1
|
Madadi Asl M, Valizadeh A. Entrainment by transcranial alternating current stimulation: Insights from models of cortical oscillations and dynamical systems theory. Phys Life Rev 2025; 53:147-176. [PMID: 40106964 DOI: 10.1016/j.plrev.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
Signature of neuronal oscillations can be found in nearly every brain function. However, abnormal oscillatory activity is linked with several brain disorders. Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation technique that can potentially modulate neuronal oscillations and influence behavior both in health and disease. Yet, a complete understanding of how interacting networks of neurons are affected by tACS remains elusive. Entrainment effects by which tACS synchronizes neuronal oscillations is one of the main hypothesized mechanisms, as evidenced in animals and humans. Computational models of cortical oscillations may shed light on the entrainment effects of tACS, but current modeling studies lack specific guidelines to inform experimental investigations. This study addresses the existing gap in understanding the mechanisms of tACS effects on rhythmogenesis within the brain by providing a comprehensive overview of both theoretical and experimental perspectives. We explore the intricate interactions between oscillators and periodic stimulation through the lens of dynamical systems theory. Subsequently, we present a synthesis of experimental findings that demonstrate the effects of tACS on both individual neurons and collective oscillatory patterns in animal models and humans. Our review extends to computational investigations that elucidate the interplay between tACS and neuronal dynamics across diverse cortical network models. To illustrate these concepts, we conclude with a simple oscillatory neuron model, showcasing how fundamental theories of oscillatory behavior derived from dynamical systems, such as phase response of neurons to external perturbation, can account for the entrainment effects observed with tACS. Studies reviewed here render the necessity of integrated experimental and computational approaches for effective neuromodulation by tACS in health and disease.
Collapse
Affiliation(s)
- Mojtaba Madadi Asl
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran; Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran, Iran.
| | - Alireza Valizadeh
- Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran, Iran; Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran; The Zapata-Briceño Institute of Neuroscience, Madrid, Spain
| |
Collapse
|
2
|
Yao Z, Tu PY, Zuo X, Wei J, Hu X. Modulating positive self-referential processing by 40 Hz tACS in individuals with subthreshold depression: A double-blind, sham-controlled study. J Psychiatr Res 2025; 186:108-115. [PMID: 40228358 DOI: 10.1016/j.jpsychires.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/28/2025] [Accepted: 04/02/2025] [Indexed: 04/16/2025]
Abstract
BACKGROUND A positive self-evaluation is essential to mental well-being. Despite of its importance, little is known how to modulate or enhance positive self-evaluation. Gamma-frequency (40 Hz) transcranial alternating current stimulation (tACS) has been shown to promote emotion regulation and memory, which may foster positive self-evaluations. Here, we investigated whether 40 Hz tACS over the medial prefrontal cortex (mPFC), a key brain region implicating self-referential processing, could enhance positive self-evaluation among individuals exhibiting subthreshold depression. We hypothesized that the 40 Hz stimulation would enhance self-evaluation. METHODS Participants with subthreshold depression were screened using the Center for Epidemiological Studies Depression Scale Revised-10 item (CES-D-10). In a double-blind, randomized, sham-controlled, between-subjects experiment, sixty participants were randomly assigned to two groups: in the active stimulation group, 31 participants received 20-min session of 40 Hz tACS over the mPFC via high-density tACS. In the sham group, 29 participants received the sham stimulation over the same region. Before and after the tACS, participants completed the Self-Referential Encoding Task (SRET), which they endorsed and recalled positive and negative personality traits. RESULTS We found a significant interaction among stimulation group, depressive symptoms, trait valence (positive or negative). Among participants who received the 40 Hz stimulation, higher levels of baseline depressive symptoms were associated with increased endorsement/recall of positive personality traits compared to the sham group (p < 0.05). CONCLUSION 40 Hz gamma tACS over the mPFC enhanced positive self-referential processing among individuals with subthreshold depression, an effect particularly evident among those with higher depressive symptoms. This effect highlights the potential therapeutic benefits of gamma-frequency stimulation in promoting positive self-evaluation among individuals with depression.
Collapse
Affiliation(s)
- Ziqing Yao
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Pui Yi Tu
- School of Psychology, Central China Normal University, Wuhan, China
| | - Xibo Zuo
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Jinwen Wei
- Department of Physics, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| | - Xiaoqing Hu
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administrative Region of China; HKU-Shenzhen Institute of Research and Innovation, Shenzhen, China.
| |
Collapse
|
3
|
Van Hoornweder S, Mora DAB, Nuyts M, Cuypers K, Verstraelen S, Meesen R. The causal role of beta band desynchronization: Individualized high-definition transcranial alternating current stimulation improves bimanual motor control. Neuroimage 2025; 312:121222. [PMID: 40250642 DOI: 10.1016/j.neuroimage.2025.121222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/18/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025] Open
Abstract
OBJECTIVE To unveil if 3 mA peak-to-peak high-definition β transcranial alternating current stimulation (tACS) applied over C4 -the area overlaying the right sensorimotor cortex-enhances bimanual motor control and affects movement-related β desynchronization (MRβD), thereby providing causal evidence for the polymorphic role of MRβD in motor control. METHODS In this sham-controlled, crossover study, 36 participants underwent 20 min of fixed 20 Hz tACS; tACS individualized to peak β activity during motor planning at baseline; and sham tACS randomized over three consecutive days. Each participant underwent all three conditions for a total of 108 sessions, ensuring within-subject comparisons. Before, during, and after tACS, participants performed a bimanual tracking task (BTT) and 64-channel electroencephalography (EEG) data was measured. Spatiotemporal and temporal clustering statistics with underlying linear mixed effect models were used to test our hypotheses. RESULTS Individualized tACS significantly improved bimanual motor control, both online and offline, and increased online MRβD during motor planning compared to fixed tACS. No offline effects of fixed and individualized tACS on MRβD were found compared to sham, although tACS effects did trend towards the hypothesized MRβD increase. Throughout the course of the study, MRβD and bimanual motor performance increased. Exclusively during motor planning, MRβD was positively associated to bimanual motor performance improvements, emphasizing the functionally polymorphic role of MRβD. tACS was well tolerated and no side-effects occurred. CONCLUSION Individualized β-tACS improves bimanual motor control and enhances motor planning MRβD online. These findings provide causal evidence for the importance of MRβD when planning complex motor behavior.
Collapse
Affiliation(s)
- Sybren Van Hoornweder
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium.
| | | | - Marten Nuyts
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
| | - Koen Cuypers
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium; KU Leuven, Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, 3001 Leuven, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Stefanie Verstraelen
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
| | - Raf Meesen
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
| |
Collapse
|
4
|
van Bree S, Levenstein D, Krause MR, Voytek B, Gao R. Processes and measurements: a framework for understanding neural oscillations in field potentials. Trends Cogn Sci 2025; 29:448-466. [PMID: 39753446 DOI: 10.1016/j.tics.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 05/09/2025]
Abstract
Various neuroscientific theories maintain that brain oscillations are important for neuronal computation, but opposing views claim that these macroscale dynamics are 'exhaust fumes' of more relevant processes. Here, we approach the question of whether oscillations are functional or epiphenomenal by distinguishing between measurements and processes, and by reviewing whether causal or inferentially useful links exist between field potentials, electric fields, and neurobiological events. We introduce a vocabulary for the role of brain signals and their underlying processes, demarcating oscillations as a distinct entity where both processes and measurements can exhibit periodicity. Leveraging this distinction, we suggest that electric fields, oscillating or not, are causally and computationally relevant, and that field potential signals can carry information even without causality.
Collapse
Affiliation(s)
- Sander van Bree
- Department of Medicine, Justus Liebig University, Giessen, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK
| | - Daniel Levenstein
- MILA - Quebec AI Institute, Montreal, QC, Canada; Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Matthew R Krause
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Bradley Voytek
- Department of Cognitive Science, Halıcıŏglu Data Science Institute, Kavli Institute for Brain & Mind, University of California, San Diego, La Jolla, CA, USA
| | - Richard Gao
- Machine Learning in Science, Excellence Cluster Machine Learning and Tübingen AI Center, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
5
|
Li X, Jin R, Lu X, Zhan Y, Jiang N, Peng W. Alpha transcranial alternating current stimulation modulates pain anticipation and perception in a context-dependent manner. Pain 2025; 166:1157-1166. [PMID: 39432811 DOI: 10.1097/j.pain.0000000000003452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/11/2024] [Indexed: 10/23/2024]
Abstract
ABSTRACT Pain perception is closely tied to the brain's anticipatory processes, particularly involving the suppression of sensorimotor α-oscillations, which reflect the system's readiness for incoming pain. Higher sensorimotor α-oscillation levels are correlated with lower pain sensitivity. Alpha transcranial alternating current stimulation (α-tACS) can enhance these oscillations, potentially reducing pain perception, with effects that may be sustained and influenced by the certainty of pain expectations. Hence, this study investigated the immediate and sustained effects of α-tACS on pain anticipation and perception, focusing on how these effects are shaped by the certainty of expectations. In a double-blind, sham-controlled design, 80 healthy participants underwent a 20-minute session of real or sham α-tACS over the right sensorimotor region. Behavioral and neural responses related to pain anticipation and perception were recorded before, immediately after, and 30 minutes poststimulation under both certain and uncertain conditions. Compared with sham stimulation, real α-tACS disrupted the habituation of laser-evoked potentials (N2-P2 complex), particularly under certain expectations, with effects persisting 30 minutes poststimulation. In anticipatory brain oscillations, real α-tACS enhanced somatosensory α1-oscillations and increased midfrontal θ-oscillations in conditions of certainty, with θ-oscillation modulation showing sustained effects. Mediation analysis revealed that α-tACS reduced pain reactivity by enhancing somatosensory α1-oscillations but increased pain reactivity through the enhancement of midfrontal θ-oscillations, with the latter effect being more pronounced. These findings suggest that while α-tACS may provide pain relief through somatosensory α-oscillation augmentation, its stronger and longer-lasting impact on midfrontal θ-oscillations could lead to hyperalgesia, particularly in the context of certain pain expectations.
Collapse
Affiliation(s)
- Xiaoyun Li
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Richu Jin
- Tech X Academy, Shenzhen Polytechnic University, Shenzhen, China
- Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Xuejing Lu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Yilin Zhan
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Naifu Jiang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Weiwei Peng
- School of Psychology, Shenzhen University, Shenzhen, China
| |
Collapse
|
6
|
Papi K, Nosratabadi M, Taremian F, Ghanbari N, Varkiyani ME. Effectiveness of transcranial alternating current stimulation (tACS) and cognitive bias modification (CBM) in treating anxiety, depression, attentional bias, and drug craving in opioid-dependent patients. Acta Psychol (Amst) 2025; 255:104939. [PMID: 40174348 DOI: 10.1016/j.actpsy.2025.104939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 03/05/2025] [Accepted: 03/25/2025] [Indexed: 04/04/2025] Open
Abstract
INTRODUCTION Substance Use Disorders (SUDs) pose significant challenges globally, with opiate addiction being particularly prevalent. This study investigates the impact of transcranial alternating current stimulation (tACS) at 10 Hz and individual alpha frequencies (IAF), along with cognitive bias modification (CBM), on drug craving, anxiety, depression, and attention bias in individuals with SUDs. METHODS Participants (N = 72) were allocated to control, tACS 10 Hz, tACS IAF, Sham, CBM, and CBM + tACS groups (n = 12 each). Measures included demographic questionnaires, dot probe tasks, Desires for Drug Questionnaires (DDQ), DASS-21 assessments, and Visual Analog Scale (VAS) for craving. Mixed repeated measures ANOVA were conducted, revealing significant interactions (TIME*GROUP), indicating differential treatment effects over time. FINDINGS The study involved 72 substance abusers divided into six groups: control, tACS.10 Hz, tACS Real, Sham, CBM, and CBM + tACS. Demographic variables were similar among groups. Mixed ANOVA showed significant TIME*GROUP interactions for all assessments. Significant differences were found in anxiety, drug dependence, and visual analog scale measures. CONCLUSION In brief, although using tACS and CBM separately didn't lead to significant decreases in substance-related issues, employing them together demonstrated potential. This research underscores how the brain can adapt to electrical stimulation and emphasizes the importance of delving deeper into treating SUDs. However, limitations such as limited participant availability and the reliance on verbal craving induction indicate the necessity for more comprehensive study designs and varied assessment methods in future investigations.
Collapse
Affiliation(s)
- Kiyanoosh Papi
- Department of Clinical Psychology, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| | - Masoud Nosratabadi
- Department of Clinical Psychology, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Farhad Taremian
- Department of Clinical Psychology, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Nikzad Ghanbari
- Department of Clinical Psychology, Faculty of Psychology and Educational Sciences, Shahid Beheshti University, Tehran, Iran
| | - Maryam Ebrahimi Varkiyani
- Department of Clinical Psychology, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
7
|
Gao B, Zhang J, Zhang J, Pei G, Liu T, Wang L, Funahashi S, Wu J, Zhang Z, Zhang J. Gamma Transcranial Alternating Current Stimulation Enhances Working Memory Ability in Healthy People: An EEG Microstate Study. Brain Sci 2025; 15:381. [PMID: 40309851 PMCID: PMC12025431 DOI: 10.3390/brainsci15040381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND Working memory (WM) is a core cognitive function closely linked to various cognitive processes including language, decision making, and reasoning. Transcranial alternating current stimulation (tACS), a non-invasive brain stimulation technique, has been shown to modulate cognitive abilities and treat psychiatric disorders. Although gamma tACS (γ-tACS) has demonstrated positive effects on WM, its underlying neural mechanisms remain unclear. METHODS In this study, we employed electroencephalogram (EEG) microstate analysis to investigate the spatiotemporal dynamics of γ-tACS effects on WM performance. Healthy participants (N = 104) participated in two-back and three-back WM tasks before and after two types (sine and triangular) of γ-tACS, with sham stimulation as a control. RESULTS Our results revealed that γ-tACS improved performance in both the two-back and three-back tasks, with triangular γ-tACS showing greater accuracy improvement in the three-back task than the sham group. Furthermore, γ-tACS significantly modulated EEG microstate dynamics, specifically downregulating microstate Class C and upregulating microstate Classes D and B. These changes were positively correlated with reduced reaction times in the three-back task. CONCLUSIONS Our findings establish microstate analysis as an effective approach for evaluating γ-tACS-induced changes in global brain activity and advance the understanding of how γ-tACS influences WM.
Collapse
Affiliation(s)
- Binbin Gao
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China;
| | - Jinyan Zhang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (J.Z.); (J.Z.)
| | - Jianxu Zhang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (J.Z.); (J.Z.)
| | - Guangying Pei
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (G.P.); (T.L.); (L.W.); (J.W.)
| | - Tiantian Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (G.P.); (T.L.); (L.W.); (J.W.)
| | - Li Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (G.P.); (T.L.); (L.W.); (J.W.)
| | - Shintaro Funahashi
- Advanced Research Institute for Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China;
| | - Jinglong Wu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (G.P.); (T.L.); (L.W.); (J.W.)
| | - Zhilin Zhang
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Jian Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (G.P.); (T.L.); (L.W.); (J.W.)
| |
Collapse
|
8
|
Zhang S, Cui X, Yu S, Li X. Is transcranial alternating current stimulation effective for improving working memory? A three-level meta-analysis. Psychon Bull Rev 2025; 32:636-651. [PMID: 39438426 DOI: 10.3758/s13423-024-02595-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Working memory, an essential component of cognitive function, can be improved through specific methods. This meta-analysis evaluates the effectiveness of transcranial alternating current stimulation (tACS), an emerging technique for enhancing working memory, and explores its efficacy, influencing factors, and underlying mechanisms. A PRISMA systematic search was conducted. Hedges's g was used to quantify effect sizes. We constructed a three-level meta-analytic model to account for all effect sizes and performed subgroup analyses to assess moderating factors. Recognizing the distinct neural underpinnings of various working memory processes, we separately assessed the effects on n-back tasks and traditional working memory tasks. A total of 39 studies with 405 effect sizes were included (170 from n-back tasks and 235 from other tasks). The overall analysis indicated a net benefit of g = 0.060 of tACS on working memory. Separate analyses showed that tACS had a small positive effect on n-back tasks (g = 0.102), but almost no effect on traditional working memory tasks (g = 0.045). Further analyses revealed mainly: A moderately positive effect of theta tACS (without anti-phase stimulation) on n-back tasks (g = 0.207); and a small effect of offline stimulation on working memory maintenance (g = 0.127). Overall, tACS has minimal impact on working memory improvement, but it shows potential under certain conditions. Specifically, both online and offline theta tACS can improve n-back task performance, while only offline stimulation enhances working memory maintenance. More research is needed to understand the mechanisms behind these effects to make tACS an effective method.
Collapse
Affiliation(s)
- Siyuan Zhang
- Institute of Psychology, Key Laboratory of Mental Health, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaobing Cui
- Institute of Psychology, Key Laboratory of Mental Health, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Shuting Yu
- Institute of Psychology, Key Laboratory of Mental Health, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xuebing Li
- Institute of Psychology, Key Laboratory of Mental Health, Chinese Academy of Sciences, Beijing, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
9
|
Guo Z, Qiu H, Li Y, Wang S, Gao Y, Yuan M, He S, Yan F, Wang Y, Ma X. Gamma oscillatory transcranial direct current stimulation of motor cortex enhances corticospinal excitability and brain connectivity in healthy individuals. Cereb Cortex 2025; 35:bhaf093. [PMID: 40298444 DOI: 10.1093/cercor/bhaf093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/20/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Cortical excitability, the tendency of neurons to respond to various stimuli, is impaired in most neuropsychiatric conditions. Non-invasive brain stimulation can exert therapeutic effects by modulating the cortical excitability. Transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS) have shown promise in various neuropsychiatric disorders, including improving cognitive abilities and motor function following stroke. Oscillatory transcranial direct current stimulation (otDCS), as a novel stimulation paradigm, combines tDCS and tACS to simultaneously regulate neuronal membrane potentials and oscillatory rhythms. This combination may produce more significant effects on neurons. To investigate this, participants received the following stimuli for 20 min on different days: (i) 2 mA 40 Hz otDCS, (ii) 2 mA 40 Hz tACS, (iii) 2 mA tDCS, and (iv) sham stimulation. Motor evoked potentials (MEPs) and transcranial magnetic stimulation combined with electroencephalography (TMS-EEG) were assessed both before and after stimulation. The increase in MEPs amplitudes was most pronounced under otDCS conditions compared with tACS and tDCS. Furthermore, analysis of TMS-EEG data revealed that changes in time-varying brain network patterns were most pronounced after otDCS, manifesting as enhanced brain-wide information connectivity. Our results indicate that gamma otDCS has significant potential for regulating cortical excitability and activating brain networks.
Collapse
Affiliation(s)
- Ziyu Guo
- Department of Neurology, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang 050031, China
- Department of Neurology of Graduate School, Hebei Medical University, No. 361 Zhongshan Street, Changan District, Shijiazhuang 050017, China
| | - Huiqing Qiu
- Department of Neurology, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang 050031, China
- Department of Neurology, Hebei Hospital of Xuanwu Hospital Capital Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang 050031, China
| | - Yang Li
- Department of Neurology, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang 050031, China
- Department of Neurology, Hebei Hospital of Xuanwu Hospital Capital Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang 050031, China
| | - Shuaixiang Wang
- Department of Neurology, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang 050031, China
- Department of Neurology of Graduate School, Hebei Medical University, No. 361 Zhongshan Street, Changan District, Shijiazhuang 050017, China
| | - Yan Gao
- Department of Neurology, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang 050031, China
- Department of Neurology, Hebei Hospital of Xuanwu Hospital Capital Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang 050031, China
| | - Mengwei Yuan
- Department of Neurology, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang 050031, China
- Department of Neurology of Graduate School, Hebei Medical University, No. 361 Zhongshan Street, Changan District, Shijiazhuang 050017, China
| | - Sha He
- Department of Neurology, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang 050031, China
- Department of Neurology, Hebei Hospital of Xuanwu Hospital Capital Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang 050031, China
| | - Fangyuan Yan
- Department of Neurology, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang 050031, China
- Department of Neurology of Graduate School, Hebei Medical University, No. 361 Zhongshan Street, Changan District, Shijiazhuang 050017, China
| | - Yuping Wang
- Department of Neurology, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang 050031, China
- Department of Neurology, Hebei Hospital of Xuanwu Hospital Capital Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang 050031, China
- Neuromedical Technology Innovation Center of Hebei Province, No. 89 Donggang Road, Yuhua District, Shijiazhuang 050031, China
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
- Beijing Key Laboratory of Neuromodulation, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Fengtai District, Beijing 100069, China
- Center for Sleep and Consciousness Disorders, Beijing Institute for Brain Disorders, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
- Collaborative Innovation Center for Brain Disorders, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Xiaowei Ma
- Department of Neurology, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang 050031, China
- Department of Neurology of Graduate School, Hebei Medical University, No. 361 Zhongshan Street, Changan District, Shijiazhuang 050017, China
- Department of Neurology, Hebei Hospital of Xuanwu Hospital Capital Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang 050031, China
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| |
Collapse
|
10
|
Tingting L, Lilin C, Chuangjia W, Jiamen S, Shuxian Z, Yinan A, Hanjun L, Haiqing Z. Frequency-specific modulation of motor cortical excitability by transcranial alternating current stimulation. J Neuroeng Rehabil 2025; 22:69. [PMID: 40148968 PMCID: PMC11948692 DOI: 10.1186/s12984-025-01610-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/17/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Transcranial alternating current stimulation (tACS) is a non-invasive technique that modulates neural oscillations, yet its specific effects on cortical excitability are not well-understood. This study investigated the effects of tACS on neuroplasticity in the primary motor cortex (M1) across different frequencies. METHODS In this randomized, sham-controlled, crossover study, 18 healthy young adults received β-tACS γ-tACS, and sham stimulation over the M1. Neurophysiological responses were assessed using motor evoked potentials (MEPs), electroencephalograms (EEG), and transcranial evoked potentials (TEPs) to determine the frequency-specific effects of tACS on cortical excitability and neuroplasticity. RESULTS γ-tACS significantly enhanced cortical excitability, as reflected by larger MEP amplitudes compared to both β-tACS and sham stimulation. In addition, γ-tACS resulted in significantly smaller M1-P15 amplitudes in TEP than other stimulation conditions. In contrast, β-tACS did not produce significant changes in either MEPs or TEPs compared to sham stimulation. CONCLUSION These findings provide evidence that tACS induces frequency-dependent effects on cortical excitability and neuroplasticity within the M1. This selective modulation of cortical excitability with γ-tACS suggests its potential as a therapeutic intervention for optimizing motor function and rehabilitation. TRIAL REGISTRATION This study was registered in the Chinese Clinical Trial Registry (ChiCTR2300074898, date of registration: 2023/08/18).
Collapse
Affiliation(s)
- Lei Tingting
- Department of Rehabilitation Medicine, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China
- Department of Cardiovascular Medicine, Xi'an Central Hospital, Xi'an, Shanxi, China
| | - Chen Lilin
- Department of Rehabilitation Medicine, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China
- School of optometry, The Hong Kong Polytechnic University, Hong Kong, China
| | - Wang Chuangjia
- Department of Rehabilitation Medicine, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China
| | - Si Jiamen
- Southern Medical University, Guangzhou, Guangdong, China
| | - Zhang Shuxian
- Department of Rehabilitation Medicine, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China
| | - Ai Yinan
- Department of Rehabilitation Medicine, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China
| | - Liu Hanjun
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
| | - Zheng Haiqing
- Department of Rehabilitation Medicine, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
11
|
Bao Z, Frewen P. Alpha rhythm transcranial electrical stimulation to inferior parietal cortex increases alpha power and phase synchrony while attending to mind-body self-states. Neuroscience 2025; 570:173-184. [PMID: 39984028 DOI: 10.1016/j.neuroscience.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/18/2024] [Accepted: 01/07/2025] [Indexed: 02/23/2025]
Abstract
Self-referential processing (SRP) refers to the human brain's response to semantic and somatic self-related information. Recent developments in modulating semantic and somatic SRP using non-invasive brain stimulation supported the efficacy of transcranial direct current stimulation in modulating alpha electroencephalography (alpha-EEG) during SRP. Meanwhile, although alpha transcranial alternating current stimulation (alpha-tACS) shows greater efficacy in modulating alpha-EEG, the efficacy of alpha-tACS for modulating alpha-EEG during SRP has not been evaluated. The current study investigates the effects of alpha-tACS compared to sham stimulation over the medial prefrontal cortex and the bilateral inferior parietal lobule on alpha-EEG during both semantic and somatic SRP in two separate experiments. Semantic SRP was provoked by introspection on life roles (e.g., "friend"), while somatic SRP was provoked by interoception upon sensations occurring in the exterior body (e.g., "shoulders") during the experimental task, and alpha-EEG responses during SRP were compared to those occurring during resting state and an external attention control condition. Results indicated that while alpha-tACS to the medial prefrontal cortex did not produce significant source-level alpha-EEG changes, alpha-tACS to inferior parietal cortex increased alpha-EEG source power and phase synchrony when participants received real stimulation during the first experimental session. An exploratory analysis also indicated that real stimulation reduced alpha-EEG power during semantic but not somatic SRP during the first session but not the second session. Our results demonstrate that while alpha-tACS can modulate alpha-EEG during SRP, the effects may be dependent on the ordering of real vs. sham stimulation sessions and stimulation sites.
Collapse
Affiliation(s)
- Zhongjie Bao
- The Royal Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - Paul Frewen
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, 339 Windermere Road, London, ON N6A 5A5, Canada.
| |
Collapse
|
12
|
Agboada D, Zhao Z, Wischnewski M. Neuroplastic effects of transcranial alternating current stimulation (tACS): from mechanisms to clinical trials. Front Hum Neurosci 2025; 19:1548478. [PMID: 40144589 PMCID: PMC11936966 DOI: 10.3389/fnhum.2025.1548478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/18/2025] [Indexed: 03/28/2025] Open
Abstract
Transcranial alternating current stimulation (tACS) is a promising non-invasive neuromodulation technique with the potential for inducing neuroplasticity and enhancing cognitive and clinical outcomes. A unique feature of tACS, compared to other stimulation modalities, is that it modulates brain activity by entraining neural activity and oscillations to an externally applied alternating current. While many studies have focused on online effects during stimulation, growing evidence suggests that tACS can induce sustained after-effects, which emphasizes the potential to induce long-term neurophysiological changes, essential for therapeutic applications. In the first part of this review, we discuss how tACS after-effects could be mediated by four non-mutually exclusive mechanisms. First, spike-timing-dependent plasticity (STDP), where the timing of pre- and postsynaptic spikes strengthens or weakens synaptic connections. Second, spike-phase coupling and oscillation phase as mediators of plasticity. Third, homeostatic plasticity, emphasizing the importance of neural activity to operate within dynamic physiological ranges. Fourth, state-dependent plasticity, which highlights the importance of the current brain state in modulatory effects of tACS. In the second part of this review, we discuss tACS applications in clinical trials targeting neurological and psychiatric disorders, including major depressive disorder, schizophrenia, Parkinson's disease, and Alzheimer's disease. Evidence suggests that repeated tACS sessions, optimized for individual oscillatory frequencies and combined with behavioral interventions, may result in lasting effects and enhance therapeutic outcomes. However, critical challenges remain, including the need for personalized dosing, improved current modeling, and systematic investigation of long-term effects. In conclusion, this review highlights the mechanisms and translational potential of tACS, emphasizing the importance of bridging basic neuroscience and clinical research to optimize its use as a therapeutic tool.
Collapse
Affiliation(s)
- Desmond Agboada
- Department of Psychology, University of the Bundeswehr Munich, Neubiberg, Germany
| | - Zhihe Zhao
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, MN, United States
| | - Miles Wischnewski
- Department of Psychology, University of Groningen, Groningen, Netherlands
| |
Collapse
|
13
|
Sánchez-Garrido Campos G, Zafra ÁM, Estévez-Rodríguez M, Cordones I, Ruffini G, Márquez-Ruiz J. Preclinical insights into gamma-tACS: foundations for clinical translation in neurodegenerative diseases. Front Neurosci 2025; 19:1549230. [PMID: 40143845 PMCID: PMC11936909 DOI: 10.3389/fnins.2025.1549230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Gamma transcranial alternating current stimulation (gamma-tACS) represents a novel neuromodulation technique with promising therapeutic applications across neurodegenerative diseases. This mini-review consolidates recent preclinical and clinical findings, examining the mechanisms by which gamma-tACS influences neural oscillations, enhances synaptic plasticity, and modulates neuroimmune responses. Preclinical studies have demonstrated the capacity of gamma-tACS to synchronize neuronal firing, support long-term neuroplasticity, and reduce markers of neuroinflammation, suggesting its potential to counteract neurodegenerative processes. Early clinical studies indicate that gamma-tACS may improve cognitive functions and network connectivity, underscoring its ability to restore disrupted oscillatory patterns central to cognitive performance. Given the intricate and multifactorial nature of gamma oscillations, the development of tailored, optimized tACS protocols informed by extensive animal research is crucial. Overall, gamma-tACS presents a promising avenue for advancing treatments that support cognitive resilience in a range of neurodegenerative conditions.
Collapse
Affiliation(s)
| | - Ángela M. Zafra
- Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Seville, Spain
| | - Marta Estévez-Rodríguez
- Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Seville, Spain
| | - Isabel Cordones
- Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Seville, Spain
| | - Giulio Ruffini
- Brain Modeling Department, Neuroelectrics Barcelona, Barcelona, Spain
| | - Javier Márquez-Ruiz
- Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Seville, Spain
| |
Collapse
|
14
|
Sasaki R. Modulating Cortico-cortical Networks with Transcranial Alternating Current Stimulation: A Minireview. Phys Ther Res 2025; 28:1-8. [PMID: 40321689 PMCID: PMC12047044 DOI: 10.1298/ptr.r0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/14/2025] [Indexed: 05/08/2025]
Abstract
Advancements in brain imaging and analytical methods have demonstrated that behavior arises from the coordinated activity of multiple brain regions within cortico-cortical networks. Transcranial alternating current stimulation (tACS), a noninvasive brain stimulation (NIBS) technique, applies weak sinusoidal alternating currents to specific brain regions using scalp-mounted electrodes. Traditionally, tACS has been used to target single brain regions to enhance functions such as motor, sensory, and cognitive abilities. However, recent findings indicate its potential for simultaneously stimulating 2 brain regions, thereby modulating cortico-cortical network strength through neural entrainment-where brain oscillations synchronize with external rhythmic stimuli. Despite this potential, tACS applications remain primarily focused on individual brain regions. Given that behavior stems from dynamic interactions within cortico-cortical networks rather than isolated regions, this minireview explores the role of these networks in shaping behavior through functional connectivity as identified by neuroimaging. It also provides an in-depth analysis of tACS as a tool for modifying cortico-cortical networks via neural entrainment, offering promising applications in neurorehabilitation for brain disorders linked to network dysfunction. This highlights tACS as a novel approach for targeted modulation of cortico-cortical networks, distinguishing it from traditional NIBS techniques.
Collapse
Affiliation(s)
- Ryoki Sasaki
- Graduate Course of Health and Social Work, Kanagawa University of Human Services, Japan
| |
Collapse
|
15
|
Rostami M, Lee A, Frazer AK, Akalu Y, Siddique U, Pearce AJ, Tallent J, Kidgell DJ. Determining the effects of transcranial alternating current stimulation on corticomotor excitability and motor performance: A sham-controlled comparison of four frequencies. Neuroscience 2025; 568:12-26. [PMID: 39798837 DOI: 10.1016/j.neuroscience.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/11/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Transcranial alternating current stimulation (tACS) modulates brain oscillations and corticomotor plasticity. We examined the effects of four tACS frequencies (20 Hz, 40 Hz, 60 Hz, and 80 Hz) on motor cortex (M1) excitability and motor performance. In a randomised crossover design, 12 adults received 20-minute tACS sessions, with Sham as control. Corticomotor and intracortical excitability was measured up to 60-minutes post-tACS. Motor performance was evaluated using the Grooved Pegboard Test (GPT) and sensorimotor assessments. Our findings demonstrated frequency-dependent modulation of corticomotor excitability based on MEP amplitude. 20 Hz and 40 Hz tACS reduced MEPs, while 60 Hz and 80 Hz increased MEPs. Inhibition (cortical silent period, SP) was reduced across all tACS frequencies compared to Sham, with 20 Hz and 40 Hz showing consistent reductions, 60 Hz showing effects at post-0 and post-30, and 80 Hz at post-60. Furthermore, 60 Hz tACS decreased intracortical inhibition at post-0, while intracortical facilitation increased with 20 Hz and 60 Hz at post-0, and 40 Hz at post-60. Motor performance remained unaffected across frequencies. Regression analyses revealed that shorter SP at 60 min post 60 Hz tACS predicted faster reaction times, while greater MEP amplitudes at 60 min following 80 Hz tACS predicted improved hand dexterity. Overall, beta and gamma tACS frequencies modulate M1 excitability, with consistent effects on SP, suggesting potential use in conditions involving SP elongation, such as stroke and Huntington's disease. These findings highlight 60 Hz tACS as a potential tool for motor rehabilitation therapies.
Collapse
Affiliation(s)
- Mohamad Rostami
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne Australia
| | - Annemarie Lee
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne Australia
| | - Ashlyn K Frazer
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne Australia
| | - Yonas Akalu
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne Australia; Department of Human Physiology School of Medicine University of Gondar Ethiopia
| | - Ummatul Siddique
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne Australia
| | - Alan J Pearce
- School of Health Science Swinburne University of Technology Melbourne Australia
| | - Jamie Tallent
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne Australia; School of Sport Rehabilitation and Exercise Sciences University of Essex Colchester UK
| | - Dawson J Kidgell
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne Australia.
| |
Collapse
|
16
|
Geffen A, Bland N, Sale M. μ-Transcranial Alternating Current Stimulation Induces Phasic Entrainment and Plastic Facilitation of Corticospinal Excitability. Eur J Neurosci 2025; 61:e70042. [PMID: 40040311 PMCID: PMC11880748 DOI: 10.1111/ejn.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/04/2025] [Accepted: 02/19/2025] [Indexed: 03/06/2025]
Abstract
Transcranial alternating current stimulation (tACS) has been proposed to modulate neural activity through two primary mechanisms: entrainment and neuroplasticity. The current study aimed to probe both of these mechanisms in the context of the sensorimotor μ-rhythm using transcranial magnetic stimulation (TMS) and electroencephalography (EEG) to assess entrainment of corticospinal excitability (CSE) during stimulation (i.e., online) and immediately following stimulation, as well as neuroplastic aftereffects on CSE and μ EEG power. Thirteen participants received three sessions of stimulation. Each session consisted of 90 trials of μ-tACS tailored to each participant's individual μ frequency (IMF), with each trial consisting of 16 s of tACS followed by 8 s of rest (for a total of 24 min of tACS and 12 min of rest per session). Motor-evoked potentials (MEPs) were acquired at the start and end of the session (n = 41), and additional MEPs were acquired across the different phases of tACS at three epochs within each tACS trial (n = 90 for each epoch): early online, late online and offline echo. Resting EEG activity was recorded at the start, end and throughout the tACS session. The data were then pooled across the three sessions for each participant to maximise the MEP sample size per participant. We present preliminary evidence of CSE entrainment persisting immediately beyond tACS and have also replicated the plastic CSE facilitation observed in previous μ-tACS studies, thus supporting both entrainment and neuroplasticity as mechanisms by which tACS can modulate neural activity.
Collapse
Affiliation(s)
- Asher Geffen
- School of Health and Rehabilitation SciencesThe University of QueenslandSt LuciaQueenslandAustralia
| | - Nicholas Bland
- School of Health and Rehabilitation SciencesThe University of QueenslandSt LuciaQueenslandAustralia
| | - Martin V. Sale
- School of Health and Rehabilitation SciencesThe University of QueenslandSt LuciaQueenslandAustralia
| |
Collapse
|
17
|
Chu Z, Wang R, Zhou T. Modulation of vigilance/alertness using beta (30 Hz) transcranial alternating current stimulation. Front Neurosci 2025; 19:1445006. [PMID: 40018360 PMCID: PMC11865085 DOI: 10.3389/fnins.2025.1445006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 01/31/2025] [Indexed: 03/01/2025] Open
Abstract
Vigilance refers to the ability to maintain alertness and sustain attention for prolonged periods to detect and respond to subtle changes in the environment. Previous research has explored the use of transcranial alternating current stimulation (tACS) to modulate brain oscillations and enhance vigilance/alertness. In this study, we explore the modulation effects of different stimulation parameters on Vigilance using an open-source dataset. The open-source dataset includes within participant application of High-Definition tES (HD-tES) types, targeting two cortical regions (frontal, motor) with one stimulation waveforms (30 Hz); combining human-participant high-density electroencephalography (EEG) with continuous behavioral metrics. We only analyzed the behavioral task performance data to assess how vigilant states are acutely altered by specific tES types. Our findings indicate that (1) Both online and offline tACS improve vigilance performance; (2) online tACS have greater effect on vigilance performance than offline tACS; (3) tACS that targeting frontal region have greater effect on vigilance performance than stimulating the motor region. These results align with the view of current the theoretical accounts on the oscillatory nature of vigilance attention and contribute to the groundwork for tACS closed-loop interventions for counteracting vigilance decrements.
Collapse
Affiliation(s)
- Zhongliang Chu
- Department of Psychology, Faculty of Arts and Sciences, Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai, China
| | - Rui Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Tianyi Zhou
- Department of Psychology, Faculty of Arts and Sciences, Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai, China
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, Beijing, China
| |
Collapse
|
18
|
Orendáčová M, Kvašňák E. What can neurofeedback and transcranial alternating current stimulation reveal about cross-frequency coupling? Front Neurosci 2025; 19:1465773. [PMID: 40012676 PMCID: PMC11861218 DOI: 10.3389/fnins.2025.1465773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/24/2025] [Indexed: 02/28/2025] Open
Abstract
In recent years, the dynamics and function of cross-frequency coupling (CFC) in electroencephalography (EEG) have emerged as a prevalent area of investigation within the research community. One possible approach in studying CFC is to utilize non-invasive neuromodulation methods such as transcranial alternating current stimulation (tACS) and neurofeedback (NFB). In this study, we address (1) the potential applicability of single and multifrequency tACS and NFB protocols in CFC research; (2) the prevalence of CFC types, such as phase-amplitude or amplitude-amplitude CFC, in tACS and NFB studies; and (3) factors that contribute to inter- and intraindividual variability in CFC and ways to address them potentially. Here we analyzed research studies on CFC, tACS, and neurofeedback. Based on current knowledge, CFC types have been reported in tACS and NFB studies. We hypothesize that direct and indirect effects of tACS and neurofeedback can induce CFC. Several variability factors such as health status, age, fatigue, personality traits, and eyes-closed (EC) vs. eyes-open (EO)condition may influence the CFC types. Modifying the duration of the tACS and neurofeedback intervention and selecting a specific demographic experimental group could reduce these sources of CFC variability. Neurofeedback and tACS appear to be promising tools for studying CFC.
Collapse
Affiliation(s)
- Mária Orendáčová
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | | |
Collapse
|
19
|
Lebihan B, Mobers L, Daley S, Battle R, Leclercq N, Misic K, Wansbrough K, Vallence AM, Tang A, Nitsche M, Fujiyama H. Bifocal tACS over the primary sensorimotor cortices increases interhemispheric inhibition and improves bimanual dexterity. Cereb Cortex 2025; 35:bhaf011. [PMID: 39895063 PMCID: PMC11814492 DOI: 10.1093/cercor/bhaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/16/2024] [Accepted: 01/15/2025] [Indexed: 02/04/2025] Open
Abstract
Concurrent application of transcranial alternating current stimulation over distant cortical regions has been shown to modulate functional connectivity between stimulated regions; however, the precise mechanisms remain unclear. Here, we investigated how bifocal transcranial alternating current stimulation applied over the bilateral primary sensorimotor cortices modulates connectivity between the left and right primary motor cortices (M1). Using a cross-over sham-controlled triple-blind design, 37 (27 female, age: 18 to 37 yrs) healthy participants received transcranial alternating current stimulation (1.0 mA, 20 Hz, 20 min) over the bilateral sensorimotor cortices. Before and after transcranial alternating current stimulation, functional connectivity between the left and right M1s was assessed using imaginary coherence measured via resting-state electroencephalography and interhemispheric inhibition via dual-site transcranial magnetic stimulation protocol. Additionally, manual dexterity was assessed using the Purdue pegboard task. While imaginary coherence remained unchanged after stimulation, beta (20 Hz) power decreased during the transcranial alternating current stimulation session. Bifocal transcranial alternating current stimulation but not sham strengthened interhemispheric inhibition between the left and right M1s and improved bimanual assembly performance. These results suggest that improvement in bimanual performance may be explained by modulation in interhemispheric inhibition, rather than by coupling in the oscillatory activity. As functional connectivity underlies many clinical symptoms in neurological and psychiatric disorders, these findings are invaluable in developing noninvasive therapeutic interventions that target neural networks to alleviate symptoms.
Collapse
Affiliation(s)
- Brooke Lebihan
- School of Psychology, Murdoch University, Western Australia, 90 South Street, Murdoch, WA 6150, Australia
| | - Lauren Mobers
- School of Psychology, Murdoch University, Western Australia, 90 South Street, Murdoch, WA 6150, Australia
| | - Shannae Daley
- School of Psychology, Murdoch University, Western Australia, 90 South Street, Murdoch, WA 6150, Australia
| | - Ruth Battle
- School of Psychology, Murdoch University, Western Australia, 90 South Street, Murdoch, WA 6150, Australia
| | - Natasia Leclercq
- School of Psychology, Murdoch University, Western Australia, 90 South Street, Murdoch, WA 6150, Australia
| | - Katherine Misic
- School of Psychology, Murdoch University, Western Australia, 90 South Street, Murdoch, WA 6150, Australia
| | - Kym Wansbrough
- School of Psychology, Murdoch University, Western Australia, 90 South Street, Murdoch, WA 6150, Australia
| | - Ann-Maree Vallence
- School of Psychology, Murdoch University, Western Australia, 90 South Street, Murdoch, WA 6150, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Western Australia, 90 South Street, Murdoch, WA 6150, Australia
- Personalised Medicine Centre, Murdoch University, Western Australia, 90 South Street, Murdoch, WA 6150, Australia
| | - Alexander Tang
- Experimental and Regenerative Neurosciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
- Perron Institute for Neurological and Translational Sciences, Ground RR Block QE II Medical Centre Ralph & Patricia Sarich Neuroscience Building, 8 Verdun St, Nedlands, WA 6009, Australia
- Pharmacology and Toxicology Discipline, School of Biomedical Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley Western Australia, 6009, Australia
| | - Michael Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Ardeystraße 67, 44139 Dortmund, Germany
- University Clinic of Psychiatry and Psychotherapy and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Bielefeld University, University Hospital OWL, Protestant Hospital of Bethel Foundation, H1, Philipp-Reis-Platz 1a/Etage 8, 33602 Bielefeld, Germany
| | - Hakuei Fujiyama
- School of Psychology, Murdoch University, Western Australia, 90 South Street, Murdoch, WA 6150, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Western Australia, 90 South Street, Murdoch, WA 6150, Australia
- Personalised Medicine Centre, Murdoch University, Western Australia, 90 South Street, Murdoch, WA 6150, Australia
| |
Collapse
|
20
|
Kaiser M, Wang Y, Ten Oever S, Duecker F, Sack AT, van de Ven V. Simultaneous tACS-fMRI reveals state- and frequency-specific modulation of hippocampal-cortical functional connectivity. COMMUNICATIONS PSYCHOLOGY 2025; 3:19. [PMID: 39900978 PMCID: PMC11791075 DOI: 10.1038/s44271-025-00202-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 01/23/2025] [Indexed: 02/05/2025]
Abstract
Non-invasive indirect hippocampal-targeted stimulation is of broad scientific and clinical interest. Transcranial alternating current stimulation (tACS) is appealing because it allows oscillatory stimulation to study hippocampal theta (3-8 Hz) activity. We found that tACS administered during functional magnetic resonance imaging yielded a frequency-, mental state- and topologically-specific effect of theta stimulation (but not other frequencies) enhancing right (but not left) hippocampal-cortical connectivity during resting blocks but not during task blocks. Control analyses showed that this effect was not due to possible stimulation-induced changes in signal quality or head movement. Our findings are promising for targeted network modulations of deep brain structures for research and clinical intervention.
Collapse
Affiliation(s)
- Max Kaiser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, PO Box 616, 6200MD, The Netherlands
| | - Yuejuan Wang
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, PO Box 616, 6200MD, The Netherlands
| | - Sanne Ten Oever
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, PO Box 616, 6200MD, The Netherlands
| | - Felix Duecker
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, PO Box 616, 6200MD, The Netherlands
| | - Alexander T Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, PO Box 616, 6200MD, The Netherlands
| | - Vincent van de Ven
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, PO Box 616, 6200MD, The Netherlands.
| |
Collapse
|
21
|
Debnath R, Elyamany O, Iffland JR, Rauh J, Siebert M, Andraes E, Leicht G, Mulert C. Theta transcranial alternating current stimulation over the prefrontal cortex enhances theta power and working memory performance. Front Psychiatry 2025; 15:1493675. [PMID: 39876999 PMCID: PMC11772280 DOI: 10.3389/fpsyt.2024.1493675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/11/2024] [Indexed: 01/31/2025] Open
Abstract
Introduction Transcranial alternating current stimulation (tACS) is a promising tool for modulating brain oscillations. This study investigated whether 5 Hz tACS could modulate neural oscillations in the prefrontal cortex and how this modulation impacts performance in working memory (WM) tasks. Method In two sessions, 28 healthy participants received 5 Hz tACS or sham stimulation over the left dorsolateral prefrontal cortex (DLPFC) while performing tasks with high and low WM loads. Resting-state EEG was recorded before and after stimulations for 5 minutes. EEG power was measured at electrodes surrounding the stimulation site. Results The results showed that tACS significantly improved reaction time (RT) compared to sham stimulation. This effect was task-specific, as tACS improved RT for hit responses only in high WM load trials, with no impact on low-load trials. Moreover, tACS significantly increased EEG power at 5 Hz and in the theta band compared to pre-stimulation levels. Discussion These findings demonstrate that tACS applied over left DLPFC modulates post-stimulation brain oscillations at the stimulation sites - known as tACS after-effects. Furthermore, the results suggest that 5 Hz tACS enhances response speed by elevating task-related activity in the prefrontal cortex to an optimal level for task performance. Conclusion In summary, the findings highlight the potential of tACS as a technique for modulating specific brain oscillations, with implications for research and therapeutic interventions.
Collapse
Affiliation(s)
- Ranjan Debnath
- Centre for Psychiatry and Psychotherapy, Justus-Liebig University Giessen, Giessen, Germany
| | - Osama Elyamany
- Centre for Psychiatry and Psychotherapy, Justus-Liebig University Giessen, Giessen, Germany
- Centre for Mind, Brain and Behaviour (CMBB), University of Marburg and Justus-Liebig University Giessen, Marburg, Germany
| | - Jona Ruben Iffland
- Centre for Psychiatry and Psychotherapy, Justus-Liebig University Giessen, Giessen, Germany
| | - Jonas Rauh
- Department of Psychiatry and Psychotherapy, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Siebert
- Centre for Psychiatry and Psychotherapy, Justus-Liebig University Giessen, Giessen, Germany
| | - Elisa Andraes
- Centre for Psychiatry and Psychotherapy, Justus-Liebig University Giessen, Giessen, Germany
| | - Gregor Leicht
- Department of Psychiatry and Psychotherapy, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Mulert
- Centre for Psychiatry and Psychotherapy, Justus-Liebig University Giessen, Giessen, Germany
- Centre for Mind, Brain and Behaviour (CMBB), University of Marburg and Justus-Liebig University Giessen, Marburg, Germany
| |
Collapse
|
22
|
Maccora S, Sardo P, Giglia G, Torrente A, Di Stefano V, Brighina F. Transcranial alternating current stimulation can modulate the blink reflex excitability. Effects of a 10- and 20-Hz tACS session on the blink reflex recovery cycle in healthy subjects. Neurol Sci 2025; 46:401-409. [PMID: 39096396 PMCID: PMC11698815 DOI: 10.1007/s10072-024-07719-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/26/2024] [Indexed: 08/05/2024]
Abstract
BACKGROUND The blink reflex excitability, assessed through paired electrical stimuli responses, has been modulated using traditional non-invasive neurostimulation techniques. Recently, transcranial Alternating Current Stimulation (tACS) emerged as a tool to modulate brain oscillations implicated in various motor, perceptual, and cognitive functions. This study aims to investigate the influence of 20-Hz and 10-Hz tACS sessions on the primary motor cortex and their impact on blink reflex excitability. MATERIALS AND METHODS Fifteen healthy volunteers underwent 10-min tACS sessions (intensity 1 mA) with active/reference electrodes placed over C4/Pz, delivering 20-Hz, 10-Hz, and sham stimulation. The blink reflex recovery cycle (BRrc) was assessed using the R2 amplitude ratio at various interstimulus intervals (ISIs) before (T0), immediately after (T1), and 30 min post-tACS (T2). RESULTS Both 10-Hz and 20-Hz tACS sessions significantly increased R2 ratio at T1 (10-Hz: p = 0.02; 20-Hz: p < 0.001) and T2 (10-Hz: p = 0.01; 20-Hz: p < 0.001) compared to baseline (T0). Notably, 20-Hz tACS induced a significantly greater increase in blink reflex excitability compared to sham at both T1 (p = 0.04) and T2 (p < 0.001). CONCLUSION This study demonstrates the modulatory effect of tACS on trigemino-facial reflex circuits, with a lasting impact on BRrc. Beta-band frequency tACS exhibited a more pronounced effect than alpha-band frequency, highlighting the influential role of beta-band oscillations in the motor cortex on blink reflex excitability modulation.
Collapse
Affiliation(s)
- Simona Maccora
- Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Sicily, Italy.
- ARNAS Civico, Di Cristina, Via del Vespro 143, 90129, Benfratelli, Palermo, Italy.
| | - Pierangelo Sardo
- Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Sicily, Italy
| | - Giuseppe Giglia
- Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Sicily, Italy
| | - Angelo Torrente
- Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Sicily, Italy
| | - Vincenzo Di Stefano
- Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Sicily, Italy
| | - Filippo Brighina
- Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Sicily, Italy
| |
Collapse
|
23
|
Morales Fajardo K, Yan X, Lungoci G, Casado Sánchez M, Mitsis GD, Boudrias MH. The Modulatory Effects of Transcranial Alternating Current Stimulation on Brain Oscillatory Patterns in the Beta Band in Healthy Older Adults. Brain Sci 2024; 14:1284. [PMID: 39766483 PMCID: PMC11675015 DOI: 10.3390/brainsci14121284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Background: In the last few years, transcranial alternating current stimulation (tACS) has attracted attention as a promising approach to interact with ongoing oscillatory cortical activity and, consequently, to enhance cognitive and motor processes. While tACS findings are limited by high variability in young adults' responses, its effects on brain oscillations in older adults remain largely unexplored. In fact, the modulatory effects of tACS on cortical oscillations in healthy aging participants have not yet been investigated extensively, particularly during movement. This study aimed to examine the after-effects of 20 Hz and 70 Hz High-Definition tACS on beta oscillations both during rest and movement. Methods: We recorded resting state EEG signals and during a handgrip task in 15 healthy older participants. We applied 10 min of 20 Hz HD-tACS, 70 Hz HD-tACS or Sham stimulation for 10 min. We extracted resting-state beta power and movement-related beta desynchronization (MRBD) values to compare between stimulation frequencies and across time. Results: We found that 20 Hz HD-tACS induced a significant reduction in beta power for electrodes C3 and CP3, while 70 Hz did not have any significant effects. With regards to MRBD, 20 Hz HD-tACS led to more negative values, while 70 Hz HD-tACS resulted in more positive ones for electrodes C3 and FC3. Conclusions: These findings suggest that HD-tACS can modulate beta brain oscillations with frequency specificity. They also highlight the focal impact of HD-tACS, which elicits effects on the cortical region situated directly beneath the stimulation electrode.
Collapse
Affiliation(s)
- Kenya Morales Fajardo
- School of Physical and Occupational Therapy, McGill University, Montréal, QC H3G 1Y5, Canada;
- Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montréal, QC H3S 1M9, Canada; (X.Y.); (G.L.); (M.C.S.)
| | - Xuanteng Yan
- Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montréal, QC H3S 1M9, Canada; (X.Y.); (G.L.); (M.C.S.)
- Department of Bioengineering, McGill University, Montréal, QC H3A 0E9, Canada;
| | - George Lungoci
- Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montréal, QC H3S 1M9, Canada; (X.Y.); (G.L.); (M.C.S.)
- Integrated Program in Neuroscience, McGill University, Montréal, QC H3A 1A1, Canada
| | - Monserrat Casado Sánchez
- Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montréal, QC H3S 1M9, Canada; (X.Y.); (G.L.); (M.C.S.)
- Integrated Program in Neuroscience, McGill University, Montréal, QC H3A 1A1, Canada
| | - Georgios D. Mitsis
- Department of Bioengineering, McGill University, Montréal, QC H3A 0E9, Canada;
| | - Marie-Hélène Boudrias
- School of Physical and Occupational Therapy, McGill University, Montréal, QC H3G 1Y5, Canada;
- Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montréal, QC H3S 1M9, Canada; (X.Y.); (G.L.); (M.C.S.)
| |
Collapse
|
24
|
Kraft JD, Hampstead BM. A Systematic Review of tACS Effects on Cognitive Functioning in Older Adults Across the Healthy to Dementia Spectrum. Neuropsychol Rev 2024; 34:1165-1190. [PMID: 37882864 PMCID: PMC11045666 DOI: 10.1007/s11065-023-09621-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 09/26/2023] [Indexed: 10/27/2023]
Abstract
Transcranial alternating current stimulation (tACS) is a form of noninvasive brain stimulation that has experienced rapid growth within the aging population over the past decade due to its potential for modulating cognitive functioning across the "intact" to dementia spectrum. For this reason, we performed a systematic review of the literature to evaluate the efficacy of tACS on cognitive functioning in older adults, including those with cognitive impairment. Our review was completed in June 2023 using Psych INFO, Embase, PubMed, and Cochrane databases. Out of 479 screened articles, 21 met inclusion criteria and were organized according to clinical diagnoses. Seven out of nine studies targeted cognitively intact older adults and showed some type of cognitive improvement after stimulation, whereas nine out of twelve studies targeted clinical diagnoses and showed improved cognitive performance to varying degrees. Studies showed considerable heterogeneity in methodology, stimulation parameters, participant characteristics, choice of cognitive task, and analytic strategy, all of which reinforce the need for standardized reporting of tACS methods. Through this heterogeneity, multiple patterns are described, such as disease progression influencing tACS effects and the need for individualized tailoring. For clinical translation, it is imperative that the field (a) better understand the physiological effects of tACS in these populations, especially in respect to biomarkers, (b) document a causal relationship between tACS delivery and neurophysiological/cognitive effects, and (c) systematically establish dosing parameters (e.g., amplitude, stimulation frequency, number and duration of sessions, need for booster/maintenance sessions).
Collapse
Affiliation(s)
- Jacob D Kraft
- Research Program On Cognition and Neuromodulation Based Interventions, Department of Psychiatry, University of Michigan, 4250 Plymouth Rd, Ann Arbor, MI, 48105, USA.
- Department of Psychiatry &, Behavioral Health, The Ohio State University, Columbus, OH, 43210, USA.
| | - Benjamin M Hampstead
- Research Program On Cognition and Neuromodulation Based Interventions, Department of Psychiatry, University of Michigan, 4250 Plymouth Rd, Ann Arbor, MI, 48105, USA
- Mental Health Service, Neuropsychology Section, VA Ann Arbor Healthcare System, Ann Arbor, MI, 48105, USA
| |
Collapse
|
25
|
Menétrey MQ, Pascucci D. Spectral tuning and after-effects in neural entrainment. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:29. [PMID: 39574159 PMCID: PMC11580347 DOI: 10.1186/s12993-024-00259-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/08/2024] [Indexed: 11/25/2024]
Abstract
Neural entrainment has become a popular technique to non-invasively manipulate brain rhythms via external, periodic stimulation. However, there is still debate regarding its underlying mechanisms and effects on brain activity. Here, we used EEG recordings during a visual entrainment paradigm to assess characteristic changes in the spectral content of EEG signals due to entrainment. Our results demonstrate that entrainment not only increases synchrony between neural oscillations and the entraining stimulus but also elicits previously unreported spectral tuning effects and long-lasting after-effects. These findings offer compelling evidence for the presence of dedicated, flexible, and adaptive mechanisms for neural entrainment, which may have key roles in adjusting the sensitivity and dynamic range of brain oscillators in response to environmental temporal structures.
Collapse
Affiliation(s)
- Maëlan Q Menétrey
- Laboratory of Psychophysics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Psychophysics and Neural Dynamics Lab, Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
- The Sense Innovation and Research Center, Lausanne, Switzerland.
| | - David Pascucci
- Laboratory of Psychophysics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Psychophysics and Neural Dynamics Lab, Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- The Sense Innovation and Research Center, Lausanne, Switzerland
| |
Collapse
|
26
|
van der A J, Lodema Y, Ottens TH, Schutter DJLG, Emmelot-Vonk MH, de Haan W, van Dellen E, Tendolkar I, Slooter AJC. DELirium treatment with Transcranial Electrical Stimulation (DELTES): study protocol for a multicentre, randomised, double-blind, sham-controlled trial. BMJ Open 2024; 14:e092165. [PMID: 39488424 PMCID: PMC11535714 DOI: 10.1136/bmjopen-2024-092165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/15/2024] [Indexed: 11/04/2024] Open
Abstract
INTRODUCTION Delirium, a clinical manifestation of acute encephalopathy, is associated with extended hospitalisation, long-term cognitive dysfunction, increased mortality and high healthcare costs. Despite intensive research, there is still no targeted treatment. Delirium is characterised by electroencephalography (EEG) slowing, increased relative delta power and decreased functional connectivity. Recent studies suggest that transcranial alternating current stimulation (tACS) can entrain EEG activity, strengthen connectivity and improve cognitive functioning. Hence, tACS offers a potential treatment for augmenting EEG activity and reducing the duration of delirium. This study aims to evaluate the feasibility and assess the efficacy of tACS in reducing relative delta power. METHODS AND ANALYSIS A randomised, double-blind, sham-controlled trial will be conducted across three medical centres in the Netherlands. The study comprises two phases: a pilot phase (n=30) and a main study phase (n=129). Participants are patients aged 50 years and older who are diagnosed with delirium using the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, Text Revision criteria (DSM-5-TR), that persists despite treatment of underlying causes. During the pilot phase, participants will be randomised (1:1) to receive either standardised (10 Hz) tACS or sham tACS. In the main study phase, participants will be randomised to standardised tACS, sham tACS or personalised tACS, in which tACS settings are tailored to the participant. All participants will undergo daily 30 min of (sham) stimulation for up to 14 days or until delirium resolution or hospital discharge. Sixty-four-channel resting-state EEG will be recorded pre- and post the first tACS session, and following the final tACS session. Daily delirium assessments will be acquired using the Intensive Care Delirium Screening Checklist and Delirium Observation Screening Scale. The pilot phase will assess the percentage of completed tACS sessions and increased care requirements post-tACS. The primary outcome variable is change in relative delta EEG power. Secondary outcomes include (1) delirium duration and severity, (2) quantitative EEG measurements, (3) length of hospital stay, (4) cognitive functioning at 3 months post-tACS and (5) tACS treatment burden. Study recruitment started in April 2024 and is ongoing. ETHICS AND DISSEMINATION The study has been approved by the Medical Ethics Committee of the Utrecht University Medical Center and the Institutional Review Boards of all participating centres. Trial results will be disseminated via peer-reviewed publications and conference presentations. TRIAL REGISTRATION NUMBER NCT06285721.
Collapse
Affiliation(s)
- Julia van der A
- Department of Intensive Care Medicine and University Medical Center Utrecht Brain Center, University Medical Centre Utrecht, Utrecht, The Netherlands
- Department of Psychiatry and University Medical Center Utrecht Brain Center, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Yorben Lodema
- Department of Intensive Care Medicine and University Medical Center Utrecht Brain Center, University Medical Centre Utrecht, Utrecht, The Netherlands
- Department of Psychiatry and University Medical Center Utrecht Brain Center, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Thomas H Ottens
- Department of Intensive Care Medicine and University Medical Center Utrecht Brain Center, University Medical Centre Utrecht, Utrecht, The Netherlands
- Intensive Care Unit, HagaZiekenhuis, Den Haag, The Netherlands
| | | | | | - Willem de Haan
- Alzheimer Center and Department of Neurology, Amsterdam Neuroscience, VU Medisch Centrum, Amsterdam, The Netherlands
| | - Edwin van Dellen
- Department of Psychiatry and University Medical Center Utrecht Brain Center, University Medical Centre Utrecht, Utrecht, The Netherlands
- Department of Neurology and Vrije Universiteit Brussel, UZ Brussel, Brussel, Belgium
| | - Indira Tendolkar
- Donders Institute for Brain, Cognition and Behavior, Department of Psychiatry, Radboud Universiteit, Nijmegen, The Netherlands
| | - Arjen J C Slooter
- Department of Intensive Care Medicine and University Medical Center Utrecht Brain Center, University Medical Centre Utrecht, Utrecht, The Netherlands
- Department of Psychiatry and University Medical Center Utrecht Brain Center, University Medical Centre Utrecht, Utrecht, The Netherlands
- Department of Neurology and Vrije Universiteit Brussel, UZ Brussel, Brussel, Belgium
| |
Collapse
|
27
|
Sahu M, Ambasta RK, Das SR, Mishra MK, Shanker A, Kumar P. Harnessing Brainwave Entrainment: A Non-invasive Strategy To Alleviate Neurological Disorder Symptoms. Ageing Res Rev 2024; 101:102547. [PMID: 39419401 DOI: 10.1016/j.arr.2024.102547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
From 1990-2019, the burden of neurological disorders varied considerably across countries and regions. Psychiatric disorders, often emerging in early to mid-adulthood, are linked to late-life neurodegenerative diseases like Alzheimer's disease and Parkinson's disease. Individuals with conditions such as Major Depressive Disorder, Anxiety Disorder, Schizophrenia, and Bipolar Disorder face up to four times higher risk of developing neurodegenerative disorders. Contrarily, 65 % of those with neurodegenerative conditions experience severe psychiatric symptoms during their illness. Further, the limitation of medical resources continues to make this burden a significant global and local challenge. Therefore, brainwave entrainment provides therapeutic avenues for improving the symptoms of diseases. Brainwaves are rhythmic oscillations produced either spontaneously or in response to stimuli. Key brainwave patterns include gamma, beta, alpha, theta, and delta waves, yet the underlying physiological mechanisms and the brain's ability to shift between these dynamic states remain areas for further exploration. In neurological disorders, brainwaves are often disrupted, a phenomenon termed "oscillopathy". However, distinguishing these impaired oscillations from the natural variability in brainwave activity across different regions and functional states poses significant challenges. Brainwave-mediated therapeutics represents a promising research field aimed at correcting dysfunctional oscillations. Herein, we discuss a range of non-invasive techniques such as non-invasive brain stimulation (NIBS), neurologic music therapy (NMT), gamma stimulation, and somatosensory interventions using light, sound, and visual stimuli. These approaches, with their minimal side effects and cost-effectiveness, offer potential therapeutic benefits. When integrated, they may not only help in delaying disease progression but also contribute to the development of innovative medical devices for neurological care.
Collapse
Affiliation(s)
- Mehar Sahu
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India
| | - Rashmi K Ambasta
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Suman R Das
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Manoj K Mishra
- Cancer Biology Research and Training, Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA
| | - Anil Shanker
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, and The Office for Research and Innovation, Meharry Medical College, Nashville, TN 37208, USA
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India.
| |
Collapse
|
28
|
Thiele C, Rufener KS, Repplinger S, Zaehle T, Ruhnau P. Transcranial temporal interference stimulation (tTIS) influences event-related alpha activity during mental rotation. Psychophysiology 2024; 61:e14651. [PMID: 38997805 DOI: 10.1111/psyp.14651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/14/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
Non-invasive brain stimulation techniques offer therapeutic potential for neurological and psychiatric disorders. However, current methods are often limited in their stimulation depth. The novel transcranial temporal interference stimulation (tTIS) aims to overcome this limitation by non-invasively targeting deeper brain regions. In this study, we aimed to evaluate the efficacy of tTIS in modulating alpha activity during a mental rotation task. The effects of tTIS were compared with transcranial alternating current stimulation (tACS) and a sham control. Participants were randomly assigned to a tTIS, tACS, or sham group. They performed alternating blocks of resting and mental rotation tasks before, during, and after stimulation. During the stimulation blocks, participants received 20 min of stimulation adjusted to their individual alpha frequency (IAF). We assessed shifts in resting state alpha power, event-related desynchronization (ERD) of alpha activity during mental rotation, as well as resulting improvements in behavioral performance. Our results indicate tTIS and tACS to be effective in modulating cortical alpha activity during mental rotation, leading to an increase in ERD from pre- to poststimulation as well as compared to sham stimulation. However, this increase in ERD was not correlated with enhanced mental rotation performance, and resting state alpha power remained unchanged. Our findings underscore the complex nature of tTIS and tACS efficacy, indicating that stimulation effects are more observable during active cognitive tasks, while their impacts are less pronounced on resting neuronal systems.
Collapse
Affiliation(s)
- Carsten Thiele
- Department of Neurology, Otto-von-Guericke-University, University Clinic of Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
| | - Katharina S Rufener
- Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine of Childhood and Adolescents, Otto-von-Guericke-University, University Clinic of Magdeburg, Magdeburg, Germany
| | - Stefan Repplinger
- Department of Neurology, Otto-von-Guericke-University, University Clinic of Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
| | - Tino Zaehle
- Department of Neurology, Otto-von-Guericke-University, University Clinic of Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
| | - Philipp Ruhnau
- Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
- School of Psychology and Humanities, University of Central Lancashire, Preston, UK
| |
Collapse
|
29
|
Boetzel C, Stecher HI, Herrmann CS. Aligning Event-Related Potentials with Transcranial Alternating Current Stimulation for Modulation-a Review. Brain Topogr 2024; 37:933-946. [PMID: 38689065 PMCID: PMC11408541 DOI: 10.1007/s10548-024-01055-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
This review aims to demonstrate the connections between event-related potentials (ERPs), event-related oscillations (EROs), and non-invasive brain stimulation (NIBS), with a specific focus on transcranial alternating current stimulation (tACS). We begin with a short examination and discussion of the relation between ERPs and EROs. Then, we investigate the diverse fields of NIBS, highlighting tACS as a potent tool for modulating neural oscillations and influencing cognitive performance. Emphasizing the impact of tACS on individual ERP components, this article offers insights into the potential of conventional tACS for targeted stimulation of single ERP components. Furthermore, we review recent articles that explore a novel approach of tACS: ERP-aligned tACS. This innovative technique exploits the temporal precision of ERP components, aligning tACS with specific neural events to optimize stimulation effects and target the desired neural response. In conclusion, this review combines current knowledge to explore how ERPs, EROs, and NIBS interact, particularly highlighting the modulatory possibilities offered by tACS. The incorporation of ERP-aligned tACS introduces new opportunities for future research, advancing our understanding of the complex connection between neural oscillations and cognitive processes.
Collapse
Affiliation(s)
- Cindy Boetzel
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster for Excellence "Hearing for All", Carl Von Ossietzky University, Ammerländer Heerstr. 114 - 118, 26129, Oldenburg, Germany
| | - Heiko I Stecher
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster for Excellence "Hearing for All", Carl Von Ossietzky University, Ammerländer Heerstr. 114 - 118, 26129, Oldenburg, Germany
| | - Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster for Excellence "Hearing for All", Carl Von Ossietzky University, Ammerländer Heerstr. 114 - 118, 26129, Oldenburg, Germany.
- Neuroimaging Unit, European Medical School, Carl Von Ossietzky University, Oldenburg, Germany.
- Research Center Neurosensory Science, Carl Von Ossietzky University, Oldenburg, Germany.
| |
Collapse
|
30
|
Abellaneda-Pérez K, Potash RM, Pascual-Leone A, Sacchet MD. Neuromodulation and meditation: A review and synthesis toward promoting well-being and understanding consciousness and brain. Neurosci Biobehav Rev 2024; 166:105862. [PMID: 39186992 DOI: 10.1016/j.neubiorev.2024.105862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 08/28/2024]
Abstract
The neuroscience of meditation is providing insight into meditation's beneficial effects on well-being and informing understanding of consciousness. However, further research is needed to explicate mechanisms linking brain activity and meditation. Non-invasive brain stimulation (NIBS) presents a promising approach for causally investigating neural mechanisms of meditation. Prior NIBS-meditation research has predominantly targeted frontal and parietal cortices suggesting that it might be possible to boost the behavioral and neural effects of meditation with NIBS. Moreover, NIBS has revealed distinct neural signatures in long-term meditators. Nonetheless, methodological variations in NIBS-meditation research contributes to challenges for definitive interpretation of previous results. Future NIBS studies should further investigate core substrates of meditation, including specific brain networks and oscillations, and causal neural mechanisms of advanced meditation. Overall, NIBS-meditation research holds promise for enhancing meditation-based interventions in support of well-being and resilience in both non-clinical and clinical populations, and for uncovering the brain-mind mechanisms of meditation and consciousness.
Collapse
Affiliation(s)
- Kilian Abellaneda-Pérez
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain.
| | - Ruby M Potash
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Matthew D Sacchet
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
31
|
Lee TW, Tramontano G. Connectivity changes following transcranial alternating current stimulation at 5-Hz: an EEG study. AIMS Neurosci 2024; 11:439-448. [PMID: 39801795 PMCID: PMC11712229 DOI: 10.3934/neuroscience.2024026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/27/2024] [Accepted: 10/12/2024] [Indexed: 01/16/2025] Open
Abstract
Transcranial alternating current stimulation (tACS) at 5-Hz to the right hemisphere can alleviate anxiety symptoms. We aimed to explore the connectivity changes following the treatment. We collected electroencephalography (EEG) data from 24 participants with anxiety disorders before and after the tACS treatment during a single session. Electric stimulation was applied over the right hemisphere, with 1.0 mA at F4, 1.0 mA at P4, and 2.0 mA at T8, following the 10-10 EEG convention. With eLORETA, the scalp signals were transformed into the cortex's current source density. We assessed the connectivity changes at theta frequency between the centers of Brodmann area (BA) 6/8 (frontal), BA 39/40 (parietal), and BA 21 (middle temporal). Functional connectivity was indicated by lagged coherences and lagged phase synchronization. Paired t-tests were used to quantify the differences statistically. We observed enhanced lagged phase synchronization at theta frequency between the frontal and parietal regions (P = 0.002) and between the parietal and temporal regions (P = 0.005) after Bonferroni correction. Applying tACS 5-Hz over the right hemisphere enhanced inter-regional interaction, which was spectrum-specific and mainly mediated by phase rather than power synchrony. The potential neural mechanisms are discussed.
Collapse
Affiliation(s)
| | - Gerald Tramontano
- The NeuroCognitive Institute (NCI) Clinical Research Foundation, NJ 07856, US
| |
Collapse
|
32
|
Abubaker M, Al Qasem W, Pilátová K, Ježdík P, Kvašňák E. Theta-gamma-coupling as predictor of working memory performance in young and elderly healthy people. Mol Brain 2024; 17:74. [PMID: 39415245 PMCID: PMC11619296 DOI: 10.1186/s13041-024-01149-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/05/2024] [Indexed: 10/18/2024] Open
Abstract
The relationship between working memory (WM) and neuronal oscillations can be studied in detail using brain stimulation techniques, which provide a method for modulating these oscillations and thus influencing WM. The endogenous coupling between the amplitude of gamma oscillations and the phase of theta oscillations is crucial for cognitive control. Theta/gamma peak-coupled transcranial alternating current stimulation (TGCp-tACS) can modulate this coupling and thus influence WM performance. This study investigated the effects of TGCp-tACS on WM in older adults and compared their responses with those of younger participants from our previous work who underwent the same experimental design. Twenty-eight older subjects underwent both TGCp-tACS and sham stimulation sessions at least 72 h apart. Resting-state electroencephalography (EEG) was recorded before and after the interventions, and a WM task battery with five different WM tasks was performed during the interventions to assess various WM components. Outcomes measured included WM task performance (e.g., accuracy, reaction time (RT)) and changes in power spectral density (PSD) in different frequency bands. TGCp-tACS significantly decreased accuracy and RT on the 10- and 14-point Sternberg tasks and increased RT on the Digit Symbol Substitution Test in older adults. In contrast, younger participants showed a significant increase in accuracy only on the 14-item Sternberg task. Electrophysiological analysis revealed a decrease in delta and theta PSD and an increase in high gamma PSD in both younger and older participants after verum stimulation. In conclusion, theta-gamma coupling is essential for WM and modulation of this coupling affects WM performance. The effects of TGCp-tACS on WM vary with age due to natural brain changes. To better support older adults, the study suggests several strategies to improve cognitive function, including: Adjusting stimulation parameters, applying stimulation to two sites, conducting multiple sessions, and using brain imaging techniques for precise targeting.
Collapse
Affiliation(s)
- Mohammed Abubaker
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia.
| | - Wiam Al Qasem
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Kateřina Pilátová
- Department of Information and Communication Technology in Medicine, Faculty of Biomedical Engineering, Czech Technical University in Prague, Prague, Czechia
| | - Petr Ježdík
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czechia
| | - Eugen Kvašňák
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| |
Collapse
|
33
|
Al Qasem W, Abubaker M, Pilátová K, Ježdík P, Kvašňák E. Improving working memory by electrical stimulation and cross-frequency coupling. Mol Brain 2024; 17:72. [PMID: 39354549 PMCID: PMC11446076 DOI: 10.1186/s13041-024-01142-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/12/2024] [Indexed: 10/03/2024] Open
Abstract
Working memory (WM) is essential for the temporary storage and processing of information required for complex cognitive tasks and relies on neuronal theta and gamma oscillations. Given the limited capacity of WM, researchers have investigated various methods to improve it, including transcranial alternating current stimulation (tACS), which modulates brain activity at specific frequencies. One particularly promising approach is theta-gamma peak-coupled-tACS (TGCp-tACS), which simulates the natural interaction between theta and gamma oscillations that occurs during cognitive control in the brain. The aim of this study was to improve WM in healthy young adults with TGCp-tACS, focusing on both behavioral and neurophysiological outcomes. Thirty-one participants completed five WM tasks under both sham and verum stimulation conditions. Electroencephalography (EEG) recordings before and after stimulation showed that TGCp-tACS increased power spectral density (PSD) in the high-gamma region at the stimulation site, while PSD decreased in the theta and delta regions throughout the cortex. From a behavioral perspective, although no significant changes were observed in most tasks, there was a significant improvement in accuracy in the 14-item Sternberg task, indicating an improvement in phonological WM. In conclusion, TGCp-tACS has the potential to promote and improve the phonological component of WM. To fully realize the cognitive benefits, further research is needed to refine the stimulation parameters and account for individual differences, such as baseline cognitive status and hormonal factors.
Collapse
Affiliation(s)
- Wiam Al Qasem
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia.
| | - Mohammed Abubaker
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Kateřina Pilátová
- Department of Information and Communication Technology in Medicine, Faculty of Biomedical Engineering, Czech Technical University in Prague, Prague, Czechia
| | - Petr Ježdík
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czechia
| | - Eugen Kvašňák
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| |
Collapse
|
34
|
Paßmann S, Baselgia S, Kasten FH, Herrmann CS, Rasch B. Differential online and offline effects of theta-tACS on memory encoding and retrieval. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:894-911. [PMID: 39085585 PMCID: PMC11390785 DOI: 10.3758/s13415-024-01204-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/01/2024] [Indexed: 08/02/2024]
Abstract
Theta oscillations support memory formation, but their exact contribution to the communication between prefrontal cortex (PFC) and the hippocampus is unknown. We tested the functional relevance of theta oscillations as a communication link between both areas for memory formation using transcranial alternating current stimulation (tACS). Healthy, young participants learned two lists of Dutch-German word pairs and retrieved them immediately and with a 30-min delay. In the encoding group (N = 30), tACS was applied during the encoding of list 1. List 2 was used to test stimulation aftereffects. In the retrieval group (N = 23), we stimulated during the delayed recall. In both groups, we applied tACS bilaterally at prefrontal and tempo-parietal sites, using either individualized theta frequency or 15 Hz (as control), according to a within-subject design. Stimulation with theta-tACS did not alter overall learning performance. An exploratory analysis revealed that immediate recall improved when word-pairs were learned after theta-tACS (list 2). Applying theta-tACS during retrieval had detrimental effects on memory. No changes in the power of the respective frequency bands were observed. Our results do not support the notion that impacting the communication between PFC and the hippocampus during a task by bilateral tACS improves memory. However, we do find evidence that direct stimulation had a trend for negatively interfering effects during immediate and delayed recall. Hints for beneficial effects on memory only occurred with aftereffects of the stimulation. Future studies need to further examine the effects during and after stimulation on memory formation.
Collapse
Affiliation(s)
- Sven Paßmann
- Cognitive Biopsychology and Methods, Department of Psychology, Université Fribourg, Rue P.-A.-de-Faucigny 2, 1700, Fribourg, Switzerland.
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany.
| | - Sandrine Baselgia
- Cognitive Biopsychology and Methods, Department of Psychology, Université Fribourg, Rue P.-A.-de-Faucigny 2, 1700, Fribourg, Switzerland
| | - Florian H Kasten
- Centre de Recherche Cerveau & Cognition, CNRS, Toulouse, France
- Université Toulouse III Paul Sabatier, Toulouse, France
| | - Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, Carl Von Ossietzky Universität, Oldenburg, Germany
| | - Björn Rasch
- Cognitive Biopsychology and Methods, Department of Psychology, Université Fribourg, Rue P.-A.-de-Faucigny 2, 1700, Fribourg, Switzerland
| |
Collapse
|
35
|
Takahashi K, Glinski B, Salehinejad MA, Jamil A, Chang AYC, Kuo MF, Nitsche MA. Induction and stabilization of delta frequency brain oscillations by phase-synchronized rTMS and tACS. Brain Stimul 2024; 17:1086-1097. [PMID: 39270929 DOI: 10.1016/j.brs.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Brain oscillations in the delta frequency band have been linked with deep sleep and consolidation of declarative memory during sleep. However, the causal relationship of these associations remains not competely clarified, primarily due to constraints by technical limitations of brain stimulation approaches suited to induce and stabilize respective oscillatory activity in the human brain. The objective of this study was to establish a non-invasive brain stimulation protocol capable of reliably inducing, and stabilizing respective oscillatory activity in the delta frequency range. HYPOTHESIS We aimed to develop an efficient non-invasive brain stimulation (NIBS) protocol for delta frequency induction and stabilization via concurrent, phase-locked repetitive transcranial magnetic stimulation (rTMS) and transcranial alternating current stimulation (tACS). We hypothesized that rTMS induces oscillatory resting-state activity in the delta frequency and that tACS stabilizes this effect, as has been shown before for alpha and theta frequencies. METHODS 19 healthy participants took part in a repeated-measures experimental protocol. We applied rTMS pulses synchronized with the peak or trough phase of 0.75Hz tACS over the bilateral prefrontal cortex. Resting state EEG in eyes-open (EO) and eyes-closed (EC) conditions was recorded before, immediately after and every 10 min for up to 1 h after intervention. RESULTS rTMS phase-synchronized to the trough of the tACS waveform significantly increased delta frequency activity for up to 60 min in both EO and EC conditions after stimulation. The effects extended from frontal to temporal regions and this enhancement of oscillatory activity was shown to be specific for the delta frequency range. CONCLUSION Concurrent, trough-synchronized 0.75 Hz rTMS combined with tACS may be a reliable protocol to induce long-lasting oscillatory activity in the delta frequency range. The results of the current study might perspectively be relevant for clinical treatment of sleep disturbances which are accompanied by pathologically altered brain oscillations, and enhancement of memory consolidation.
Collapse
Affiliation(s)
- Kuri Takahashi
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Department of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Benedikt Glinski
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Department of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Mohammed Ali Salehinejad
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran
| | - Asif Jamil
- Division of Neuropsychiatry & Neuromodulation, Department of Psychiatry, Harvard Medical School & Massachusetts General Hospital, Boston, MA, USA
| | | | - Min-Fang Kuo
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Bielefeld University, University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy, Bielefeld, Germany; German Centre for Mental Health (DZPG), Bochum, Germany.
| |
Collapse
|
36
|
Yang C, Jung B, Lee SH. Transcranial Electrical Stimulation: Clinical Implication and Practice for Treatment of Psychiatric Illness. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2024; 22:391-404. [PMID: 39069679 PMCID: PMC11289600 DOI: 10.9758/cpn.23.1118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/09/2023] [Indexed: 07/30/2024]
Abstract
Brain electrical stimulation, particularly non-invasive brain stimulation (NIBS) techniques such as transcranial electrical stimulation (tES), have emerged as a promising treatment for various psychiatric disorders, including depression, anxiety, and post-traumatic stress disorder. tES techniques, such as transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS), and transcranial random noise stimulation (tRNS), are cost-effective and safe interventions that are designed to affect neuronal circuits in the brain using various modalities. Although tES has shown effectiveness in the treatment of psychiatric disorders, there is a lack of comprehensive papers that consider its clinical implications. Therefore, this review aims to evaluate the clinical implications of tES and provide practical guidance for the treatment of psychiatric illnesses. Moreover, this review provides an overview of tES techniques and their mechanisms of action and summarizes recent clinical studies that have examined the use of tES for psychiatric disorders.
Collapse
Affiliation(s)
- Chaeyeon Yang
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Korea
| | - Bori Jung
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Korea
- Department of Psychology, Sogang University, Seoul, Korea
| | - Seung-Hwan Lee
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Korea
- Department of Psychiatry, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| |
Collapse
|
37
|
Sengupta A, Banerjee S, Ganesh S, Grover S, Sridharan D. The right posterior parietal cortex mediates spatial reorienting of attentional choice bias. Nat Commun 2024; 15:6938. [PMID: 39138185 PMCID: PMC11322534 DOI: 10.1038/s41467-024-51283-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
Attention facilitates behavior by enhancing perceptual sensitivity (sensory processing) and choice bias (decisional weighting) for attended information. Whether distinct neural substrates mediate these distinct components of attention remains unknown. We investigate the causal role of key nodes of the right posterior parietal cortex (rPPC) in the forebrain attention network in sensitivity versus bias control. Two groups of participants performed a cued attention task while we applied either inhibitory, repetitive transcranial magnetic stimulation (n = 28) or 40 Hz transcranial alternating current stimulation (n = 26) to the dorsal rPPC. We show that rPPC stimulation - with either modality - impairs task performance by selectively altering attentional modulation of bias but not sensitivity. Specifically, participants' bias toward the uncued, but not the cued, location reduced significantly following rPPC stimulation - an effect that was consistent across both neurostimulation cohorts. In sum, the dorsal rPPC causally mediates the reorienting of choice bias, one particular component of visual spatial attention.
Collapse
Affiliation(s)
- Ankita Sengupta
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
| | - Sanjna Banerjee
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
- Foundation of Art and Health India, Bangalore, 560066, India
| | - Suhas Ganesh
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
- Verily Life Sciences, San Francisco, CA, 94080, USA
| | - Shrey Grover
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, 02215, USA
| | - Devarajan Sridharan
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India.
- Department of Computer Science and Automation, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
38
|
Aksenov A, Renaud-D’Ambra M, Volpert V, Beuter A. Phase-shifted tACS can modulate cortical alpha waves in human subjects. Cogn Neurodyn 2024; 18:1575-1592. [PMID: 39104698 PMCID: PMC11297852 DOI: 10.1007/s11571-023-09997-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/13/2023] [Accepted: 08/06/2023] [Indexed: 08/07/2024] Open
Abstract
In the present study, we investigated traveling waves induced by transcranial alternating current stimulation in the alpha frequency band of healthy subjects. Electroencephalographic data were recorded in 12 healthy subjects before, during, and after phase-shifted stimulation with a device combining both electroencephalographic and stimulation capacities. In addition, we analyzed the results of numerical simulations and compared them to the results of identical analysis on real EEG data. The results of numerical simulations indicate that imposed transcranial alternating current stimulation induces a rotating electric field. The direction of waves induced by stimulation was observed more often during at least 30 s after the end of stimulation, demonstrating the presence of aftereffects of the stimulation. Results suggest that the proposed approach could be used to modulate the interaction between distant areas of the cortex. Non-invasive transcranial alternating current stimulation can be used to facilitate the propagation of circulating waves at a particular frequency and in a controlled direction. The results presented open new opportunities for developing innovative and personalized transcranial alternating current stimulation protocols to treat various neurological disorders. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-023-09997-1.
Collapse
Affiliation(s)
| | | | - Vitaly Volpert
- Institute Camille Jordan, UMR 5208 CNRS, University Lyon 1, Villeurbanne, France
| | | |
Collapse
|
39
|
Lefaucheur JP, Moro E, Shirota Y, Ugawa Y, Grippe T, Chen R, Benninger DH, Jabbari B, Attaripour S, Hallett M, Paulus W. Clinical neurophysiology in the treatment of movement disorders: IFCN handbook chapter. Clin Neurophysiol 2024; 164:57-99. [PMID: 38852434 PMCID: PMC11418354 DOI: 10.1016/j.clinph.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/02/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024]
Abstract
In this review, different aspects of the use of clinical neurophysiology techniques for the treatment of movement disorders are addressed. First of all, these techniques can be used to guide neuromodulation techniques or to perform therapeutic neuromodulation as such. Neuromodulation includes invasive techniques based on the surgical implantation of electrodes and a pulse generator, such as deep brain stimulation (DBS) or spinal cord stimulation (SCS) on the one hand, and non-invasive techniques aimed at modulating or even lesioning neural structures by transcranial application. Movement disorders are one of the main areas of indication for the various neuromodulation techniques. This review focuses on the following techniques: DBS, repetitive transcranial magnetic stimulation (rTMS), low-intensity transcranial electrical stimulation, including transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS), and focused ultrasound (FUS), including high-intensity magnetic resonance-guided FUS (MRgFUS), and pulsed mode low-intensity transcranial FUS stimulation (TUS). The main clinical conditions in which neuromodulation has proven its efficacy are Parkinson's disease, dystonia, and essential tremor, mainly using DBS or MRgFUS. There is also some evidence for Tourette syndrome (DBS), Huntington's disease (DBS), cerebellar ataxia (tDCS), and axial signs (SCS) and depression (rTMS) in PD. The development of non-invasive transcranial neuromodulation techniques is limited by the short-term clinical impact of these techniques, especially rTMS, in the context of very chronic diseases. However, at-home use (tDCS) or current advances in the design of closed-loop stimulation (tACS) may open new perspectives for the application of these techniques in patients, favored by their easier use and lower rate of adverse effects compared to invasive or lesioning methods. Finally, this review summarizes the evidence for keeping the use of electromyography to optimize the identification of muscles to be treated with botulinum toxin injection, which is indicated and widely performed for the treatment of various movement disorders.
Collapse
Affiliation(s)
- Jean-Pascal Lefaucheur
- Clinical Neurophysiology Unit, Henri Mondor University Hospital, AP-HP, Créteil, France; EA 4391, ENT Team, Paris-Est Créteil University, Créteil, France.
| | - Elena Moro
- Grenoble Alpes University, Division of Neurology, CHU of Grenoble, Grenoble Institute of Neuroscience, Grenoble, France
| | - Yuichiro Shirota
- Department of Neurology, Division of Neuroscience, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Talyta Grippe
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada; Neuroscience Graduate Program, Federal University of Minas Gerais, Belo Horizonte, Brazil; Krembil Brain Institute, Toronto, Ontario, Canada
| | - Robert Chen
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada; Krembil Brain Institute, Toronto, Ontario, Canada
| | - David H Benninger
- Service of Neurology, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Bahman Jabbari
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Sanaz Attaripour
- Department of Neurology, University of California, Irvine, CA, USA
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Walter Paulus
- Department of Neurology, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
40
|
Lee TW, Tramontano G. Neural consequences of 5-Hz transcranial alternating current stimulation over right hemisphere: An eLORETA EEG study. Neurosci Lett 2024; 835:137849. [PMID: 38825146 DOI: 10.1016/j.neulet.2024.137849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/06/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
INTRODUCTION Transcranial alternating current stimulation (tACS) at 5-Hz to the right hemisphere can effectively alleviate anxiety symptoms. This study aimed to explore the neural mechanisms that drive the therapeutic benefits. METHODS We collected electroencephalography (EEG) data from 24 participants with anxiety disorders before and after a tACS treatment session. tACS was applied over the right hemisphere, with 1.0 mA at F4, 1.0 mA at P4, and 2.0 mA at T8 (10-10 EEG convention). With eLORETA, we transformed the scalp signals into the current source density in the cortex. We then assessed the differences between post- and pre-treatment brain maps across multiple spectra (delta to low gamma) with non-parametric statistics. RESULTS We observed a trend of heightened power in alpha and reduced power in mid-to-high beta and low gamma, in accord with the EEG markers of anxiolytic effects reported in previous studies. Additionally, we observed a consistent trend of de-synchronization at the stimulating sites across spectra. CONCLUSION tACS 5-Hz over the right hemisphere demonstrated EEG markers of anxiety reduction. The after-effects of tACS on the brain are intricate and cannot be explained solely by the widely circulated entrainment theory. Rather, our results support the involvement of plasticity mechanisms in the offline effects of tACS.
Collapse
Affiliation(s)
- Tien-Wen Lee
- The NeuroCognitive Institute (NCI) Clinical Research Foundation, NJ 07856, USA
| | - Gerald Tramontano
- The NeuroCognitive Institute (NCI) Clinical Research Foundation, NJ 07856, USA.
| |
Collapse
|
41
|
De Koninck BP, Brazeau D, Deshaies AA, Briand MM, Maschke C, Williams V, Arbour C, Williamson D, Duclos C, Bernard F, Blain-Moraes S, De Beaumont L. Modulation of brain activity in brain-injured patients with a disorder of consciousness in intensive care with repeated 10-Hz transcranial alternating current stimulation (tACS): a randomised controlled trial protocol. BMJ Open 2024; 14:e078281. [PMID: 38991682 PMCID: PMC11243138 DOI: 10.1136/bmjopen-2023-078281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 06/27/2024] [Indexed: 07/13/2024] Open
Abstract
INTRODUCTION Therapeutic interventions for disorders of consciousness lack consistency; evidence supports non-invasive brain stimulation, but few studies assess neuromodulation in acute-to-subacute brain-injured patients. This study aims to validate the feasibility and assess the effect of a multi-session transcranial alternating current stimulation (tACS) intervention in subacute brain-injured patients on recovery of consciousness, related brain oscillations and brain network dynamics. METHODS AND ANALYSES The study is comprised of two phases: a validation phase (n=12) and a randomised controlled trial (n=138). Both phases will be conducted in medically stable brain-injured adult patients (traumatic brain injury and hypoxic-ischaemic encephalopathy), with a Glasgow Coma Scale score ≤12 after continuous sedation withdrawal. Recruitment will occur at the intensive care unit of a Level 1 Trauma Centre in Montreal, Quebec, Canada. The intervention includes a 20 min 10 Hz tACS at 1 mA intensity or a sham session over parieto-occipital cortical sites, repeated over five consecutive days. The current's frequency targets alpha brain oscillations (8-13 Hz), known to be associated with consciousness. Resting-state electroencephalogram (EEG) will be recorded four times daily for five consecutive days: pre and post-intervention, at 60 and 120 min post-tACS. Two additional recordings will be included: 24 hours and 1-week post-protocol. Multimodal measures (blood samples, pupillometry, behavioural consciousness assessments (Coma Recovery Scale-revised), actigraphy measures) will be acquired from baseline up to 1 week after the stimulation. EEG signal analysis will focus on the alpha bandwidth (8-13 Hz) using spectral and functional network analyses. Phone assessments at 3, 6 and 12 months post-tACS, will measure long-term functional recovery, quality of life and caregivers' burden. ETHICS AND DISSEMINATION Ethical approval for this study has been granted by the Research Ethics Board of the CIUSSS du Nord-de-l'Île-de-Montréal (Project ID 2021-2279). The findings of this two-phase study will be submitted for publication in a peer-reviewed academic journal and submitted for presentation at conferences. The trial's results will be published on a public trial registry database (ClinicalTrials.gov). TRIAL REGISTRATION NUMBER NCT05833568.
Collapse
Affiliation(s)
- Béatrice P De Koninck
- Psychology, University of Montreal, Montreal, Quebec, Canada
- Research Center, Hopital du Sacre-Coeur de Montreal, Montreal, Quebec, Canada
| | - Daphnee Brazeau
- Psychology, University of Montreal, Montreal, Quebec, Canada
- Research Center, Hopital du Sacre-Coeur de Montreal, Montreal, Quebec, Canada
| | | | - Marie-Michele Briand
- CIUSSS du Nord-de-l'Ile-de-Montreal, Montreal, Quebec, Canada
- IRDPQ, Montreal, Quebec, Canada
| | - Charlotte Maschke
- McGill University, Montreal, Quebec, Canada
- Montreal General Hospital, Montreal, Quebec, Canada
| | - Virginie Williams
- Research Center, Hopital du Sacre-Coeur de Montreal, Montreal, Quebec, Canada
| | - Caroline Arbour
- Research Center, Hopital du Sacre-Coeur de Montreal, Montreal, Quebec, Canada
- University of Montreal, Montreal, Quebec, Canada
| | | | - Catherine Duclos
- Research Center, Hopital du Sacre-Coeur de Montreal, Montreal, Quebec, Canada
- Anesthesiology and Pain Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Francis Bernard
- Research Center, Hopital du Sacre-Coeur de Montreal, Montreal, Quebec, Canada
- Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Stefanie Blain-Moraes
- Montreal General Hospital, Montreal, Quebec, Canada
- Physical and Occupational Therapy, McGill University, Montreal, Quebec, Canada
| | - Louis De Beaumont
- Research Center, Hopital du Sacre-Coeur de Montreal, Montreal, Quebec, Canada
- Surgery, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
42
|
Yang M, Li Z, Pan F, Wu S, Jia X, Wang R, Ji L, Li W, Li C. Alpha tACS on Parieto-Occipital Cortex Mitigates Motion Sickness Based on Multiple Physiological Observation. IEEE Trans Neural Syst Rehabil Eng 2024; 32:2398-2407. [PMID: 38949929 DOI: 10.1109/tnsre.2024.3419753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Approximately one third of the population is prone to motion sickness (MS), which is associated with the dysfunction in the integration of sensory inputs. Transcranial alternating current stimulation (tACS) has been widely used to modulate neurological functions by affecting neural oscillation. However, it has not been applied in the treatment of motion sickness. This study aims to investigate changes in brain oscillations during exposure to MS stimuli and to further explore the potential impact of tACS with the corresponding frequency and site on MS symptoms. A total of 19 subjects were recruited to be exposed to Coriolis stimuli to complete an inducing session. After that, they were randomly assigned to tACS stimulation group or sham stimulation group to complete a stimulation session. Electroencephalography (EEG), electrocardiogram, and galvanic skin response were recorded during the experiment. All the subjects suffering from obvious MS symptoms after inducing session were observed that alpha power of four channels of parieto-occipital lobe significantly decreased (P7: t =3.589, p <0.001; P8: t =2.667, p <0.05; O1: t =3.556, p <0.001; O2: t =2.667, p <0.05). Based on this, tACS group received the tACS stimulation at 10Hz from Oz to CPz. Compared to sham group, tACS stimulation significantly improved behavioral performance and entrained the alpha oscillation in individuals whose alpha power decrease during the inducing session. The findings show that parieto-occipital alpha oscillation plays a critical role in the integration of sensory inputs, and alpha tACS on parieto-occipital can become a potential method to mitigate MS symptoms.
Collapse
|
43
|
Wei J, Alamia A, Yao Z, Huang G, Li L, Liang Z, Zhang L, Zhou C, Song Z, Zhang Z. State-Dependent tACS Effects Reveal the Potential Causal Role of Prestimulus Alpha Traveling Waves in Visual Contrast Detection. J Neurosci 2024; 44:e2023232024. [PMID: 38811165 PMCID: PMC11223459 DOI: 10.1523/jneurosci.2023-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
The intricate relationship between prestimulus alpha oscillations and visual contrast detection variability has been the focus of numerous studies. However, the causal impact of prestimulus alpha traveling waves on visual contrast detection remains largely unexplored. In our research, we sought to discern the causal link between prestimulus alpha traveling waves and visual contrast detection across different levels of mental fatigue. Using electroencephalography alongside a visual detection task with 30 healthy adults (13 females; 17 males), we identified a robust negative correlation between prestimulus alpha forward traveling waves (FTWs) and visual contrast threshold (VCT). Inspired by this correlation, we utilized 45/-45° phase-shifted transcranial alternating current stimulation (tACS) in a sham-controlled, double-blind, within-subject experiment with 33 healthy adults (23 females; 10 males) to directly modulate these alpha traveling waves. After the application of 45° phase-shifted tACS, we observed a substantial decrease in FTW and an increase in backward traveling waves, along with a concurrent increase in VCT, compared with the sham condition. These changes were particularly pronounced under a low fatigue state. The findings of state-dependent tACS effects reveal the potential causal role of prestimulus alpha traveling waves in visual contrast detection. Moreover, our study highlights the potential of 45/-45° phase-shifted tACS in cognitive modulation and therapeutic applications.
Collapse
Affiliation(s)
- Jinwen Wei
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen 518060, China
| | - Andrea Alamia
- CerCo, CNRS, Université de Toulouse, Toulouse, France
| | - Ziqing Yao
- Department of Psychology, The University of Hong Kong, Hong Kong, China
| | - Gan Huang
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen 518060, China
| | - Linling Li
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen 518060, China
| | - Zhen Liang
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen 518060, China
| | - Li Zhang
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen 518060, China
| | - Changsong Zhou
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, and Life Science Imaging Centre, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Zhenxi Song
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen 518055, China
| | - Zhiguo Zhang
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen 518055, China
- Peng Cheng Laboratory, Shenzhen 518055, China
| |
Collapse
|
44
|
Haslacher D, Cavallo A, Reber P, Kattein A, Thiele M, Nasr K, Hashemi K, Sokoliuk R, Thut G, Soekadar SR. Working memory enhancement using real-time phase-tuned transcranial alternating current stimulation. Brain Stimul 2024; 17:850-859. [PMID: 39029737 DOI: 10.1016/j.brs.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Prior work has shown that transcranial alternating current stimulation (tACS) of parietooccipital alpha oscillations (8-14 Hz) can modulate working memory (WM) performance as a function of the phase lag to endogenous oscillations. However, leveraging this effect using real-time phase-tuned tACS has not been feasible so far due to stimulation artifacts preventing continuous phase tracking. OBJECTIVES AND HYPOTHESIS We aimed to develop a system that tracks and adapts the phase lag between tACS and ongoing parietooccipital alpha oscillations in real-time. We hypothesized that such real-time phase-tuned tACS enhances working memory performance, depending on the phase lag. METHODS We developed real-time phase-tuned closed-loop amplitude-modulated tACS (CLAM-tACS) targeting parietooccipital alpha oscillations. CLAM-tACS was applied at six different phase lags relative to ongoing alpha oscillations while participants (N = 21) performed a working memory task. To exclude that behavioral effects of CLAM-tACS were mediated by other factors such as sensory co-stimulation, a second group of participants (N = 25) received equivalent stimulation of the forehead. RESULTS WM accuracy improved in a phase lag dependent manner (p = 0.0350) in the group receiving parietooccipital stimulation, with the strongest enhancement observed at 330° phase lag between tACS and ongoing alpha oscillations (p = 0.00273, d = 0.976). Moreover, across participants, modulation of frontoparietal alpha oscillations correlated both in amplitude (p = 0.0248) and phase (p = 0.0270) with the modulation of WM accuracy. No such effects were observed in the control group receiving frontal stimulation. CONCLUSIONS Our results demonstrate the feasibility and efficacy of real-time phase-tuned CLAM-tACS in modulating both brain activity and behavior, thereby paving the way for further investigation into brain-behavior relationships and the exploration of innovative therapeutic applications.
Collapse
Affiliation(s)
- David Haslacher
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Alessia Cavallo
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany; Department of Neurology and Experimental Neurology, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Philipp Reber
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany; Department of Psychology, University of California, Berkeley, CA, USA
| | - Anna Kattein
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Moritz Thiele
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Khaled Nasr
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kimia Hashemi
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Rodika Sokoliuk
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Gregor Thut
- School of Psychology & Neuroscience, University of Glasgow, Glasgow, UK
| | - Surjo R Soekadar
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
45
|
De Paolis ML, Paoletti I, Zaccone C, Capone F, D'Amelio M, Krashia P. Transcranial alternating current stimulation (tACS) at gamma frequency: an up-and-coming tool to modify the progression of Alzheimer's Disease. Transl Neurodegener 2024; 13:33. [PMID: 38926897 PMCID: PMC11210106 DOI: 10.1186/s40035-024-00423-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
The last decades have witnessed huge efforts devoted to deciphering the pathological mechanisms underlying Alzheimer's Disease (AD) and to testing new drugs, with the recent FDA approval of two anti-amyloid monoclonal antibodies for AD treatment. Beyond these drug-based experimentations, a number of pre-clinical and clinical trials are exploring the benefits of alternative treatments, such as non-invasive stimulation techniques on AD neuropathology and symptoms. Among the different non-invasive brain stimulation approaches, transcranial alternating current stimulation (tACS) is gaining particular attention due to its ability to externally control gamma oscillations. Here, we outline the current knowledge concerning the clinical efficacy, safety, ease-of-use and cost-effectiveness of tACS on early and advanced AD, applied specifically at 40 Hz frequency, and also summarise pre-clinical results on validated models of AD and ongoing patient-centred trials.
Collapse
Affiliation(s)
- Maria Luisa De Paolis
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
| | - Ilaria Paoletti
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
| | - Claudio Zaccone
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
| | - Fioravante Capone
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 - 00128, Rome, Italy
| | - Marcello D'Amelio
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy.
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso Di Fiorano, 64 - 00143, Rome, Italy.
| | - Paraskevi Krashia
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso Di Fiorano, 64 - 00143, Rome, Italy
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
| |
Collapse
|
46
|
Liu X, Qi S, Hou L, Liu Y, Wang X. Noninvasive Deep Brain Stimulation via Temporal Interference Electric Fields Enhanced Motor Performance of Mice and Its Neuroplasticity Mechanisms. Mol Neurobiol 2024; 61:3314-3329. [PMID: 37987957 DOI: 10.1007/s12035-023-03721-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/17/2023] [Indexed: 11/22/2023]
Abstract
A noninvasive deep brain stimulation via temporal interference (TI) electric fields is a novel neuromodulation technology, but few advances about TI stimulation effectiveness and mechanisms have been reported. One hundred twenty-six mice were selected for the experiment by power analysis. In the present study, TI stimulation was proved to stimulate noninvasively primary motor cortex (M1) of mice, and 7-day TI stimulation with an envelope frequency of 20 Hz (∆f =20 Hz), instead of an envelope frequency of 10 Hz (∆f =10 Hz), could obviously improve mice motor performance. The mechanism of action may be related to enhancing the strength of synaptic connections, improving synaptic transmission efficiency, increasing dendritic spine density, promoting neurotransmitter release, and increasing the expression and activity of synapse-related proteins, such as brain-derived neurotrophic factor (BDNF), postsynaptic density protein-95 (PSD-95), and glutamate receptor protein. Furthermore, the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway and its upstream BDNF play an important role in the enhancement of locomotor performance in mice by TI stimulation. To our knowledge, it is the first report about TI stimulation promoting multiple motor performances and describing its mechanisms. TI stimulation might serve as a novel promising approach to enhance motor performance and treat dysfunction in deep brain regions.
Collapse
Affiliation(s)
- Xiaodong Liu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Shuo Qi
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Lijuan Hou
- College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Yu Liu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China.
| | - Xiaohui Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
47
|
Latrèche C, Mancini V, Rochas V, Maeder J, Cantonas LM, Férat V, Schneider M, Michel CM, Eliez S. Using transcranial alternating current stimulation to enhance working memory skills in youths with 22q11.2 deletion syndrome: A randomized double-blind sham-controlled study. Psychiatry Res 2024; 335:115835. [PMID: 38460352 DOI: 10.1016/j.psychres.2024.115835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 03/11/2024]
Abstract
Abnormal cognitive development, particularly working memory (WM) deficits, is among the first apparent manifestations of psychosis. Yet, cognitive impairment only shows limited response to current pharmacological treatment. Alternative interventions to target cognition are highly needed in individuals at high risk for psychosis, like carriers of 22q11.2 deletion syndrome (22q11.2DS). Here we applied theta-tuned transcranial alternating current stimulation (tACS) between frontal and temporal regions during a visual WM task in 34 deletion carriers. We conducted a double-blind sham-controlled study over three consecutive days. The stimulation parameters were derived from individual structural MRI scan and HD-EEG data acquired at baseline (Day 1) to model current intensity and individual preferential theta peak. Participants were randomized to either sham or tACS (Days 2 and 3) and then completed a visual WM task and a control task. Our findings reveal that tACS was safe and well-tolerated among participants. We found a significantly increased accuracy in the visual WM but not the control task following tACS. Moreover, this enhancement in WM accuracy was greater after tACS than during tACS, indicating stronger offline effects than online effects. Our study therefore supports the application of repeated sessions of brain stimulation in 22q11.2DS.
Collapse
Affiliation(s)
- Caren Latrèche
- Developmental Imaging and Psychopathology Lab, Department of Psychiatry, University of Geneva School of Medicine, Switzerland.
| | - Valentina Mancini
- Developmental Imaging and Psychopathology Lab, Department of Psychiatry, University of Geneva School of Medicine, Switzerland
| | - Vincent Rochas
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Switzerland; Human Neuroscience Platform, Fondation Campus Biotech Geneva, Geneva, Switzerland
| | - Johanna Maeder
- Developmental Imaging and Psychopathology Lab, Department of Psychiatry, University of Geneva School of Medicine, Switzerland
| | - Lucia M Cantonas
- Autism Brain and Behavior Laboratory, Department of Psychiatry, University of Geneva School of Medicine, Geneva, Switzerland
| | - Victor Férat
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Switzerland
| | - Maude Schneider
- Clinical Psychology Unit for Developmental and Intellectual Disabilities, Faculty of Psychology and Educational Sciences, University of Geneva, Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Switzerland
| | - Stephan Eliez
- Developmental Imaging and Psychopathology Lab, Department of Psychiatry, University of Geneva School of Medicine, Switzerland; Department of Genetic Medicine and Development, University of Geneva School of Medicine, Switzerland
| |
Collapse
|
48
|
de la Salle S, Choueiry J, Payumo M, Devlin M, Noel C, Abozmal A, Hyde M, Baysarowich R, Duncan B, Knott V. Transcranial Alternating Current Stimulation Alters Auditory Steady-State Oscillatory Rhythms and Their Cross-Frequency Couplings. Clin EEG Neurosci 2024; 55:329-339. [PMID: 37306065 PMCID: PMC11020127 DOI: 10.1177/15500594231179679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 05/02/2023] [Indexed: 06/13/2023]
Abstract
Auditory cortical plasticity deficits in schizophrenia are evidenced with electroencephalographic (EEG)-derived biomarkers, including the 40-Hz auditory steady-state response (ASSR). Aiming to understand the underlying oscillatory mechanisms contributing to the 40-Hz ASSR, we examined its response to transcranial alternating current stimulation (tACS) applied bilaterally to the temporal lobe of 23 healthy participants. Although not responding to gamma tACS, the 40-Hz ASSR was modulated by theta tACS (vs sham tACS), with reductions in gamma power and phase locking being accompanied by increases in theta-gamma phase-amplitude cross-frequency coupling. Results reveal that oscillatory changes induced by frequency-tuned tACS may be one approach for targeting and modulating auditory plasticity in normal and diseased brains.
Collapse
Affiliation(s)
- Sara de la Salle
- Clinical Neuroelectrophysiology and Cognitive Research, The Royal's Institute of Mental Health Research, Ottawa, ON, Canada
- Faculty of Medicine, School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Joëlle Choueiry
- Clinical Neuroelectrophysiology and Cognitive Research, The Royal's Institute of Mental Health Research, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Mark Payumo
- School of Psychology, Carleton University, Ottawa, ON, Canada
| | - Matt Devlin
- Faculty of Medicine, School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Chelsea Noel
- Faculty of Medicine, School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Ali Abozmal
- Faculty of Medicine, School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Molly Hyde
- Clinical Neuroelectrophysiology and Cognitive Research, The Royal's Institute of Mental Health Research, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Renée Baysarowich
- Clinical Neuroelectrophysiology and Cognitive Research, The Royal's Institute of Mental Health Research, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Brittany Duncan
- Clinical Neuroelectrophysiology and Cognitive Research, The Royal's Institute of Mental Health Research, Ottawa, ON, Canada
| | - Verner Knott
- Clinical Neuroelectrophysiology and Cognitive Research, The Royal's Institute of Mental Health Research, Ottawa, ON, Canada
- Faculty of Medicine, School of Psychology, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- School of Psychology, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
49
|
Mendes AJ, Lema A, Carvalho S, Leite J. Tailoring transcranial alternating current stimulation based on endogenous event-related P3 to modulate premature responses: a feasibility study. PeerJ 2024; 12:e17144. [PMID: 38584936 PMCID: PMC10998630 DOI: 10.7717/peerj.17144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 02/29/2024] [Indexed: 04/09/2024] Open
Abstract
Background Transcranial alternating current stimulation (tACS) is a brain stimulation method for modulating ongoing endogenous oscillatory activity at specified frequency during sensory and cognitive processes. Given the overlap between event-related potentials (ERPs) and event-related oscillations (EROs), ERPs can be studied as putative biomarkers of the effects of tACS in the brain during cognitive/sensory task performance. Objective This preliminary study aimed to test the feasibility of individually tailored tACS based on individual P3 (latency and frequency) elicited during a cued premature response task. Thus, tACS frequency was individually tailored to match target-P3 ERO for each participant. Likewise, the target onset in the task was adjusted to match the tACS phase and target-P3 latency. Methods Twelve healthy volunteers underwent tACS in two separate sessions while performing a premature response task. Target-P3 latency and ERO were calculated in a baseline block during the first session to allow a posterior synchronization between the tACS and the endogenous oscillatory activity. The cue and target-P3 amplitudes, delta/theta ERO, and power spectral density (PSD) were evaluated pre and post-tACS blocks. Results Target-P3 amplitude significantly increased after activetACS, when compared to sham. Evoked-delta during cue-P3 was decreased after tACS. No effects were found for delta ERO during target-P3 nor for the PSD and behavioral outcomes. Conclusion The present findings highlight the possible effect of phase synchronization between individualized tACS parameters and endogenous oscillatory activity, which may result in an enhancement of the underlying process (i.e., an increase of target-P3). However, an unsuccessful synchronization between tACS and EEG activity might also result in a decrease in the evoked-delta activity during cue-P3. Further studies are needed to optimize the parameters of endogenous activity and tACS synchronization. The implications of the current results for future studies, including clinical studies, are further discussed since transcranial alternating current stimulation can be individually tailored based on endogenous event-related P3 to modulate responses.
Collapse
Affiliation(s)
- Augusto J. Mendes
- Geneva Memory Center, Department of Rehabilitation and Geriatrics, University of Geneva, Geneva, Switzerland
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Psychological Neuroscience Laboratory, CIPsi, School of Psychology, Universidade do Minho, Braga, Portugal
| | - Alberto Lema
- Psychological Neuroscience Laboratory, CIPsi, School of Psychology, Universidade do Minho, Braga, Portugal
| | - Sandra Carvalho
- Translational Neuropsychology Lab, Department of Education and Psychology, William James Center for Research (WJCR), University of Aveiro, Aveiro, Portugal
| | - Jorge Leite
- CINTESIS@RISE, CINTESIS.UPT, Universidade Portucalense Infante D. Henrique, Porto, Portugal
| |
Collapse
|
50
|
Fresnoza S, Ischebeck A. Probing Our Built-in Calculator: A Systematic Narrative Review of Noninvasive Brain Stimulation Studies on Arithmetic Operation-Related Brain Areas. eNeuro 2024; 11:ENEURO.0318-23.2024. [PMID: 38580452 PMCID: PMC10999731 DOI: 10.1523/eneuro.0318-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/06/2024] [Accepted: 02/26/2024] [Indexed: 04/07/2024] Open
Abstract
This systematic review presented a comprehensive survey of studies that applied transcranial magnetic stimulation and transcranial electrical stimulation to parietal and nonparietal areas to examine the neural basis of symbolic arithmetic processing. All findings were compiled with regard to the three assumptions of the triple-code model (TCM) of number processing. Thirty-seven eligible manuscripts were identified for review (33 with healthy participants and 4 with patients). Their results are broadly consistent with the first assumption of the TCM that intraparietal sulcus both hold a magnitude code and engage in operations requiring numerical manipulations such as subtraction. However, largely heterogeneous results conflicted with the second assumption of the TCM that the left angular gyrus subserves arithmetic fact retrieval, such as the retrieval of rote-learned multiplication results. Support is also limited for the third assumption of the TCM, namely, that the posterior superior parietal lobule engages in spatial operations on the mental number line. Furthermore, results from the stimulation of brain areas outside of those postulated by the TCM show that the bilateral supramarginal gyrus is involved in online calculation and retrieval, the left temporal cortex in retrieval, and the bilateral dorsolateral prefrontal cortex and cerebellum in online calculation of cognitively demanding arithmetic problems. The overall results indicate that multiple cortical areas subserve arithmetic skills.
Collapse
Affiliation(s)
- Shane Fresnoza
- Department of Psychology, University of Graz, 8010 Graz, Austria
- BioTechMed, 8010 Graz, Austria
| | - Anja Ischebeck
- Department of Psychology, University of Graz, 8010 Graz, Austria
- BioTechMed, 8010 Graz, Austria
| |
Collapse
|