1
|
Zhou Y, Song Y, Song X, He F, Xu M, Ming D. Review of directional leads, stimulation patterns and programming strategies for deep brain stimulation. Cogn Neurodyn 2025; 19:33. [PMID: 39866658 PMCID: PMC11757656 DOI: 10.1007/s11571-024-10210-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/02/2024] [Accepted: 09/26/2024] [Indexed: 01/28/2025] Open
Abstract
Deep brain stimulation (DBS) is a well-established treatment for both neurological and psychiatric disorders. Directional DBS has the potential to minimize stimulation-induced side effects and maximize clinical benefits. Many new directional leads, stimulation patterns and programming strategies have been developed in recent years. Therefore, it is necessary to review new progress in directional DBS. This paper summarizes progress for directional DBS from the perspective of directional DBS leads, stimulation patterns, and programming strategies which are three key elements of DBS systems. Directional DBS leads are reviewed in electrode design and volume of tissue activated visualization strategies. Stimulation patterns are reviewed in stimulation parameters and advances in stimulation patterns. Programming strategies are reviewed in computational modeling, monopolar review, direction indicators and adaptive DBS. This review will provide a comprehensive overview of primary directional DBS leads, stimulation patterns and programming strategies, making it helpful for those who are developing DBS systems.
Collapse
Affiliation(s)
- Yijie Zhou
- School of Disaster and Emergency Medicine of Tianjin University, Tianjin, 300072 China
- Academy of Medical Engineering and Translational Medicine of Tianjin University, Tianjin, 300072 China
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, 300392 China
| | - Yibo Song
- Academy of Medical Engineering and Translational Medicine of Tianjin University, Tianjin, 300072 China
| | - Xizi Song
- Academy of Medical Engineering and Translational Medicine of Tianjin University, Tianjin, 300072 China
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, 300392 China
| | - Feng He
- Academy of Medical Engineering and Translational Medicine of Tianjin University, Tianjin, 300072 China
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, 300392 China
| | - Minpeng Xu
- Academy of Medical Engineering and Translational Medicine of Tianjin University, Tianjin, 300072 China
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, 300392 China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine of Tianjin University, Tianjin, 300072 China
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, 300392 China
| |
Collapse
|
2
|
Janssen Daalen JM, Selvaraj A, Arnts H, Bloem BR, Bartels RH, Georgiev D, Esselink RAJ, Vinke RS. Gait and balance worsening after bilateral deep brain stimulation of the subthalamic nucleus (STN-DBS) for Parkinson's disease: a systematic review. BMJ Neurol Open 2025; 7:e000898. [PMID: 40092840 PMCID: PMC11907047 DOI: 10.1136/bmjno-2024-000898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/08/2025] [Indexed: 03/19/2025] Open
Abstract
Background Deep brain stimulation of the subthalamic nucleus (STN-DBS) is a widely applied therapy in Parkinson's disease (PD). Occasionally, postoperative worsening of gait or balance occurs, even in the face of a persistently gratifying appendicular symptom improvement. The characteristics vary considerably, and the risk factors for this postoperative gait or balance worsening are largely unknown. We systematically investigated the literature for all cases of gait or balance worsening after STN-DBS in PD and explored its characteristics and determinants. In consecutive populations with best medical treatment as the control group, we also explored its incidence. Methods We searched PubMed, Embase and Cochrane. We considered all cases occurring between 1 month after surgery (to exclude immediate postoperative complications as most likely cause) and 12 months after surgery (to exclude disease progression). Results From 2719 entries, we included 20 studies (n=1010 operated patients). Freezing of gait and falls were the most commonly reported symptoms. The first worsening of symptoms occurred between 3 and 6 months after surgery. Modulation of pedunculopontine afferents was more likely associated with worsening of gait and balance. In controlled trials with consecutive patients, 24 cases (15.9%) were reported, compared with 5.8% with best medical treatment (p=0.0013). Conclusions Gait or balance worsening after STN-DBS is a complex phenomenon that cannot readily be explained by mere disease progression. The multifactorial nature warrants further study in gait labs and through advanced imaging techniques. Future studies should also estimate the actual incidence, which we could not establish as we excluded cohorts without any reported cases.
Collapse
Affiliation(s)
- Jules M Janssen Daalen
- Department of Neurology, Center of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands
| | - Ashok Selvaraj
- Neurosurgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hisse Arnts
- Radboud University Medical Center, Nijmegen, Gelderland, The Netherlands
| | - Bastiaan R Bloem
- Expertise Center for Parkinson & Movement Disorders, Radboudumc, Nijmegen, The Netherlands
| | - Ronald Hma Bartels
- Neurosurgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dejan Georgiev
- Faculty of Computer Information Science, Artificial Intelligence Laboratory, University of Ljubljana, Ljubljana, Slovenia
| | - Rianne A J Esselink
- Department of Neurology, Center of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands
| | - R Saman Vinke
- Neurosurgery, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Busteed L, García-Sánchez C, Pascual-Sedano B, Grunden N, Gironell A, Kulisevsky J, Pagonabarraga J. Impact of Stimulation Frequency on Verbal Fluency Following Bilateral Subthalamic Nucleus Deep Brain Stimulation in Parkinson's Disease. Arch Clin Neuropsychol 2025; 40:22-32. [PMID: 39127889 DOI: 10.1093/arclin/acae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/14/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
OBJECTIVE The effects of stimulation frequency on verbal fluency (VF) following subthalamic nucleus deep brain stimulation (STN-DBS) in Parkinson's disease (PD) are not well understood. The present study examines the impact stimulation frequency has on VF following bilateral STN-DBS in PD. METHODS Prospective study of 38 consecutive patients with PD with low frequency STN-DBS (LFS) (n = 10) and high frequency STN-DBS (HFS) (n = 14), and a non-operated PD control group consisting of patients with fluctuating response to dopaminergic medication (n = 14) homogeneous in age, education, disease duration, and global cognitive function. Patients were evaluated on VF tasks (letter, semantic, action verbs, alternating). A one-way analysis of variance (ANOVA) was conducted to assess distinctions between groups. Pre- and post-surgical comparisons of fluencies were performed for operated groups. A mixed ANOVA was applied to the data to evaluate the interaction between treatment (HFS vs. LFS) and time (pre- vs. post-surgery). Strategy use (clustering and switching) was evaluated. RESULTS Semantic and letter fluency performance revealed significant differences between HFS and LFS groups. Pre- and post-surgical comparisons revealed HFS negatively affected letter, semantic, and action fluencies, but LFS had no effect on VF. No interaction effect or main effect of treatment was found. Main effect of time was significant for semantic and action fluencies indicating a decrease in postoperative fluency performance. Patients with LFS produced larger average cluster sizes than patients with HFS. CONCLUSION LFS may be less detrimental to VF, but these findings suggest that VF decline following STN-DBS is not caused by stimulation frequency alone.
Collapse
Affiliation(s)
- Laura Busteed
- Department of Medicine, Universidad Autónoma de Barcelona (UAB), Barcelona, Spain
- Movement Disorders Unit, Neurology Department, Santa Creu i Sant Pau Hospital, Barcelona, Spain
- Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain
- Neuropsychology Unit, Neurology Department, Santa Creu i Sant Pau Hospital, Barcelona, Spain
| | - Carmen García-Sánchez
- Department of Medicine, Universidad Autónoma de Barcelona (UAB), Barcelona, Spain
- Movement Disorders Unit, Neurology Department, Santa Creu i Sant Pau Hospital, Barcelona, Spain
- Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain
- Neuropsychology Unit, Neurology Department, Santa Creu i Sant Pau Hospital, Barcelona, Spain
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Berta Pascual-Sedano
- Department of Medicine, Universidad Autónoma de Barcelona (UAB), Barcelona, Spain
- Movement Disorders Unit, Neurology Department, Santa Creu i Sant Pau Hospital, Barcelona, Spain
- Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Barcelona, Spain
| | - Nicholas Grunden
- Department of Medicine, Universidad Autónoma de Barcelona (UAB), Barcelona, Spain
- Neuropsychology Unit, Neurology Department, Santa Creu i Sant Pau Hospital, Barcelona, Spain
- Department of Psychology at Concordia University and Centre for Research on Brain, Language & Music in Montreal, Montreal, Canada
| | - Alexandre Gironell
- Department of Medicine, Universidad Autónoma de Barcelona (UAB), Barcelona, Spain
- Movement Disorders Unit, Neurology Department, Santa Creu i Sant Pau Hospital, Barcelona, Spain
- Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Jaime Kulisevsky
- Department of Medicine, Universidad Autónoma de Barcelona (UAB), Barcelona, Spain
- Movement Disorders Unit, Neurology Department, Santa Creu i Sant Pau Hospital, Barcelona, Spain
- Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Barcelona, Spain
| | - Javier Pagonabarraga
- Department of Medicine, Universidad Autónoma de Barcelona (UAB), Barcelona, Spain
- Movement Disorders Unit, Neurology Department, Santa Creu i Sant Pau Hospital, Barcelona, Spain
- Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Azgomi HF, Louie KH, Bath JE, Presbrey KN, Balakid JP, Marks JH, Wozny TA, Galifianakis NB, Luciano MS, Little S, Starr PA, Wang DD. Modeling and Optimizing Deep Brain Stimulation to Enhance Gait in Parkinson's Disease: Personalized Treatment with Neurophysiological Insights. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.30.24316305. [PMID: 39574845 PMCID: PMC11581078 DOI: 10.1101/2024.10.30.24316305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Although high-frequency deep brain stimulation (DBS) is effective at relieving many motor symptoms of Parkinson's disease (PD), its effects on gait can be variable and unpredictable. This is due to 1) a lack of standardized and robust metrics for gait assessment in PD patients, 2) the challenges of performing a thorough evaluation of all the stimulation parameters space that can alter gait, and 3) a lack of understanding for impacts of stimulation on the neurophysiological signatures of walking. In this study, our goal was to develop a data-driven approach to identify optimal, personalized DBS stimulation parameters to improve gait in PD patients and identify the neurophysiological signature of improved gait. Local field potentials from the globus pallidus and electrocorticography from the motor cortex of three PD patients were recorded using an implanted bidirectional neural stimulator during overground walking. A walking performance index (WPI) was developed to assess gait metrics with high reliability. DBS frequency, amplitude, and pulse width on the "clinically-optimized" stimulation contact were then systemically changed to study their impacts on gait metrics and underlying neural dynamics. We developed a Gaussian Process Regressor (GPR) model to map the relationship between DBS settings and the WPI. Using this model, we identified and validated personalized DBS settings that significantly improved gait metrics. Linear mixed models were employed to identify neural spectral features associated with enhanced walking performance. We demonstrated that improved walking performance was linked to the modulation of neural activity in specific frequency bands, with reduced beta band power in the pallidum and increased alpha band pallidal-motor cortex coherence synchronization during key moments of the gait cycle. Integrating WPI and GPR to optimize DBS parameters underscores the importance of developing and understanding personalized, data-driven interventions for gait improvement in PD.
Collapse
|
5
|
Artusi CA, Ledda C, Gallo S, Rinaldi D, Campisi C, Rousseau V, Thalamas C, Barbosa R, Ory-Magne F, Brefel-Courbon C, Rascol O, de Barros A, Harroch E, Zibetti M, Rizzone MG, Romagnolo A, Imbalzano G, Lopiano L, Houeto JL, Fabbri M. Subthalamic and nigral stimulation for freezing of gait in Parkinson's disease: Randomized pilot trial. JOURNAL OF PARKINSON'S DISEASE 2024; 14:1602-1613. [PMID: 39957196 DOI: 10.1177/1877718x241292315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
BACKGROUND Freezing of gait (FoG) is a debilitating symptom of Parkinson's disease (PD) with limited response to dopaminergic medication and subthalamic deep brain stimulation (STN-DBS). Substantia nigra pars reticulata (SNr) stimulation could improve FoG. OBJECTIVE To analyze the effect of combined STN-SNr stimulation at different frequencies on FoG. METHODS We performed a double-blind, cross-over, randomized pilot trial involving STN-DBS treated PD patients with FoG. Participants received: high-frequency (HF) STN-DBS (S), combined HF-STN and SNr stimulation (C1), and combined HF-STN and low-frequency (LF) SNr stimulation (C2), for one month each. The primary endpoint was the score change in the New-Freezing-of-Gait-Questionnaire (NFOG-Q). Secondary analyses were performed on motor complications, axial symptoms, daily living activities, psychiatric symptoms, sleep, and patient preference. RESULTS Fifteen patients received at least one combined stimulation. No significant difference in NFOG-Q scores was found between S, C1, and C2; one-third of patients showed a clinically significant improvement (≥8 points) with combined stimulations. Motor complications improved significantly with C1 and C2 (C1-S: 3.6 ± 3.8 vs. 4.9 ± 3.8, p = 0.046; C2-S: 2.7 ± 3.1 vs. 4.9 ± 3.8, p = 0.005). 80% of patients preferred the combined STN-SNr stimulation while blinded. All adverse events were manageable. CONCLUSIONS Our study did not prove a statistically significant improvement in NFOG-Q with STN-SNr stimulation; however, one-third of patients experienced a clinically meaningful FoG improvement, and the majority preferred to maintain STN-SNr stimulation. STN-SNr stimulation was both safe and effective in addressing motor complications and improving sleep quality, highlighting the importance of further exploration into the effects of combined STN-SNr stimulation.
Collapse
Affiliation(s)
- Carlo Alberto Artusi
- Department of Neurosciences Rita Levi Montalcini, University of Turin, Turin, Italy
- SC Neurologia 2U, AOU Città della Salute e della Scienza, Torino, Italy
| | - Claudia Ledda
- Department of Neurosciences Rita Levi Montalcini, University of Turin, Turin, Italy
- SC Neurologia 2U, AOU Città della Salute e della Scienza, Torino, Italy
| | - Silvia Gallo
- Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Domiziana Rinaldi
- Department of Neuroscience, Mental Health and Sense Organs (NESMOS), Sapienza University of Rome, Via di Grottarossa, 1035-00189, Rome, Italy
| | - Corrado Campisi
- Department of Neurosciences Rita Levi Montalcini, University of Turin, Turin, Italy
| | - Vanessa Rousseau
- Service de Pharmacologie Médicale et Clinique, Centre Hospitalier Universitaire et Faculté de Médecine de Toulouse, Toulouse, France
- Centre Midi-Pyrénées de PharmacoVigilance, de Pharmacoépidémiologie et d'Informations sur le Médicament et Pharmacopôle Midi-Pyrénées, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
- CIC INSERM 1436, Université et Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Claire Thalamas
- CIC INSERM 1436, Université et Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Raquel Barbosa
- Service de Neurologie, Centre Hospitalier Universitaire, Toulouse, France
- Centre Expert Parkinson de Toulouse, CHU, Toulouse, France
| | - Fabienne Ory-Magne
- Service de Neurologie, Centre Hospitalier Universitaire, Toulouse, France
- Centre Expert Parkinson de Toulouse, CHU, Toulouse, France
| | - Christine Brefel-Courbon
- Service de Neurologie, Centre Hospitalier Universitaire, Toulouse, France
- Centre Expert Parkinson de Toulouse, CHU, Toulouse, France
- France CHU de Toulouse, Université de Toulouse-Toulouse 3, INSERM, UMR1214 Toulouse NeuroImaging Centre "TONIC," Center of Excellence in Neurodegeneration, NeuroToul, Centre Expert Parkinson de Toulouse, Centre d'Investigation Clinique CIC1436, NS-Park/FCRIN Network, Services de Neurologie et de Pharmacologie Clinique, UMR 1048 Institute for Cardiovascular Diseases, Toulouse, France
| | - Olivier Rascol
- CIC INSERM 1436, Université et Centre Hospitalier Universitaire de Toulouse, Toulouse, France
- Centre Expert Parkinson de Toulouse, CHU, Toulouse, France
- France CHU de Toulouse, Université de Toulouse-Toulouse 3, INSERM, UMR1214 Toulouse NeuroImaging Centre "TONIC," Center of Excellence in Neurodegeneration, NeuroToul, Centre Expert Parkinson de Toulouse, Centre d'Investigation Clinique CIC1436, NS-Park/FCRIN Network, Services de Neurologie et de Pharmacologie Clinique, UMR 1048 Institute for Cardiovascular Diseases, Toulouse, France
| | - Amaury de Barros
- Department of Neurosurgery, Toulouse University Hospital, Toulouse, France
- INSERM, UMR1214 Toulouse NeuroImaging Centre "TONIC", Toulouse, France
| | - Estelle Harroch
- CIC INSERM 1436, Université et Centre Hospitalier Universitaire de Toulouse, Toulouse, France
- Centre Expert Parkinson de Toulouse, CHU, Toulouse, France
| | - Maurizio Zibetti
- Department of Neurosciences Rita Levi Montalcini, University of Turin, Turin, Italy
- SC Neurologia 2U, AOU Città della Salute e della Scienza, Torino, Italy
| | - Mario Giorgio Rizzone
- Department of Neurosciences Rita Levi Montalcini, University of Turin, Turin, Italy
- SC Neurologia 2U, AOU Città della Salute e della Scienza, Torino, Italy
| | - Alberto Romagnolo
- Department of Neurosciences Rita Levi Montalcini, University of Turin, Turin, Italy
- SC Neurologia 2U, AOU Città della Salute e della Scienza, Torino, Italy
| | - Gabriele Imbalzano
- Department of Neurosciences Rita Levi Montalcini, University of Turin, Turin, Italy
- SC Neurologia 2U, AOU Città della Salute e della Scienza, Torino, Italy
| | - Leonardo Lopiano
- Department of Neurosciences Rita Levi Montalcini, University of Turin, Turin, Italy
- SC Neurologia 2U, AOU Città della Salute e della Scienza, Torino, Italy
| | - Jean Luc Houeto
- Department of Neurology, NS-Park/F-CRIN network, Limoges University Hospital; Inserm, U1094, EpiMaCT - Epidemiology of chronic diseases in tropical zone, Limoges Cedex 01, France
| | - Margherita Fabbri
- CIC INSERM 1436, Université et Centre Hospitalier Universitaire de Toulouse, Toulouse, France
- Service de Neurologie, Centre Hospitalier Universitaire, Toulouse, France
- Centre Expert Parkinson de Toulouse, CHU, Toulouse, France
- France CHU de Toulouse, Université de Toulouse-Toulouse 3, INSERM, UMR1214 Toulouse NeuroImaging Centre "TONIC," Center of Excellence in Neurodegeneration, NeuroToul, Centre Expert Parkinson de Toulouse, Centre d'Investigation Clinique CIC1436, NS-Park/FCRIN Network, Services de Neurologie et de Pharmacologie Clinique, UMR 1048 Institute for Cardiovascular Diseases, Toulouse, France
| |
Collapse
|
6
|
Durmaz Çelik N, Yaman Kula A, Yiğit Tekkanat EG, Kuzu Kumcu M, Yanardağ M, Özkan S. Evaluating the Effects of Frequency of Subthalamic Nucleus Deep Brain Stimulation on Postural Control in Parkinson's Disease: A Case-Series Study. J Clin Med 2024; 13:6357. [PMID: 39518496 PMCID: PMC11547023 DOI: 10.3390/jcm13216357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objectives: Subthalamic nucleus deep brain stimulation (STN-DBS) is a standard treatment for motor complications in Parkinson's disease (PD). Its impact on axial symptoms is still not fully understood. This study aimed to quantitatively evaluate the effect of frequency changes within the therapeutic window on postural control performances of individuals with PD who underwent bilateral STN-DBS. Methods: Postural control was assessed using Computerized Dynamic Posturography with randomized DBS frequency parameters, low (60 Hz), high (130 Hz), and very high (180 Hz), across six sensory organization test (SOT) conditions. Results: Twenty PD participants with a mean age of 61.2 ± 10.1 years were included. There were no differences in equilibrium scores of SOT conditions between 60, 130, and 180 Hz frequencies (p > 0.05), except the SOT6 score (p = 0.003), where 60 Hz showed better equilibrium performance in SOT6, indicating an advantage in postural control when visual cues are disturbed. Discussion: Low-frequency settings (60 Hz) in STN-DBS may benefit those who rely heavily on visual cues while ineffectively using somatosensory and vestibular inputs. Conclusions: A tailored approach to the DBS frequency setting could optimize postural stability and reduce fall risk in these patients. Future research is needed to explore these mechanisms to enhance therapeutic strategies.
Collapse
Affiliation(s)
- Nazlı Durmaz Çelik
- Department of Neurology, Faculty of Medicine, Eskişehir Osmangazi University, 26040 Eskişehir, Turkey; (E.G.Y.T.); (S.Ö.)
| | - Aslı Yaman Kula
- Department of Neurology, Faculty of Medicine, Bezmialem Foundation University, 34093 İstanbul, Turkey;
| | - Elif Göksu Yiğit Tekkanat
- Department of Neurology, Faculty of Medicine, Eskişehir Osmangazi University, 26040 Eskişehir, Turkey; (E.G.Y.T.); (S.Ö.)
| | - Müge Kuzu Kumcu
- Department of Neurology, Faculty of Medicine, Lokman Hekim University, 06530 Ankara, Turkey;
| | - Mehmet Yanardağ
- Research Institute for Individuals with Disability, Anadolu University, 26470 Eskişehir, Turkey;
| | - Serhat Özkan
- Department of Neurology, Faculty of Medicine, Eskişehir Osmangazi University, 26040 Eskişehir, Turkey; (E.G.Y.T.); (S.Ö.)
| |
Collapse
|
7
|
Tortato NCB, Ribas G, Frizon LA, Farah M, Teive HAG, Munhoz RP. Efficacy of subthalamic deep brain stimulation programming strategies for gait disorders in Parkinson's disease: a systematic review and meta-analysis. Neurosurg Rev 2024; 47:525. [PMID: 39223361 DOI: 10.1007/s10143-024-02761-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/04/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Patients with advanced Parkinson's disease often suffer from severe gait and balance problems, impacting quality of live and persisting despite optimization of standard therapies. The aim of this review was to systematically review the efficacy of STN-DBS programming techniques in alleviating gait disturbances in patients with advanced PD. Searches were conducted in PubMed, Embase, and Lilacs databases, covering studies published until May 2024. The review identified 36 articles that explored five distinct STN-DBS techniques aimed at addressing gait and postural instability in Parkinson's patients: low-frequency stimulation, ventral STN stimulation for simultaneous substantia nigra activation, interleaving, asymmetric stimulation and a short pulse width study. Among these, 21 articles were included in the meta-analysis, which revealed significant heterogeneity among studies. Notably, low-frequency STN-DBS demonstrated positive outcomes in total UPDRS-III score and FOG-Q, especially when combined with dopaminergic therapy. The most favorable results were found for low-frequency STN stimulation. The descriptive analysis suggests that unconventional stimulation approaches may be viable for gait problems in patients who do not respond to standard therapies.
Collapse
Affiliation(s)
- Nathália C B Tortato
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Parana, Rua General Carneiro, 181, Curitiba, 80060-900, PR, Brazil.
| | - Gustavo Ribas
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Parana, Rua General Carneiro, 181, Curitiba, 80060-900, PR, Brazil
| | - Leonardo A Frizon
- Neurosurgery Department, Faculdade Pequeno Principe, Av Iguaçu, 333, Curitiba, Brazil
| | - Marina Farah
- Neurology Service, Pontifical Catholic University of Parana, Rua Imaculada Conceição, 1155, Curitiba, Brazil
| | - Hélio A G Teive
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Parana, Rua General Carneiro, 181, Curitiba, 80060-900, PR, Brazil
| | - Renato P Munhoz
- Movement Disorders Centre, Toronto Western Hospital, University of Toronto, 399 Bathurst St, Toronto, Canada
| |
Collapse
|
8
|
Jia F, Shukla AW, Hu W, Ma Y, Zhang J, Almeida L, Kao C, Guo Y, Zhang S, Tao Y, Ling Z, Xu X, Yang Z, Meng FG, Wan X, Liu H, Konard PE, Li L. Variable frequency deep brain stimulation of subthalamic nucleus to improve freezing of gait in Parkinson's disease. Natl Sci Rev 2024; 11:nwae187. [PMID: 38948151 PMCID: PMC11214434 DOI: 10.1093/nsr/nwae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 07/02/2024] Open
Affiliation(s)
- Fumin Jia
- National Engineering Laboratory for Neuromodulation, Tsinghua University, China
| | - Aparna Wagle Shukla
- University of Florida Center for Movement Disorders and Neurorestoration, USA
| | - Wei Hu
- University of Florida Center for Movement Disorders and Neurorestoration, USA
| | - Yu Ma
- Tsinghua University Yuquan Hospital, China
| | - Jianguo Zhang
- Beijing Tiantan Hospital, Capital Medical University, China
| | - Leonardo Almeida
- University of Florida Center for Movement Disorders and Neurorestoration, USA
| | - Chris Kao
- School of Medicine, Vanderbilt University, USA
| | - Yi Guo
- Peking Union Medical College Hospital, China
| | | | - Yingqun Tao
- The General Hospital of Shenyang Military, China
| | | | - Xin Xu
- Chinese PLA General Hospital, China
| | - Zhiquan Yang
- Xiangya Hospital Central South University, China
| | - Fan-gang Meng
- Beijing Neurosurgical Institute, Capital Medical University, China
| | - Xinhua Wan
- Peking Union Medical College Hospital, China
| | - Hesheng Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, USA
| | | | - Luming Li
- National Engineering Laboratory for Neuromodulation, Tsinghua University, China
- Precision Medicine & Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, China
- Man-Machine-Environment Engineering Institute, School of Aerospace Engineering, Tsinghua University, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, China
| |
Collapse
|
9
|
Wu Z, Ren Z, Gao R, Sun K, Sun F, Liu T, Zheng S, Wang W, Zhang G. Impact of subthalamic nucleus deep brain stimulation at different frequencies on neurogenesis in a rat model of Parkinson's disease. Heliyon 2024; 10:e30730. [PMID: 38784548 PMCID: PMC11112288 DOI: 10.1016/j.heliyon.2024.e30730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Neurogenesis, play a vital role in neuronal plasticity of adult mammalian brains, and its dysregulation is present in the pathophysiology of Parkinson's disease (PD). While subthalamic nucleus deep brain stimulation (STN-DBS) at various frequencies has been proven effective in alleviating PD symptoms, its influence on neurogenesis remains unclear. This study aimed to investigate the effects of 1-week electrical stimulation at frequencies of 60Hz, 130Hz, and 180Hz on neurogenesis in the subventricular zone (SVZ) of PD rats. A hemiparkinsonian rat model was established using 6-hydroxydopamine and categorized into six groups: control, PD, sham stimulation, 60Hz stimulation, 130Hz stimulation, and 180Hz stimulation. Motor function was assessed using the open field test and rotarod test after one week of STN-DBS at different frequencies. Tyrosine hydroxylase (TH) expression in brain tissue was analyzed via Western blot and immunohistochemistry. Immunofluorescence analysis was conducted to evaluate the expression of BrdU/Sox2, BrdU/GFAP, Ki67/GFAP, and BrdU/DCX in bilateral SVZ and the rostral migratory stream (RMS). Our findings revealed that high-frequency STN-DBS improved motor function. Specifically, stimulation at 130Hz increased dopaminergic neuron survival in the PD rat model, while significantly enhancing the proliferation of neural stem cells (NSCs) and neuroblasts in bilateral SVZ. Moreover, this stimulation effectively facilitated the generation of new NSCs in the ipsilateral RMS and triggered the emergence of fresh neuroblasts in bilateral RMS, with notable presence within the lesioned striatum. Conversely, electrical stimulation at 60Hz and 180Hz did not exhibit comparable effects. The observed promotion of neurogenesis in PD rats following STN-DBS provides valuable insights into the mechanistic basis of this therapeutic approach for PD.
Collapse
Affiliation(s)
- Zheng Wu
- Department of Functional Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
- Key Laboratory of Neurodegenerative Diseases (Capital Medical University), Ministry of Education, Beijing, China
| | - Zhiwei Ren
- Department of Functional Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
- Key Laboratory of Neurodegenerative Diseases (Capital Medical University), Ministry of Education, Beijing, China
| | - Runshi Gao
- Department of Functional Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
- Key Laboratory of Neurodegenerative Diseases (Capital Medical University), Ministry of Education, Beijing, China
| | - Ke Sun
- Functional Neurosurgery Department, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Fangling Sun
- Department of Experimental Animal Laboratory, Xuan-Wu Hospital of Capital Medical University, Beijing, China
| | - Tingting Liu
- Department of Experimental Animal Laboratory, Xuan-Wu Hospital of Capital Medical University, Beijing, China
| | - Songyang Zheng
- Department of Experimental Animal Laboratory, Xuan-Wu Hospital of Capital Medical University, Beijing, China
| | - Wen Wang
- Department of Experimental Animal Laboratory, Xuan-Wu Hospital of Capital Medical University, Beijing, China
| | - Guojun Zhang
- Functional Neurosurgery Department, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
10
|
Aquino CHD, Moscovich M, Marinho MM, Barcelos LB, Felício AC, Halverson M, Hamani C, Ferraz HB, Munhoz RP. Fundamentals of deep brain stimulation for Parkinson's disease in clinical practice: part 1. ARQUIVOS DE NEURO-PSIQUIATRIA 2024; 82:1-9. [PMID: 38653485 PMCID: PMC11039067 DOI: 10.1055/s-0044-1786026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 02/22/2024] [Indexed: 04/25/2024]
Abstract
Deep brain stimulation (DBS) is recognized as an established therapy for Parkinson's disease (PD) and other movement disorders in the light of the developments seen over the past three decades. Long-term efficacy is established for PD with documented improvement in the cardinal motor symptoms of PD and levodopa-induced complications, such as motor fluctuations and dyskinesias. Timing of patient selection is crucial to obtain optimal benefits from DBS therapy, before PD complications become irreversible. The objective of this first part review is to examine the fundamental concepts of DBS for PD in clinical practice, discussing the historical aspects, patient selection, potential effects of DBS on motor and non-motor symptoms, and the practical management of patients after surgery.
Collapse
Affiliation(s)
- Camila Henriques de Aquino
- University of Calgary, Cumming School of Medicine, Department of Clinical Neurosciences, Calgary, AB, Canada.
- University of Calgary, Hotchkiss Brain Institute, Calgary, AB, Canada.
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Neurologia e Neurocirurgia, São Paulo SP, Brazil.
| | - Mariana Moscovich
- Christian-Albrechts University, Department of Neurology, Kiel, Germany.
| | - Murilo Martinez Marinho
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Neurologia e Neurocirurgia, São Paulo SP, Brazil.
| | - Lorena Broseghini Barcelos
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Neurologia e Neurocirurgia, São Paulo SP, Brazil.
| | | | - Matthew Halverson
- University of Utah, Department of Neurology, Salt Lake City, Utah, United States.
| | - Clement Hamani
- University of Toronto, Sunnybrook Hospital, Toronto, ON, Canada.
| | - Henrique Ballalai Ferraz
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Neurologia e Neurocirurgia, São Paulo SP, Brazil.
| | | |
Collapse
|
11
|
Xu W, Wang J, Li XN, Liang J, Song L, Wu Y, Liu Z, Sun B, Li WG. Neuronal and synaptic adaptations underlying the benefits of deep brain stimulation for Parkinson's disease. Transl Neurodegener 2023; 12:55. [PMID: 38037124 PMCID: PMC10688037 DOI: 10.1186/s40035-023-00390-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/19/2023] [Indexed: 12/02/2023] Open
Abstract
Deep brain stimulation (DBS) is a well-established and effective treatment for patients with advanced Parkinson's disease (PD), yet its underlying mechanisms remain enigmatic. Optogenetics, primarily conducted in animal models, provides a unique approach that allows cell type- and projection-specific modulation that mirrors the frequency-dependent stimulus effects of DBS. Opto-DBS research in animal models plays a pivotal role in unraveling the neuronal and synaptic adaptations that contribute to the efficacy of DBS in PD treatment. DBS-induced neuronal responses rely on a complex interplay between the distributions of presynaptic inputs, frequency-dependent synaptic depression, and the intrinsic excitability of postsynaptic neurons. This orchestration leads to conversion of firing patterns, enabling both antidromic and orthodromic modulation of neural circuits. Understanding these mechanisms is vital for decoding position- and programming-dependent effects of DBS. Furthermore, patterned stimulation is emerging as a promising strategy yielding long-lasting therapeutic benefits. Research on the neuronal and synaptic adaptations to DBS may pave the way for the development of more enduring and precise modulation patterns. Advanced technologies, such as adaptive DBS or directional electrodes, can also be integrated for circuit-specific neuromodulation. These insights hold the potential to greatly improve the effectiveness of DBS and advance PD treatment to new levels.
Collapse
Affiliation(s)
- Wenying Xu
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jie Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xin-Ni Li
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Jingxue Liang
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Lu Song
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yi Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhenguo Liu
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Wei-Guang Li
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China.
- Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
12
|
Dharnipragada R, Denduluri LS, Naik A, Bertogliat M, Awad M, Ikramuddin S, Park MC. Frequency settings of subthalamic nucleus DBS for Parkinson's disease: A systematic review and network meta-analysis. Parkinsonism Relat Disord 2023; 116:105809. [PMID: 37604755 DOI: 10.1016/j.parkreldis.2023.105809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 08/13/2023] [Indexed: 08/23/2023]
Abstract
INTRODUCTION Deep Brain Stimulation (DBS) is an effective treatment for the motor symptoms of Parkinson's Disease. The targeted physiological structure for lead location is commonly the subthalamic nucleus (STN). The efficacy of DBS for improving motor symptoms is assessed via the Unified Parkinson's Disease Rating III Scale (UPDRS-III). In this study, we sought to compare the efficacy of frequency settings utilized for STN-DBS. METHODS Following PRISMA Guidelines, a search on PUBMED and MEDLINE was performed to include full-length randomized controlled trials evaluating STN-DBS. The frequency stimulation parameters and Unified Parkinson's Disease Rating Scale (UPDRS-III) outcomes were extracted in the search. High-frequency stimulation (HFS) was defined as ≥100 Hz and low-frequency stimulation (LFS) was defined as <100 Hz. A frequentist network meta-analysis was performed with odds ratios (OR) and pooling performed using the Mantel-Haenszel method. Statistics are presented as OR [95% CI]. RESULTS 15 studies consisting of 298 patients were included for analysis. Bilateral HFS -0.68 [-0.89; -0.46] was associated with better UPDRS-III scores compared to bilateral LFS. On the other hand, bilateral LFS with medications (MEDS) was favored over HFS with MEDS (-0.28 [-0.63; 0.07]). Bilateral LFS and MEDS, HFS and MEDS, stimulation (STIM) OFF MEDS ON, HFS, LFS, STIM OFF MEDS OFF UPDRS outcomes were ranked from best to worst outcomes. DISCUSSION The outcomes of this study suggest that bilateral HFS has better utility for those with no response to medication, while LFS has additive benefits to medication by improving unique symptoms via different neurophysiological mechanisms.
Collapse
Affiliation(s)
- Rajiv Dharnipragada
- University of Minnesota Medical School, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA.
| | - Lalitha S Denduluri
- College of Liberal Arts, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA
| | - Anant Naik
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Champaign, IL, 61801, USA
| | - Mario Bertogliat
- University of Minnesota Medical School, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA
| | - Matthew Awad
- University of Minnesota Medical School, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA
| | - Salman Ikramuddin
- Department of Neurology, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA
| | - Michael C Park
- Department of Neurology, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA; Department of Neurosurgery, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA
| |
Collapse
|
13
|
Ramdhani RA, Watts J, Kline M, Fitzpatrick T, Niethammer M, Khojandi A. Differential spatiotemporal gait effects with frequency and dopaminergic modulation in STN-DBS. Front Aging Neurosci 2023; 15:1206533. [PMID: 37842127 PMCID: PMC10570440 DOI: 10.3389/fnagi.2023.1206533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/01/2023] [Indexed: 10/17/2023] Open
Abstract
Objective The spatiotemporal gait changes in advanced Parkinson's disease (PD) remain a treatment challenge and have variable responses to L-dopa and subthalamic deep brain stimulation (STN-DBS). The purpose of this study was to determine whether low-frequency STN-DBS (LFS; 60 Hz) elicits a differential response to high-frequency STN-DBS (HFS; 180 Hz) in spatiotemporal gait kinematics. Methods Advanced PD subjects with chronic STN-DBS were evaluated in both the OFF and ON medication states with LFS and HFS stimulation. Randomization of electrode contact pairs and frequency conditions was conducted. Instrumented Stand and Walk assessments were carried out for every stimulation/medication condition. LM-ANOVA was employed for analysis. Results Twenty-two PD subjects participated in the study, with a mean age (SD) of 63.9 years. Significant interactions between frequency (both LFS and HFS) and electrode contact pairs (particularly ventrally located contacts) were observed for both spatial (foot elevation, toe-off angle, stride length) and temporal (foot speed, stance, single limb support (SLS) and foot swing) gait parameters. A synergistic effect was also demonstrated with L-dopa and both HFS and LFS for right SLS, left stance, left foot swing, right toe-off angle, and left arm range of motion. HFS produced significant improvement in trunk and lumbar range of motion compared to LFS. Conclusion The study provides evidence of synergism of L-dopa and STN-DBS on lower limb spatial and temporal measures in advanced PD. HFS and LFS STN-DBS produced equivalent effects among all other tested lower limb gait features. HFS produced significant trunk and lumbar kinematic improvements.
Collapse
Affiliation(s)
- Ritesh A. Ramdhani
- Department of Neurology, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Jeremy Watts
- Department of Industrial and Systems Engineering, University of Tennessee, Knoxville, TN, United States
| | - Myriam Kline
- Center for Neurosciences, Feinstein Institutes for Medical Research at Northwell Health, Manhasset, NY, United States
| | - Toni Fitzpatrick
- Center for Neurosciences, Feinstein Institutes for Medical Research at Northwell Health, Manhasset, NY, United States
| | - Martin Niethammer
- Department of Neurology, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Center for Neurosciences, Feinstein Institutes for Medical Research at Northwell Health, Manhasset, NY, United States
| | - Anahita Khojandi
- Department of Industrial and Systems Engineering, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
14
|
Mügge F, Kleinholdermann U, Heun A, Ollenschläger M, Hannink J, Pedrosa DJ. Subthalamic 85 Hz deep brain stimulation improves walking pace and stride length in Parkinson's disease patients. Neurol Res Pract 2023; 5:33. [PMID: 37559161 PMCID: PMC10413698 DOI: 10.1186/s42466-023-00263-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/23/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Mobile gait sensors represent a compelling tool to objectify the severity of symptoms in patients with idiopathic Parkinson's disease (iPD), but also to determine the therapeutic benefit of interventions. In particular, parameters of Deep Brain stimulation (DBS) with its short latency could be accurately assessed using sensor data. This study aimed at gaining insight into gait changes due to different DBS parameters in patients with subthalamic nucleus (STN) DBS. METHODS An analysis of various gait examinations was performed on 23 of the initially enrolled 27 iPD patients with chronic STN DBS. Stimulation settings were previously adjusted for either amplitude, frequency, or pulse width in a randomised order. A linear mixed effects model was used to analyse changes in gait speed, stride length, and maximum sensor lift. RESULTS The findings of our study indicate significant improvements in gait speed, stride length, and leg lift measurable with mobile gait sensors under different DBS parameter variations. Notably, we observed positive results at 85 Hz, which proved to be more effective than often applied higher frequencies and that these improvements were traceable across almost all conditions. While pulse widths did produce some improvements in leg lift, they were less well tolerated and had inconsistent effects on some of the gait parameters. Our research suggests that using lower frequencies of DBS may offer a more tolerable and effective approach to enhancing gait in individuals with iPD. CONCLUSIONS Our results advocate for lower stimulation frequencies for patients who report gait difficulties, especially those who can adapt their DBS settings remotely. They also show that mobile gait sensors could be incorporated into clinical practice in the near future.
Collapse
Affiliation(s)
- F Mügge
- Department of Neurology, University Hospital of Marburg, Baldingerstraße, Marburg, Germany
| | - U Kleinholdermann
- Department of Neurology, University Hospital of Marburg, Baldingerstraße, Marburg, Germany.
| | - A Heun
- Department of Neurology, University Hospital of Marburg, Baldingerstraße, Marburg, Germany
| | - M Ollenschläger
- Portabiles HealthCare Technologies, Henkestraße 91, 91052, Erlangen, Germany
| | - J Hannink
- Portabiles HealthCare Technologies, Henkestraße 91, 91052, Erlangen, Germany
| | - D J Pedrosa
- Department of Neurology, University Hospital of Marburg, Baldingerstraße, Marburg, Germany
- Center of Mind, Brain and Behaviour, Philipps University Marburg, Hans-Meerwein- Straße, Marburg, Germany
| |
Collapse
|
15
|
Vanegas-Arroyave N, Jankovic J. Spinal cord stimulation for gait disturbances in Parkinson's disease. Expert Rev Neurother 2023; 23:651-659. [PMID: 37345383 DOI: 10.1080/14737175.2023.2228492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/18/2023] [Indexed: 06/23/2023]
Abstract
INTRODUCTION Gait disturbances are a major contributor to the disability associated with Parkinson's disease. Although pharmacologic therapies and deep brain stimulation improve most motor parkinsonian features, their effects on gait are highly variable. Spinal cord stimulation, typically used for the treatment of chronic pain, has emerged as a potential therapeutic approach to improve gait disturbances in Parkinson's disease. AREAS COVERED The authors review the available evidence on the effects of spinal cord stimulation in patients with Parkinson's disease, targeting primarily gait abnormalities. They also discuss possible mechanisms, safety, and methodological implications for future clinical trials. This systematic review of originally published articles in English language was performed using The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA).
Collapse
Affiliation(s)
- Nora Vanegas-Arroyave
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
16
|
Kola S, Rangam RP, Kandadai RM, Alugolu R, Kedasi R, Swamygowda P, Prasad VVSRK, Meka SSL, Fathima ST, Borgohain R. Changes in Optimal Stimulation Frequency with Time for Gait Disturbances in Patients with PD after STN-DBS-A Longitudinal Study. Ann Indian Acad Neurol 2023; 26:401-407. [PMID: 37970314 PMCID: PMC10645258 DOI: 10.4103/aian.aian_95_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/28/2023] [Accepted: 05/03/2023] [Indexed: 11/17/2023] Open
Abstract
Aim To assess the changes in frequency parameters of STN-DBS stimulation over 6 months required to optimize gait in PD patients. Methods It's a single center, open label longitudinal study of PD patients after STN-DBS with gait disorders. Gait assessment using stand-walk-sit (SWS) test and freezing of gait (FOG) scores were done at baseline and after 6 months. Gait was assessed in five frequencies settings, that is, 60 Hz, 90 Hz, 130 Hz, 180 Hz and stimulation "OFF" during medication ON state. Voltage was maintained. Results Fifteen post-deep brain stimulation (DBS) patients were included. Mean duration after surgery was 3.73 ± 2.82 years. In SWS and FOG at baseline, five patients have good response at 180 Hz frequency, five at 130 Hz, one at 90 Hz, two patients at 60 Hz, one both 60 and 90 Hz, and one at both 90 and 180 HZ. And after 6 months out of the 13 patients who were able to perform the test, four patients had good response at 180 Hz frequency, four at 130 Hz, two at 90 Hz, one each for 60 Hz and battery OFF state, and one for both 130 Hz and 180 Hz. At 6 months, four patients had good response at the same frequency as baseline, while 11 patients have change in frequency from baseline. Conclusion Optimal frequency for gait varies in patients-both low and high frequency may be useful. Optimal frequency for improving gait changes over period of time. Regular assessment and changing frequency may improve gait after DBS.
Collapse
Affiliation(s)
- Sruthi Kola
- Department of Neurology, Government Medical College, Ananthapuram, Andhra Pradesh, India
| | - Ravi Prakash Rangam
- Department of Neurology, Government Medical College, Ananthapuram, Andhra Pradesh, India
| | | | - Rajesh Alugolu
- Department of Neurosurgery, Citi Neuro Centre, Telangana, India
| | - Raghuram Kedasi
- Department of Neurosurgery, Nizam’s Institute of Medical Sciences (NIMS), Telangana, India
| | - Pavan Swamygowda
- Department of Neurosurgery, Nizam’s Institute of Medical Sciences (NIMS), Telangana, India
| | - VVSRK Prasad
- Department of Neurology, Citi Neuro Centre, Telangana, India
| | - Sai Sri Lakshmi Meka
- Department of Neurology, Government Medical College, Ananthapuram, Andhra Pradesh, India
| | - Syed T. Fathima
- Department of Neurology, Government Medical College, Ananthapuram, Andhra Pradesh, India
| | - Rupam Borgohain
- Department of Neurology, Citi Neuro Centre, Telangana, India
| |
Collapse
|
17
|
Bravo M, Joon HL, Fallon J, Iansek R, Shoushtarian M. Towards non-invasive peripheral stimulation as a treatment for Parkinson's disease gait. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083474 DOI: 10.1109/embc40787.2023.10340670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Non-invasive coordinated reset stimulation (CRS) to the hands has been shown to improve motor ability in Parkinson's patients, but not specific for gait disturbances. The overall aim of the project is the application of vibrotactile CRS to the feet to improve gait impairments in Parkinson's disease. As a first step towards this objective, we showed that vibrotactile stimulation to the feet can elicit a cortical response and have identified differences in younger and older individuals. Our findings suggest the potential for non-invasive peripheral stimulation as a therapeutic technique.Clinical Relevance- This is an important step towards developing a non-invasive stimulation technique for the management of gait disturbances in Parkinson's disease.
Collapse
|
18
|
Dharnipragada R, Denduluri LS, Naik A, Bertogliat M, Awad M, Ikramuddin S, Park MC. WITHDRAWN: Laterality and frequency settings of subthalamic nucleus DBS for Parkinson's disease: A systematic review and network meta-analysis. Parkinsonism Relat Disord 2023:105455. [PMID: 37321937 DOI: 10.1016/j.parkreldis.2023.105455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 06/17/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal.
Collapse
Affiliation(s)
- Rajiv Dharnipragada
- University of Minnesota Medical School, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA.
| | - Lalitha S Denduluri
- College of Liberal Arts, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA
| | - Anant Naik
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Champaign, IL, 61801, USA
| | - Mario Bertogliat
- University of Minnesota Medical School, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA
| | - Matthew Awad
- University of Minnesota Medical School, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA
| | - Salman Ikramuddin
- Department of Neurology, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA
| | - Michael C Park
- Department of Neurology, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA; Department of Neurosurgery, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA
| |
Collapse
|
19
|
Zacharia A, Kaski D, Bouthour W, Dayal V, Bereau M, Mahlknecht P, Georgiev D, Péron J, Foltynie T, Zrinzo L, Jahanshahi M, Rothwell J, Limousin P. Effects of deep brain stimulation frequency on eye movements and cognitive control. NPJ Parkinsons Dis 2023; 9:50. [PMID: 37002261 PMCID: PMC10066205 DOI: 10.1038/s41531-023-00470-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/06/2023] [Indexed: 04/03/2023] Open
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for Parkinson's disease (PD). Varying the frequency DBS has differential effects on axial and distal limb functions, suggesting differing modulation of relevant pathways. The STN is also a critical node in oculomotor and associative networks, but the effect of stimulation frequency on these networks remains unknown. This study aimed to investigate the effects of 80 hz vs. 130 Hz frequency STN-DBS on eye movements and executive control. Twenty-one STN-DBS PD patients receiving 130 Hz vs. 80 Hz stimulation were compared to a healthy control group (n = 16). All participants were tested twice in a double-blind manner. We examined prosaccades (latency and gain) and antisaccades (latency of correct and incorrect antisaccades, error rate and gain of the correct antisaccades). Executive function was tested with the Stroop task. The motor condition was assessed using Unified Parkinson's Disease Rating Scale part III. The antisaccadic error rate was higher in patients (p = 0.0113), more so in patients on 80 Hz compared to 130 Hz (p = 0.001) stimulation. The differences between patients and controls and between frequencies for all other eye-movements or cognitive measures were not statistically significant. We show that 80 Hz STN-DBS in PD reduces the ability to maintain stable fixation but does not alter inhibition, resulting in a higher antisaccade error rate presumably due to less efficient fixation, without altering the motor state. This provides a wider range of stimulation parameters that can reduce specific DBS-related effects without affecting motor outcomes.
Collapse
Affiliation(s)
- André Zacharia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, The National Hospital for Neurology and Neurosurgery, London, UK
- Department of Neurology, Geneva University Hospitals, Geneva, Switzerland
- Department of Neurology, Clinique Bernoise Montana, Crans-, Montana, Switzerland
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Diego Kaski
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Walid Bouthour
- Department of Neurology, Geneva University Hospitals, Geneva, Switzerland
| | - Viswas Dayal
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Matthieu Bereau
- Department of Neurology, Besançon University Hospital, Besançon, France
| | - Philipp Mahlknecht
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Dejan Georgiev
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, The National Hospital for Neurology and Neurosurgery, London, UK
- Department of Neurology, University Medical Centre, Ljubljana, Slovenia
| | - Julie Péron
- Department of Neurology, Geneva University Hospitals, Geneva, Switzerland
| | - Tom Foltynie
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Ludvic Zrinzo
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Marjan Jahanshahi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, The National Hospital for Neurology and Neurosurgery, London, UK
| | - John Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Patricia Limousin
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, The National Hospital for Neurology and Neurosurgery, London, UK.
| |
Collapse
|
20
|
Shi B, Tay A, Au WL, Tan DML, Chia NSY, Yen SC. Detection of Freezing of Gait Using Convolutional Neural Networks and Data From Lower Limb Motion Sensors. IEEE Trans Biomed Eng 2022; 69:2256-2267. [PMID: 34986092 DOI: 10.1109/tbme.2022.3140258] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Parkinson's disease (PD) is a chronic, non-reversible neurodegenerative disorder, and freezing of gait (FOG) is one of the most disabling symptoms in PD as it is often the leading cause of falls and injuries that drastically reduces patients' quality of life. In order to monitor continuously and objectively PD patients who suffer from FOG and enable the possibility of on-demand cueing assistance, a sensor-based FOG detection solution can help clinicians manage the disease and help patients overcome freezing episodes. Many recent studies have leveraged deep learning models to detect FOG using signals extracted from inertial measurement unit (IMU) devices. Usually, the latent features and patterns of FOG are discovered from either the time or frequency domain. In this study, we investigated the use of the time-frequency domain by applying the Continuous Wavelet Transform to signals from IMUs placed on the lower limbs of 63 PD patients who suffered from FOG. We built convolutional neural networks to detect the FOG occurrences, and employed the Bayesian Optimisation approach to obtain the hyper-parameters. The results showed that the proposed subject-independent model was able to achieve a geometric mean of 90.7% and a F1 score of 91.5%.
Collapse
|
21
|
Pozzi NG, Palmisano C, Reich MM, Capetian P, Pacchetti C, Volkmann J, Isaias IU. Troubleshooting Gait Disturbances in Parkinson's Disease With Deep Brain Stimulation. Front Hum Neurosci 2022; 16:806513. [PMID: 35652005 PMCID: PMC9148971 DOI: 10.3389/fnhum.2022.806513] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/16/2022] [Indexed: 01/08/2023] Open
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus or the globus pallidus is an established treatment for Parkinson's disease (PD) that yields a marked and lasting improvement of motor symptoms. Yet, DBS benefit on gait disturbances in PD is still debated and can be a source of dissatisfaction and poor quality of life. Gait disturbances in PD encompass a variety of clinical manifestations and rely on different pathophysiological bases. While gait disturbances arising years after DBS surgery can be related to disease progression, early impairment of gait may be secondary to treatable causes and benefits from DBS reprogramming. In this review, we tackle the issue of gait disturbances in PD patients with DBS by discussing their neurophysiological basis, providing a detailed clinical characterization, and proposing a pragmatic programming approach to support their management.
Collapse
Affiliation(s)
- Nicoló G. Pozzi
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Chiara Palmisano
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Martin M. Reich
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Philip Capetian
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Claudio Pacchetti
- Parkinson’s Disease and Movement Disorders Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Jens Volkmann
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Ioannis U. Isaias
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
- Parkinson Institute Milan, ASST Gaetano Pini-CTO, Milan, Italy
| |
Collapse
|
22
|
Parkinson's Disease Symptoms Associated with Developing On-State Axial Symptoms Early after Subthalamic Deep Brain Stimulation. Diagnostics (Basel) 2022; 12:diagnostics12041001. [PMID: 35454049 PMCID: PMC9027591 DOI: 10.3390/diagnostics12041001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022] Open
Abstract
Background: The relationship between axial symptoms in Parkinson’s disease (PD) and subthalamic deep brain stimulation (STN-DBS) is still unclear. Purpose: We searched for particular clinical characteristics before STN-DBS linked to on-state axial problems after surgery. Methods: We retrospectively analyzed baseline motor, emotional and cognitive features from PD patients with early axial symptoms (within 4 years after STN-DBS) and late axial symptoms (after 4 years). We also considered a group of PD patients without axial symptoms for at least 4 years after surgery. Results: At baseline, early-axial PD patients (n = 28) had a higher on-state Unified Parkinson’s Disease Rating Scale III (15.0 ± 5.6 to 11.6 ± 6.2, p = 0.020), higher axial score (2.4 ± 1.8 to 0.7 ± 1.0, p < 0.001) and worse dopaminergic response (0.62 ± 0.12 to 0.70 ± 0.11, p = 0.005), than non-axial PD patients (n = 51). Early-axial PD patients had short-term recall impairment, not seen in non-axial PD (36.3 ± 7.6 to 40.3 ± 9.3, p = 0.041). These variables were similar between late-axial PD (n = 18) and non-axial PD, but late-axial PD showed worse frontal dysfunction. Conclusions: PD patients with early axial symptoms after DBS may have a significantly worse presurgical motor phenotype, poorer dopaminergic response and memory impairment. This may correspond to a more severe form of PD.
Collapse
|
23
|
Frey J, Cagle J, Johnson KA, Wong JK, Hilliard JD, Butson CR, Okun MS, de Hemptinne C. Past, Present, and Future of Deep Brain Stimulation: Hardware, Software, Imaging, Physiology and Novel Approaches. Front Neurol 2022; 13:825178. [PMID: 35356461 PMCID: PMC8959612 DOI: 10.3389/fneur.2022.825178] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Deep brain stimulation (DBS) has advanced treatment options for a variety of neurologic and neuropsychiatric conditions. As the technology for DBS continues to progress, treatment efficacy will continue to improve and disease indications will expand. Hardware advances such as longer-lasting batteries will reduce the frequency of battery replacement and segmented leads will facilitate improvements in the effectiveness of stimulation and have the potential to minimize stimulation side effects. Targeting advances such as specialized imaging sequences and "connectomics" will facilitate improved accuracy for lead positioning and trajectory planning. Software advances such as closed-loop stimulation and remote programming will enable DBS to be a more personalized and accessible technology. The future of DBS continues to be promising and holds the potential to further improve quality of life. In this review we will address the past, present and future of DBS.
Collapse
Affiliation(s)
- Jessica Frey
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Jackson Cagle
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Kara A. Johnson
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Joshua K. Wong
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Justin D. Hilliard
- Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Christopher R. Butson
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
- Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Michael S. Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Coralie de Hemptinne
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| |
Collapse
|
24
|
Cui CK, Lewis SJG. Future Therapeutic Strategies for Freezing of Gait in Parkinson's Disease. Front Hum Neurosci 2021; 15:741918. [PMID: 34795568 PMCID: PMC8592896 DOI: 10.3389/fnhum.2021.741918] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/05/2021] [Indexed: 12/28/2022] Open
Abstract
Freezing of gait (FOG) is a common and challenging clinical symptom in Parkinson’s disease. In this review, we summarise the recent insights into freezing of gait and highlight the strategies that should be considered to improve future treatment. There is a need to develop individualised and on-demand therapies, through improved detection and wearable technologies. Whilst there already exist a number of pharmacological (e.g., dopaminergic and beyond dopamine), non-pharmacological (physiotherapy and cueing, cognitive training, and non-invasive brain stimulation) and surgical approaches to freezing (i.e., dual-site deep brain stimulation, closed-loop programming), an integrated collaborative approach to future research in this complex area will be necessary to systematically investigate new therapeutic avenues. A review of the literature suggests standardising how gait freezing is measured, enriching patient cohorts for preventative studies, and harnessing the power of existing data, could help lead to more effective treatments for freezing of gait and offer relief to many patients.
Collapse
Affiliation(s)
- Cathy K Cui
- ForeFront Parkinson's Disease Research Clinic, Brain and Mind Centre, School of Medical Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - Simon J G Lewis
- ForeFront Parkinson's Disease Research Clinic, Brain and Mind Centre, School of Medical Sciences, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
25
|
Conway ZJ, Silburn PA, Perera T, O'Maley K, Cole MH. Low-frequency STN-DBS provides acute gait improvements in Parkinson's disease: a double-blinded randomised cross-over feasibility trial. J Neuroeng Rehabil 2021; 18:125. [PMID: 34376190 PMCID: PMC8353795 DOI: 10.1186/s12984-021-00921-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/02/2021] [Indexed: 02/01/2023] Open
Abstract
Background Some people with Parkinson’s disease (PD) report poorer dynamic postural stability following high-frequency deep brain stimulation of the subthalamic nucleus (STN-DBS), which may contribute to an increased falls risk. However, some studies have shown low-frequency (60 Hz) STN-DBS improves clinical measures of postural stability, potentially providing support for this treatment. This double-blind randomised crossover study aimed to investigate the effects of low-frequency STN-DBS compared to high-frequency stimulation on objective measures of gait rhythmicity in people with PD. Methods During high- and low-frequency STN-DBS and while off-medication, participants completed assessments of symptom severity and walking (e.g., Timed Up-and-Go). During comfortable walking, the harmonic ratio, an objective measures of gait rhythmicity, was derived from head- and trunk-mounted accelerometers to provide insight in dynamic postural stability. Lower harmonic ratios represent less rhythmic walking and have discriminated people with PD who experience falls. Linear mixed model analyses were performed on fourteen participants. Results Low-frequency STN-DBS significantly improved medial–lateral and vertical trunk rhythmicity compared to high-frequency. Improvements were independent of electrode location and total electrical energy delivered. No differences were noted between stimulation conditions for temporal gait measures, clinical mobility measures, motor symptom severity or the presence of gait retropulsion. Conclusions This study provides evidence for the acute benefits of low-frequency stimulation for gait outcomes in STN-DBS PD patients, independent of electrode location. However, the perceived benefits of this therapy may be diminished for people who experienced significant tremor pre-operatively, as lower frequencies may cause these symptoms to re-emerge. Trial registration: This study was prospectively registered with the Australian and New Zealand Clinical Trials Registry on 5 June 2018 (ACTRN12618000944235). Supplementary Information The online version contains supplementary material available at 10.1186/s12984-021-00921-4.
Collapse
Affiliation(s)
- Zachary J Conway
- School of Behavioural and Health Sciences, Australian Catholic University, P.O. Box 456, Brisbane, QLD, 4014, Australia.
| | - Peter A Silburn
- Asia-Pacific Centre for Neuromodulation, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.,Neurosciences Queensland, Brisbane, QLD, Australia
| | - Thushara Perera
- The Bionics Institute, East Melbourne, VIC, Australia.,Department of Medical Bionics, The University of Melbourne, Parkville, VIC, Australia
| | | | - Michael H Cole
- School of Behavioural and Health Sciences, Australian Catholic University, P.O. Box 456, Brisbane, QLD, 4014, Australia. .,Asia-Pacific Centre for Neuromodulation, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia. .,Development and Disability over the Lifespan Program, Healthy Brain and Mind Research Centre, Australian Catholic University, Brisbane, Australia.
| |
Collapse
|
26
|
DiMarzio M, Madhavan R, Hancu I, Fiveland E, Prusik J, Joel S, Gillogly M, Telkes I, Staudt MD, Durphy J, Shin D, Pilitsis JG. Use of Functional MRI to Assess Effects of Deep Brain Stimulation Frequency Changes on Brain Activation in Parkinson Disease. Neurosurgery 2021; 88:356-365. [PMID: 32985661 DOI: 10.1093/neuros/nyaa397] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 06/27/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Models have been developed for predicting ideal contact and amplitude for subthalamic nucleus (STN) deep brain stimulation (DBS) for Parkinson disease (PD). Pulse-width is generally varied to modulate the size of the energy field produced. Effects of varying frequency in humans have not been systematically evaluated. OBJECTIVE To examine how altered frequencies affect blood oxygen level-dependent activation in PD. METHODS PD subjects with optimized DBS programming underwent functional magnetic resonance imaging (fMRI). Frequency was altered and fMRI scans/Unified Parkinson Disease Rating Scale motor subunit (UPDRS-III) scores were obtained. Analysis using DBS-OFF data was used to determine which regions were activated during DBS-ON. Peak activity utilizing T-values was obtained and compared. RESULTS At clinically optimized settings (n = 14 subjects), thalamic, globus pallidum externa (GPe), and posterior cerebellum activation were present. Activation levels significantly decreased in the thalamus, anterior cerebellum, and the GPe when frequency was decreased (P < .001). Primary somatosensory cortex activation levels significantly decreased when frequency was increased by 30 Hz, but not 60 Hz. Sex, age, disease/DBS duration, and bilaterality did not significantly affect the data. Retrospective analysis of fMRI activation patterns predicted optimal frequency in 11/14 subjects. CONCLUSION We show the first data with fMRI of STN DBS-ON while synchronizing cycling with magnetic resonance scanning. At clinically optimized settings, an fMRI signature of thalamic, GPe, and posterior cerebellum activation was seen. Reducing frequency significantly decreased thalamic, GPe, and anterior cerebellum activation. Current standard-of-care programming can take up to 6 mo using UPDRS-III testing alone. We provide preliminary evidence that using fMRI signature of frequency may have clinical utility and feasibility.
Collapse
Affiliation(s)
- Marisa DiMarzio
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York
| | | | | | | | - Julia Prusik
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York.,Department of Neurosurgery, Albany Medical Center, Albany, New York
| | | | - Michael Gillogly
- Department of Neurosurgery, Albany Medical Center, Albany, New York
| | - Ilknur Telkes
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York
| | - Michael D Staudt
- Department of Neurosurgery, Albany Medical Center, Albany, New York
| | - Jennifer Durphy
- Department of Neurology, Albany Medical Center, Albany, New York
| | - Damian Shin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York.,Department of Neurology, Albany Medical Center, Albany, New York
| | - Julie G Pilitsis
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York.,Department of Neurosurgery, Albany Medical Center, Albany, New York
| |
Collapse
|
27
|
Romagnolo A, Zibetti M, Lenzi M, Vighetti S, Pongmala C, Artusi CA, Montanaro E, Imbalzano G, Rizzone MG, Lopiano L. Low frequency subthalamic stimulation and event-related potentials in Parkinson disease. Parkinsonism Relat Disord 2020; 82:123-127. [PMID: 33321451 DOI: 10.1016/j.parkreldis.2020.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND High frequency (130 Hz) subthalamic Deep-Brain-Stimulation (STN-DBS) optimally improves cardinal motor symptoms in Parkinson disease (PD). Low stimulation frequencies (60-80 Hz) improve axial symptoms in some patients and, according to preliminary evidences, may also have a beneficial effect on the cognitive component of motor planning. OBJECTIVE To analyze the configuration of the P300 component of cortical event-related auditory potentials (ERPs), a reliable index of attentive cognitive functions, at different stimulation frequencies in STN-DBS in PD patients. METHODS 12 PD patients underwent ERPs recordings using a standard oddball auditory paradigm with STN-DBS at 60 Hz, 80 Hz, 130 Hz, and OFF-stimulation, applied in a randomized double-blind sequence. ERPs analysis considered the peak amplitude and latency of the P300 components at midline electrode positions (Fz, Cz, Pz). RESULTS P300 latency over Cz and Pz electrodes significantly increased with STN-DBS at 130 Hz compared to OFF-stimulation. P300 latency was also significantly increased, though to a lesser degree, over Pz electrode with stimulation at 80 Hz. No significant P300 latency modifications were detected at 60 Hz stimulation compared to OFF-stimulation condition. P300 amplitude did not change significantly for any of the stimulation conditions tested. CONCLUSIONS Low frequency STN-DBS is associated with minor modifications of P300 latency compared to conventional stimulation at 130 Hz, possibly suggesting that 60 and 80 Hz may have less interference with attentive and cognitive processes in PD patients.
Collapse
Affiliation(s)
- Alberto Romagnolo
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - Maurizio Zibetti
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy.
| | - Marco Lenzi
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - Sergio Vighetti
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - Chatkaew Pongmala
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - Carlo Alberto Artusi
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - Elisa Montanaro
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - Gabriele Imbalzano
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - Mario Giorgio Rizzone
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - Leonardo Lopiano
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| |
Collapse
|
28
|
Aubignat M, Lefranc M, Tir M, Krystkowiak P. Deep brain stimulation programming in Parkinson's disease: Introduction of current issues and perspectives. Rev Neurol (Paris) 2020; 176:770-779. [DOI: 10.1016/j.neurol.2020.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 01/28/2020] [Accepted: 02/12/2020] [Indexed: 12/11/2022]
|
29
|
Mottaghi S, Buchholz O, Hofmann UG. Systematic Evaluation of DBS Parameters in the Hemi-Parkinsonian Rat Model. Front Neurosci 2020; 14:561008. [PMID: 33162878 PMCID: PMC7581801 DOI: 10.3389/fnins.2020.561008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/03/2020] [Indexed: 11/24/2022] Open
Abstract
Electrical stimulation of the subthalamic nucleus (STN) is clinically employed to ameliorate several symptoms of manifest Parkinson’s Disease (PD). Stimulation parameters utilized by chronically implanted pulse generators comprise biphasic rectangular short (60–100 μs) pulses with a repetition frequency between 130 and 180 Hz. A better insight into the effect of electrical stimulation parameters could potentially reveal new possibilities for the improvement of deep brain stimulation (DBS) as a treatment. To this end, we employed single-sided 6-hydroxidopamine (6-OHDA) lesioning of the medial forebrain bundle (MFB) in rats to systematically investigate alternative stimulation parameters. These hemi-parkinsonian (hemi-PD) rats underwent individualized, ipsilateral electrical stimulation to the STN of the lesioned hemisphere, while the transiently induced contralateral rotational behavior was quantified to assess the effect of DBS parameter variations. The number of induced rotations during 30 s of stimulation was strongly correlated with the amplitude of the stimulation pulses. Despite a general linear relation between DBS frequency and rotational characteristics, a plateau effect was observed in the rotation count throughout the clinically used frequency range. Alternative waveforms to the conventional biphasic rectangular (Rect) pulse shapes [Triangular (Tri), Sinusoidal (Sine), and Sawtooth (Lin.Dec.)] required higher charges per phase to display similar behavior in rats as compared to the conventional pulse shape. The Euclidean Distance (ED) was used to quantify similarities between different angular trajectories. Overall, our study confirmed that the effect of different amplitude and frequency parameters of STN-DBS in the hemi-PD rat model was similar to those in human PD patients. This shows that induced contralateral rotation is a valuable readout in testing stimulation parameters. Our study supports the call for more pre-clinical studies using this measurement to assess the effect of other DBS parameters such as pulse-width and interphase intervals.
Collapse
Affiliation(s)
- Soheil Mottaghi
- Section for Neuroelectronic Systems, Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Technical Faculty, University of Freiburg, Freiburg, Germany
| | - Oliver Buchholz
- Section for Neuroelectronic Systems, Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ulrich G Hofmann
- Section for Neuroelectronic Systems, Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Technical Faculty, University of Freiburg, Freiburg, Germany
| |
Collapse
|
30
|
Vissani M, Isaias IU, Mazzoni A. Deep brain stimulation: a review of the open neural engineering challenges. J Neural Eng 2020; 17:051002. [PMID: 33052884 DOI: 10.1088/1741-2552/abb581] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Deep brain stimulation (DBS) is an established and valid therapy for a variety of pathological conditions ranging from motor to cognitive disorders. Still, much of the DBS-related mechanism of action is far from being understood, and there are several side effects of DBS whose origin is unclear. In the last years DBS limitations have been tackled by a variety of approaches, including adaptive deep brain stimulation (aDBS), a technique that relies on using chronically implanted electrodes on 'sensing mode' to detect the neural markers of specific motor symptoms and to deliver on-demand or modulate the stimulation parameters accordingly. Here we will review the state of the art of the several approaches to improve DBS and summarize the main challenges toward the development of an effective aDBS therapy. APPROACH We discuss models of basal ganglia disorders pathogenesis, hardware and software improvements for conventional DBS, and candidate neural and non-neural features and related control strategies for aDBS. MAIN RESULTS We identify then the main operative challenges toward optimal DBS such as (i) accurate target localization, (ii) increased spatial resolution of stimulation, (iii) development of in silico tests for DBS, (iv) identification of specific motor symptoms biomarkers, in particular (v) assessing how LFP oscillations relate to behavioral disfunctions, and (vi) clarify how stimulation affects the cortico-basal-ganglia-thalamic network to (vii) design optimal stimulation patterns. SIGNIFICANCE This roadmap will lead neural engineers novel to the field toward the most relevant open issues of DBS, while the in-depth readers might find a careful comparison of advantages and drawbacks of the most recent attempts to improve DBS-related neuromodulatory strategies.
Collapse
Affiliation(s)
- Matteo Vissani
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56025 Pisa, Italy. Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56025 Pisa, Italy
| | | | | |
Collapse
|
31
|
McAuley MD. Incorrect calculation of total electrical energy delivered by a deep brain stimulator. Brain Stimul 2020; 13:1414-1415. [PMID: 32745654 DOI: 10.1016/j.brs.2020.07.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 10/23/2022] Open
|
32
|
Weiss D, Schoellmann A, Fox MD, Bohnen NI, Factor SA, Nieuwboer A, Hallett M, Lewis SJG. Freezing of gait: understanding the complexity of an enigmatic phenomenon. Brain 2020; 143:14-30. [PMID: 31647540 DOI: 10.1093/brain/awz314] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/07/2019] [Accepted: 08/16/2019] [Indexed: 12/15/2022] Open
Abstract
Diverse but complementary methodologies are required to uncover the complex determinants and pathophysiology of freezing of gait. To develop future therapeutic avenues, we need a deeper understanding of the disseminated functional-anatomic network and its temporally associated dynamic processes. In this targeted review, we will summarize the latest advances across multiple methodological domains including clinical phenomenology, neurogenetics, multimodal neuroimaging, neurophysiology, and neuromodulation. We found that (i) locomotor network vulnerability is established by structural damage, e.g. from neurodegeneration possibly as result from genetic variability, or to variable degree from brain lesions. This leads to an enhanced network susceptibility, where (ii) modulators can both increase or decrease the threshold to express freezing of gait. Consequent to a threshold decrease, (iii) neuronal integration failure of a multilevel brain network will occur and affect one or numerous nodes and projections of the multilevel network. Finally, (iv) an ultimate pathway might encounter failure of effective motor output and give rise to freezing of gait as clinical endpoint. In conclusion, we derive key questions from this review that challenge this pathophysiological view. We suggest that future research on these questions should lead to improved pathophysiological insight and enhanced therapeutic strategies.
Collapse
Affiliation(s)
- Daniel Weiss
- Centre for Neurology, Department for Neurodegenerative Diseases, and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Anna Schoellmann
- Centre for Neurology, Department for Neurodegenerative Diseases, and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Michael D Fox
- Berenson-Allen Center, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical Center, Boston, MA, USA.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Nicolaas I Bohnen
- Departments of Radiology and Neurology, University of Michigan, Ann Arbor, MI, USA; Veterans Administration Ann Arbor Healthcare System, Ann Arbor, MI, USA; Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, USA
| | - Stewart A Factor
- Department of Neurology, Emory School of Medicine, Atlanta, GA, USA
| | - Alice Nieuwboer
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Mark Hallett
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Simon J G Lewis
- Parkinson's Disease Research Clinic, Brain and Mind Centre, University of Sydney, Australia
| |
Collapse
|
33
|
Cebi I, Scholten M, Gharabaghi A, Weiss D. Clinical and Kinematic Correlates of Favorable Gait Outcomes From Subthalamic Stimulation. Front Neurol 2020; 11:212. [PMID: 32431656 PMCID: PMC7213078 DOI: 10.3389/fneur.2020.00212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/09/2020] [Indexed: 12/16/2022] Open
Abstract
Objective: Gait and freezing of gait (FoG) are highly relevant to the outcomes of subthalamic nucleus deep brain stimulation (STN-DBS) in Parkinson's disease (PD). Previous studies pointed to variable response to combined dopaminergic and STN-DBS treatment. Here, we performed a prospective exploratory study on associations of preoperative clinical and kinematic gait measures with quantitative gait and FoG outcomes after STN-DBS implantation. Methods: We characterized 18 consecutive PD patients (13 freezers) before and after STN-DBS implantation. The patients received preoperative levodopa challenges (MedOff vs. MedOn) and a postoperative reassessment at 6 months from surgery in MedOn/StimOn condition. We correlated the FoG outcome, calculated as improvement of Freezing of Gait Assessment Course (FoG-AC) from baseline MedOff to 6-month follow-up MedOn/StimOn, with the levodopa response of preoperative clinical and kinematic gait measures. We considered measures with significant correlations for a multiple regression model. Results: We found that the postoperative gait and FoG outcomes were associated with the preoperative levodopa response of clinical and kinematic gait measures. In particular, preoperative levodopa sensitivity of FoG showed high correlation with a favorable quantitative FoG outcome. Among kinematic measures, preoperative levodopa response of stride length and range of motion showed high correlation with favorable FoG outcome. In addition, the preoperative levodopa sensitivity of FoG predicted postoperative FoG outcome with high accuracy (R 2 = 0.952; 95% CI: 0.95-1.29; P < 0.001). Conclusions: Preoperative clinical and kinematic measures correlated with favorable postoperative gait and FoG outcomes. The findings should be reproduced in larger and independent cohorts to verify their predictive value.
Collapse
Affiliation(s)
- Idil Cebi
- Department of Neurodegenerative Diseases, Centre for Neurology, Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Tübingen, Germany.,German Centre of Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany.,Tübingen Neuro Campus (TNC), University of Tübingen, Tübingen, Germany.,Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, University of Tübingen, Tübingen, Germany
| | - Marlieke Scholten
- Department of Neurodegenerative Diseases, Centre for Neurology, Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Tübingen, Germany.,German Centre of Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany.,Tübingen Neuro Campus (TNC), University of Tübingen, Tübingen, Germany
| | - Alireza Gharabaghi
- Tübingen Neuro Campus (TNC), University of Tübingen, Tübingen, Germany.,Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, University of Tübingen, Tübingen, Germany
| | - Daniel Weiss
- Department of Neurodegenerative Diseases, Centre for Neurology, Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Tübingen, Germany.,German Centre of Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany.,Tübingen Neuro Campus (TNC), University of Tübingen, Tübingen, Germany
| |
Collapse
|
34
|
Speech Intelligibility During Clinical and Low Frequency. Brain Sci 2020; 10:brainsci10010026. [PMID: 31906549 PMCID: PMC7016584 DOI: 10.3390/brainsci10010026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/23/2019] [Accepted: 12/30/2019] [Indexed: 11/16/2022] Open
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has become an effective and widely used tool in the treatment of Parkinson’s disease (PD). STN-DBS has varied effects on speech. Clinical speech ratings suggest worsening following STN-DBS, but quantitative intelligibility, perceptual, and acoustic studies have produced mixed and inconsistent results. Improvements in phonation and declines in articulation have frequently been reported during different speech tasks under different stimulation conditions. Questions remain about preferred STN-DBS stimulation settings. Seven right-handed, native speakers of English with PD treated with bilateral STN-DBS were studied off medication at three stimulation conditions: stimulators off, 60 Hz (low frequency stimulation—LFS), and the typical clinical setting of 185 Hz (High frequency—HFS). Spontaneous speech was recorded in each condition and excerpts were prepared for transcription (intelligibility) and difficulty judgements. Separate excerpts were prepared for listeners to rate abnormalities in voice, articulation, fluency, and rate. Intelligibility for spontaneous speech was reduced at both HFS and LFS when compared to STN-DBS off. On the average, speech produced at HFS was more intelligible than that produced at LFS, but HFS made the intelligibility task (transcription) subjectively more difficult. Both voice quality and articulation were judged to be more abnormal with DBS on. STN-DBS reduced the intelligibility of spontaneous speech at both LFS and HFS but lowering the frequency did not improve intelligibility. Voice quality ratings with STN-DBS were correlated with the ratings made without stimulation. This was not true for articulation ratings. STN-DBS exacerbated existing voice problems and may have introduced new articulatory abnormalities. The results from individual DBS subjects showed both improved and reduced intelligibility varied as a function of DBS, with perceived changes in voice appearing to be more reflective of intelligibility than perceived changes in articulation.
Collapse
|
35
|
Karl JA, Ouyang B, Verhagen Metman L. A Novel Dual-Frequency Deep Brain Stimulation Paradigm for Parkinson's Disease. Neurol Ther 2019; 8:483-489. [PMID: 31243712 PMCID: PMC6858889 DOI: 10.1007/s40120-019-0140-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Indexed: 12/05/2022] Open
Abstract
INTRODUCTION Deep brain stimulation (DBS) of the subthalamic nucleus (STN) using high-frequency (130-185 Hz) stimulation (HFS) is more effective for appendicular than for axial symptoms. Low-frequency stimulation (LFS) of the STN may reduce gait/balance and speech impairment but can result in worsened appendicular symptoms, limiting its clinical usefulness. A novel dual-frequency paradigm (interleave-interlink, IL-IL) was created in order to reduce gait/balance and speech impairment while maintaining appendicular symptom control in Parkinson's disease (PD) patients chronically stimulated with DBS. METHODS Two overlapping LFS programs are applied to each DBS lead, with the overlapping area focused around the optimal electrode contact. As a result, this area receives HFS, controlling appendicular symptoms. The non-overlapping area receives LFS, potentially reducing gait/balance and speech impairment. Patients were separated into three categories based on their chief complaint(s): gait/balance impairment, speech impairment, and/or incomplete PD symptom control. The Clinical- Global Impression of Change scale (CGI-C) was completed retrospectively based on patient/caregiver feedback in patients who remained on IL-IL (at 3 months and at the last follow-up). RESULTS Seventy-six patients were switched from optimized HFS to IL-IL. Fifty-five (72%) patients remained on IL-IL after 22 ± 8.7 months. The median (range) CGI-C for gait was 2 (1-5) at 3 months and 3 (1-4) at last follow-up, for dysarthria it was 4 (1-4) at 3 months and 4 (1-5) at last follow-up, and for PD motor it was 2 (1-3) at 3 months and 2 (1-3) at last follow-up. CONCLUSION A substantial number of patients remained on IL-IL because of subjective improvements in gait/balance, speech, or PD symptoms. A prospective, double-blind, crossover study with objective/quantitative outcome measures is underway.
Collapse
Affiliation(s)
- Jessica A Karl
- Movement Disorder Section of Neurological Sciences, Rush University Medical Center, 1725 W. Harrison Street, Suite 755, Chicago, IL, 60612, USA.
| | - Bichun Ouyang
- Movement Disorder Section of Neurological Sciences, Rush University Medical Center, 1725 W. Harrison Street, Suite 755, Chicago, IL, 60612, USA
| | - Leo Verhagen Metman
- Movement Disorder Section of Neurological Sciences, Rush University Medical Center, 1725 W. Harrison Street, Suite 755, Chicago, IL, 60612, USA
| |
Collapse
|
36
|
Kuo CH, White-Dzuro GA, Ko AL. Approaches to closed-loop deep brain stimulation for movement disorders. Neurosurg Focus 2019; 45:E2. [PMID: 30064321 DOI: 10.3171/2018.5.focus18173] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Deep brain stimulation (DBS) is a safe and effective therapy for movement disorders, such as Parkinson's disease (PD), essential tremor (ET), and dystonia. There is considerable interest in developing "closed-loop" DBS devices capable of modulating stimulation in response to sensor feedback. In this paper, the authors review related literature and present selected approaches to signal sources and approaches to feedback being considered for deployment in closed-loop systems. METHODS A literature search using the keywords "closed-loop DBS" and "adaptive DBS" was performed in the PubMed database. The search was conducted for all articles published up until March 2018. An in-depth review was not performed for publications not written in the English language, nonhuman studies, or topics other than Parkinson's disease or essential tremor, specifically epilepsy and psychiatric conditions. RESULTS The search returned 256 articles. A total of 71 articles were primary studies in humans, of which 50 focused on treatment of movement disorders. These articles were reviewed with the aim of providing an overview of the features of closed-loop systems, with particular attention paid to signal sources and biomarkers, general approaches to feedback control, and clinical data when available. CONCLUSIONS Closed-loop DBS seeks to employ biomarkers, derived from sensors such as electromyography, electrocorticography, and local field potentials, to provide real-time, patient-responsive therapy for movement disorders. Most studies appear to focus on the treatment of Parkinson's disease. Several approaches hold promise, but additional studies are required to determine which approaches are feasible, efficacious, and efficient.
Collapse
Affiliation(s)
- Chao-Hung Kuo
- 1Neurological Surgery, University of Washington, Seattle, Washington.,3School of Medicine, National Yang-Ming University, Taipei, Taiwan; and
| | | | - Andrew L Ko
- 1Neurological Surgery, University of Washington, Seattle, Washington.,4NSF Engineering Research Center for Sensorimotor Neural Engineering, Seattle, Washington
| |
Collapse
|
37
|
Müller MLTM, Marusic U, van Emde Boas M, Weiss D, Bohnen NI. Treatment options for postural instability and gait difficulties in Parkinson's disease. Expert Rev Neurother 2019; 19:1229-1251. [PMID: 31418599 DOI: 10.1080/14737175.2019.1656067] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Introduction: Gait and balance disorders in Parkinson's disease (PD) represent a major therapeutic challenge as frequent falls and freezing of gait impair quality of life and predict mortality. Limited dopaminergic therapy responses implicate non-dopaminergic mechanisms calling for alternative therapies.Areas covered: The authors provide a review that encompasses pathophysiological changes involved in axial motor impairments in PD, pharmacological approaches, exercise, and physical therapy, improving physical activity levels, invasive and non-invasive neurostimulation, cueing interventions and wearable technology, and cognitive interventions.Expert opinion: There are many promising therapies available that, to a variable degree, affect gait and balance disorders in PD. However, not one therapy is the 'silver bullet' that provides full relief and ultimately meaningfully improves the patient's quality of life. Sedentariness, apathy, and emergence of frailty in advancing PD, especially in the setting of medical comorbidities, are perhaps the biggest threats to experience sustained benefits with any of the available therapeutic options and therefore need to be aggressively treated as early as possible. Multimodal or combination therapies may provide complementary benefits to manage axial motor features in PD, but selection of treatment modalities should be tailored to the individual patient's needs.
Collapse
Affiliation(s)
- Martijn L T M Müller
- Functional Neuroimaging, Cognitive and Mobility Laboratory, Department of Radiology, University of Michigan, Ann Arbor, MI, USA.,Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, USA
| | - Uros Marusic
- Institute for Kinesiology Research, Science and Research Centre of Koper, Koper, Slovenia.,Department of Health Sciences, Alma Mater Europaea - ECM, Maribor, Slovenia
| | - Miriam van Emde Boas
- Functional Neuroimaging, Cognitive and Mobility Laboratory, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel Weiss
- Centre for Neurology, Department for Neurodegenerative Diseases and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Nicolaas I Bohnen
- Functional Neuroimaging, Cognitive and Mobility Laboratory, Department of Radiology, University of Michigan, Ann Arbor, MI, USA.,Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, USA.,Geriatric Research Education and Clinical Center, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, USA.,Department of Neurology, University of Michigan, Ann Arbor, USA
| |
Collapse
|
38
|
Phokaewvarangkul O, Boonpang K, Bhidayasiri R. Subthalamic deep brain stimulation aggravates speech problems in Parkinson's disease: Objective and subjective analysis of the influence of stimulation frequency and electrode contact location. Parkinsonism Relat Disord 2019; 66:110-116. [PMID: 31327627 DOI: 10.1016/j.parkreldis.2019.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/11/2019] [Accepted: 07/14/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND Speech disorders, including stuttering and hypophonia, have been reported in patients with Parkinson's disease (PD) after subthalamic deep brain stimulation (STN-DBS). OBJECTIVE To evaluate the effect of stimulation frequency or electrode contact location on speech disorders in PD patients with STN-DBS. METHOD In this case-controlled study, we enrolled 50 PD patients with, and 100 PD patients without STN-DBS to compare their vocal intensities, measured by a sound pressure meter, and perceptual speech ratings, obtained from the speech sections of the United Parkinson's Disease Rating Scale (UPDRS) and subjective ratings regarding the impediment of functional communication by stuttering. For patients with STN-DBS, comparisons were made between high-frequency (HFS; 130 Hz), low-frequency (LFS; 80 Hz), and off-stimulation. We also evaluated the effect of electrode contact locations on speech function. RESULTS Patients with STN-DBS had decreased vocal intensities and UPDRS scores compared to those without (p < 0.05). Vocal intensity was significantly lower during HFS than during LFS and off-stimulation (both, p < 0.05). Stuttering impeded STN-DBS patients' communication to greater extent than for those without (p < 0.001). Vocal intensity was lower when active contacts were in the dorsal zone compared to those in the ventral zone (p < 0.05). Only STN-DBS treatment was a predictive factor for low vocal intensity (OR = 9.53, p = 0.04). CONCLUSION High-frequency STN-DBS with dorsal zone contacts can aggravate certain speech problems in PD patients. Therefore, it is important to balance between motor control and speech impairments in these patients.
Collapse
Affiliation(s)
- Onanong Phokaewvarangkul
- Chulalongkorn Centre of Excellence for Parkinson's Disease & Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Kamolwan Boonpang
- Chulalongkorn Centre of Excellence for Parkinson's Disease & Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Roongroj Bhidayasiri
- Chulalongkorn Centre of Excellence for Parkinson's Disease & Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand.
| |
Collapse
|
39
|
Is lowering stimulation frequency a feasible option for subthalamic deep brain stimulation in Parkinson's disease patients with dysarthria? Parkinsonism Relat Disord 2019; 64:242-248. [DOI: 10.1016/j.parkreldis.2019.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 04/16/2019] [Accepted: 04/24/2019] [Indexed: 11/21/2022]
|
40
|
Meoni S, Debȗ B, Pelissier P, Scelzo E, Castrioto A, Seigneuret E, Chabardes S, Fraix V, Moro E. Asymmetric STN DBS for FOG in Parkinson's disease: A pilot trial. Parkinsonism Relat Disord 2019; 63:94-99. [DOI: 10.1016/j.parkreldis.2019.02.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 01/10/2023]
|
41
|
Koeglsperger T, Palleis C, Hell F, Mehrkens JH, Bötzel K. Deep Brain Stimulation Programming for Movement Disorders: Current Concepts and Evidence-Based Strategies. Front Neurol 2019; 10:410. [PMID: 31231293 PMCID: PMC6558426 DOI: 10.3389/fneur.2019.00410] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/04/2019] [Indexed: 11/16/2022] Open
Abstract
Deep brain stimulation (DBS) has become the treatment of choice for advanced stages of Parkinson's disease, medically intractable essential tremor, and complicated segmental and generalized dystonia. In addition to accurate electrode placement in the target area, effective programming of DBS devices is considered the most important factor for the individual outcome after DBS. Programming of the implanted pulse generator (IPG) is the only modifiable factor once DBS leads have been implanted and it becomes even more relevant in cases in which the electrodes are located at the border of the intended target structure and when side effects become challenging. At present, adjusting stimulation parameters depends to a large extent on personal experience. Based on a comprehensive literature search, we here summarize previous studies that examined the significance of distinct stimulation strategies for ameliorating disease signs and symptoms. We assess the effect of adjusting the stimulus amplitude (A), frequency (f), and pulse width (pw) on clinical symptoms and examine more recent techniques for modulating neuronal elements by electrical stimulation, such as interleaving (Medtronic®) or directional current steering (Boston Scientific®, Abbott®). We thus provide an evidence-based strategy for achieving the best clinical effect with different disorders and avoiding adverse effects in DBS of the subthalamic nucleus (STN), the ventro-intermedius nucleus (VIM), and the globus pallidus internus (GPi).
Collapse
Affiliation(s)
- Thomas Koeglsperger
- Department of Neurology, Ludwig Maximilians University, Munich, Germany.,Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Carla Palleis
- Department of Neurology, Ludwig Maximilians University, Munich, Germany.,Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Franz Hell
- Department of Neurology, Ludwig Maximilians University, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Jan H Mehrkens
- Department of Neurosurgery, Ludwig Maximilians University, Munich, Germany
| | - Kai Bötzel
- Department of Neurology, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
42
|
Panther P, Kuehne M, Voges J, Nullmeier S, Kaufmann J, Hausmann J, Bittner D, Galazky I, Heinze HJ, Kupsch A, Zaehle T. Electric stimulation of the medial forebrain bundle influences sensorimotor gaiting in humans. BMC Neurosci 2019; 20:20. [PMID: 31035935 PMCID: PMC6489177 DOI: 10.1186/s12868-019-0503-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 04/18/2019] [Indexed: 11/24/2022] Open
Abstract
Background Prepulse inhibition (PPI) of the acoustic startle response, a measurement of sensorimotor gaiting, is modulated by monoaminergic, presumably dopaminergic neurotransmission. Disturbances of the dopaminergic system can cause deficient PPI as found in neuropsychiatric diseases. A target specific influence of deep brain stimulation (DBS) on PPI has been shown in animal models of neuropsychiatric disorders. In the present study, three patients with early dementia of Alzheimer type underwent DBS of the median forebrain bundle (MFB) in a compassionate use program to maintain cognitive abilities. This provided us the unique possibility to investigate the effects of different stimulation conditions of DBS of the MFB on PPI in humans. Results Separate analysis of each patient consistently showed a frequency dependent pattern with a DBS-induced increase of PPI at 60 Hz and unchanged PPI at 20 or 130 Hz, as compared to sham stimulation. Conclusions Our data demonstrate that electrical stimulation of the MFB modulates PPI in a frequency-dependent manner. PPI measurement could serve as a potential marker for optimization of DBS settings independent of the patient or the examiner.
Collapse
Affiliation(s)
- Patricia Panther
- Department of Stereotactic Neurosurgery, University Hospital of Magdeburg, Magdeburg, Germany.,Department of Neurological Surgery, Ulm University Medical Center, Ulm, Germany
| | - Maria Kuehne
- Department of Neurology, University Hospital of Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Jürgen Voges
- Department of Stereotactic Neurosurgery, University Hospital of Magdeburg, Magdeburg, Germany
| | - Sven Nullmeier
- Institute of Molecular and Cellular Anatomy, Ulm University, Ulm, Germany
| | - Jörn Kaufmann
- Department of Neurology, University Hospital of Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Janet Hausmann
- Department of Neurology, University Hospital of Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Daniel Bittner
- Department of Neurology, University Hospital of Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Imke Galazky
- Department of Neurology, University Hospital of Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Hans-Jochen Heinze
- Department of Neurology, University Hospital of Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.,Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Andreas Kupsch
- Department of Stereotactic Neurosurgery, University Hospital of Magdeburg, Magdeburg, Germany.,Department of Neurology, University Hospital of Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.,NEUROLOGY-MOVES, Academic Neurology Practice, Berlin, Germany
| | - Tino Zaehle
- Department of Neurology, University Hospital of Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
| |
Collapse
|
43
|
Hartmann CJ, Fliegen S, Groiss SJ, Wojtecki L, Schnitzler A. An update on best practice of deep brain stimulation in Parkinson's disease. Ther Adv Neurol Disord 2019; 12:1756286419838096. [PMID: 30944587 PMCID: PMC6440024 DOI: 10.1177/1756286419838096] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/01/2019] [Indexed: 11/16/2022] Open
Abstract
During the last 30 years, deep brain stimulation (DBS) has evolved into the clinical standard of care as a highly effective treatment for advanced Parkinson’s disease. Careful patient selection, an individualized anatomical target localization and meticulous evaluation of stimulation parameters for chronic DBS are crucial requirements to achieve optimal results. Current hardware-related advances allow for a more focused, individualized stimulation and hence may help to achieve optimal clinical results. However, current advances also increase the degrees of freedom for DBS programming and therefore challenge the skills of healthcare providers. This review gives an overview of the clinical effects of DBS, the criteria for patient, target, and device selection, and finally, offers strategies for a structured programming approach.
Collapse
Affiliation(s)
- Christian J Hartmann
- Department of Neurology/Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Sabine Fliegen
- Department of Neurology/Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefan J Groiss
- Department of Neurology/Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Lars Wojtecki
- Department of Neurology/Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Alfons Schnitzler
- Department of Neurology/Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
44
|
Di Giulio I, Kalliolia E, Georgiev D, Peters AL, Voyce DC, Akram H, Foltynie T, Limousin P, Day BL. Chronic Subthalamic Nucleus Stimulation in Parkinson's Disease: Optimal Frequency for Gait Depends on Stimulation Site and Axial Symptoms. Front Neurol 2019; 10:29. [PMID: 30800094 PMCID: PMC6375830 DOI: 10.3389/fneur.2019.00029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/10/2019] [Indexed: 11/28/2022] Open
Abstract
Axial symptoms emerge in a significant proportion of patients with Parkinson's disease (PD) within 5 years of deep brain stimulation (STN-DBS). Lowering the stimulation frequency may reduce these symptoms. The objectives of the current study were to establish the relationship between gait performance and STN-DBS frequency in chronically stimulated patients with PD, and to identify factors underlying variability in this relationship. Twenty-four patients treated chronically with STN-DBS (>4 years) were studied off-medication. The effect of stimulation frequency (40–140 Hz, 20 Hz-steps, constant energy) on gait was assessed in 6 sessions spread over 1 day. Half of the trials/session involved walking through a narrow doorway. The influence of stimulation voltage was investigated separately in 10 patients. Gait was measured using 3D motion capture and axial symptoms severity was assessed clinically. A novel statistical method established the optimal frequency(ies) for each patient by operating on frequency-tuning curves for multiple gait parameters. Narrowly-tuned optimal frequencies (20 Hz bandwidth) were found in 79% of patients. Frequency change produced a larger effect on gait performance than voltage change. Optimal frequency varied between patients (between 60 and 140 Hz). Contact site in the right STN and severity of axial symptoms were independent predictors of optimal frequency (P = 0.009), with lower frequencies associated with more dorsal contacts and worse axial symptoms. We conclude that gait performance is sensitive to small changes in STN-DBS frequency. The optimal frequency varies considerably between patients and is associated with electrode contact site and severity of axial symptoms. Between-subject variability of optimal frequency may stem from variable pathology outside the basal ganglia.
Collapse
Affiliation(s)
- Irene Di Giulio
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom.,Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Eirini Kalliolia
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom.,St. Luke's Hospital Thessaloniki, Thessaloniki, Greece
| | - Dejan Georgiev
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom.,Department of Neurology, University Medical Centre, Ljubljana, Slovenia
| | - Amy L Peters
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom.,Department of Physical Medicine and Rehabilitation, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| | - Daniel C Voyce
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Harith Akram
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Patricia Limousin
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Brian L Day
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
45
|
Valldeoriola F. Simultaneous low-frequency deep brain stimulation of the substantia nigra pars reticulata and high-frequency stimulation of the subthalamic nucleus to treat levodopa unresponsive freezing of gait in Parkinson's disease: A pilot study. Parkinsonism Relat Disord 2018; 63:231. [PMID: 30580908 DOI: 10.1016/j.parkreldis.2018.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 12/10/2018] [Indexed: 10/27/2022]
Affiliation(s)
- Francesc Valldeoriola
- Institut de Neurociencies, Hospital Clínic de Barcelona, University of Barcelona, Spain.
| |
Collapse
|
46
|
Conway ZJ, Silburn PA, Thevathasan W, Maley KO, Naughton GA, Cole MH. Alternate Subthalamic Nucleus Deep Brain Stimulation Parameters to Manage Motor Symptoms of Parkinson's Disease: Systematic Review and Meta-analysis. Mov Disord Clin Pract 2018; 6:17-26. [PMID: 30746411 DOI: 10.1002/mdc3.12681] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 11/06/2022] Open
Abstract
Background The use of alternate frequencies, amplitudes, and pulse widths to manage motor symptoms in Parkinson's disease (PD) patients with subthalamic nucleus deep brain stimulation (STN-DBS) is of clinical interest, but currently lacks systematic evidence. Objective/Hypothesis Systematically review whether alternate STN-DBS settings influence the therapy's efficacy for managing PD motor symptoms. Methods Systematic searches identified studies that; involved bilateral STN-DBS PD patients; manipulated ≥ 1 STN-DBS parameter (e.g., amplitude); assessed ≥ 1 motor symptom (e.g., tremor); and contrasted the experimental and chronic stimulation settings. A Mantel-Haenszel random-effects meta-analysis compared the UPDRS-III sub-scores at low (60-Hz) and high frequencies ( ≥ 130 Hz). Inter-study heterogeneity was assessed with the Cohen's χ2 and I2 index, while the standard GRADE evidence assessment examined strength of evidence. Results Of the 21 included studies, 17 investigated the effect of alternate stimulation frequencies, five examined alternate stimulation amplitudes, and two studied changes in pulse width. Given the available data, meta-analyses were only possible for alternate stimulation frequencies. Analysis of the heterogeneity amongst the included studies indicated significant variability between studies and, on the basis of the GRADE framework, the pooled evidence from the meta-analysis studies was of very low quality due to the significant risks of bias. Conclusions The meta-analysis reported a very low quality of evidence for the efficacy of low-frequency STN-DBS for managing PD motor symptoms. Furthermore, it highlighted that lower amplitudes lead to the re-emergence of motor symptoms and further research is needed to understand the potential benefits of alternate STN-DBS parameters for PD patients.
Collapse
Affiliation(s)
- Zachary J Conway
- School of Behavioural and Health Sciences Australian Catholic University Brisbane Queensland Australia
| | - Peter A Silburn
- Asia-Pacific Centre for Neuromodulation, Queensland Brain Institute The University of Queensland Brisbane Queensland Australia.,Neurosciences Queensland Brisbane Queensland Australia
| | - Wesley Thevathasan
- The Bionics Institute East Melbourne Victoria Australia.,Department of Neurology Royal Melbourne and Austin Hospitals Melbourne Victoria Australia.,Department of Medicine University of Melbourne Parkville Victoria Australia
| | | | - Geraldine A Naughton
- School of Behavioural and Health Sciences Australian Catholic University Melbourne Victoria Australia
| | - Michael H Cole
- School of Behavioural and Health Sciences Australian Catholic University Brisbane Queensland Australia
| |
Collapse
|
47
|
Decreasing subthalamic deep brain stimulation frequency reverses cognitive interference during gait initiation in Parkinson’s disease. Clin Neurophysiol 2018; 129:2482-2491. [DOI: 10.1016/j.clinph.2018.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/25/2018] [Accepted: 07/25/2018] [Indexed: 11/18/2022]
|
48
|
Frequency-dependent effects of subthalamic deep brain stimulation on motor symptoms in Parkinson's disease: a meta-analysis of controlled trials. Sci Rep 2018; 8:14456. [PMID: 30262859 PMCID: PMC6160461 DOI: 10.1038/s41598-018-32161-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 09/03/2018] [Indexed: 11/08/2022] Open
Abstract
This study aims to investigate how the frequency settings of deep brain stimulation (DBS) targeting the subthalamic nucleus (STN) influence the motor symptoms of Parkinson's disease (PD). Stimulation with frequencies less than 100 Hz (mostly 60 or 80 Hz) is considered low-frequency stimulation (LFS) and with frequencies greater than 100 Hz (mostly 130 or 150 Hz) is considered high-frequency stimulation (HFS). We conducted a comprehensive literature review and meta-analysis with a random-effect model. Ten studies with 132 patients were included in our analysis. The pooled results showed no significant difference in the total Unified Parkinson Disease Rating Scale part III (UPDRS-III) scores (mean effect, -1.50; p = 0.19) or the rigidity subscore between HFS and LFS. Compared to LFS, HFS induced greater reduction in the tremor subscore within the medication-off condition (mean effect, 1.01; p = 0.002), while no significance was shown within the medication-on condition (mean effect, 0.01; p = 0.92). LFS induced greater reduction in akinesia subscore (mean effect, -1.68, p = 0.003), the time to complete the stand-walk-sit (SWS) test (mean effect, -4.84; p < 0.00001), and the number of freezing of gait (FOG) (mean effect, -1.71; p = 0.03). These results suggest that two types of frequency settings may have different effects, that is, HFS induces better responses for tremor and LFS induces greater response for akinesia, gait, and FOG, respectively, which are worthwhile to be confirmed in future study, and will ultimately inform the clinical practice in the management of PD using STN-DBS.
Collapse
|
49
|
Valldeoriola F, Muñoz E, Rumià J, Roldán P, Cámara A, Compta Y, Martí MJ, Tolosa E. Simultaneous low-frequency deep brain stimulation of the substantia nigra pars reticulata and high-frequency stimulation of the subthalamic nucleus to treat levodopa unresponsive freezing of gait in Parkinson's disease: A pilot study. Parkinsonism Relat Disord 2018; 60:153-157. [PMID: 30241951 DOI: 10.1016/j.parkreldis.2018.09.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Experimental studies suggest that low-frequency (LF) (63 Hz) deep brain stimulation (DBS) of the substantia nigra pars reticulata (SNr) could be useful to regulate gait disorders refractory to medical treatment in Parkinson's disease (PD). The SNr neurons could act as high-frequency (HF) pacemakers within locomotor control systems. Currently, no specific therapies can treat gait disorders in PD with insufficient response to dopaminergic treatment. OBJECTIVE To investigate whether LF-SNr-DBS combined with standard HF stimulation of the subthalamic nucleus (STN) is clinically relevant in improving gait disorders that no longer respond to levodopa in PD patients, compared with HF-STN or LF-SNr stimulation alone. METHODS Patients received LF-SNr or HF-STN stimulation alone or combined (COMB) stimulation of both nuclei (crossover design). The nucleus to be stimulated was randomly assigned and clinical evaluations performed by a blinded examiner after three months follow-up for each. Clinical assessment included the Freezing of Gait questionnaire, Tinetti Balance and Walking Assessing tool, and Unified Parkinson's Disease Rating. RESULTS We included six patients (mean age 59.1 years, disease duration 16.1 years). All patients suffered motor fluctuations and dyskinesias. The best results were obtained with COMB in four patients (who preferred and remained with COMB over 3 years of follow-up) and with HF-STN in two patients. SNr stimulation alone did not produce better results than COMB or STN in any patient. CONCLUSION COMB and HF-STN stimulation improved PD-associated gait disorders in this preliminary case series, sustained over time. Further multicenter investigations are required to better explore this therapeutic option.
Collapse
Affiliation(s)
- Francesc Valldeoriola
- Institut de Neurociències, Hospital Clínic de Barcelona, Universitat de Barcelona, Spain.
| | - Esteban Muñoz
- Institut de Neurociències, Hospital Clínic de Barcelona, Universitat de Barcelona, Spain
| | - Jordi Rumià
- Institut de Neurociències, Hospital Clínic de Barcelona, Universitat de Barcelona, Spain
| | - Pedro Roldán
- Institut de Neurociències, Hospital Clínic de Barcelona, Universitat de Barcelona, Spain
| | - Ana Cámara
- Institut de Neurociències, Hospital Clínic de Barcelona, Universitat de Barcelona, Spain
| | - Yaroslau Compta
- Institut de Neurociències, Hospital Clínic de Barcelona, Universitat de Barcelona, Spain
| | - María José Martí
- Institut de Neurociències, Hospital Clínic de Barcelona, Universitat de Barcelona, Spain
| | - Eduardo Tolosa
- Institut de Neurociències, Hospital Clínic de Barcelona, Universitat de Barcelona, Spain
| |
Collapse
|
50
|
Xie T, Bloom L, Padmanaban M, Bertacchi B, Kang W, MacCracken E, Dachman A, Vigil J, Satzer D, Zadikoff C, Markopoulou K, Warnke P, Kang UJ. Long-term effect of low frequency stimulation of STN on dysphagia, freezing of gait and other motor symptoms in PD. J Neurol Neurosurg Psychiatry 2018; 89:989-994. [PMID: 29654112 DOI: 10.1136/jnnp-2018-318060] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/01/2018] [Accepted: 03/24/2018] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To evaluate the long-term effect of 60 Hz stimulation of the subthalamic nucleus (STN) on dysphagia, freezing of gait (FOG) and other motor symptoms in patients with Parkinson's disease (PD) who have FOG at the usual 130 Hz stimulation. METHODS This is a prospective, sequence randomised, crossover, double-blind study. PD patients with medication refractory FOG at 130 Hz stimulation of the STN were randomised to the sequences of 130 Hz, 60 Hz or deep brain stimulation off to assess swallowing function (videofluoroscopic evaluation and swallowing questionnaire), FOG severity (stand-walk-sit test and FOG questionnaire) and motor function (Unified PD Rating Scale, Part III motor examination (UPDRS-III)) at initial visit (V1) and follow-up visit (V2, after being on 60 Hz stimulation for an average of 14.5 months), in their usual medications on state. The frequency of aspiration events, perceived swallowing difficulty and FOG severity at 60 Hz compared with 130 Hz stimulation at V2, and their corresponding changes at V2 compared with V1 at 60 Hz were set as primary outcomes, with similar comparisons in UPDRS-III and its subscores as secondary outcomes. RESULTS All 11 enrolled participants completed V1 and 10 completed V2. We found the benefits of 60 Hz stimulation compared with 130 Hz in reducing aspiration frequency, perceived swallowing difficulty, FOG severity, bradykinesia and overall axial and motor symptoms at V1 and persistent benefits on all of them except dysphagia at V2, with overall decreasing efficacy when comparing V2 to V1. CONCLUSIONS The 60 Hz stimulation, when compared with 130 Hz, has long-term benefits on reducing FOG, bradykinesia and overall axial and motor symptoms except dysphagia, although the overall benefits decrease with long-term use. CLINICAL TRIAL REGISTRATION NCT02549859; Pre-results.
Collapse
Affiliation(s)
- Tao Xie
- Department of Neurology, University of Chicago Medicine, Chicago, Illinois, USA
| | - Lisa Bloom
- Speech and Swallowing Section, Department of Surgery, University of Chicago Medicine, Chicago, Illinois, USA
| | - Mahesh Padmanaban
- Department of Neurology, University of Chicago Medicine, Chicago, Illinois, USA
| | - Breanna Bertacchi
- Department of Neurology, University of Chicago Medicine, Chicago, Illinois, USA
| | - Wenjun Kang
- Center for Research Informatics, University of Chicago, Chicago, Illinois, USA
| | - Ellen MacCracken
- Speech and Swallowing Section, Department of Surgery, University of Chicago Medicine, Chicago, Illinois, USA
| | - Abraham Dachman
- Department of Radiology, University of Chicago Medicine, Chicago, Illinois, USA
| | - Julie Vigil
- Speech and Swallowing Section, Department of Surgery, University of Chicago Medicine, Chicago, Illinois, USA
| | - David Satzer
- Department of Neurosurgery, University of Chicago Medicine, Chicago, Illinois, USA
| | - Cindy Zadikoff
- Department of Neurology, Northwestern University Medical Center, Chicago, Illinois, USA
| | - Katerina Markopoulou
- Department of Neurology, NorthShore University HealthSystem, Glenview, Illinois, USA
| | - Peter Warnke
- Department of Neurosurgery, University of Chicago Medicine, Chicago, Illinois, USA
| | - Un Jung Kang
- Department of Neurology, Columbia University Medical Center, New York City, New York, USA
| |
Collapse
|