1
|
Kadeerbieke B, Wu L, Zhang YM. The role of lncRNA H19/Hmox1 axis regulating ferroptosis in anthracycline-induced cardiotoxicity. Drug Chem Toxicol 2025:1-12. [PMID: 40432412 DOI: 10.1080/01480545.2025.2503946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 04/24/2025] [Accepted: 05/03/2025] [Indexed: 05/29/2025]
Abstract
This study investigates the molecular mechanisms underlying anthracyclines (ANT)-induced cardiotoxicity, with a specific focus on ferroptosis regulated by the long non-coding RNA (lncRNA) H19/heme oxygenase-1 (Hmox1) signaling axis. A retrospective analysis was performed on 50 breast cancer patients who developed ANT-associated cardiac dysfunction. Clinical assessments included measurements of left ventricular ejection fraction (LVEF) and serum markers, such as cardiac troponin I (cTnI), creatine kinase-MB (CK-MB), N-terminal pro-B-type natriuretic peptide (NT-proBNP), and serum iron levels. Serum analysis revealed a marked downregulation of lncRNA H19 and upregulation of Hmox1, both significantly correlated with impaired cardiac function and disrupted iron homeostasis. To further elucidate the mechanism, an Epirubicin (EPI)-induced injury model in HL-1 cardiomyocytes was established. EPI exposure led to suppression of lncRNA H19, upregulation of Hmox1, and induction of apoptosis and ferroptotic cell death. RNA-seq analysis identified potential downstream targets linking lncRNA H19 to iron metabolism via Hmox1 modulation. Functional assays demonstrated that overexpression of lncRNA H19 mitigated EPI-induced ferroptosis, while enforced expression of Hmox1 reversed these protective effects. Collectively, these findings identify the lncRNA H19/Hmox1 axis as a critical regulator of ferroptosis in ANT-induced cardiotoxicity and suggest it as a potential therapeutic target for mitigating cardiac injury in breast cancer patients undergoing anthracycline chemotherapy.
Collapse
Affiliation(s)
- Bayan Kadeerbieke
- Department of Oncology Cardiology, Xinjiang Medical University Cancer Hospital, Urumqi, China
| | - Li Wu
- Department of Oncology Cardiology, Xinjiang Medical University Cancer Hospital, Urumqi, China
| | - Yuan-Ming Zhang
- Department of Oncology Cardiology, Xinjiang Medical University Cancer Hospital, Urumqi, China
| |
Collapse
|
2
|
Shenasa E, He Y, Wang Z, Tu D, Gao D, Kos Z, Thornton S, Nielsen TO. Digital Profiling of Immune Biomarkers in Breast Cancer: Relation to Anthracycline Benefit. Mod Pathol 2025; 38:100718. [PMID: 39863112 DOI: 10.1016/j.modpat.2025.100718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Assessment of the tumor-immune microenvironment can be used as a prognostic tool for improved survival and as a predictive biomarker for treatment benefit, particularly from immune-modulating treatments including cytotoxic chemotherapy. Using digital spatial profiling (DSP), we studied the tumor-immune microenvironment of 522 breast cancer cases by quantifying 35 immune biomarkers on tissue microarrays from the MA.5 phase III clinical trial. In this trial, node-positive breast cancer patients were randomized to receive either non-anthracycline chemotherapy (cyclophosphamide, methotrexate, 5'-fluorouracil [CMF]) or anthracycline-containing cytotoxic chemotherapy (CEF). Donor block hematoxylin and eosin (H&E)-stained sections were scored for the level of stromal tumor-infiltrating lymphocytes (sTILs), according to the international guidelines. We hypothesized that patients with higher levels of tumor-immune infiltration, assessed by either DSP or H&E staining, would benefit from CEF (relative to CMF) more than patients with lower immune infiltration. Unsupervised hierarchical clustering of digitally scored biomarkers revealed 2 patient clusters: immune infiltrated versus ignored. Following a prespecified statistical plan crafted to meet REMARK (REporting recommendations for tumor MARKer prognostic studies) guidelines, we found that the DSP-derived Immune Cluster assignment did not predict an improved 10-year relapse-free survival for patients receiving CEF compared with CMF. However, a secondary hypothesis revealed a significant predictive value for H&E sTILs assessed on full-faced sections for CEF benefit over CMF in the entire cohort and the human epidermal growth factor receptor 2-enriched subset. As exploratory analyses, supervised clustering of DSP-scored biomarkers suggested that low levels of T-cell immunoglobulin and mucin domain 3 TIM-3 and high levels of human leukocyte antigen HLA-DR and programmed cell death protein ligand PD-L-1 are associated with sensitivity to CEF. Although novel high-plex techniques provide a detailed insight into the tumor microenvironment, conventional H&E staining remains a powerful tool that can be applied to full-faced sections to assess the value of the immune microenvironment, particularly sTILs, in predicting benefits from immunogenic chemotherapies.
Collapse
Affiliation(s)
- Elahe Shenasa
- Interdisciplinary Oncology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ye He
- Visual Computing and Virtual Reality Key Laboratory of Sichuan Province, Sichuan Normal University, Sichuan, China
| | - Zehui Wang
- Mathematics and Statistics, Queen's University, Kingston, Ontario, Canada
| | - Dongsheng Tu
- Community Health & Epidemiology, Queen's University, Kingston, Ontario, Canada
| | - Dongxia Gao
- MAPcore, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zuzana Kos
- Pathology, BC Cancer Vancouver Centre, Vancouver, British Columbia, Canada
| | - Shelby Thornton
- MAPcore, University of British Columbia, Vancouver, British Columbia, Canada
| | - Torsten O Nielsen
- Interdisciplinary Oncology, University of British Columbia, Vancouver, British Columbia, Canada; MAPcore, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
3
|
Richters L, Gluz O, Weber-Lassalle N, Christgen M, Haverkamp H, Kuemmel S, Kayali M, Kates RE, Grischke EM, Altmüller J, Forstbauer H, Thiele H, Braun M, Warm M, Ossowski A, Wuerstlein R, Ernst C, Graeser M, Linn SC, Nitz U, Hauke J, Kreipe HH, Schmutzler RK, Hahnen E, Harbeck N. Genetic Alterations, Therapy Response, and Survival Among Patients With Triple-Negative Breast Cancer: A Secondary Analysis of a Randomized Clinical Trial. JAMA Netw Open 2025; 8:e2461639. [PMID: 40009381 PMCID: PMC11866031 DOI: 10.1001/jamanetworkopen.2024.61639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/09/2024] [Indexed: 02/27/2025] Open
Abstract
Importance Subgroup definitions for possible deescalation of neoadjuvant cancer treatment are urgently needed in clinical practice. Objective To investigate the effect of BRCA1 and/or BRCA2 tumor pathogenic variants (tPVs) by comparing 2 deescalated neoadjuvant regimens (nab-paclitaxel plus either carboplatin or gemcitabine) on pathologic complete response (pCR), invasive disease-free survival (IDFS), and overall survival (OS) of patients with early-stage triple-negative breast cancer (TNBC). Design, Setting, and Participants This was a preplanned secondary analysis of a phase 2 prospective randomized clinical trial (ADAPT-TN) conducted by the West German Study Group (WSG) at 45 sites in Germany between June 2013 and February 2015. The trial enrolled patients with noninflammatory early-stage TNBC (clinical tumor size ≥1 cm; estrogen receptor and progesterone receptor expression <1%; and ERBB2 negative). DNA samples from pretreatment biopsies were obtained. Genetic analysis was performed between January 2018 and March 2020. Final data analyses took place in September 2023. Exposure Patients were randomized to 12 weeks of treatment with nab-paclitaxel plus either carboplatin or gemcitabine; omission of otherwise mandatory anthracycline-containing chemotherapy was allowed in the case of pCR. tPVs in 20 cancer-associated genes, including BRCA1 and BRCA2, were analyzed using a customized gene panel. Main Outcomes and Measures The prevalence of BRCA1 and/or BRCA2 tPVs and their effect on pCR rate, IDFS, and OS were evaluated using logistic and Cox proportional hazards regression. Results Of the 307 patients with DNA samples from pretreatment biopsies available, tumor next-generation sequencing analyses were successful for 266 patients. The 266 patients included in this analysis were female, with a median age of 51 years (range, 26-76 years). A total of 162 patients (60.9%) had a clinical tumor size of 2 cm or greater, and 70 (26.3%) had clinical node-positive disease. BRCA1 and/or BRCA2 tPVs were detected in 42 patients (15.8%). The highest pCR rate among patients with BRCA1 and/or BRCA2 tPVs was seen in the nab-paclitaxel plus carboplatin group (9 of 14 patients [64.3%]) compared with the nab-paclitaxel plus gemcitabine group (10 of 28 [35.7%]) (odds ratio, 3.24 [95% CI, 0.85-12.36]; P = .08); the highest numeric 5-year IDFS and OS rates (84.4% and 92.9%, respectively) were seen in the nab-paclitaxel plus carboplatin group. Conclusions and Relevance In this secondary analysis of the WSG-ADAPT-TN randomized clinical trial on tPVs, deescalated nab-paclitaxel plus carboplatin was superior to nab-paclitaxel plus gemcitabine, particularly in patients with BRCA1 and/or BRCA2 tPVs. These findings suggest that BRCA1 and/or BRCA2 tPV status could be a candidate marker for a deescalation strategy in early-stage TNBC; however, prospective validation of survival outcomes in larger cohorts with differentiation between germline and somatic pathogenic variants is necessary. Trial Registration ClinicalTrials.gov Identifier: NCT01815242.
Collapse
Affiliation(s)
- Lisa Richters
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
- Center for Integrated Oncology, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Oleg Gluz
- West German Study Group, Moenchengladbach, Germany
- Ev. Hospital Bethesda, Breast Center Niederrhein, Moenchengladbach, Germany
- Women’s Clinic and Breast Center, University Clinics Cologne, Cologne, Germany
| | - Nana Weber-Lassalle
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
- Center for Integrated Oncology, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | | | - Heinz Haverkamp
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Now with Miltenyi Biomedicine GmbH, Bergisch Gladbach, Germany
| | - Sherko Kuemmel
- West German Study Group, Moenchengladbach, Germany
- Interdisciplinary Breast Center, Kliniken Essen-Mitte, Evang. Hospital Essen-Mitte, Essen, Germany
- Department of Gynecology, Breast Center, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Mohamad Kayali
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
- Center for Integrated Oncology, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | | | | | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Core Unit Genomics, Berlin Institute of Health, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | | | - Holger Thiele
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Michael Braun
- Interdisciplinary Breast Center, Rotkreuz-Clinics Munich, Munich, Germany
| | - Mathias Warm
- Breast Center, Municipal Hospital Holweide, Cologne, Germany
| | - Anna Ossowski
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Rachel Wuerstlein
- West German Study Group, Moenchengladbach, Germany
- Breast Center, Department of Obstetrics and Gynecology, Comprehensive Cancer Center Munich, University Hospital of Ludwig Maximilian University, Munich, Germany
| | - Corinna Ernst
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
- Center for Integrated Oncology, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Monika Graeser
- West German Study Group, Moenchengladbach, Germany
- Ev. Hospital Bethesda, Breast Center Niederrhein, Moenchengladbach, Germany
- Department of Gynecology, University Medical Center Hamburg, Hamburg, Germany
| | - Sabine C. Linn
- Department of Molecular Pathology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Medical Oncology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ulrike Nitz
- West German Study Group, Moenchengladbach, Germany
| | - Jan Hauke
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
- Center for Integrated Oncology, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | | | - Rita K. Schmutzler
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
- Center for Integrated Oncology, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Eric Hahnen
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
- Center for Integrated Oncology, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Nadia Harbeck
- West German Study Group, Moenchengladbach, Germany
- Breast Center, Department of Obstetrics and Gynecology, Comprehensive Cancer Center Munich, University Hospital of Ludwig Maximilian University, Munich, Germany
| |
Collapse
|
4
|
Nevins S, McLoughlin CD, Oliveros A, Stein JB, Rashid MA, Hou Y, Jang MH, Lee KB. Nanotechnology Approaches for Prevention and Treatment of Chemotherapy-Induced Neurotoxicity, Neuropathy, and Cardiomyopathy in Breast and Ovarian Cancer Survivors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2300744. [PMID: 37058079 PMCID: PMC10576016 DOI: 10.1002/smll.202300744] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/05/2023] [Indexed: 06/19/2023]
Abstract
Nanotechnology has emerged as a promising approach for the targeted delivery of therapeutic agents while improving their efficacy and safety. As a result, nanomaterial development for the selective targeting of cancers, with the possibility of treating off-target, detrimental sequelae caused by chemotherapy, is an important area of research. Breast and ovarian cancer are among the most common cancer types in women, and chemotherapy is an essential treatment modality for these diseases. However, chemotherapy-induced neurotoxicity, neuropathy, and cardiomyopathy are common side effects that can affect breast and ovarian cancer survivors quality of life. Therefore, there is an urgent need to develop effective prevention and treatment strategies for these adverse effects. Nanoparticles (NPs) have extreme potential for enhancing therapeutic efficacy but require continued research to elucidate beneficial interventions for women cancer survivors. In short, nanotechnology-based approaches have emerged as promising strategies for preventing and treating chemotherapy-induced neurotoxicity, neuropathy, and cardiomyopathy. NP-based drug delivery systems and therapeutics have shown potential for reducing the side effects of chemotherapeutics while improving drug efficacy. In this article, the latest nanotechnology approaches and their potential for the prevention and treatment of chemotherapy-induced neurotoxicity, neuropathy, and cardiomyopathy in breast and ovarian cancer survivors are discussed.
Collapse
Affiliation(s)
- Sarah Nevins
- Department of Chemistry and Chemical Biology, Rutgers
University, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ
08854, U.S.A
| | - Callan D. McLoughlin
- Department of Chemistry and Chemical Biology, Rutgers
University, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ
08854, U.S.A
| | - Alfredo Oliveros
- Department of Neurosurgery, Robert Wood Johnson Medical
School, Rutgers University, the State University of New Jersey, 661 Hoes Ln W,
Piscataway, NJ, 08854, U.S.A
| | - Joshua B. Stein
- Department of Chemistry and Chemical Biology, Rutgers
University, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ
08854, U.S.A
| | - Mohammad Abdur Rashid
- Department of Neurosurgery, Robert Wood Johnson Medical
School, Rutgers University, the State University of New Jersey, 661 Hoes Ln W,
Piscataway, NJ, 08854, U.S.A
| | - Yannan Hou
- Department of Chemistry and Chemical Biology, Rutgers
University, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ
08854, U.S.A
| | - Mi-Hyeon Jang
- Department of Neurosurgery, Robert Wood Johnson Medical
School, Rutgers University, the State University of New Jersey, 661 Hoes Ln W,
Piscataway, NJ, 08854, U.S.A
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers
University, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ
08854, U.S.A
| |
Collapse
|
5
|
Blancas I, Linares-Rodríguez M, Martín-Bravo C, Gómez-Peña C, Rodríguez-Serrano F. HER2/neu 655 polymorphism, trastuzumab-induced cardiotoxicity, and survival in HER2-positive breast cancer patients. Clin Transl Oncol 2024; 26:2531-2540. [PMID: 38771533 PMCID: PMC11410839 DOI: 10.1007/s12094-024-03512-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024]
Abstract
PURPOSE HER2 overexpression in breast cancer correlates with poor outcomes. The incorporation of Trastuzumab into the treatment regimen has notably improved patient prognoses. However, cardiotoxicity emerges in approximately 20% of patients treated with the drug. This study aims to investigate the association between the HER2 655 A > G polymorphism, Trastuzumab-induced cardiotoxicity, and patient survival. METHODS The study involved 88 patients treated with Trastuzumab. Cardiotoxicity, defined as a reduction in left ventricular ejection fraction (LVEF) from baseline or the emergence of clinical signs of congestive heart failure, was identified during treatment follow-up. Genotyping of HER2 655 A > G employed TaqMan SNP technology. RESULTS Genotype frequencies of HER2/neu 655 (53 AA, 32 AG, and 3 GG) were consistent with Hardy-Weinberg equilibrium. No significant differences were observed in mean baseline LVEF between patients who developed cardiotoxicity and those who did not. Within these groups, neither AA nor AG genotypes showed an association with changes in mean baseline or reduced LVEF levels. Logistic regression analysis, adjusted for hormonal status and anthracycline treatment, revealed that AG genotype carriers face a significantly higher risk of cardiotoxicity compared to AA carriers (OR = 4.42; p = 0.037). No association was found between the HER2/neu 655 A > G polymorphism and disease-free or overall survival, regardless of whether the data was adjusted for stage or not. CONCLUSION HER2 655 A > G polymorphism is significantly linked to an increased risk of Trastuzumab-induced cardiotoxicity but does not correlate with variations in disease-free survival or overall survival rates.
Collapse
Affiliation(s)
- Isabel Blancas
- Department of Medicine, University of Granada, Granada, Spain.
- Section of Medical Oncology, Hospital Universitario Clínico San Cecilio, Granada, Spain.
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.
| | - Marina Linares-Rodríguez
- Biopathology and Regenerative Medicine Institute (IBIMER), Biomedical Research Centre, University of Granada, Avenida del Conocimiento S/N, 18016, Armilla, Granada, Spain
| | | | - Celia Gómez-Peña
- Department of Pharmacy, Hospital Universitario Clínico San Cecilio, Granada, Spain
| | - Fernando Rodríguez-Serrano
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.
- Biopathology and Regenerative Medicine Institute (IBIMER), Biomedical Research Centre, University of Granada, Avenida del Conocimiento S/N, 18016, Armilla, Granada, Spain.
- Department of Human Anatomy and Embryology, University of Granada, Granada, Spain.
| |
Collapse
|
6
|
Pradeep Prabhu P, Mohanty B, Lobo CL, Balusamy SR, Shetty A, Perumalsamy H, Mahadev M, Mijakovic I, Dubey A, Singh P. Harnessing the nutriceutics in early-stage breast cancer: mechanisms, combinational therapy, and drug delivery. J Nanobiotechnology 2024; 22:574. [PMID: 39294665 PMCID: PMC11411841 DOI: 10.1186/s12951-024-02815-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Breast cancer (BC) is a significant health challenge, ranking as the second leading cause of cancer-related death and the primary cause of mortality among women aged 45 to 55. Early detection is crucial for optimal prognosis. Among various treatment options available for cancer, chemotherapy remains the predominant approach. However, its patient-friendliness is hindered by cytotoxicity, adverse effects, multi-drug resistance, potential for recurrence, and high costs. This review explores extensively studied phytomolecules, elucidating their molecular mechanisms. It also emphasizes the importance of combination therapy, highlighting recent advancements in the exploration of diverse drug delivery systems and novel routes of administration. The regulatory considerations are crucial in translating these approaches into clinical practices. RESULTS Consequently, there is growing interest in exploring the relationship between diet, cancer, and complementary and alternative medicine (CAM) in cancer chemotherapy. Phytochemicals like berberine, curcumin, quercetin, lycopene, sulforaphane, resveratrol, epigallocatechin gallate, apigenin, genistein, thymoquinone have emerged as promising candidates due to their pleiotropic actions on target cells through multiple mechanisms with minimal toxicity effects. This review focuses on extensively studied phytomolecules, elucidating their molecular mechanisms. It also emphasizes the importance of combination therapy, highlighting recent advancements in the exploration of diverse drug delivery systems and novel routes of administration. The regulatory considerations are crucial in translating these approaches into clinical practices. CONCLUSION The present review provides a comprehensive understanding of the molecular mechanisms, coupled with well-designed clinical trials and adherence to regulatory guidelines, which pave the way for nutrition-based combination therapies to become a frontline approach in early-stage BC treatment.
Collapse
Affiliation(s)
- Pavithra Pradeep Prabhu
- Nitte (Deemed to Be University), Department of Pharmacognosy, NGSM Institute of Pharmaceutical Sciences, Mangaluru, 575018, India
| | - Barsha Mohanty
- Nitte (Deemed to Be University), Department of Molecular Genetics and Cancer Biology, Nitte University Centre for Science, Education and Research, Mangaluru, 575018, India
| | - Cynthia Lizzie Lobo
- Nitte (Deemed to Be University), Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Mangaluru, 575018, India
| | - Sri Renukadevi Balusamy
- Department of Food Science and Biotechnology, Sejong University, Gwangjin-Gu, Seoul, Republic of Korea.
| | - Amitha Shetty
- Nitte (Deemed to Be University), Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Mangaluru, 575018, India
| | - Haribalan Perumalsamy
- Center for Creative Convergence Education, Hanyang University, Seoul, Republic of Korea
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, South Korea, Hanyang University, Seoul, Republic of Korea
| | - Manohar Mahadev
- Nitte (Deemed to Be University), Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Mangaluru, 575018, India
| | - Ivan Mijakovic
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Akhilesh Dubey
- Nitte (Deemed to Be University), Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Mangaluru, 575018, India.
| | - Priyanka Singh
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
| |
Collapse
|
7
|
Metwali E, Pennington S. Mass Spectrometry-Based Proteomics for Classification and Treatment Optimisation of Triple Negative Breast Cancer. J Pers Med 2024; 14:944. [PMID: 39338198 PMCID: PMC11432759 DOI: 10.3390/jpm14090944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024] Open
Abstract
Triple-negative breast cancer (TNBC) presents a significant medical challenge due to its highly invasive nature, high rate of metastasis, and lack of drug-targetable receptors, which together lead to poor prognosis and limited treatment options. The traditional treatment guidelines for early TNBC are based on a multimodal approach integrating chemotherapy, surgery, and radiation and are associated with low overall survival and high relapse rates. Therefore, the approach to treating early TNBC has shifted towards neoadjuvant treatment (NAC), given to the patient before surgery and which aims to reduce tumour size, reduce the risk of recurrence, and improve the pathological complete response (pCR) rate. However, recent studies have shown that NAC is associated with only 30% of patients achieving pCR. Thus, novel predictive biomarkers are essential if treatment decisions are to be optimised and chemotherapy toxicities minimised. Given the heterogeneity of TNBC, mass spectrometry-based proteomics technologies offer valuable tools for the discovery of targetable biomarkers for prognosis and prediction of toxicity. These biomarkers can serve as critical targets for therapeutic intervention. This review aims to provide a comprehensive overview of TNBC diagnosis and treatment, highlighting the need for a new approach. Specifically, it highlights how mass spectrometry-based can address key unmet clinical needs by identifying novel protein biomarkers to distinguish and early prognostication between TNBC patient groups who are being treated with NAC. By integrating proteomic insights, we anticipate enhanced treatment personalisation, improved clinical outcomes, and ultimately, increased survival rates for TNBC patients.
Collapse
Affiliation(s)
- Essraa Metwali
- School of Medicine, UCD Conway Institute for Biomolecular Research, University College Dublin, D04 C1P1 Dublin, Ireland;
- King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard, Jeddah-Makka Expressway, Jeddah 22384, Saudi Arabia
| | - Stephen Pennington
- School of Medicine, UCD Conway Institute for Biomolecular Research, University College Dublin, D04 C1P1 Dublin, Ireland;
| |
Collapse
|
8
|
Muñoz JP, Soto-Jiménez D, Calaf GM. DCTPP1 Expression as a Predictor of Chemotherapy Response in Luminal A Breast Cancer Patients. Biomedicines 2024; 12:1732. [PMID: 39200195 PMCID: PMC11351553 DOI: 10.3390/biomedicines12081732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
Breast cancer (BRCA) remains a significant global health challenge due to its prevalence and lethality, exacerbated by the development of resistance to conventional therapies. Therefore, understanding the molecular mechanisms underpinning chemoresistance is crucial for improving therapeutic outcomes. Human deoxycytidine triphosphate pyrophosphatase 1 (DCTPP1) has emerged as a key player in various cancers, including BRCA. DCTPP1, involved in nucleotide metabolism and maintenance of genomic stability, has been linked to cancer cell proliferation, survival, and drug resistance. This study evaluates the role of DCTPP1 in BRCA prognosis and chemotherapy response. Data from the Cancer Genome Atlas Program (TCGA), Genotype-Tissue Expression (GTEx), and Gene Expression Omnibus (GEO) repositories, analyzed using GEPIA and Kaplan-Meier Plotter, indicate that high DCTPP1 expression correlates with poorer overall survival and increased resistance to chemotherapy in BRCA patients. Further analysis reveals that DCTPP1 gene expression is up-regulated in non-responders to chemotherapy, particularly in estrogen receptor (ER)-positive, luminal A subtype patients, with significant predictive power. Additionally, in vitro studies show that DCTPP1 gene expression increases in response to 5-fluorouracil and doxorubicin treatments in luminal A BRCA cell lines, suggesting a hypothetical role in chemoresistance. These findings highlight DCTPP1 as a potential biomarker for predicting chemotherapy response and as a therapeutic target to enhance chemotherapy efficacy in BRCA patients.
Collapse
Affiliation(s)
- Juan P. Muñoz
- Laboratorio de Bioquímica, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000007, Chile
| | - Diego Soto-Jiménez
- Laboratorio de Bioquímica, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000007, Chile
| | - Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| |
Collapse
|
9
|
Liu Y, Zhang T, Huang X, Shen L, Yang Q. Changes in Epicardial Adipose Tissue Assessed by Chest CT in Breast Cancer Patients Receiving Adjuvant Chemotherapy with Anthracyclines and Trastuzumab. Rev Cardiovasc Med 2024; 25:254. [PMID: 39139419 PMCID: PMC11317341 DOI: 10.31083/j.rcm2507254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/02/2024] [Accepted: 02/19/2024] [Indexed: 08/15/2024] Open
Abstract
Background Cardiotoxicity (CTX) induced by adjuvant chemotherapy is a significant factor that impacts the prognosis and quality of life in breast cancer (BC) patients. In this study, we aimed to investigate the changes in epicardial adipose tissue (EAT) before and after treatment in BC patients who received anthracyclines adjuvant chemotherapy protocol (AC-T) and anthracyclines combined with trastuzumabadjuvant chemotherapy protocol (AC-TH). Additionally, we assessed whether there were any differences in the changes in EAT between the two groups of patients. Our objective was to examine the effects of anthracyclines and trastuzumab on EAT and determine the potential role of EAT changes on CTX. Methods We reviewed female BC patients who were treated with adjuvant chemotherapy protocols of AC-T and AC-TH, all of whom underwent baseline (T0) and follow-up (T1) chest computed tomography (CT) and echocardiography. A cohort of healthy women, matched in age, underwent two chest CTs. EAT was quantified on chest CT using semi-automated software. CTX was defined as a > 10% reduction in left ventricular ejection fraction (LVEF) from baseline, with an absolute value of < 53%. Results A total of 41 BC patients were included in the study, with 23 patients in the AC-T group and 18 patients in the AC-TH group. Additionally, 22 healthy females were included as the normal group. None of the BC patients developed CTX after chemotherapy. The age did not differ significantly between the normal group and the AC-T group (p = 0.341) or the AC-TH group (p = 0.853). Similarly, the body mass index (BMI) of the normal group was comparable to that of the AC-T group (p = 0.377, 0.346) and the AC-TH group (p = 0.148, 0.119) before and after chemotherapy. The EAT volume index (mL/kg/ m 2 ) was significantly higher in both the AC-T group (5.11 ± 1.85 vs. 4.34 ± 1.55, p < 0.001) and the AC-TH group (4.53 ± 1.61 vs. 3.48 ± 1.62, p < 0.001) at T1 compared with T0. In addition, both the AC-T group (-72.95 ± 5.01 vs. -71.22 ± 3.91, p = 0.005) and the AC-TH group (-72.55 ± 5.27 vs. -68.20 ± 5.98, p < 0.001) exhibited a significant decrease in EAT radiodensity (HU) at T1 compared to T0. However, there was no significant difference observed in the normal group. At T0, no difference was seen in EAT volume index (4.34 ± 1.55 vs. 3.48 ± 1.62, p = 0.090) and radiodensity (-71.22 ± 3.91 vs. -68.20 ± 5.98, p = 0.059) between the AC-T and AC-TH groups. Similarly, at T1, there was still no significant difference observed in the EAT volume index (-5.11 ± 1.85 vs. 4.53 ± 1.61, p = 0.308) and radiodensity (-72.95 ± 5.00 vs. -72.54 ± 5.27, p = 0.802) between the two groups. Conclusions BC patients who underwent AC-T and AC-TH adjuvant chemotherapy protocols demonstrated a significant rise in the volume index of EAT, along with a substantial reduction in its radiodensity post-chemotherapy. These findings indicate that alterations in EAT could potentially aid in identifying cardiac complications caused by chemotherapeutic agents and remind clinicians to focus on changes in EAT after adjuvant chemotherapy in BC patients to prevent the practical occurrence of CTX.
Collapse
Affiliation(s)
- Yuyao Liu
- Department of Radiology, Yongchuan Hospital of Chongqing Medical University, 402160 Chongqing, China
| | - Tingjian Zhang
- Department of General Surgery, Yongchuan Hospital of Chongqing Medical University, 402160 Chongqing, China
| | - Xiao Huang
- Department of Radiology, Yongchuan Hospital of Chongqing Medical University, 402160 Chongqing, China
| | - Li Shen
- Department of Radiology, Yongchuan Hospital of Chongqing Medical University, 402160 Chongqing, China
| | - Quan Yang
- Department of Radiology, Yongchuan Hospital of Chongqing Medical University, 402160 Chongqing, China
| |
Collapse
|
10
|
Jaradat SK, Ayoub NM, Al Sharie AH, Aldaod JM. Targeting Receptor Tyrosine Kinases as a Novel Strategy for the Treatment of Triple-Negative Breast Cancer. Technol Cancer Res Treat 2024; 23:15330338241234780. [PMID: 38389413 PMCID: PMC10894558 DOI: 10.1177/15330338241234780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/07/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
Triple-negative breast cancer (TNBC) comprises a group of aggressive and heterogeneous breast carcinoma. Chemotherapy is the mainstay for the treatment of triple-negative tumors. Nevertheless, the success of chemotherapeutic treatments is limited by their toxicity and development of acquired resistance leading to therapeutic failure and tumor relapse. Hence, there is an urgent need to explore novel targeted therapies for TNBC. Receptor tyrosine kinases (RTKs) are a family of transmembrane receptors that are key regulators of intracellular signaling pathways controlling cell proliferation, differentiation, survival, and motility. Aberrant activity and/or expression of several types of RTKs have been strongly connected to tumorigenesis. RTKs are frequently overexpressed and/or deregulated in triple-negative breast tumors and are further associated with tumor progression and reduced survival in patients. Therefore, targeting RTKs could be an appealing therapeutic strategy for the treatment of TNBC. This review summarizes the current evidence regarding the antitumor activity of RTK inhibitors in preclinical models of TNBC. The review also provides insights into the clinical trials evaluating the use of RTK inhibitors for the treatment of patients with TNBC.
Collapse
Affiliation(s)
- Sara K. Jaradat
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), Irbid, Jordan
| | - Nehad M. Ayoub
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), Irbid, Jordan
| | - Ahmed H. Al Sharie
- Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and Technology (JUST), Irbid, Jordan
| | - Julia M. Aldaod
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), Irbid, Jordan
| |
Collapse
|
11
|
Wu Z, Zhang T, Ma X, Guo S, Zhou Q, Zahoor A, Deng G. Recent advances in anti-inflammatory active components and action mechanisms of natural medicines. Inflammopharmacology 2023; 31:2901-2937. [PMID: 37947913 DOI: 10.1007/s10787-023-01369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/16/2023] [Indexed: 11/12/2023]
Abstract
Inflammation is a series of reactions caused by the body's resistance to external biological stimuli. Inflammation affects the occurrence and development of many diseases. Anti-inflammatory drugs have been used widely to treat inflammatory diseases, but long-term use can cause toxic side-effects and affect human functions. As immunomodulators with long-term conditioning effects and no drug residues, natural products are being investigated increasingly for the treatment of inflammatory diseases. In this review, we focus on the inflammatory process and cellular mechanisms in the development of diseases such as inflammatory bowel disease, atherosclerosis, and coronavirus disease-2019. Also, we focus on three signaling pathways (Nuclear factor-kappa B, p38 mitogen-activated protein kinase, Janus kinase/signal transducer and activator of transcription-3) to explain the anti-inflammatory effect of natural products. In addition, we also classified common natural products based on secondary metabolites and explained the association between current bidirectional prediction progress of natural product targets and inflammatory diseases.
Collapse
Affiliation(s)
- Zhimin Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tao Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiaofei Ma
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| | - Shuai Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qingqing Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Arshad Zahoor
- College of Veterinary Sciences, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
12
|
Liu C, Chen H, Guo S, Liu Q, Chen Z, Huang H, Zhao Q, Li L, Cen H, Jiang Z, Luo Q, Chen X, Zhao J, Chen W, Yang PC, Wang L. Anti-breast cancer-induced cardiomyopathy: Mechanisms and future directions. Biomed Pharmacother 2023; 166:115373. [PMID: 37647693 DOI: 10.1016/j.biopha.2023.115373] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/01/2023] Open
Abstract
With the progression of tumor treatment, the 5-year survival rate of breast cancer is close to 90%. Cardiovascular toxicity caused by chemotherapy has become a vital factor affecting the survival of patients with breast cancer. Anthracyclines, such as doxorubicin, are still some of the most effective chemotherapeutic agents, but their resulting cardiotoxicity is generally considered to be progressive and irreversible. In addition to anthracyclines, platinum- and alkyl-based antitumor drugs also demonstrate certain cardiotoxic effects. Targeted drugs have always been considered a relatively safe option. However, in recent years, some random clinical trials have observed the occurrence of subclinical cardiotoxicity in targeted antitumor drug users, which may be related to the effects of targeted drugs on the angiotensin converting enzyme, angiotensin receptor and β receptor. The use of angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers and beta-blockers may prevent clinical cardiotoxicity. This article reviews the toxicity and mechanisms of current clinical anti-breast cancer drugs and proposes strategies for preventing cardiovascular toxicity to provide recommendations for the clinical prevention and treatment of chemotherapy-related cardiomyopathy.
Collapse
Affiliation(s)
- Chunping Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong Province, China; Department of Cardiovascular Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong Province, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou 510080, Guangdong Province, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Huiqi Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong Province, China
| | - Sien Guo
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong Province, China
| | - Qiaojing Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong Province, China
| | - Zhijun Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong Province, China
| | - Haiding Huang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong Province, China
| | - Qi Zhao
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Longmei Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong Province, China
| | - Huan Cen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong Province, China
| | - Zebo Jiang
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong Province, China
| | - Qiyuan Luo
- Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong Province, China
| | - Xiaoling Chen
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong Province, China
| | - Jiaxiong Zhao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong Province, China
| | - Wensheng Chen
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong Province, China
| | - Phillip C Yang
- Cardiovascular Stem Cell (Yang) Laboratory, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Lei Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong Province, China; Department of Cardiovascular Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong Province, China.
| |
Collapse
|
13
|
Ibragimova MK, Kravtsova EA, Tsyganov MM, Litviakov NV. CNA Landscape of HER2-Negative Breast Cancer in Anthracycline-Based Neoadjuvant Chemotherapy Regimens. Acta Naturae 2023; 15:66-74. [PMID: 37908774 PMCID: PMC10615187 DOI: 10.32607/actanaturae.20377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/28/2023] [Indexed: 11/02/2023] Open
Abstract
Critical evaluation of how and when to include anthracyclines in preoperative chemotherapy is becoming more relevant in an era when the molecular genetic approach not only allows for the development of biologically targeted therapeutics, but also implies the ability to select the patients likely to benefit from certain cytotoxic agents. Changes in the copy number aberration (CNA) landscape of luminal B HER2- negative (HER2-) breast cancer (BC) during anthracycline-based neoadjuvant chemotherapy (NAC) regimens were studied in order to identify groups of potential CNA markers of objective response and CNA markers for predicting the development of hematogenous metastasis. Comparison of CNA frequencies depending on the response to NAC showed that objective response was observed in a larger number of deletions in the 11q22.3 and 11q23.1 loci (p = 0.004). Comparison of CNA frequencies in groups of patients after treatment showed that hematogenous metastasis was observed with a greater number of amplifications in the 9p22.2 locus (p = 0.003) and with a greater number of deletions in the 9p21.3 locus (p = 0.03). Potential predictive CNA markers of objective response and prognostic CNA markers of hematogenous metastasis in anthracycline- based NAC regimens have been identified.
Collapse
Affiliation(s)
- M. K. Ibragimova
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, 634009 Russian Federation
- National Research Tomsk State University, Tomsk, 634050 Russian Federation
- Siberian State Medical University, Tomsk, 634050 Russian Federation
| | - E. A. Kravtsova
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, 634009 Russian Federation
- National Research Tomsk State University, Tomsk, 634050 Russian Federation
| | - M. M. Tsyganov
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, 634009 Russian Federation
- Siberian State Medical University, Tomsk, 634050 Russian Federation
| | - N. V. Litviakov
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, 634009 Russian Federation
- National Research Tomsk State University, Tomsk, 634050 Russian Federation
- Siberian State Medical University, Tomsk, 634050 Russian Federation
| |
Collapse
|
14
|
Muley H, Valencia K, Casas J, Moreno B, Botella L, Lecanda F, Fadó R, Casals N. Cpt1c Downregulation Causes Plasma Membrane Remodelling and Anthracycline Resistance in Breast Cancer. Int J Mol Sci 2023; 24:ijms24020946. [PMID: 36674468 PMCID: PMC9864098 DOI: 10.3390/ijms24020946] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/21/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
Breast cancer (BC) is the most common malignancy in women worldwide. While the main systemic treatment option is anthracycline-containing chemotherapy, chemoresistance continues to be an obstacle to patient survival. Carnitine palmitoyltransferase 1C (CPT1C) has been described as a poor-prognosis marker for several tumour types, as it favours tumour growth and hinders cells from entering senescence. At the molecular level, CPT1C has been associated with lipid metabolism regulation and important lipidome changes. Since plasma membrane (PM) rigidity has been associated with reduced drug uptake, we explored whether CPT1C expression could be involved in PM remodelling and drug chemoresistance. Liquid chromatography-high resolution mass spectrometry (LC-HRMS) lipid analysis of PM-enriched fractions of MDA-MB-231 BC cells showed that CPT1C silencing increased PM phospholipid saturation, suggesting a rise in PM rigidity. Moreover, CPT1C silencing increased cell survival against doxorubicin (DOX) treatment in different BC cells due to reduced drug uptake. These findings, further complemented by ROC plotter analysis correlating lower CPT1C expression with a lower pathological complete response to anthracyclines in patients with more aggressive types of BC, suggest CPT1C as a novel predictive biomarker for BC chemotherapy.
Collapse
Affiliation(s)
- Helena Muley
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - Karmele Valencia
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain
| | - Josefina Casas
- Research Unit on Bioactive Molecules (RUBAM), Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Spanish National Research Council (CSIC), 08034 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Bea Moreno
- Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
| | - Luis Botella
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - Fernando Lecanda
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Department of Pathology, Anatomy and Physiology, University of Navarra, 31008 Pamplona, Spain
| | - Rut Fadó
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- Correspondence: (R.F.); (N.C.); Tel.: +34-935042000
| | - Núria Casals
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (R.F.); (N.C.); Tel.: +34-935042000
| |
Collapse
|
15
|
Hu W, Xu D, Li N. Research Status of Systemic Adjuvant Therapy for Early Breast Cancer. Cancer Control 2023; 30:10732748231209193. [PMID: 37864566 PMCID: PMC10591494 DOI: 10.1177/10732748231209193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/11/2023] [Accepted: 10/04/2023] [Indexed: 10/23/2023] Open
Abstract
Breast cancer has surpassed lung cancer as the most common cause of cancer deaths, worldwide. Early breast cancers are treatment sensitive and patients under standardized treatment have prolonged. Breast cancer treatment has significantly evolved from the conventional surgical approach and radiotherapy to local and systemic adjuvant therapies. Though localized breast cancers are clinically manageable, distant recurrence is a cause of morbid concern. Adjuvant systemic therapy is effective in both distant and local recurrences and hence gained significant attention. Early breast cancer prognosis has greatly improved in the past 3 decades with reduced mortality rates due to the widespread use of adjuvant therapy. It can markedly increase the cure rate of breast cancers, and postoperative adjuvant therapy became a part of comprehensive breast cancer treatment. Further research to understand the early breast cancer characteristics could expand the treatment modalities that can improve the outcomes and survival benefits of breast cancer patients.
Collapse
Affiliation(s)
- Wenyu Hu
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Air Force Medical University, Xian, China
| | - Dongdong Xu
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Air Force Medical University, Xian, China
| | - Nanlin Li
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Air Force Medical University, Xian, China
| |
Collapse
|
16
|
Sun L, Zuo C, Liu X, Guo Y, Wang X, Dong Z, Han M. Combined Photothermal Therapy and Lycium barbarum Polysaccharide for Topical Administration to Improve the Efficacy of Doxorubicin in the Treatment of Breast Cancer. Pharmaceutics 2022; 14:pharmaceutics14122677. [PMID: 36559180 PMCID: PMC9785128 DOI: 10.3390/pharmaceutics14122677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
In order to improve the efficacy of doxorubicin in the treatment of breast cancer, we constructed a drug delivery system combined with local administration of Lycium barbarum polysaccharides (LBP) and photothermal-material polypyrrole nanoparticles (PPY NPs). In vitro cytotoxicity experiments showed that the inhibitory effect of DOX + LBP + PPY NPs on 4T1 cells under NIR (near infrared) laser was eight times that of DOX at the same concentration (64% vs. 8%). In vivo antitumor experiments showed that the tumor inhibition rate of LBP + DOX + PPY NPs + NIR reached 87.86%. The results of the H&E staining and biochemical assays showed that the systemic toxicity of LBP + DOX + PPY NPs + NIR group was reduced, and liver damage was significantly lower in the combined topical administration group (ALT 54 ± 14.44 vs. 28 ± 3.56; AST 158 ± 16.39 vs. 111 ± 20.85) (p < 0.05). The results of the Elisa assay showed that LBP + DOX + PPY NPs + NIR can enhance efficacy and reduce toxicity (IL-10, IFN-γ, TNF-α, IgA, ROS). In conclusion, LBP + DOX + PPY NPs combined with photothermal therapy can improve the therapeutic effect of DOX on breast cancer and reduce its toxic side effects.
Collapse
Affiliation(s)
- Lina Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Cuiling Zuo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xinxin Liu
- Research Center of Pharmaceutical Engineering Technology, Harbin University of Commerce, Harbin 150076, China
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Zhengqi Dong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Correspondence: (Z.D.); (M.H.)
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Correspondence: (Z.D.); (M.H.)
| |
Collapse
|