
- IRCCS San Camillo Hospital, 70 Via Alberoni, Lido, 30126 Venice, Italy;
| | - Irina Buyanova
- Center for Language and Brain, HSE University, 3 Krivokolenny Pereulok, 101000 Moscow, Russia; (I.B.); (O.B.); (O.D.)
| | - Olga Buivolova
- Center for Language and Brain, HSE University, 3 Krivokolenny Pereulok, 101000 Moscow, Russia; (I.B.); (O.B.); (O.D.)
| | - Elizaveta Davydova
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, 19 Architectora Vlasova Str., 117335 Moscow, Russia; (E.D.); (D.P.); (A.S.); (S.T.); (U.M.); (K.D.)
- Chair of Differential Psychology and Psychophysiology, Moscow State University of Psychology and Education, 2A Shelepikhinaskaya Naberezhnaya, 123290 Moscow, Russia
| | - Darya Pereverzeva
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, 19 Architectora Vlasova Str., 117335 Moscow, Russia; (E.D.); (D.P.); (A.S.); (S.T.); (U.M.); (K.D.)
| | - Alexander Sorokin
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, 19 Architectora Vlasova Str., 117335 Moscow, Russia; (E.D.); (D.P.); (A.S.); (S.T.); (U.M.); (K.D.)
- Haskins Laboratories, 300 George St., New Haven, CT 06511, USA
| | - Svetlana Tyushkevich
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, 19 Architectora Vlasova Str., 117335 Moscow, Russia; (E.D.); (D.P.); (A.S.); (S.T.); (U.M.); (K.D.)
| | - Uliana Mamokhina
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, 19 Architectora Vlasova Str., 117335 Moscow, Russia; (E.D.); (D.P.); (A.S.); (S.T.); (U.M.); (K.D.)
| | - Kamilla Danilina
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, 19 Architectora Vlasova Str., 117335 Moscow, Russia; (E.D.); (D.P.); (A.S.); (S.T.); (U.M.); (K.D.)
- Scientific Research and Practical Center of Pediatric Psychoneurology, 74 Michurinskiy Prospekt, 119602 Moscow, Russia
| | - Olga Dragoy
- Center for Language and Brain, HSE University, 3 Krivokolenny Pereulok, 101000 Moscow, Russia; (I.B.); (O.B.); (O.D.)
- Institute of Linguistics, Russian Academy of Sciences, 1/1 Bolshoy Kislovsky Ln, 125009 Moscow, Russia
| |
Collapse
|
36
|
Lesser RP, Webber WRS, Miglioretti DL. Timing of cognitive effects on afterdischarge termination. Clin Neurophysiol 2023; 153:28-32. [PMID: 37442023 DOI: 10.1016/j.clinph.2023.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 05/29/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023]
Abstract
OBJECTIVE We previously studied efficacy of cognitive tasks on afterdischarge termination in patients undergoing cortical stimulation and found that diffuse wavelet cross-coherence changes on electrocorticography were associated with termination efficacy. We now report wavelet cross-coherence findings during different time segments of trials during which afterdischarges ended. METHODS For 12 patients with implanted subdural electrodes, we compared wavelet cross-coherence findings among several 1-second portions of cognitive tasks, reflecting task presentation, patient replies, and afterdischarge termination. RESULTS Coherence decreased significantly and progressively over time for 16.89, 22.53, and 30.03 Hz frequency ranges, but increased with afterdischarge termination. Coherence first increased, and then decreased for the 7.13 Hz frequency range. CONCLUSIONS The findings suggest that cumulative but non-specific factors, likely related primarily to attention, influence the coherence results throughout the task, with a separate effect due to resolution of the afterdischarges at the end. SIGNIFICANCE Task performance is well known to localize to specific brain regions and to be restricted in timing. In contrast, attention and overall mental activation might be due to emergent properties of brain as a whole and that are less circumscribed in space or time. Cognitive tasks might modify seizures and other neurological disorders.
Collapse
Affiliation(s)
- Ronald P Lesser
- Department of Neurology Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA; Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.
| | - W R S Webber
- Department of Neurology Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Diana L Miglioretti
- Department of Public Health Sciences, University of California, Davis, School of Medicine, Davis, CA 95616, USA; Kaiser Permanente Washington Health Research Institute, Seattle WA 98101, USA
| |
Collapse
|
37
|
Michael E, Covarrubias LS, Leong V, Kourtzi Z. Learning at your brain's rhythm: individualized entrainment boosts learning for perceptual decisions. Cereb Cortex 2023; 33:5382-5394. [PMID: 36352510 PMCID: PMC10152088 DOI: 10.1093/cercor/bhac426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/11/2022] Open
Abstract
Training is known to improve our ability to make decisions when interacting in complex environments. However, individuals vary in their ability to learn new tasks and acquire new skills in different settings. Here, we test whether this variability in learning ability relates to individual brain oscillatory states. We use a visual flicker paradigm to entrain individuals at their own brain rhythm (i.e. peak alpha frequency) as measured by resting-state electroencephalography (EEG). We demonstrate that this individual frequency-matched brain entrainment results in faster learning in a visual identification task (i.e. detecting targets embedded in background clutter) compared to entrainment that does not match an individual's alpha frequency. Further, we show that learning is specific to the phase relationship between the entraining flicker and the visual target stimulus. EEG during entrainment showed that individualized alpha entrainment boosts alpha power, induces phase alignment in the pre-stimulus period, and results in shorter latency of early visual evoked potentials, suggesting that brain entrainment facilitates early visual processing to support improved perceptual decisions. These findings suggest that individualized brain entrainment may boost perceptual learning by altering gain control mechanisms in the visual cortex, indicating a key role for individual neural oscillatory states in learning and brain plasticity.
Collapse
Affiliation(s)
- Elizabeth Michael
- Department of Psychology, University of Cambridge, Downing St, Cambridge CB2 3EB, United Kingdom
| | | | - Victoria Leong
- Department of Psychology, University of Cambridge, Downing St, Cambridge CB2 3EB, United Kingdom
- Psychology, School of Social Sciences, Nanyang Technological University (NTU), Singapore 6398818, Singapore
- Lee Kong Chian School of Medicine, NTU, Singapore 308232, Singapore
| | - Zoe Kourtzi
- Department of Psychology, University of Cambridge, Downing St, Cambridge CB2 3EB, United Kingdom
| |
Collapse
|
38
|
Han C, Zhao X, Li M, Haihambo N, Teng J, Li S, Qiu J, Feng X, Gao M. Enhancement of the neural response during 40 Hz auditory entrainment in closed-eye state in human prefrontal region. Cogn Neurodyn 2023; 17:399-410. [PMID: 37007205 PMCID: PMC10050539 DOI: 10.1007/s11571-022-09834-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 12/30/2022] Open
Abstract
Gamma-band activity was thought to be related to several high-level cognitive functions, and Gamma ENtrainment Using Sensory stimulation (GENUS, 40 Hz sensory combined visual and auditory stimulation) was found to have positive effects on patients with Alzheimer's dementia. Other studies found, however, that neural responses induced by single 40 Hz auditory stimulation were relatively weak. To address this, we included several new experimental conditions (sounds with sinusoidal or square wave; open-eye and closed-eye state) combined with auditory stimulation with the aim of investigating which of these induces a stronger 40 Hz neural response. We found that when participant´s eyes were closed, sounds with 40 Hz sinusoidal wave induced the strongest 40 Hz neural response in the prefrontal region compared to responses in other conditions. More interestingly, we also found there is a suppression of alpha rhythms with 40 Hz square wave sounds. Our results provide potential new methods when using auditory entrainment, which may result in a better effect in preventing cerebral atrophy and improving cognitive performance. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-022-09834-x.
Collapse
Affiliation(s)
- Chuanliang Han
- Shenzhen Key Laboratory of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, 518055 China
| | - Xixi Zhao
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088 China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100191 China
| | - Meijia Li
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Naem Haihambo
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Jiayi Teng
- WM Therapeutics Ltd, Beijing, 100013 China
- School of Psychology, Philosophy and Language Science, University of Edinburgh, Edinburgh, EH8 9JZ UK
| | - Sixiao Li
- WM Therapeutics Ltd, Beijing, 100013 China
- School of Music, Faculty of Arts, Humanities and Cultures, University of Leeds, Leeds, LS2 9JT UK
| | - Jinyi Qiu
- School of Artificial Intelligence, Beijing Normal University, Beijing, 100875 China
| | - Xiaoyang Feng
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, China
| | - Michel Gao
- WM Therapeutics Ltd, Beijing, 100013 China
| |
Collapse
|
39
|
Foerster FR, Chidharom M, Giersch A. Enhanced temporal resolution of vision in action video game players. Neuroimage 2023; 269:119906. [PMID: 36739103 DOI: 10.1016/j.neuroimage.2023.119906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/16/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Video game play has been suggested to improve visual and attention processing. Nevertheless, while action video game play is highly dynamic, there is scarce research on how information is temporally discriminated at the millisecond level. This cross-sectional study investigates whether temporal discrimination at the millisecond level in vision varies across action video game players (VGPs; N = 23) and non-video game players (NVGPs; N = 23). Participants discriminated synchronous from asynchronous onsets of two visual targets in virtual reality, while their EEG and oculomotor movements were recorded. Results show an increased sensitivity to short asynchronies (11, 33 and 66 ms) in VGPs compared with NVGPs, which was especially marked at the start of the task, suggesting better temporal discrimination abilities. Pre-targets oculomotor freezing - the inhibition of small fixational saccades - was associated with correct temporal discrimination, probably revealing attentional preparation. However, this parameter did not differ between groups. EEG and reconstruction analyses suggest that the enhancement of temporal discrimination in VGPs during temporal discrimination is related to parieto-occipital processing, and a reduction of alpha-band (8-14 Hz) power and inter-trial phase coherence. Overall, the study reveals an enhanced ability in action video game players to discriminate in time visual events in close temporal proximity combined with reduced alpha-band oscillatory activities. Consequently, playing action video games is associated with an improved temporal resolution of vision.
Collapse
Affiliation(s)
- Francois R Foerster
- Université de Strasbourg, INSERM U1114, Pôle de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, France.
| | - Matthieu Chidharom
- Department of Psychology, Lehigh University, Bethlehem, PA, United States
| | - Anne Giersch
- Université de Strasbourg, INSERM U1114, Pôle de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, France
| |
Collapse
|
40
|
Hamann A, Carstengerdes N. Assessing the development of mental fatigue during simulated flights with concurrent EEG-fNIRS measurement. Sci Rep 2023; 13:4738. [PMID: 36959334 PMCID: PMC10036528 DOI: 10.1038/s41598-023-31264-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/08/2023] [Indexed: 03/25/2023] Open
Abstract
Mental fatigue (MF) can impair pilots' performance and reactions to unforeseen events and is therefore an important concept within aviation. The physiological measurement of MF, especially with EEG and, in recent years, fNIRS, has gained much attention. However, a systematic investigation and comparison of the measurements is seldomly done. We induced MF via time on task during a 90-min simulated flight task and collected concurrent EEG-fNIRS, performance and self-report data from 31 participants. While their subjective MF increased linearly, the participants were able to keep their performance stable over the course of the experiment. EEG data showed an early increase and levelling in parietal alpha power and a slower, but steady increase in frontal theta power. No consistent trend could be observed in the fNIRS data. Thus, more research on fNIRS is needed to understand its possibilities and limits for MF assessment, and a combination with EEG is advisable to compare and validate results. Until then, EEG remains the better choice for continuous MF assessment in cockpit applications because of its high sensitivity to a transition from alert to fatigued, even before performance is impaired.
Collapse
Affiliation(s)
- Anneke Hamann
- Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institut für Flugführung, Lilienthalplatz 7, 38108, Braunschweig, Germany.
| | - Nils Carstengerdes
- Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institut für Flugführung, Lilienthalplatz 7, 38108, Braunschweig, Germany
| |
Collapse
|
41
|
Fujio K, Obata H, Takeda K, Kawashima N. Cortical oscillations and interareal synchronization as a preparatory activity for postural response. Eur J Neurosci 2023; 57:1516-1528. [PMID: 36878880 DOI: 10.1111/ejn.15956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/14/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023]
Abstract
Neural mechanisms of human standing are expected to be elucidated for preventing fallings. Postural response evoked by sudden external perturbation originates from various areas in the central nervous system. Recent studies have revealed that the corticospinal pathway is one of the key nodes for an appropriate postural response. The corticospinal pathway that mediates the early part of the electromyographic response is modulated with prediction before a perturbation occurs. Temporal prediction explicitly exhibiting an onset timing contributes to enhancing corticospinal excitability. However, how the cortical activities in the sensorimotor area with temporal prediction are processed before the corticospinal pathway enhancement remains unclear. In this study, using electroencephalography, we investigated how temporal prediction affects both neural oscillations and synchronization between sensorimotor and distal areas. Our results revealed that desynchronization of cortical oscillation at α- and β-bands was observed in the sensorimotor and parietooccipital areas (Cz, CPz, Pz and POz), and those are nested in the phase at θ-band frequency. Furthermore, a reduction in the interareal phase synchrony in the α-band was induced after the timing cue for the perturbation onset. The phase synchrony at the low frequency can relay the temporal prediction among the distant areas and initiate the modulation of the local cortical activities. Such modulations contribute to the preparation for sensory processing and motor execution that are necessary for optimal responses.
Collapse
Affiliation(s)
- Kimiya Fujio
- Department of Rehabilitation for Movement Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
| | - Hiroki Obata
- Department of Humanities and Social Science Laboratory, Institute of Liberal Arts, Kyushu Institute of Technology, Fukuoka, Japan
| | - Kenta Takeda
- Department of Rehabilitation for Movement Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
| | - Noritaka Kawashima
- Department of Rehabilitation for Movement Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
| |
Collapse
|
42
|
Kimata AR, Zheng B, Watanabe T, Asaad WF. The temporal cost of deploying attention limits accurate target identification in rapid serial visual presentation. Sci Rep 2023; 13:3590. [PMID: 36869218 PMCID: PMC9984373 DOI: 10.1038/s41598-023-30748-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
Lag-1 sparing is a common exception to the attentional blink, where a target presented directly after T1 can be identified and reported accurately. Prior work has proposed potential mechanisms for lag 1 sparing, including the boost and bounce model and the attentional gating model. Here, we apply a rapid serial visual presentation task to investigate the temporal limitations of lag 1 sparing by testing three distinct hypotheses. We found that endogenous engagement of attention to T2 requires between 50 and 100 ms. Critically, faster presentation rates yielded lower T2 performance, whereas decreased image duration did not impair T2 detection and report. These observations were reinforced by subsequent experiments controlling for short-term learning and capacity-dependent visual processing effects. Thus, lag-1 sparing was limited by the intrinsic dynamics of attentional boost engagement rather than by earlier perceptual bottlenecks such as insufficient exposure to images in the stimulus stream or visual processing capacity limitations. Taken together, these findings support the boost and bounce theory over earlier models that focus only on attentional gating or visual short-term memory storage, informing our understanding of how the human visual system deploys attention under challenging temporal constraints.
Collapse
Affiliation(s)
- Anna R Kimata
- Department of Neuroscience, The Carney Institute, Brown University, Providence, RI, USA.
- The Warren Alpert Medical School of Brown University, Providence, RI, USA.
- Department of Neurosurgery, Brown University Alpert Medical School and Rhode Island Hospital, 593 Eddy Street, Providence, RI, 02903, USA.
| | - Bryan Zheng
- The Warren Alpert Medical School of Brown University, Providence, RI, USA
- Department of Neurosurgery, Brown University Alpert Medical School and Rhode Island Hospital, 593 Eddy Street, Providence, RI, 02903, USA
| | - Takeo Watanabe
- Department of Neuroscience, The Carney Institute, Brown University, Providence, RI, USA
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA
| | - Wael F Asaad
- Department of Neuroscience, The Carney Institute, Brown University, Providence, RI, USA
- The Warren Alpert Medical School of Brown University, Providence, RI, USA
- Department of Neurosurgery, Brown University Alpert Medical School and Rhode Island Hospital, 593 Eddy Street, Providence, RI, 02903, USA
- Norman Prince Neurosciences Institute, Rhode Island Hospital, Providence, RI, USA
| |
Collapse
|
43
|
Nikolin S, Martin D, Loo CK, Boonstra TW. Transcranial Direct Current Stimulation Modulates Working Memory Maintenance Processes in Healthy Individuals. J Cogn Neurosci 2023; 35:468-484. [PMID: 36603051 DOI: 10.1162/jocn_a_01957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The effects of transcranial direct current stimulation (tDCS) at the pFC are often investigated using cognitive paradigms, particularly working memory tasks. However, the neural basis for the neuromodulatory cognitive effects of tDCS, including which subprocesses are affected by stimulation, is not completely understood. We investigated the effects of tDCS on working memory task-related spectral activity during and after tDCS to gain better insights into the neurophysiological changes associated with stimulation. We reanalyzed data from 100 healthy participants grouped by allocation to receive either sham (0 mA, 0.016 mA, and 0.034 mA) or active (1 mA or 2 mA) stimulation during a 3-back task. EEG data were used to analyze event-related spectral power in frequency bands associated with working memory performance. Frontal theta event-related synchronization (ERS) was significantly reduced post-tDCS in the active group. Participants receiving active tDCS had slower RTs following tDCS compared with sham, suggesting interference with practice effects associated with task repetition. Theta ERS was not significantly correlated with RTs or accuracy. tDCS reduced frontal theta ERS poststimulation, suggesting a selective disruption to working memory cognitive control and maintenance processes. These findings suggest that tDCS selectively affects specific subprocesses during working memory, which may explain heterogenous behavioral effects.
Collapse
Affiliation(s)
- Stevan Nikolin
- University of New South Wales, Sydney, Australia
- Black Dog Institute, Sydney, New South Wales, Australia
| | - Donel Martin
- University of New South Wales, Sydney, Australia
- Black Dog Institute, Sydney, New South Wales, Australia
| | - Colleen K Loo
- University of New South Wales, Sydney, Australia
- Black Dog Institute, Sydney, New South Wales, Australia
| | - Tjeerd W Boonstra
- University of New South Wales, Sydney, Australia
- Maastricht University, The Netherlands
| |
Collapse
|
44
|
Women and men have a similar potential for malevolent creativity - But their underlying brain mechanisms are different. Brain Res 2023; 1801:148201. [PMID: 36521515 DOI: 10.1016/j.brainres.2022.148201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/27/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Research interest in gender differences in aggression and creative ideation cumulates in the phenomenon of malevolent creativity. Taking another critical step in understanding malevolent creativity, we investigated gender differences in brain activation and functional coupling of cortical sites in the EEG alpha band while n = 88 women and men purposefully generated malevolent creative ideas for taking revenge on others. Results showed that malevolent creativity performance between the genders was similar; however, their underlying EEG patterns were markedly different. While women exhibited a steep decrease of task-related alpha power from frontal to left central-temporal, men's malevolent creative ideation was characterized by a more diffuse pattern of task-related alpha power changes, along with decreased frontal-central coupling. Per interpretation, women's malevolent creative thinking may more strongly rely on controlled semantic memory retrieval and novel re-combination of social/relationship information, while men may utilize more automatic motor-related imagery that may predominantly facilitate physical revenge ideation. Our findings add novel evidence to the idea that women and men engage different neurocognitive strategies to achieve similar creative performance and may help to further illuminate the darker side of creative ideation.
Collapse
|
45
|
Wascher E, Reiser J, Rinkenauer G, Larrá M, Dreger FA, Schneider D, Karthaus M, Getzmann S, Gutberlet M, Arnau S. Neuroergonomics on the Go: An Evaluation of the Potential of Mobile EEG for Workplace Assessment and Design. HUMAN FACTORS 2023; 65:86-106. [PMID: 33861182 PMCID: PMC9846382 DOI: 10.1177/00187208211007707] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE We demonstrate and discuss the use of mobile electroencephalogram (EEG) for neuroergonomics. Both technical state of the art as well as measures and cognitive concepts are systematically addressed. BACKGROUND Modern work is increasingly characterized by information processing. Therefore, the examination of mental states, mental load, or cognitive processing during work is becoming increasingly important for ergonomics. RESULTS Mobile EEG allows to measure mental states and processes under real live conditions. It can be used for various research questions in cognitive neuroergonomics. Besides measures in the frequency domain that have a long tradition in the investigation of mental fatigue, task load, and task engagement, new approaches-like blink-evoked potentials-render event-related analyses of the EEG possible also during unrestricted behavior. CONCLUSION Mobile EEG has become a valuable tool for evaluating mental states and mental processes on a highly objective level during work. The main advantage of this technique is that working environments don't have to be changed while systematically measuring brain functions at work. Moreover, the workflow is unaffected by such neuroergonomic approaches.
Collapse
Affiliation(s)
- Edmund Wascher
- IfADo – Leibniz Research Centre for Working Environment and
Human Factors, Dortmund, Germany
| | - Julian Reiser
- IfADo – Leibniz Research Centre for Working Environment and
Human Factors, Dortmund, Germany
| | - Gerhard Rinkenauer
- IfADo – Leibniz Research Centre for Working Environment and
Human Factors, Dortmund, Germany
| | - Mauro Larrá
- IfADo – Leibniz Research Centre for Working Environment and
Human Factors, Dortmund, Germany
| | - Felix A. Dreger
- IfADo – Leibniz Research Centre for Working Environment and
Human Factors, Dortmund, Germany
| | - Daniel Schneider
- IfADo – Leibniz Research Centre for Working Environment and
Human Factors, Dortmund, Germany
| | - Melanie Karthaus
- IfADo – Leibniz Research Centre for Working Environment and
Human Factors, Dortmund, Germany
| | - Stephan Getzmann
- IfADo – Leibniz Research Centre for Working Environment and
Human Factors, Dortmund, Germany
| | | | - Stefan Arnau
- IfADo – Leibniz Research Centre for Working Environment and
Human Factors, Dortmund, Germany
| |
Collapse
|
46
|
Edmunds SR, Fogler J, Braverman Y, Gilbert R, Faja S. Resting frontal alpha asymmetry as a predictor of executive and affective functioning in children with neurodevelopmental differences. Front Psychol 2023; 13:1065598. [PMID: 36710763 PMCID: PMC9880425 DOI: 10.3389/fpsyg.2022.1065598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023] Open
Abstract
The relative difference of resting EEG frontal alpha activation between left and right hemispheres (FAA; i.e., asymmetry) correlates with global approach and avoidance tendencies. FAA may relate to problems with executive and affective functioning in children with neurodevelopmental differences, including autism and ADHD. We (1) characterize relative left vs. right FAA in autistic, ADHD, and neurotypical children (NT) and (2) investigate whether FAA predicts "hot" executive function or emotion dysregulation. Participants were 97 7- to 11-year-old autistic, ADHD, and NT Children. Children with ADHD displayed greater left (relative to right) FAA compared to autistic and neurotypical children. Children with ADHD displayed greater challenges with "hot" EF on a gambling task than autistic children, whereas children with co-occurring autism and ADHD had greater parent-reported emotion dysregulation than NT and autism-only groups. Greater left FAA predicted worse hot EF for all children but was not significantly related to emotion dysregulation. Regardless of clinical diagnosis, relatively greater left FAA relates to hot EF. While hot EF deficits may be specific to ADHD rather than autism, both together confer additive risk for emotion dysregulation. Future research should explore the functional relation between FAA, reward processing, and affect for children with different EF-related neurodevelopmental differences.
Collapse
Affiliation(s)
- Sarah R. Edmunds
- Department of Psychology, University of South Carolina, Columbia, SC, United States
- Division of Developmental Medicine, Boston Children’s Hospital, Boston, MA, United States
| | - Jason Fogler
- Division of Developmental Medicine, Boston Children’s Hospital, Boston, MA, United States
- Departments of Pediatrics & Psychiatry and Behavioral Sciences, Harvard Medical School, Boston, MA, United States
- Leadership Education in Neurodevelopmental & Related Disabilities/Institute for Community Inclusion, Boston, MA, United States
| | - Yael Braverman
- Division of Developmental Medicine, Boston Children’s Hospital, Boston, MA, United States
| | - Rachel Gilbert
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD, United States
| | - Susan Faja
- Division of Developmental Medicine, Boston Children’s Hospital, Boston, MA, United States
- Departments of Pediatrics & Psychiatry and Behavioral Sciences, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
47
|
Pershin I, Candrian G, Münger M, Baschera GM, Rostami M, Eich D, Müller A. Vigilance described by the time-on-task effect in EEG activity during a cued Go/NoGo task. Int J Psychophysiol 2023; 183:92-102. [PMID: 36455720 DOI: 10.1016/j.ijpsycho.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022]
Abstract
Vigilance refers to the ability to maintain attention and to remain alert to stimuli in prolonged and monotonous tasks. Vigilance decrement describes the decline in performance in the course of such sustained attention tasks. Time-related alterations in attention have been found to be associated with changes in EEG. We investigated these time-on-task effects on the basis of changes in the conventional EEG spectral bands with the aim of finding a compound measure of vigilance. 148 healthy adults performed a cued Go/NoGo task that lasted approximately 21 min. Behavioural performance was examined by comparing the number of errors in the first and last quarters of the task using paired t-test. EEG data were epoched per trial, and time-on-task effects were modelled by using multiple linear regression, with frequency spectra band power values as independent variables and trial number as the dependent variable. Behavioural performance decreased in terms of omission errors only. Performance of the models, expressed by predicted R-squared, was between 0.10 and 0.27, depending on the particular task condition. The time-on-task EEG spectral changes were characterized by broad changes in the alpha and frontal changes in the beta and gamma bands. We were able to identify a set of EEG spectral features that predict time-on-task. Our output is considered to be a measure of vigilance, reflecting the allocation of mental resources for the maintenance of attention.
Collapse
Affiliation(s)
- Ilia Pershin
- Brain and Trauma Foundation Grisons, Chur, Switzerland.
| | - Gian Candrian
- Brain and Trauma Foundation Grisons, Chur, Switzerland
| | - Marionna Münger
- Brain and Trauma Foundation Grisons, Chur, Switzerland; University of Zurich, Zurich, Switzerland
| | | | - Maryam Rostami
- Brain and Trauma Foundation Grisons, Chur, Switzerland; University of Tehran, Tehran, Iran
| | | | | |
Collapse
|
48
|
It's time for attentional control: Temporal expectation in the attentional blink. Conscious Cogn 2023; 107:103461. [PMID: 36584439 DOI: 10.1016/j.concog.2022.103461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/11/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022]
Abstract
The attentional blink (AB) reveals a limitation in conscious processing of sequential targets. Although it is widely held that the AB derives from a structural bottleneck of central capacity, how the central processing is constrained is still unclear. As the AB reflects the dilemma of deploying attentional resources in the time dimension, research on temporal allocation provides an important avenue for understanding the mechanism. Here we reviewed studies regarding the role of temporal expectation in modulating the AB performance primarily based on two temporal processing strategies: interval-based and rhythm-based timings. We showed that both temporal expectations can help to organize limited resources among multiple attentional episodes, thereby mitigating the AB effect. As it turns out, scrutinizing on the AB from a temporal perspective is a promising way to comprehend the mechanisms behind the AB and conscious cognition. We also highlighted some unresolved issues and discussed potential directions for future research.
Collapse
|
49
|
Attentional capture is modulated by stimulus saliency in visual search as evidenced by event-related potentials and alpha oscillations. Atten Percept Psychophys 2022; 85:685-704. [PMID: 36525202 PMCID: PMC10066093 DOI: 10.3758/s13414-022-02629-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2022] [Indexed: 12/23/2022]
Abstract
AbstractThis study used a typical four-item search display to investigate top-down control over attentional capture in an additional singleton paradigm. By manipulating target and distractor color and shape, stimulus saliency relative to the remaining items was systematically varied. One group of participants discriminated the side of a dot within a salient orange target (ST group) presented with green circles (fillers) and a green diamond distractor. A second group discriminated the side of the dot within a green diamond target presented with green circle fillers and a salient orange square distractor (SD group). Results showed faster reaction times and a shorter latency of the N2pc component in the event-related potential (ERP) to the more salient targets in the ST group. Both salient and less salient distractors elicited Pd components of equal amplitude. Behaviorally, no task interference was observed with the less salient distractor, indicating the prevention of attentional capture. However, reaction times were slower in the presence of the salient distractor, which conflicts with the hypothesis that the Pd reflects proactive distractor suppression. Contrary to recent proposals that elicitation of the Pd requires competitive interactions with a target, we found a greater Pd amplitude when the distractor was presented alone. Alpha-band amplitudes decreased during target processing (event-related desynchronization), but no significant amplitude enhancement was observed at electrodes contralateral to distractors regardless of their saliency. The results demonstrate independent neural mechanisms for target and distractor processing and support the view that top-down guidance of attention can be offset (counteracted) by relative stimulus saliency.
Collapse
|
50
|
Human visual processing during walking: Dissociable pre- and post-stimulus influences. Neuroimage 2022; 264:119757. [PMID: 36414209 PMCID: PMC9771827 DOI: 10.1016/j.neuroimage.2022.119757] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022] Open
Abstract
Walking influences visual processing but the underlying mechanism remains poorly understood. In this study, we investigated the influence of walking on pre-stimulus and stimulus-induced visual neural activity and behavioural performance in a discrimination task while participants were standing or freely walking. The results showed dissociable pre- and post-stimulus influences by the movement state. Walking was associated with a reduced pre-stimulus alpha power, which predicted enhanced N1 and decreased P3 components during walking. This pre-stimulus alpha activity was additionally modulated by time on the task, which was paralleled by a similar behavioural modulation. In contrast, the post-stimulus alpha power was reduced in its modulation due to stimulus onset during walking but showed no evidence of modulation by time on the task. Additionally, stimulus parameters (eccentricity, laterality, distractor presence significantly influenced post-stimulus alpha power, whereas the visually evoked components showed no evidence of such an influence. There was further no evidence of a correlation between pre-stimulus and post stimulus alpha power. We conclude that walking has two dissociable influences on visual processing: while the walking induced reduction in alpha power suggests an attentional state change that relates to visual awareness, the post-stimulus influence on alpha power modulation indicates changed spatial visual processing during walking.
Collapse
|