1
|
Scheuermann D, Melzig CA, Benke C. Supporting extinction memory updating to promote extinction generalization in a category-based fear conditioning paradigm. Behav Res Ther 2025; 188:104719. [PMID: 40120227 DOI: 10.1016/j.brat.2025.104719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/23/2025] [Accepted: 03/12/2025] [Indexed: 03/25/2025]
Abstract
A challenge in exposure-based treatments is the effective generalization of extinction learning, as it tends to be highly specific to stimuli or situations used during exposure. This study takes a first step toward enhancing extinction generalization by promoting the updating of extinction memory. 35 participants underwent a three-day, within-subject, category-based fear conditioning paradigm. Two conditioned stimulus (CS) categories were paired with an electric shock during acquisition training (CS+1; CS+2), while one CS category was not (CS-). On day two, extinction training was followed by a prompt to retrieve the inhibitory learning association and to imagine the same experience with multiple novel stimuli for the CS+1 category in order to promote extinction memory updating. Importantly, these stimuli were not directly presented but solely imagined based on a two-word description. On day three, participants were tested for initial fear recall. We observed a pronounced return of fear for new stimuli from the CS+2 category. However, skin conductance response (SCR), fear-potentiated startle (FPS), shock expectancy and fear ratings were decreased for imagined stimuli of the category with extinction memory updating (CS+1) compared to the other category (CS+2). Moreover, extinction memory updating led to a diminished fear response for new CS+1 stimuli as indexed by SCR as well as for previously seen images during acquisition as indexed by FPS and subjective measures. These findings suggest that mental imagery involving novel stimuli may help to facilitate extinction generalization. Further research is needed to explore the underlying mechanisms and the potential to be clinically applicable to improve treatment outcomes.
Collapse
Affiliation(s)
- Dorothee Scheuermann
- Department of Psychology, Clinical Psychology, Experimental Psychopathology and Psychotherapy, Philipps University of Marburg, Gutenbergstraße 18, 35032, Marburg, Germany.
| | - Christiane A Melzig
- Department of Psychology, Clinical Psychology, Experimental Psychopathology and Psychotherapy, Philipps University of Marburg, Gutenbergstraße 18, 35032, Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Philipps University Marburg and Justus Liebig University Giessen, Germany
| | - Christoph Benke
- Department of Psychology, Clinical Psychology, Experimental Psychopathology and Psychotherapy, Philipps University of Marburg, Gutenbergstraße 18, 35032, Marburg, Germany
| |
Collapse
|
2
|
Kausche FM, Carsten HP, Sobania KM, Riesel A. Fear and safety learning in anxiety- and stress-related disorders: An updated meta-analysis. Neurosci Biobehav Rev 2025; 169:105983. [PMID: 39706234 DOI: 10.1016/j.neubiorev.2024.105983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Fear learning processes are believed to play a crucial role in the development and maintenance of anxiety and stress-related disorders. To integrate results across different studies, we conducted a systematic meta-analysis following PRISMA guidelines to examine differences in fear conditioning during fear acquisition, extinction, and extinction recall between individuals with anxiety-related or stress-related disorders and healthy participants. This analysis updates the work of Duits et al. (2015) while also refining distinctions between physiological and behavioral outcomes and examining extinction recall. Our meta-analysis encompasses 77 studies published from 1986 to 2022, involving 2052 patients with anxiety disorders, obsessive-compulsive disorder, or post-traumatic stress disorder, and 3258 healthy controls. The results indicate significant differences in fear acquisition, extinction, and recall between the two groups. Specifically, during acquisition patients exhibited heightened physiological and behavioral responses to the CS- and reported increased affect ratings for the CS+ . During extinction and extinction recall, patients continue to show heightened threat expectancy and negative affect ratings towards the CS- and increased affect ratings towards the CS+ . No differences were found in CS+ /CS- differentiation between groups. These findings imply that individuals with anxiety and stress-related disorders may exhibit amplified responses to safety cues and stronger reactions to threat cues during fear conditioning, lasting through extinction and extinction recall. These changes may lead to increased sensitivity in detecting fear and slower extinction process, resulting in more enduring anxiety responses. We discuss these results in the context of existing literature on fear and safety learning and consider potential underlying mechanisms.
Collapse
Affiliation(s)
| | | | - Kim M Sobania
- Department of Psychology, University Hamburg, Hamburg, Germany
| | - Anja Riesel
- Department of Psychology, University Hamburg, Hamburg, Germany
| |
Collapse
|
3
|
Doss MK, DeMarco A, Dunsmoor JE, Cisler JM, Fonzo GA, Nemeroff CB. How Psychedelics Modulate Multiple Memory Mechanisms in Posttraumatic Stress Disorder. Drugs 2024; 84:1419-1443. [PMID: 39455547 DOI: 10.1007/s40265-024-02106-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2024] [Indexed: 10/28/2024]
Abstract
Posttraumatic stress disorder (PTSD) is a psychiatric disorder with defining abnormalities in memory, and psychedelics may be promising candidates for the treatment of PTSD given their effects on multiple memory systems. Most PTSD and psychedelic research has investigated memory with fear conditioning and extinction. While fruitful, conditioning and extinction provide a limited model of the complexity of PTSD and phenomenology of psychedelics, thereby limiting the refinement of therapies. In this review, we discuss abnormalities in fear conditioning and extinction in PTSD and review 25 studies testing psychedelics on these forms of memory. Perhaps the most reliable effect is that the acute effects of psychedelics can enhance extinction learning, which is impaired in PTSD. However, the post-acute effects may also enhance extinction learning, and the acute effects can also enhance fear conditioning. We then discuss abnormalities in episodic and semantic memory in PTSD and review current knowledge on how psychedelics impact these memory systems. Although PTSD and psychedelics acutely impair the formation of hippocampal-dependent episodic memories, psychedelics may acutely enhance cortical-dependent learning of semantic memories that could facilitate the integration of trauma memories and disrupt maladaptive beliefs. More research is needed on the acute effects of psychedelics on episodic memory consolidation, retrieval, and reconsolidation and post-acute effects of psychedelics on all phases of episodic memory. We conclude by discussing how targeting multiple memory mechanisms could improve upon the current psychedelic therapy paradigm for PTSD, thereby necessitating a greater emphasis on assessing diverse measures of memory in translational PTSD and psychedelic research.
Collapse
Affiliation(s)
- Manoj K Doss
- Department of Psychiatry and Behavioral Sciences, Center for Psychedelic Research and Therapy, The University of Texas at Austin Dell Medical School, 1601 Trinity Street, Bldg. B, Stop Z0600, Austin, TX, 78712, USA.
| | - AnnaMarie DeMarco
- Department of Psychiatry and Behavioral Sciences, Center for Psychedelic Research and Therapy, The University of Texas at Austin Dell Medical School, 1601 Trinity Street, Bldg. B, Stop Z0600, Austin, TX, 78712, USA
| | - Joseph E Dunsmoor
- Department of Psychiatry and Behavioral Sciences, Center for Psychedelic Research and Therapy, The University of Texas at Austin Dell Medical School, 1601 Trinity Street, Bldg. B, Stop Z0600, Austin, TX, 78712, USA
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Josh M Cisler
- Department of Psychiatry and Behavioral Sciences, Center for Psychedelic Research and Therapy, The University of Texas at Austin Dell Medical School, 1601 Trinity Street, Bldg. B, Stop Z0600, Austin, TX, 78712, USA
| | - Gregory A Fonzo
- Department of Psychiatry and Behavioral Sciences, Center for Psychedelic Research and Therapy, The University of Texas at Austin Dell Medical School, 1601 Trinity Street, Bldg. B, Stop Z0600, Austin, TX, 78712, USA
| | - Charles B Nemeroff
- Department of Psychiatry and Behavioral Sciences, Center for Psychedelic Research and Therapy, The University of Texas at Austin Dell Medical School, 1601 Trinity Street, Bldg. B, Stop Z0600, Austin, TX, 78712, USA
| |
Collapse
|
4
|
Malbec M, Andreatta M, Wieser MJ. Multimodal assessment of the role of intolerance of uncertainty in fear acquisition and extinction. Biol Psychol 2024; 192:108860. [PMID: 39270923 DOI: 10.1016/j.biopsycho.2024.108860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
Personality traits linked to internalizing disorders influence the way we develop fears, but also how we regain a sense of safety. In the present study, we investigated the effect of intolerance of uncertainty (IU) on defensive responses using a differential fear conditioning protocol with an extinction phase. The conditioned stimulus was associated with an aversive sound (90 dB) in 75 % of the presentations during acquisition. A final sample of 176 participants completed the experiment. We measured self-reports of associative (expectancy of the unconditioned stimulus in acquisition) and evaluative learning (arousal and valence), and both physiological (skin conductance response) and electrocortical responses (steady-state visually evoked potentials, ssVEPs; late positive potentials, LPP) to the conditioned stimuli. Our results show that IU's impact is limited, with no effect in both acquisition and extinction. These findings emphasize the necessity of large samples in research on inter-individual differences and contribute to our understanding of how IU may or may not be involved in fear and safety learning processes considering multiple aspects of fear responding.
Collapse
Affiliation(s)
- Marcelo Malbec
- Department of Psychology, Education, and Child Studies, Erasmus University Rotterdam, the Netherlands.
| | - Marta Andreatta
- Department of General Psychiatry and Psychotherapy with Outpatient Clinic, University Hospital of Tübingen, Germany
| | - Matthias J Wieser
- Department of Psychology, Education, and Child Studies, Erasmus University Rotterdam, the Netherlands.
| |
Collapse
|
5
|
Penner-Goeke S, Bothe M, Rek N, Kreitmaier P, Pöhlchen D, Kühnel A, Glaser LV, Kaya E, Krontira AC, Röh S, Czamara D, Ködel M, Monteserin-Garcia J, Diener L, Wölfel B, Sauer S, Rummel C, Riesenberg S, Arloth-Knauer J, Ziller M, Labeur M, Meijsing S, Binder EB. High-throughput screening of glucocorticoid-induced enhancer activity reveals mechanisms of stress-related psychiatric disorders. Proc Natl Acad Sci U S A 2023; 120:e2305773120. [PMID: 38011552 DOI: 10.1073/pnas.2305773120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/01/2023] [Indexed: 11/29/2023] Open
Abstract
Exposure to stressful life events increases the risk for psychiatric disorders. Mechanistic insight into the genetic factors moderating the impact of stress can increase our understanding of disease processes. Here, we test 3,662 single nucleotide polymorphisms (SNPs) from preselected expression quantitative trait loci in massively parallel reporter assays to identify genetic variants that modulate the activity of regulatory elements sensitive to glucocorticoids, important mediators of the stress response. Of the tested SNP sequences, 547 were located in glucocorticoid-responsive regulatory elements of which 233 showed allele-dependent activity. Transcripts regulated by these functional variants were enriched for those differentially expressed in psychiatric disorders in the postmortem brain. Phenome-wide Mendelian randomization analysis in 4,439 phenotypes revealed potentially causal associations specifically in neurobehavioral traits, including major depression and other psychiatric disorders. Finally, a functional gene score derived from these variants was significantly associated with differences in the physiological stress response, suggesting that these variants may alter disease risk by moderating the individual set point of the stress response.
Collapse
Affiliation(s)
- Signe Penner-Goeke
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
- Graduate School of Systemic Neurosciences, Ludwig Maximilian University of Munich, Planegg 82152, Germany
| | - Melissa Bothe
- Department of Computational Molecular Biology, Max Planck Institute of Molecular Genetics, Berlin 14195, Germany
| | - Nils Rek
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
- International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Peter Kreitmaier
- Institute of Translational Genomics, Helmholtz Munich, Neuherberg 85764, Germany
| | - Dorothee Pöhlchen
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
- International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Anne Kühnel
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
- International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Laura V Glaser
- Department of Computational Molecular Biology, Max Planck Institute of Molecular Genetics, Berlin 14195, Germany
| | - Ezgi Kaya
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
- Graduate School of Systemic Neurosciences, Ludwig Maximilian University of Munich, Planegg 82152, Germany
| | - Anthi C Krontira
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
- International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Simone Röh
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Darina Czamara
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Maik Ködel
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Jose Monteserin-Garcia
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Laura Diener
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Barbara Wölfel
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Susann Sauer
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Christine Rummel
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Stephan Riesenberg
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| | - Janine Arloth-Knauer
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Michael Ziller
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
- Department of Psychiatry, University of Muenster, Muenster 48149, Germany
| | - Marta Labeur
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Sebastiaan Meijsing
- Department of Computational Molecular Biology, Max Planck Institute of Molecular Genetics, Berlin 14195, Germany
| | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
| |
Collapse
|
6
|
Lewis MW, Webb CA, Kuhn M, Akman E, Jobson SA, Rosso IM. Predicting Fear Extinction in Posttraumatic Stress Disorder. Brain Sci 2023; 13:1131. [PMID: 37626488 PMCID: PMC10452660 DOI: 10.3390/brainsci13081131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Fear extinction is the basis of exposure therapies for posttraumatic stress disorder (PTSD), but half of patients do not improve. Predicting fear extinction in individuals with PTSD may inform personalized exposure therapy development. The participants were 125 trauma-exposed adults (96 female) with a range of PTSD symptoms. Electromyography, electrocardiogram, and skin conductance were recorded at baseline, during dark-enhanced startle, and during fear conditioning and extinction. Using a cross-validated, hold-out sample prediction approach, three penalized regressions and conventional ordinary least squares were trained to predict fear-potentiated startle during extinction using 50 predictor variables (5 clinical, 24 self-reported, and 21 physiological). The predictors, selected by penalized regression algorithms, were included in multivariable regression analyses, while univariate regressions assessed individual predictors. All the penalized regressions outperformed OLS in prediction accuracy and generalizability, as indexed by the lower mean squared error in the training and holdout subsamples. During early extinction, the consistent predictors across all the modeling approaches included dark-enhanced startle, the depersonalization and derealization subscale of the dissociative experiences scale, and the PTSD hyperarousal symptom score. These findings offer novel insights into the modeling approaches and patient characteristics that may reliably predict fear extinction in PTSD. Penalized regression shows promise for identifying symptom-related variables to enhance the predictive modeling accuracy in clinical research.
Collapse
Affiliation(s)
- Michael W. Lewis
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, MA 02478, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Christian A. Webb
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, MA 02478, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Manuel Kuhn
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, MA 02478, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Eylül Akman
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, MA 02478, USA
| | - Sydney A. Jobson
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, MA 02478, USA
| | - Isabelle M. Rosso
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, MA 02478, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
7
|
Lewis MW, Bradford DE, Pace-Schott EF, Rauch SL, Rosso IM. Multiverse analyses of fear acquisition and extinction retention in posttraumatic stress disorder. Psychophysiology 2023; 60:e14265. [PMID: 36786400 PMCID: PMC10330173 DOI: 10.1111/psyp.14265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/13/2022] [Accepted: 01/14/2023] [Indexed: 02/15/2023]
Abstract
Persistent fear is a cardinal feature of posttraumatic stress disorder (PTSD), and deficient fear extinction retention is a proposed illness mechanism and target of exposure-based therapy. However, evidence for deficient fear extinction in PTSD has been mixed using laboratory paradigms, which may relate to underidentified methodological variation across studies. We reviewed the literature to identify parameters that differ across studies of fear extinction retention in PTSD. We then performed Multiverse Analysis in a new sample, to quantify the impact of those methodological parameters on statistical findings. In 25 PTSD patients (15 female) and 36 trauma-exposed non-PTSD controls (TENC) (20 female), we recorded skin conductance response (SCR) during fear acquisition and extinction learning (day 1) and extinction recall (day 2). A first Multiverse Analysis examined the effects of methodological parameters identified by the literature review on comparisons of SCR-based fear extinction retention in PTSD versus TENC. A second Multiverse Analysis examined the effects of those methodological parameters on comparisons of SCR to a danger cue (CS+) versus safety cue (CS-) during fear acquisition. Both the literature review and the Multiverse Analysis yielded inconsistent findings for fear extinction retention in PTSD versus TENC, and most analyses found no statistically significant group difference. By contrast, significantly elevated SCR to CS+ versus CS- was consistently found across all analyses in the literature review and the Multiverse Analysis of new data. We discuss methodological parameters that may most contribute to inconsistent findings of fear extinction retention deficit in PTSD and implications for future clinical research.
Collapse
Affiliation(s)
- Michael W. Lewis
- McLean Hospital, Center for Depression, Anxiety, and Stress Research
- Harvard Medical School, Department of Psychiatry
| | | | - Edward F. Pace-Schott
- Harvard Medical School, Department of Psychiatry
- Massachusetts General Hospital, Department of Psychiatry
| | - Scott L. Rauch
- McLean Hospital, Center for Depression, Anxiety, and Stress Research
- Harvard Medical School, Department of Psychiatry
| | - Isabelle M. Rosso
- McLean Hospital, Center for Depression, Anxiety, and Stress Research
- Harvard Medical School, Department of Psychiatry
| |
Collapse
|
8
|
Beckers T, Hermans D, Lange I, Luyten L, Scheveneels S, Vervliet B. Understanding clinical fear and anxiety through the lens of human fear conditioning. NATURE REVIEWS PSYCHOLOGY 2023; 2:233-245. [PMID: 36811021 PMCID: PMC9933844 DOI: 10.1038/s44159-023-00156-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/23/2023] [Indexed: 02/18/2023]
Abstract
Fear is an adaptive emotion that mobilizes defensive resources upon confrontation with danger. However, fear becomes maladaptive and can give rise to the development of clinical anxiety when it exceeds the degree of threat, generalizes broadly across stimuli and contexts, persists after the danger is gone or promotes excessive avoidance behaviour. Pavlovian fear conditioning has been the prime research instrument that has led to substantial progress in understanding the multi-faceted psychological and neurobiological mechanisms of fear in past decades. In this Perspective, we suggest that fruitful use of Pavlovian fear conditioning as a laboratory model of clinical anxiety requires moving beyond the study of fear acquisition to associated fear conditioning phenomena: fear extinction, generalization of conditioned fear and fearful avoidance. Understanding individual differences in each of these phenomena, not only in isolation but also in how they interact, will further strengthen the external validity of the fear conditioning model as a tool with which to study maladaptive fear as it manifests in clinical anxiety.
Collapse
Affiliation(s)
- Tom Beckers
- grid.5596.f0000 0001 0668 7884Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Dirk Hermans
- grid.5596.f0000 0001 0668 7884Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Iris Lange
- grid.5596.f0000 0001 0668 7884Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Laura Luyten
- grid.5596.f0000 0001 0668 7884Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Sara Scheveneels
- grid.5596.f0000 0001 0668 7884Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Bram Vervliet
- grid.5596.f0000 0001 0668 7884Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Bryant RA. Is Fear Extinction Impairment Central to Psychopathology? Curr Top Behav Neurosci 2023; 64:195-212. [PMID: 37668874 DOI: 10.1007/7854_2023_439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
As discussed in this chapter, there have been enormous advances in our understanding of how anxiety disorders develop, are maintained, and can be treated. Many of these advances have been the result of translational studies using fear conditioning and extinction models. Despite these successes, we recognize, as a field, that there are important limitations in the extent to which extinction can explain how anxiety disorders and behaviors remit. Clinically speaking, the outstanding challenge for treatment of anxiety disorders is to improve the current suboptimal success rates. Over the past 30 years, we have not improved our treatment success rates despite employing many pharmacological and pharmacological strategies. While extinction and related fear circuitry mechanisms most certainly appear to play a role in treatment of anxiety disorders, they are also apparently insufficient to fully accommodate the varied responses individuals exhibit with this treatment approach. Increasingly diverse and innovative approaches are needed that accommodate the multitude of change mechanisms involved in treating anxiety. However, this is not to suggest ignoring the key role that extinction and memory updating processes play in overcoming anxiety.
Collapse
Affiliation(s)
- Richard A Bryant
- School of Psychology, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
10
|
Fear conditioning and extinction learning in the mood and anxiety disorders spectrum - Associations with the outcome of cognitive behavior therapy. Behav Res Ther 2023; 160:104229. [PMID: 36463833 DOI: 10.1016/j.brat.2022.104229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
Abstract
In the current study, we test for the specificity of deficits in fear acquisition and extinction for the anxiety disorders spectrum. We compared fear acquisition and fear extinction learning between a group of patients with either an anxiety disorder (n = 93) or depression (n = 103) attending for treatment in our outpatient center and a sample of healthy control participants (n = 60). To assess the specificity of the predictive validity of extinction learning and safety learning for the outcome of exposure-based treatments, patients additionally underwent disorder-specific cognitive behavior therapy (CBT). We found only very little evidence for differences in safety or extinction learning between healthy controls and patients with anxiety-disorders or depression using both a group-based categorical analytic approach, as well as a trans-diagnostic, dimensional analytic approach. On the contrary, for anxiety patients only, more favorable extinction learning and more favorable safety learning was associated with more favorable treatment outcome. In sum, this specific prediction of treatment outcome in anxiety patients confirms and extends current theoretical models of exposure-based treatments for anxiety disorders, but does not support the notion of general extinction learning deficits in the anxiety disorders spectrum.
Collapse
|
11
|
Velasco ER, Florido A, Perez-Caballero L, Marin I, Andero R. The Impacts of Sex Differences and Sex Hormones on Fear Extinction. Curr Top Behav Neurosci 2023; 64:105-132. [PMID: 37528309 DOI: 10.1007/7854_2023_426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Fear extinction memories are strongly modulated by sex and hormonal status, but the exact mechanisms are still being discovered. In humans, there are some basal and task-related features in which male and female individuals differ in fear conditioning paradigms. However, analyses considering the effects of sex hormones demonstrate a role for estradiol in fear extinction memory consolidation. Translational studies are taking advantage of the convergent findings between species to understand the brain structures implicated. Nevertheless, the human brain is complex and the transfer of these findings into the clinics remains a challenge. The promising advances in the field together with the standardization of fear extinction methodologies in humans will benefit the design of new personalized therapies.
Collapse
Affiliation(s)
- Eric Raul Velasco
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antonio Florido
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Perez-Caballero
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ignacio Marin
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Raul Andero
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
- Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain.
- ICREA, Pg. Lluís Companys 23, Barcelona, Spain.
| |
Collapse
|
12
|
Webler RD, Oathes DJ, van Rooij SJH, Gewirtz JC, Nahas Z, Lissek SM, Widge AS. Causally mapping human threat extinction relevant circuits with depolarizing brain stimulation methods. Neurosci Biobehav Rev 2023; 144:105005. [PMID: 36549377 PMCID: PMC10210253 DOI: 10.1016/j.neubiorev.2022.105005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/17/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Laboratory threat extinction paradigms and exposure-based therapy both involve repeated, safe confrontation with stimuli previously experienced as threatening. This fundamental procedural overlap supports laboratory threat extinction as a compelling analogue of exposure-based therapy. Threat extinction impairments have been detected in clinical anxiety and may contribute to exposure-based therapy non-response and relapse. However, efforts to improve exposure outcomes using techniques that boost extinction - primarily rodent extinction - have largely failed to date, potentially due to fundamental differences between rodent and human neurobiology. In this review, we articulate a comprehensive pre-clinical human research agenda designed to overcome these failures. We describe how connectivity guided depolarizing brain stimulation methods (i.e., TMS and DBS) can be applied concurrently with threat extinction and dual threat reconsolidation-extinction paradigms to causally map human extinction relevant circuits and inform the optimal integration of these methods with exposure-based therapy. We highlight candidate targets including the amygdala, hippocampus, ventromedial prefrontal cortex, dorsal anterior cingulate cortex, and mesolimbic structures, and propose hypotheses about how stimulation delivered at specific learning phases could strengthen threat extinction.
Collapse
Affiliation(s)
- Ryan D Webler
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA.
| | - Desmond J Oathes
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sanne J H van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Jonathan C Gewirtz
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA; Department of Psychology, Arizona State University, AZ, USA
| | - Ziad Nahas
- Department of Psychology, Arizona State University, AZ, USA
| | - Shmuel M Lissek
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Alik S Widge
- Department of Psychiatry and Medical Discovery Team on Addictions, University of Minnesota Medical School, MN, USA
| |
Collapse
|
13
|
Stenson AF, France JM, Jovanovic T. Getting Better with Age? A Review of Psychophysiological Studies of Fear Extinction Learning Across Development. Curr Top Behav Neurosci 2023; 64:213-236. [PMID: 37651043 DOI: 10.1007/7854_2023_441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
A critical developmental task is learning what constitutes reliable threat and safety signals in the environment. In humans, atypical fear learning processes are implicated in many mental health conditions, particularly fear and anxiety disorders, pointing to the potential for laboratory measures of fear learning to facilitate early identification of at-risk individuals. This chapter reviews studies of fear learning and extinction learning that incorporate peripheral measures of psychophysiological response and include a developmental sample. Broadly, these studies indicate substantial consistency in differential learning and extinction across development, as assessed with multiple paradigms, across physiological indices. Importantly, though, response coherence across measures (e.g., physiological, neural, and behavioral) was inconsistent across studies. There was also less consistency in results from studies that probed associations between anxiety and fear learning processes. These mixed findings highlight the need for additional examination of when and why there is variability, both across development and in relation to individual differences factors, including mental health, childhood adversity, and sex. In addition, there remains a need for studies that test for developmental change in extinction recall learning and whether stimulus type impacts learning across development. Longitudinal studies designed to address these questions could provide novel insight into the developmental trajectory of fear learning and extinction.
Collapse
Affiliation(s)
- Anaïs F Stenson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA.
| | - John M France
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
14
|
Role of noradrenergic arousal for fear extinction processes in rodents and humans. Neurobiol Learn Mem 2022; 194:107660. [PMID: 35870717 DOI: 10.1016/j.nlm.2022.107660] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/29/2022] [Accepted: 07/17/2022] [Indexed: 01/22/2023]
Abstract
Fear extinction is a learning mechanism that is pivotal for the inhibition of fear responses towards cues or contexts that no longer predict the occurrence of a threat. Failure of fear extinction leads to fear expression under safe conditions and is regarded to be a cardinal characteristic of many anxiety-related disorders and posttraumatic stress disorder. Importantly, the neurotransmitter noradrenaline was shown to be a potent modulator of fear extinction. Rodent studies demonstrated that excessive noradrenaline transmission after acute stress opens a time window of vulnerability, in which fear extinction learning results in attenuated long-term extinction success. In contrast, when excessive noradrenergic transmission subsides, well-coordinated noradrenaline transmission is necessary for the formation of a long-lasting extinction memory. In addition, emerging evidence suggests that the neuropeptide corticotropin releasing hormone (CRF), which strongly regulates noradrenaline transmission under conditions of acute stress, also impedes long-term extinction success. Recent rodent work - using sophisticated methods - provides evidence for a hypothetical mechanistic framework of how noradrenaline and CRF dynamically orchestrate the neural fear and extinction circuitry to attenuate or to improve fear extinction and extinction recall. Accordingly, we review the evidence from rodent studies linking noradrenaline and CRF to fear extinction learning and recall and derive the hypothetical mechanistic framework of how different levels of noradrenaline and CRF may create a time window of vulnerability which impedes successful long-term fear extinction. We also address evidence from human studies linking noradrenaline and fear extinction success. Moreover, we accumulate emerging approaches to non-invasively measure and manipulate the noradrenergic system in healthy humans. Finally, we emphasize the importance of future studies to account for sex (hormone) differences when examining the interaction between fear extinction, noradrenaline, and CRF. To conclude, NA's effects on fear extinction recall strongly depend on the arousal levels at the onset of fear extinction learning. Our review aimed at compiling the available (mainly rodent) data in a neurobiological framework, suited to derive testable hypotheses for future work in humans.
Collapse
|
15
|
Dunsmoor JE, Cisler JM, Fonzo GA, Creech SK, Nemeroff CB. Laboratory models of post-traumatic stress disorder: The elusive bridge to translation. Neuron 2022; 110:1754-1776. [PMID: 35325617 PMCID: PMC9167267 DOI: 10.1016/j.neuron.2022.03.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/18/2022] [Accepted: 02/28/2022] [Indexed: 12/14/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating mental illness composed of a heterogeneous collection of symptom clusters. The unique nature of PTSD as arising from a precipitating traumatic event helps simplify cross-species translational research modeling the neurobehavioral effects of stress and fear. However, the neurobiological progress on these complex neural circuits informed by animal models has yet to produce novel, evidence-based clinical treatment for PTSD. Here, we provide a comprehensive overview of popular laboratory models of PTSD and provide concrete ideas for improving the validity and clinical translational value of basic research efforts in humans. We detail modifications to simplified animal paradigms to account for myriad cognitive factors affected in PTSD, which may contribute to abnormalities in regulating fear. We further describe new avenues for integrating different areas of psychological research underserved by animal models of PTSD. This includes incorporating emerging trends in the cognitive neuroscience of episodic memory, emotion regulation, social-emotional processes, and PTSD subtyping to provide a more comprehensive recapitulation of the human experience to trauma in laboratory research.
Collapse
Affiliation(s)
- Joseph E Dunsmoor
- Department of Psychiatry and Behavioral Sciences, University of Texas at Austin Dell Medical School, Austin, TX, USA; Center for Psychedelic Research and Therapy, University of Texas at Austin Dell Medical School, Austin, TX, USA.
| | - Josh M Cisler
- Department of Psychiatry and Behavioral Sciences, University of Texas at Austin Dell Medical School, Austin, TX, USA; Institute for Early Life Adversity Research, University of Texas at Austin, Austin, TX, USA; Center for Psychedelic Research and Therapy, University of Texas at Austin Dell Medical School, Austin, TX, USA
| | - Gregory A Fonzo
- Department of Psychiatry and Behavioral Sciences, University of Texas at Austin Dell Medical School, Austin, TX, USA; Institute for Early Life Adversity Research, University of Texas at Austin, Austin, TX, USA; Center for Psychedelic Research and Therapy, University of Texas at Austin Dell Medical School, Austin, TX, USA
| | - Suzannah K Creech
- Department of Psychiatry and Behavioral Sciences, University of Texas at Austin Dell Medical School, Austin, TX, USA; Institute for Early Life Adversity Research, University of Texas at Austin, Austin, TX, USA
| | - Charles B Nemeroff
- Department of Psychiatry and Behavioral Sciences, University of Texas at Austin Dell Medical School, Austin, TX, USA; Institute for Early Life Adversity Research, University of Texas at Austin, Austin, TX, USA; Center for Psychedelic Research and Therapy, University of Texas at Austin Dell Medical School, Austin, TX, USA.
| |
Collapse
|
16
|
Ney LJ, Laing PAF, Steward T, Zuj DV, Dymond S, Harrison B, Graham B, Felmingham KL. Methodological implications of sample size and extinction gradient on the robustness of fear conditioning across different analytic strategies. PLoS One 2022; 17:e0268814. [PMID: 35609058 PMCID: PMC9128987 DOI: 10.1371/journal.pone.0268814] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 05/10/2022] [Indexed: 11/23/2022] Open
Abstract
Fear conditioning paradigms are critical to understanding anxiety-related disorders, but studies use an inconsistent array of methods to quantify the same underlying learning process. We previously demonstrated that selection of trials from different stages of experimental phases and inconsistent use of average compared to trial-by-trial analysis can deliver significantly divergent outcomes, regardless of whether the data is analysed with extinction as a single effect, as a learning process over the course of the experiment, or in relation to acquisition learning. Since small sample sizes are attributed as sources of poor replicability in psychological science, in this study we aimed to investigate if changes in sample size influences the divergences that occur when different kinds of fear conditioning analyses are used. We analysed a large data set of fear acquisition and extinction learning (N = 379), measured via skin conductance responses (SCRs), which was resampled with replacement to create a wide range of bootstrapped databases (N = 30, N = 60, N = 120, N = 180, N = 240, N = 360, N = 480, N = 600, N = 720, N = 840, N = 960, N = 1080, N = 1200, N = 1500, N = 1750, N = 2000) and tested whether use of different analyses continued to produce deviating outcomes. We found that sample size did not significantly influence the effects of inconsistent analytic strategy when no group-level effect was included but found strategy-dependent effects when group-level effects were simulated. These findings suggest that confounds incurred by inconsistent analyses remain stable in the face of sample size variation, but only under specific circumstances with overall robustness strongly hinging on the relationship between experimental design and choice of analyses. This supports the view that such variations reflect a more fundamental confound in psychological science-the measurement of a single process by multiple methods.
Collapse
Affiliation(s)
- Luke J. Ney
- School of Psychological Sciences, University of Tasmania, Tasmania, Australia
| | - Patrick A. F. Laing
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne & Melbourne Health, Victoria, Australia
| | - Trevor Steward
- School of Psychological Sciences, University of Melbourne, Victoria, Australia
| | - Daniel V. Zuj
- School of Psychology, Swansea University, Wales, United Kingdom
| | - Simon Dymond
- School of Psychology, Swansea University, Wales, United Kingdom
- Department of Psychology, Reykjavik University, Reykjavik, Iceland
| | - Ben Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne & Melbourne Health, Victoria, Australia
| | - Bronwyn Graham
- School of Psychology, University of New South Wales, New South Wales, Australia
| | - Kim L. Felmingham
- School of Psychological Sciences, University of Melbourne, Victoria, Australia
| |
Collapse
|
17
|
Pöhlchen D, Fietz J, Czisch M, Sämann PG, Spoormaker VI, Binder E, Brückl T, Erhardt A, Grandi N, Lucae S, von Muecke-Heim I, Ziebula J. Startle Latency as a Potential Marker for Amygdala-Mediated Hyperarousal. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 8:406-416. [PMID: 35577304 DOI: 10.1016/j.bpsc.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Fear-related disorders are characterized by hyperexcitability in reflexive circuits and maladaptive associative learning mechanisms. The startle reflex is suited to investigate both processes, either by probing it under baseline conditions or by deriving it in fear conditioning studies. In anxiety research, the amplitude of the fear-potentiated startle has been shown to be influenced by amygdalar circuits and has typically been the readout of interest. In schizophrenia research, prolonged startle peak latency under neutral conditions is an established readout, thought to reflect impaired processing speed. We therefore explored whether startle latency is an informative readout for human anxiety research. METHODS We investigated potential similarities and differences of startle peak latency and amplitude derived from a classical fear conditioning task in a sample of 206 participants with varying severity levels of anxiety disorders and healthy control subjects. We first reduced startle response to stable components and regressed individual amygdala gray matter volumes onto the resulting startle measures. We then probed time, stimulus, and group effects of startle latency. RESULTS We showed that startle latency and startle amplitude were 2 largely uncorrelated measures; startle latency, but not amplitude, showed a sex-specific association with gray matter volume of the amygdala; startle latencies showed a fear-dependent task modulation; and patients with fear-related disorders displayed shorter startle latencies throughout the fear learning task. CONCLUSIONS These data provide support for the notion that probing startle latencies under threat may engage amygdala-modulated threat processing, making them a complementary marker for human anxiety research.
Collapse
|
18
|
Combining the trauma film and fear conditioning paradigms: A theoretical review and meta-analysis with relevance to PTSD. Behav Res Ther 2022; 152:104081. [DOI: 10.1016/j.brat.2022.104081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 01/01/2023]
|
19
|
Ney LJ, Crombie KM, Mayo LM, Felmingham KL, Bowser T, Matthews A. Translation of animal endocannabinoid models of PTSD mechanisms to humans: Where to next? Neurosci Biobehav Rev 2021; 132:76-91. [PMID: 34838529 DOI: 10.1016/j.neubiorev.2021.11.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022]
Abstract
The endocannabinoid system is known to be involved in mechanisms relevant to PTSD aetiology and maintenance, though this understanding is mostly based on animal models of the disorder. Here we review how human paradigms can successfully translate animal findings to human subjects, with the view that substantially increased insight into the effect of endocannabinoid signalling on stress responding, emotional and intrusive memories, and fear extinction can be gained using modern paradigms and methods for assessing the state of the endocannabinoid system in PTSD.
Collapse
Affiliation(s)
- Luke J Ney
- School of Psychological Sciences, University of Tasmania, Australia; School of Psychology and Counselling, Queensland University of Technology, Australia.
| | - Kevin M Crombie
- Department of Psychiatry and Behavioral Sciences, University of Texas at Austin, United States
| | - Leah M Mayo
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Science, Linköping University, Sweden
| | - Kim L Felmingham
- Department of Psychological Sciences, University of Melbourne, Australia
| | | | - Allison Matthews
- School of Psychological Sciences, University of Tasmania, Australia
| |
Collapse
|
20
|
Laing PAF, Harrison BJ. Safety learning and the Pavlovian conditioned inhibition of fear in humans: Current state and future directions. Neurosci Biobehav Rev 2021; 127:659-674. [PMID: 34023357 DOI: 10.1016/j.neubiorev.2021.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 05/07/2021] [Accepted: 05/17/2021] [Indexed: 01/02/2023]
Abstract
Safety learning occurs when an otherwise neutral stimulus comes to signal the absence of threat, allowing organisms to use safety information to inhibit fear and anxiety in nonthreatening environments. Although it continues to emerge as a topic of relevance in biological and clinical psychology, safety learning remains inconsistently defined and under-researched. Here, we analyse the Pavlovian conditioned inhibition paradigm and its application to the study of safety learning in humans. We discuss existing studies; address outstanding theoretical considerations; and identify prospects for its further application. Though Pavlovian conditioned inhibition presents a theoretically sound model of safety learning, it has been investigated infrequently, with decade-long interims between some studies, and notable methodological variability. Consequently, we argue that the full potential of conditioned inhibition as a model for human safety learning remains untapped, and propose that it could be revisited as a framework for addressing timely questions in the behavioural and clinical sciences.
Collapse
Affiliation(s)
- Patrick A F Laing
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Victoria, Australia.
| | - Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
21
|
Scheveneels S, Boddez Y, Hermans D. Predicting clinical outcomes via human fear conditioning: A narrative review. Behav Res Ther 2021; 142:103870. [PMID: 34000680 DOI: 10.1016/j.brat.2021.103870] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 04/07/2021] [Accepted: 04/19/2021] [Indexed: 11/27/2022]
Abstract
A common assumption in human fear conditioning research is that findings are informative for the etiology and treatment of clinical anxiety. One way to empirically evaluate the external validity of fear conditioning is by prospective studies. We review available prospective research investigating whether individual performance in fear conditioning predicts individual differences in anxiety levels and exposure-based treatment outcome. We focus on fear extinction, generalization, acquisition, and avoidance. Results suggest that reduced extinction and broader generalization predict higher anxiety levels. Results with respect to the predictive value of acquisition for anxiety levels are mixed. With regard to predicting exposure-based treatment outcome, some studies do find an association with extinction whereas others do not. The majority of studies does not find an association with acquisition. Evidence on extinction recall is limited and not consistent. The interpretation of these results requires caution. The number of available studies is limited. It is possible that not all work, in particular studies with only null effects, has found its way to publication. Future research on this topic will benefit from large sample sizes, preregistered hypotheses, full transparency about the conducted analyses and the publication of high-quality studies with null effects.
Collapse
Affiliation(s)
- Sara Scheveneels
- Center for the Psychology of Learning and Experimental Psychopathology, KU Leuven, Leuven, Belgium.
| | - Yannick Boddez
- Center for the Psychology of Learning and Experimental Psychopathology, KU Leuven, Leuven, Belgium; Department of Experimental Clinical and Health Psychology, Ghent University, Belgium
| | - Dirk Hermans
- Center for the Psychology of Learning and Experimental Psychopathology, KU Leuven, Leuven, Belgium
| |
Collapse
|
22
|
Pöhlchen D, Priouret M, Kraft MS, Binder FP, Gürsel DA, Berberich G, Koch K, Spoormaker VI. Examining Differences in Fear Learning in Patients With Obsessive-Compulsive Disorder With Pupillometry, Startle Electromyography and Skin Conductance Responses. Front Psychiatry 2021; 12:730742. [PMID: 34658966 PMCID: PMC8517251 DOI: 10.3389/fpsyt.2021.730742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Obsessive-compulsive disorder (OCD) is characterized by recurrent, persistent thoughts and repetitive behaviors causing stress and anxiety. In the associative learning model of OCD, mechanisms of fear extinction are supposed to partly underlie symptom development, maintenance and treatment of OCD, proposing that OCD patients suffer from rigid memory associations and inhibitory learning deficits. To test these assumptions, previous studies have used skin conductance and subjective ratings as readouts in fear conditioning paradigms, finding impaired fear extinction learning, impaired fear extinction recall or no differences between individuals with OCD and healthy controls. Against this heterogeneous background, we tested fear acquisition and extinction in 37 OCD patients and 56 healthy controls, employing skin conductance as well as pupillometry and startle electromyography. Extinction recall was also included in a subsample. We did not observe differences between groups in any of the task phases, except a trend toward higher startle amplitudes during extinction for OCD. Overall, sensitive readouts such as pupillometry and startle responses did not provide evidence for moderate-to-large inhibitory learning deficits using classical fear conditioning, challenging the assumption of generically impaired extinction learning and memory in OCD.
Collapse
Affiliation(s)
- Dorothee Pöhlchen
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.,International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Marthe Priouret
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Miriam S Kraft
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Florian P Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.,International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Deniz A Gürsel
- Department of Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.,TUM-Neuroimaging Center (TUM-NIC), Technical University of Munich, Munich, Germany
| | - Götz Berberich
- Windach Institute and Hospital of Neurobehavioural Research and Therapy, Windach, Germany
| | | | - Kathrin Koch
- Department of Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.,TUM-Neuroimaging Center (TUM-NIC), Technical University of Munich, Munich, Germany
| | - Victor I Spoormaker
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
23
|
Savage HS, Davey CG, Fullana MA, Harrison BJ. Threat and safety reversal learning in social anxiety disorder - an fMRI study. J Anxiety Disord 2020; 76:102321. [PMID: 33099070 DOI: 10.1016/j.janxdis.2020.102321] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/14/2020] [Accepted: 09/27/2020] [Indexed: 02/06/2023]
Abstract
Social anxiety disorder (SAD) has been linked to maladaptive forms of fear regulation, including flexibly distinguishing between learned threat and safety signals. Few studies have examined this in young, unmedicated SAD patients, including its neural basis. We aimed to characterize the neural, subjective, and autonomic correlates of reversal learning in patients with SAD and compare them to matched patients with major depressive disorder and to healthy control participants. All participants completed a threat-safety reversal learning task during functional magnetic resonance imaging. Successful threat-safety updating was associated with significant activation of primary regions of interest (anterior cingulate, insula and ventromedial prefrontal cortex), however, no significant differences were observed between them, consistent with subjective reports of task-evoked anxiety and affect. Contrary to expectations, we did not observe threat and safety reversal learning to be significantly impaired in young people with SAD.
Collapse
Affiliation(s)
- Hannah S Savage
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, VIC, Australia.
| | | | - Miquel A Fullana
- Adult Psychiatry and Psychology Department, Institute of Neurosciences, Hospital Clinic, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, CIBERSAM, Barcelona, Spain
| | - Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, VIC, Australia.
| |
Collapse
|
24
|
Memories of 100 years of human fear conditioning research and expectations for its future. Behav Res Ther 2020; 135:103732. [DOI: 10.1016/j.brat.2020.103732] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Brückl TM, Spoormaker VI, Sämann PG, Brem AK, Henco L, Czamara D, Elbau I, Grandi NC, Jollans L, Kühnel A, Leuchs L, Pöhlchen D, Schneider M, Tontsch A, Keck ME, Schilbach L, Czisch M, Lucae S, Erhardt A, Binder EB. The biological classification of mental disorders (BeCOME) study: a protocol for an observational deep-phenotyping study for the identification of biological subtypes. BMC Psychiatry 2020; 20:213. [PMID: 32393358 PMCID: PMC7216390 DOI: 10.1186/s12888-020-02541-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 03/10/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND A major research finding in the field of Biological Psychiatry is that symptom-based categories of mental disorders map poorly onto dysfunctions in brain circuits or neurobiological pathways. Many of the identified (neuro) biological dysfunctions are "transdiagnostic", meaning that they do not reflect diagnostic boundaries but are shared by different ICD/DSM diagnoses. The compromised biological validity of the current classification system for mental disorders impedes rather than supports the development of treatments that not only target symptoms but also the underlying pathophysiological mechanisms. The Biological Classification of Mental Disorders (BeCOME) study aims to identify biology-based classes of mental disorders that improve the translation of novel biomedical findings into tailored clinical applications. METHODS BeCOME intends to include at least 1000 individuals with a broad spectrum of affective, anxiety and stress-related mental disorders as well as 500 individuals unaffected by mental disorders. After a screening visit, all participants undergo in-depth phenotyping procedures and omics assessments on two consecutive days. Several validated paradigms (e.g., fear conditioning, reward anticipation, imaging stress test, social reward learning task) are applied to stimulate a response in a basic system of human functioning (e.g., acute threat response, reward processing, stress response or social reward learning) that plays a key role in the development of affective, anxiety and stress-related mental disorders. The response to this stimulation is then read out across multiple levels. Assessments comprise genetic, molecular, cellular, physiological, neuroimaging, neurocognitive, psychophysiological and psychometric measurements. The multilevel information collected in BeCOME will be used to identify data-driven biologically-informed categories of mental disorders using cluster analytical techniques. DISCUSSION The novelty of BeCOME lies in the dynamic in-depth phenotyping and omics characterization of individuals with mental disorders from the depression and anxiety spectrum of varying severity. We believe that such biology-based subclasses of mental disorders will serve as better treatment targets than purely symptom-based disease entities, and help in tailoring the right treatment to the individual patient suffering from a mental disorder. BeCOME has the potential to contribute to a novel taxonomy of mental disorders that integrates the underlying pathomechanisms into diagnoses. TRIAL REGISTRATION Retrospectively registered on June 12, 2019 on ClinicalTrials.gov (TRN: NCT03984084).
Collapse
Affiliation(s)
- Tanja M. Brückl
- grid.419548.50000 0000 9497 5095Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Victor I. Spoormaker
- grid.419548.50000 0000 9497 5095Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Philipp G. Sämann
- grid.419548.50000 0000 9497 5095Max Planck Institute of Psychiatry, Munich, Germany
| | - Anna-Katharine Brem
- grid.419548.50000 0000 9497 5095Max Planck Institute of Psychiatry, Munich, Germany ,grid.38142.3c000000041936754XBerenson-Allen Center for Noninvasive Brain Stimulation and Division for Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA USA
| | - Lara Henco
- grid.419548.50000 0000 9497 5095Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Darina Czamara
- grid.419548.50000 0000 9497 5095Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Immanuel Elbau
- grid.419548.50000 0000 9497 5095Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Norma C. Grandi
- grid.419548.50000 0000 9497 5095Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Lee Jollans
- grid.419548.50000 0000 9497 5095Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Anne Kühnel
- grid.419548.50000 0000 9497 5095Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany ,grid.419548.50000 0000 9497 5095International Max Planck Research School – Translational Psychiatry (IMPRS-TP), Max Planck Institute of Psychiatry, Munich, Germany
| | - Laura Leuchs
- grid.419548.50000 0000 9497 5095Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Dorothee Pöhlchen
- grid.419548.50000 0000 9497 5095Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany ,grid.419548.50000 0000 9497 5095International Max Planck Research School – Translational Psychiatry (IMPRS-TP), Max Planck Institute of Psychiatry, Munich, Germany
| | - Maximilian Schneider
- grid.419548.50000 0000 9497 5095Max Planck Institute of Psychiatry, Munich, Germany
| | - Alina Tontsch
- grid.419548.50000 0000 9497 5095Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Martin E. Keck
- grid.419548.50000 0000 9497 5095Max Planck Institute of Psychiatry, Munich, Germany
| | - Leonhard Schilbach
- grid.419548.50000 0000 9497 5095Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Michael Czisch
- grid.419548.50000 0000 9497 5095Max Planck Institute of Psychiatry, Munich, Germany
| | - Susanne Lucae
- grid.419548.50000 0000 9497 5095Max Planck Institute of Psychiatry, Munich, Germany
| | - Angelika Erhardt
- grid.419548.50000 0000 9497 5095Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Elisabeth B. Binder
- grid.419548.50000 0000 9497 5095Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany ,grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, USA
| |
Collapse
|