1
|
Dugo M, Huang CS, Egle D, Bermejo B, Zamagni C, Seitz RS, Nielsen TJ, Thill M, Antón-Torres A, Russo S, Ciruelos EM, Schweitzer BL, Ross DT, Galbardi B, Greil R, Semiglazov V, Gyorffy B, Colleoni M, Kelly CM, Mariani G, Del Mastro L, Blasi O, Callari M, Pusztai L, Valagussa P, Viale G, Gianni L, Bianchini G. The Immune-Related 27-Gene Signature DetermaIO Predicts Response to Neoadjuvant Atezolizumab plus Chemotherapy in Triple-Negative Breast Cancer. Clin Cancer Res 2024; 30:4900-4909. [PMID: 39308141 PMCID: PMC11528202 DOI: 10.1158/1078-0432.ccr-24-0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/22/2024] [Accepted: 08/26/2024] [Indexed: 11/02/2024]
Abstract
PURPOSE We assessed the 27-gene RT-qPCR-based DetermaIO assay and the same score calculated from RNA sequencing (RNA-seq) data as predictors of sensitivity to immune checkpoint therapy in the neoTRIPaPDL1 randomized trial that compared neoadjuvant carboplatin/nab-paclitaxel chemotherapy (CT) plus atezolizumab with CT alone in stage II/III triple-negative breast cancer. We also assessed the predictive function of the immuno-oncology (IO) score in expression data of patients treated with pembrolizumab plus paclitaxel (N = 29) or CT alone (N = 56) in the I-SPY2 trial. EXPERIMENTAL DESIGN RNA-seq data were obtained from pretreatment core biopsies from 242 (93.8%) of the 258 patients in the per-protocol-population. The DetermaIO RT-qPCR test, performed in the CAP/CLIA-accredited laboratory of Oncocyte Corp., was available for 220 patients (85.3%). A previously established threshold was used to assign DetermaIO-positive versus DetermaIO-negative status. Publicly available microarray data were used from I-SPY2. RESULTS IO scores calculated from RNA-seq and RT-qPCR data were highly concordant. In neoTRIPaPDL1, DetermaIO-positive cancers (N = 92, 41.8%) had pathologic complete response (pCR) rates of 69.8% and 46.9% in the CT + atezolizumab and CT arms, respectively. In DetermaIO-negative cases, pCR rates were similar in both arms (44.6% vs. 49.2%; interaction test P = 0.04). PDL1 protein expression and stromal tumor-infiltrating lymphocyte count were not predictive of differential benefit from atezolizumab. In I-SPY2, IO-positive cancers (45.9%) had pCR rates of 85.7% and 16%, with and without immunotherapy, respectively. In IO-negative cancers, pCR rates were 46.7% versus 16.1%. CONCLUSIONS DetermaIO identified patients who benefited from neoadjuvant immunotherapy resulting in improved pCR rate, independently of PDL1.
Collapse
Affiliation(s)
- Matteo Dugo
- Department of Medical Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Chiun-Sheng Huang
- National Taiwan University Hospital, College of Medicine, National Taiwan University and Taiwan Breast Cancer Consortium, Taipei, Taiwan
| | - Daniel Egle
- Department of Gynecology, Brust Gesundheit Zentrum Tirol, Medical University Innsbruck, Innsbruck, Austria
| | - Begoña Bermejo
- Medical Oncology, Hospital Clínico Universitario de Valencia, Biomedical Research Institute INCLIVA, Valencia, Spain
| | - Claudio Zamagni
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | | | | | - Marc Thill
- Department of Gynecology and Gynecological Oncology, Agaplesion Markus Krankenhaus, Frankfurt, Germany
| | | | - Stefania Russo
- Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy
| | | | | | | | - Barbara Galbardi
- Department of Medical Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Richard Greil
- Department of Internal Medicine III, Paracelsus Medical University Salzburg, Salzburg Cancer Research Institute-CCCIT; and Cancer Cluster Salzburg, Salzburg, Austria
| | - Vladimir Semiglazov
- N. N. Petrov Research Institute of Oncology, St. Petersburg, Russian Federation
| | - Balázs Gyorffy
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary
- Department of Biophysics, Medical School, University of Pecs, Pecs, Hungary
- Cancer Biomarker Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | | | - Catherine M Kelly
- MaterMater Private Hospital, Dublin and Breast Group Cancer Trials Ireland, Dublin, Ireland
| | | | - Lucia Del Mastro
- University of Genova; IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Olivia Blasi
- IEO, Istituto Europeo di Oncologia IRCCS, Milan, Italy
| | | | - Lajos Pusztai
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | | | | | | | - Giampaolo Bianchini
- Department of Medical Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
2
|
Licata L, Dieci MV, De Angelis C, Marchiò C, Miglietta F, Cortesi L, Fabi A, Schmid P, Cortes J, Pusztai L, Bianchini G, Curigliano G. Navigating practical challenges in immunotherapy for metastatic triple negative breast cancer. Cancer Treat Rev 2024; 128:102762. [PMID: 38776613 DOI: 10.1016/j.ctrv.2024.102762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/05/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Immunotherapy has revolutionized cancer therapy and now represents a standard of care for many tumor types, including triple-negative breast cancer. Despite the positive results that have led to the approval of immunotherapy in both early- and advanced-stage triple-negative breast cancer, pivotal clinical trials cannot address the myriad questions arising in everyday clinical practice, often falling short in delivering all the information that clinicians require. In this manuscript, we aim to address some of these practical questions, with the purpose of providing clinicians with a guide for optimizing the use of immune checkpoint inhibitors in the management of breast cancer patients and identifying opportunities for future research to clarify unresolved questions.
Collapse
Affiliation(s)
- Luca Licata
- Department of Medical Oncology, San Raffaele Hospital, Milan, Italy; School of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
| | - Maria Vittoria Dieci
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Italy; Division of Oncology 2, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Carmine De Angelis
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Caterina Marchiò
- Division of Pathology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy; Department of Medical Sciences, University of Turin, Turin, Italy
| | - Federica Miglietta
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Italy; Division of Oncology 2, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Laura Cortesi
- University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Fabi
- Precision Medicine Unit in Senology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Peter Schmid
- Centre for Experimental Cancer Medicine, Barts Cancer Institute, London, UK
| | - Javier Cortes
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Group, Madrid and Barcelona, Spain; Universidad Europea de Madrid, Faculty of Biomedical and Health Sciences, Department of Medicine, Madrid, Spain
| | - Lajos Pusztai
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Giampaolo Bianchini
- Department of Medical Oncology, San Raffaele Hospital, Milan, Italy; School of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy.
| | - Giuseppe Curigliano
- Division of Early Drug Development, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
3
|
Wang H, Zhang Y, Zhang H, Cao H, Mao J, Chen X, Wang L, Zhang N, Luo P, Xue J, Qi X, Dong X, Liu G, Cheng Q. Liquid biopsy for human cancer: cancer screening, monitoring, and treatment. MedComm (Beijing) 2024; 5:e564. [PMID: 38807975 PMCID: PMC11130638 DOI: 10.1002/mco2.564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024] Open
Abstract
Currently, tumor treatment modalities such as immunotherapy and targeted therapy have more stringent requirements for obtaining tumor growth information and require more accurate and easy-to-operate tumor information detection methods. Compared with traditional tissue biopsy, liquid biopsy is a novel, minimally invasive, real-time detection tool for detecting information directly or indirectly released by tumors in human body fluids, which is more suitable for the requirements of new tumor treatment modalities. Liquid biopsy has not been widely used in clinical practice, and there are fewer reviews of related clinical applications. This review summarizes the clinical applications of liquid biopsy components (e.g., circulating tumor cells, circulating tumor DNA, extracellular vesicles, etc.) in tumorigenesis and progression. This includes the development process and detection techniques of liquid biopsies, early screening of tumors, tumor growth detection, and guiding therapeutic strategies (liquid biopsy-based personalized medicine and prediction of treatment response). Finally, the current challenges and future directions for clinical applications of liquid biopsy are proposed. In sum, this review will inspire more researchers to use liquid biopsy technology to promote the realization of individualized therapy, improve the efficacy of tumor therapy, and provide better therapeutic options for tumor patients.
Collapse
Affiliation(s)
- Hao Wang
- Department of NeurosurgeryThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Yi Zhang
- Department of NeurosurgeryThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Hao Zhang
- Department of NeurosurgeryThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Hui Cao
- Department of PsychiatryThe School of Clinical Medicine, Hunan University of Chinese MedicineChangshaChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province)ChangshaChina
| | - Jinning Mao
- Health Management CenterThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Xinxin Chen
- Department of NeurosurgeryThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Liangchi Wang
- Department of NeurosurgeryFengdu People's Hospital, ChongqingChongqingChina
| | - Nan Zhang
- College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Peng Luo
- Department of OncologyZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Ji Xue
- Department of NeurosurgeryTraditional Chinese Medicine Hospital Dianjiang ChongqingChongqingChina
| | - Xiaoya Qi
- Health Management CenterThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Xiancheng Dong
- Department of Cerebrovascular DiseasesDazhou Central HospitalSichuanChina
| | - Guodong Liu
- Department of NeurosurgeryThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Quan Cheng
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
| |
Collapse
|
4
|
Nosaka T, Murata Y, Akazawa Y, Tanaka T, Takahashi K, Naito T, Matsuda H, Ohtani M, Imamura Y, Nakamoto Y. Programmed Death Ligand 1 Expression in Circulating Tumor Cells as a Predictor and Monitor of Response to Atezolizumab plus Bevacizumab Treatment in Patients with Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:1785. [PMID: 38730737 PMCID: PMC11083531 DOI: 10.3390/cancers16091785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024] Open
Abstract
There remains no reliable biomarker of therapeutic efficacy in hepatocellular carcinoma (HCC) for the PD-L1 inhibitor atezolizumab and bevacizumab (Atezo/Bev). Circulating tumor cells (CTCs) enable the serial collection of living tumor cells. Pre-treatment and serial CTC gene expression changes and tumor histology were evaluated to identify predictors of response to Atezo/Bev. Peripheral blood from 22 patients with HCC treated with Atezo/Bev and 24 patients treated with lenvatinib was serially collected. The RNA expression in CTCs was analyzed using qRT-PCR. Higher PD-L1 expression in pre-treatment CTCs was associated with response and improved prognosis with Atezo/Bev treatment, but not with lenvatinib. There was no correlation between PD-L1 expression in CTCs and that in liver tumor biopsy specimens scored using imaging software. Furthermore, PD-L1 RNA expression in CTCs was dynamically altered by Atezo/Bev, decreasing during effective response and increasing upon progression. CTC-derived RNA collected during Atezo/Bev indicates that patients with higher PD-L1 expression in CTCs at baseline were 3.9 times more responsive to treatment. Therefore, PD-L1 RNA levels in CTCs are an accurate response predictor and may be a monitorable biomarker that changes dynamically to reflect the response during Atezo/Bev treatment.
Collapse
Affiliation(s)
- Takuto Nosaka
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan; (T.N.); (Y.M.); (Y.A.); (T.T.); (K.T.); (T.N.); (H.M.); (M.O.)
| | - Yosuke Murata
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan; (T.N.); (Y.M.); (Y.A.); (T.T.); (K.T.); (T.N.); (H.M.); (M.O.)
| | - Yu Akazawa
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan; (T.N.); (Y.M.); (Y.A.); (T.T.); (K.T.); (T.N.); (H.M.); (M.O.)
| | - Tomoko Tanaka
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan; (T.N.); (Y.M.); (Y.A.); (T.T.); (K.T.); (T.N.); (H.M.); (M.O.)
| | - Kazuto Takahashi
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan; (T.N.); (Y.M.); (Y.A.); (T.T.); (K.T.); (T.N.); (H.M.); (M.O.)
| | - Tatsushi Naito
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan; (T.N.); (Y.M.); (Y.A.); (T.T.); (K.T.); (T.N.); (H.M.); (M.O.)
| | - Hidetaka Matsuda
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan; (T.N.); (Y.M.); (Y.A.); (T.T.); (K.T.); (T.N.); (H.M.); (M.O.)
| | - Masahiro Ohtani
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan; (T.N.); (Y.M.); (Y.A.); (T.T.); (K.T.); (T.N.); (H.M.); (M.O.)
| | - Yoshiaki Imamura
- Division of Diagnostic Pathology/Surgical Pathology, University of Fukui Hospital, Fukui 910-1193, Japan;
| | - Yasunari Nakamoto
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan; (T.N.); (Y.M.); (Y.A.); (T.T.); (K.T.); (T.N.); (H.M.); (M.O.)
| |
Collapse
|
5
|
Zhang S, Guo L, Zhang Z, Liu X, Chen W, Wei Y, Wang X, Wu Q. Type-I protein arginine methyltransferase inhibition primes anti-programmed cell death protein 1 immunotherapy in triple-negative breast cancer. Cancer 2024; 130:1415-1423. [PMID: 38079306 DOI: 10.1002/cncr.35142] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 04/02/2024]
Abstract
BACKGROUND Immune-checkpoint blockade (ICB) therapy shows promise for treating aggressive triple-negative breast cancer (TNBC). However, only some patients benefit from ICB, revealing an urgent need for identifying novel strategies for sensitizing patients to ICB. Previously, the authors demonstrated that type-I protein arginine methyltransferases (PRMTs) regulated antiviral innate-immune responses in TNBC by altering RNA splicing. This study aimed to explore the effects of targeting type-I PRMTs on the tumor microenvironment (TME) and the efficacy of ICB therapy against TNBC. METHODS Single-cell transcriptomic analysis was performed to investigate the effects of type-I PRMT inhibition on the TME, especially T-cell subsets. Single-cell T-cell receptor sequencing was performed to analyze the diversity and dynamics of the T-cell repertoire. A syngeneic murine model of TNBC was used to evaluate the therapeutic efficacy and immune memory effect of combining a type-I PRMT inhibitor (MS023) with an anti-programmed cell death protein 1 (PD-1) antibody. RESULTS Type-I PRMT inhibition combined with anti-PD-1 therapy reduced tumor growth. Mechanistically, type-I PRMT inhibition reshaped the TME. Increased CD8 T-cell infiltration was verified using flow cytometry. Increased clonotypes and clonal diversity were also observed after MS023 treatment, which contributed to immune memory following combination treatment. CONCLUSIONS Targeting type-I PRMT can potentially improve immunotherapeutic efficacies in patients with TNBC. By enhancing the tumor immunogenicity and promoting a more favorable immune microenvironment, this combined approach may enable more patients with TNBC to benefit from immunotherapies.
Collapse
Affiliation(s)
- Sheyu Zhang
- School of Life Sciences, Tianjin University, Tianjin, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Lu Guo
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Ziwen Zhang
- Department of Medical Oncology (Breast Cancer), Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xueying Liu
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Wenjun Chen
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Yong Wei
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Xiaojia Wang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Department of Medical Oncology (Breast Cancer), Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Qin Wu
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
6
|
Licata L, Barreca M, Galbardi B, Dugo M, Viale G, Győrffy B, Karn T, Pusztai L, Gianni L, Callari M, Bianchini G. Breast cancers with high proliferation and low ER-related signalling have poor prognosis and unique molecular features with implications for therapy. Br J Cancer 2023; 129:2025-2033. [PMID: 37935787 PMCID: PMC10703787 DOI: 10.1038/s41416-023-02477-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Luminal breast cancers with high proliferation (MKShi) and low ER-related signalling (ERSlo) have a poor prognosis. We investigated treatment responses and molecular features of MKShi/ERSlo tumours to inform potential therapies. METHODS Gene expression data from patients who received neoadjuvant chemotherapy (NAC) without (MDACC, N = 199) or with pembrolizumab (I-SPY2, N = 40), or endocrine therapy (NET) without (POETIC, N = 172) or with palbociclib (NeoPalAna, N = 32) were analyzed to assess treatment response by MKS/ERS-subgroups. TCGA was used to assess the mutational landscape and biomarkers associated with palbociclib-resistance (Cyclin-E, RBsig, IRPR) and immunotherapy-response (TMB, TILs, T-cell inflamed) by MKS/ERS-subgroups. RESULTS Compared to MKShi/ERShi tumours, MKShi/ERSlo tumours had higher pathological response rates to NAC (22% vs 8%, p = 0.06) but a higher recurrence risk (4-year metastasis-free survival 70% vs 94%, p = 0.01). MKShi/ERSlo tumours frequently harboured TP53 (34%) and PIK3CA (33%) mutations, and showed high expression of Cyclin-E, RBsig and IRPR, high TMB and elevated TIL and T-cell inflamed metagene expression. MKShi/ERSlo tumours retained high proliferation after NET with or without palbociclib but had higher pathological complete response rates when pembrolizumab was added to NAC (42% vs 21%, p = 0.07). CONCLUSIONS MKShi/ERSlo tumours have dismal outcomes and are enriched in chemotherapy-sensitive but ET- and palbociclib-resistant tumours. Biomarker analysis and clinical data suggest a potential role for immunotherapy in this group.
Collapse
Affiliation(s)
- Luca Licata
- Department of Medical Oncology, San Raffaele Hospital, Milan, Italy
- School of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
| | | | - Barbara Galbardi
- Department of Medical Oncology, San Raffaele Hospital, Milan, Italy
- School of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
| | - Matteo Dugo
- Department of Medical Oncology, San Raffaele Hospital, Milan, Italy
- School of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
| | - Giulia Viale
- Department of Medical Oncology, San Raffaele Hospital, Milan, Italy
- School of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
| | - Balàzs Győrffy
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary
- Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| | - Thomas Karn
- Goethe University Hospital Frankfurt, Frankfurt, Germany
| | - Lajos Pusztai
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | | | | | - Giampaolo Bianchini
- Department of Medical Oncology, San Raffaele Hospital, Milan, Italy.
- School of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
7
|
Luo H, Wang W, Mai J, Yin R, Cai X, Li Q. The nexus of dynamic T cell states and immune checkpoint blockade therapy in the periphery and tumor microenvironment. Front Immunol 2023; 14:1267918. [PMID: 37881432 PMCID: PMC10597640 DOI: 10.3389/fimmu.2023.1267918] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/18/2023] [Indexed: 10/27/2023] Open
Abstract
Immune checkpoint blockade (ICB) therapies, that is, using monoclonal antibodies to reinvigorate tumor-reactive, antigen-specific T cells from the inhibitory effects of CTLA-4, PD-1 and PD-L1 immune checkpoints, have revolutionized the therapeutic landscape of modern oncology. However, only a subset of patients can benefit from the ICB therapy. Biomarkers associated with ICB response, resistance and prognosis have been subjected to intensive research in the past decade. Early studies focused on the analysis of tumor specimens and their residing microenvironment. However, biopsies can be challenging to obtain in clinical practice, and do not reflect the dynamic changes of immunological parameters during the ICB therapy. Recent studies have investigated profiles of antigen-specific T cells derived from the peripheral compartment using multi-omics approaches. By tracking the clonotype and diversity of tumor-reactive T cell receptor repertoire, these studies collectively establish that de novo priming of antigen-specific T cells in peripheral blood occurs throughout the course of ICB, whereas preexisting T cells prior to ICB are exhausted to various degrees. Here, we review what is known about ICB-induced T cell phenotypic and functional changes in cancer patients both within the tumor microenvironment and in the peripheral compartment. A better understanding of parameters influencing the response to ICBs will provide rationales for developing novel diagnostics and combinatorial therapeutic strategies to maximize the clinical efficacies of ICB therapies.
Collapse
Affiliation(s)
- Hong Luo
- Department of Obstetrics & Gynecology, Laboratory Medicine and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenxiang Wang
- Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan, China
| | - Jia Mai
- Department of Obstetrics & Gynecology, Laboratory Medicine and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rutie Yin
- Department of Obstetrics & Gynecology, Laboratory Medicine and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuyu Cai
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qintong Li
- Department of Obstetrics & Gynecology, Laboratory Medicine and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|