1
|
Lefaucheur JP, Colzi C, Hollander E, Pampaloni I, Van Ameringen M, Baeken C, Fusar-Poli P, Arango C, Fontenelle LF, Batail JM, Brunoni AR, Nicolini H, Haffen E, Soriano-Mas C, Rodriguez CI, Dell'Osso BM, Vieta E, Sauvaget A, Szekely D, Mayer-Linderberg A, Denys D, Stein DJ, Drapier D, Voon V, Pallanti S. Comparison between accelerated and standard or sham rTMS in the treatment of depression: A systematic review. Neurosci Biobehav Rev 2025; 173:106140. [PMID: 40252882 DOI: 10.1016/j.neubiorev.2025.106140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/11/2025] [Accepted: 04/05/2025] [Indexed: 04/21/2025]
Abstract
Major depressive disorder (MDD) represents a major global health challenge, with a significant proportion of patients being resistant to drug treatment (TRD). Repetitive transcranial magnetic stimulation (rTMS) has shown promise in the treatment of MDD/TRD, with a single stimulation session per day for five days per week over several weeks (the "standard" protocol). The two main paradigms used are high-frequency rTMS and intermittent theta burst stimulation (iTBS) delivered to the left dorsolateral prefrontal cortex (DLPFC). Accelerated TMS (aTMS) protocols aim to make the treatment more effective, or at least more rapidly effective, by delivering more stimulations in a shorter time, which could also facilitate the implementation of the protocols for a larger number of patients. In this systematic literature review, articles comparing in the same study an aTMS protocol to a standard or sham rTMS protocol were retained for analysis. Thus, 23 articles were retained and the analysis focused on the efficacy of aTMS protocols used for the treatment of depression (MDD/TRD) as well as on the impact of various stimulation parameters, such as stimulation pattern, intersession interval, dosage, and methods of cortical targeting. Although some studies did not report significant differences between aTMS and standard or sham protocols, others suggested potential advantages of aTMS, such as twice-daily HF-rTMS of the left DLPFC or more intensive iTBS protocols with a long interval between two sessions and personalized cortical targeting. Our results highlight the influence of the number of sessions or pulses per session (dosage), the duration of the interval between sessions, and the precision of target localization (using image-guided neuronavigation) on therapeutic efficacy. However, limitations in sample size, few independent studies replicating the same methodology, and variability in the clinical profile of treated patients, given different definitions of treatment resistance or the presence of comorbidities, hamper definitive conclusions.
Collapse
Affiliation(s)
- Jean-Pascal Lefaucheur
- Clinical Neurophysiology Unit, Henri Mondor University Hospital, AP-HP, Créteil, France; UR4391 (ENT), Faculty of Medicine, Paris Est Créteil University, Créteil, France
| | | | | | - Ilenia Pampaloni
- South West London and St Georges Mental Health Trust, London, UK
| | - Michael Van Ameringen
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Canada
| | - Chris Baeken
- Ghent University, Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) lab, Ghent, Belgium; Vrije Universiteit Brussel (VUB), Department of Psychiatry, University Hospital (UZBrussel), Brussels, Belgium; Eindhoven University of Technology, Department of Electrical Engineering, Eindhoven, the Netherlands
| | - Paolo Fusar-Poli
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; OASIS Service, South London and Maudsley National Health Service Foundation Trust, London, UK
| | - Celso Arango
- National Institute for Health Research, Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London, UK
| | - Leonardo F Fontenelle
- Institute of Psychiatry and Mental Health. Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), CIBERSAM, Madrid, Spain; Obsessive, Compulsive, and Anxiety Spectrum Research Program, Institute of Psychiatry of the Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Jean-Marie Batail
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; Pôle Hospitalo-Universitaire de Psychiatrie Adulte, Centre Hospitalier Guillaume Régnier, Rennes, France
| | - André R Brunoni
- Centre d'Investigation Clinique 1414, INSERM, Neuropsychiatrie du développement et du Comportement, CHU Rennes / Université de Rennes, Rennes, France
| | - Humberto Nicolini
- Department of Psychiatry, University of São Paulo Medical School, University of São Paulo, São Paulo, Brazil; Genomics of Psychiatric and Neurodegenerative Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico
| | | | - Carles Soriano-Mas
- Centre d'Investigation Clinique, CIC-INSERM-1431, Centre Hospitalier Universitaire de Besançon CHU, Besançon, France; Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Madrid, Spain
| | - Carolyn I Rodriguez
- Department of Social Psychology and Quantitative Psychology, Institute of Neurosciences, University of Barcelona, Spain
| | | | - Eduard Vieta
- University of Milan, Department of Biomedical and Clinical Sciences Luigi Sacco, Ospedale Sacco-Polo Universitario, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Anne Sauvaget
- Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - David Szekely
- Nantes Université, CHU Nantes, Movement - Interactions - Performance, MIP, UR, Nantes 4334, France
| | | | - Damian Denys
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Dan J Stein
- SA MRC Unit on Risk and Resilience in Mental Disorders, Department Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Dominique Drapier
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; Pôle Hospitalo-Universitaire de Psychiatrie Adulte, Centre Hospitalier Guillaume Régnier, Rennes, France
| | - Valerie Voon
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Stefano Pallanti
- Institute of Neuroscience, Florence, Italy; Albert Einstein College of Medicine, New York, USA.
| |
Collapse
|
2
|
Che Q, Xi C, Sun Y, Zhao X, Wang L, Wu K, Mao J, Huang X, Wang K, Tian Y, Ye R, Yu F. EEG microstate as a biomarker of personalized transcranial magnetic stimulation treatment on anhedonia in depression. Behav Brain Res 2025; 483:115463. [PMID: 39920912 DOI: 10.1016/j.bbr.2025.115463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/18/2025] [Accepted: 01/30/2025] [Indexed: 02/10/2025]
Abstract
Anhedonia, a core feature of major depressive disorder (MDD), presents significant treatment challenges with conventional methods. Circuit-targeted, personalized repetitive transcranial magnetic stimulation (rTMS) has shown potentiation by focusing on disruptions in specific networks related to anhedonia. However, how rTMS modulates brain network dynamics in anhedonia is not yet fully understood. This research sought to explore these effects using EEG microstate analysis. In this double-blind, randomized, sham-controlled study, resting-state functional MRI was employed to pinpoint the left dorsolateral prefrontal cortex (DLPFC) region that exhibited the strongest functional connectivity to the nucleus accumbens (NAcc), used as the target for rTMS stimulation. Rest-state EEG data from 49 depressive patients with anhedonia(active=26, sham=23) were analyzed both at baseline and after treatment. In addition, a group of 15 healthy participants was included to serve as baseline controls. Resting-state EEG data were collected at baseline and post-treatment. Using polarity-insensitive k-means clustering, EEG microstates were segmented into five categories (A-E). Circuit-targeted rTMS significantly alleviated symptoms of anhedonia and depression. Compared to healthy controls, patients with anhedonia showed reduced microstate B and C occurrence, along with increased microstate D duration. After rTMS targeting the DLPFC-NAcc pathway, the active treatment group exhibited normalization of microstate C occurrence and a reduction in microstate E duration. Notably, the increase in microstate C was significantly correlated with improvements in anticipatory anhedonia, and these changes were observed specifically in treatment responders. The findings suggest that microstate C is linked to anhedonia and could serve as a reliable biomarker for personalized rTMS treatment. These results provide insights into the neural mechanisms underlying rTMS for anhedonia and highlight the potential of EEG microstate analysis in guiding personalized treatment strategies for depression.
Collapse
Affiliation(s)
- QiangYan Che
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230000, China.
| | - Chunhua Xi
- Department of Neurology, The Third Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Yunlin Sun
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230000, China.
| | - Xingyu Zhao
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230000, China.
| | - Lei Wang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230000, China.
| | - Ke Wu
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230000, China.
| | - Junyu Mao
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230000, China.
| | - Xinyu Huang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230000, China.
| | - Kai Wang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230000, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230000, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Anhui, China.
| | - Yanghua Tian
- Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China.
| | - Rong Ye
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230000, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230000, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Anhui, China.
| | - Fengqiong Yu
- Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China; School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230000, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230000, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Anhui, China.
| |
Collapse
|
3
|
Oostra E, Jazdzyk P, Vis V, Dalhuisen I, Hoogendoorn AW, Planting CHM, van Eijndhoven PF, van der Werf YD, van den Heuvel OA, van Exel E. More rTMS pulses or more sessions? The impact on treatment outcome for treatment resistant depression. Acta Psychiatr Scand 2025; 151:485-505. [PMID: 39569643 PMCID: PMC11884915 DOI: 10.1111/acps.13768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/10/2024] [Accepted: 10/23/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) is effective for treatment-resistant depression (TRD). Optimal rTMS parameters remain unclear, especially whether number of sessions or amount of pulses contribute more to treatment outcome. We hypothesize that treatment outcome depends on the number of sessions rather than on the amount of pulses. METHODS We searched databases for randomized clinical trials (RCTs) on high-frequent (HF) or low-frequent (LF)-rTMS targeting the left or right DLPFC for TRD. Treatment efficacy was measured using standardized mean difference (SMD), calculated from pre- and post-treatment depression scores. Meta-regressions were used to explore linear associations between SMD and rTMS pulses, pulses/session and sessions for HF and LF-rTMS, separately for active and sham-rTMS. If these variables showed no linear association with SMD, we divided the data into quartiles and explored subgroup SMDs. RESULTS Eighty-seven RCTs were included: 67 studied HF-rTMS, eleven studied LF-rTMS, and nine studied both. No linear association was found between SMD and amount of pulses or pulses/session for HF and LF-rTMS. Subgroup analyses showed the largest SMDs for 1200-1500 HF-pulses/session and 360-450 LF-pulses/session. The number of sessions was significantly associated with SMD for active HF (β = 0.09, p < 0.05) and LF-rTMS (β = 0.06, p < 0.01). Thirty was the maximal number of sessions, in the included RCTs. CONCLUSION More rTMS sessions, but not more pulses, were associated with improved treatment outcome, in both HF and LF-rTMS. Our findings suggest that 1200-1500 HF-pulses/session and 360-450 LF-pulses/session are already sufficient, and that a treatment course should consist of least 30 sessions for higher chance of response.
Collapse
Affiliation(s)
- E. Oostra
- Amsterdam UMC, Dept. PsychiatryVrije Universiteit AmsterdamAmsterdamNetherlands
- Amsterdam UMC, Dept Anatomy & NeuroscienceVrije Universiteit AmsterdamAmsterdamNetherlands
- GGZ inGeest Specialized Mental Health CareAmsterdamNetherlands
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress programAmsterdamNetherlands
| | - P. Jazdzyk
- Second Department of PsychiatryInstitute of Psychiatry and NeurologyWarsawPoland
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical ResearchMedical University of WarsawWarsawPoland
| | - V. Vis
- Amsterdam UMC, Dept Anatomy & NeuroscienceVrije Universiteit AmsterdamAmsterdamNetherlands
| | - I. Dalhuisen
- Department of PsychiatryRadboud University Medical CenterNijmegenHBNetherlands
- Donders Institute of Brain Cognition and BehaviorCentre for NeuroscienceNijmegenHENetherlands
| | - A. W. Hoogendoorn
- Amsterdam UMC, Dept. PsychiatryVrije Universiteit AmsterdamAmsterdamNetherlands
- GGZ inGeest Specialized Mental Health CareAmsterdamNetherlands
| | - C. H. M. Planting
- Amsterdam UMC, Dept. PsychiatryVrije Universiteit AmsterdamAmsterdamNetherlands
- GGZ inGeest Specialized Mental Health CareAmsterdamNetherlands
| | - P. F. van Eijndhoven
- Department of PsychiatryRadboud University Medical CenterNijmegenHBNetherlands
- Donders Institute of Brain Cognition and BehaviorCentre for NeuroscienceNijmegenHENetherlands
| | - Y. D. van der Werf
- Amsterdam UMC, Dept Anatomy & NeuroscienceVrije Universiteit AmsterdamAmsterdamNetherlands
- Amsterdam Neuroscience, Compulsivity Impulsivity AttentionAmsterdamNetherlands
| | - O. A. van den Heuvel
- Amsterdam UMC, Dept. PsychiatryVrije Universiteit AmsterdamAmsterdamNetherlands
- Amsterdam UMC, Dept Anatomy & NeuroscienceVrije Universiteit AmsterdamAmsterdamNetherlands
- Amsterdam Neuroscience, Compulsivity Impulsivity AttentionAmsterdamNetherlands
| | - E. van Exel
- Amsterdam UMC, Dept. PsychiatryVrije Universiteit AmsterdamAmsterdamNetherlands
- GGZ inGeest Specialized Mental Health CareAmsterdamNetherlands
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress programAmsterdamNetherlands
| |
Collapse
|
4
|
Trapp NT, Purgianto A, Taylor JJ, Singh MK, Oberman LM, Mickey BJ, Youssef NA, Solzbacher D, Zebley B, Cabrera LY, Conroy S, Cristancho M, Richards JR, Flood MJ, Barbour T, Blumberger DM, Taylor SF, Feifel D, Reti IM, McClintock SM, Lisanby SH, Husain MM. Consensus review and considerations on TMS to treat depression: A comprehensive update endorsed by the National Network of Depression Centers, the Clinical TMS Society, and the International Federation of Clinical Neurophysiology. Clin Neurophysiol 2025; 170:206-233. [PMID: 39756350 PMCID: PMC11825283 DOI: 10.1016/j.clinph.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/13/2024] [Accepted: 12/01/2024] [Indexed: 01/07/2025]
Abstract
This article updates the prior 2018 consensus statement by the National Network of Depression Centers (NNDC) on the use of transcranial magnetic stimulation (TMS) in the treatment of depression, incorporating recent research and clinical developments. Publications on TMS and depression between September 2016 and April 2024 were identified using methods informed by PRISMA guidelines. The NNDC Neuromodulation Work Group met monthly between October 2022 and April 2024 to define important clinical topics and review pertinent literature. A modified Delphi method was used to achieve consensus. 2,396 abstracts and manuscripts met inclusion criteria for review. The work group generated consensus statements which include an updated narrative review of TMS safety, efficacy, and clinical features of use for depression. Considerations related to training, roles/responsibilities of providers, and documentation are also discussed. TMS continues to demonstrate broad evidence for safety and efficacy in treating depression. Newer forms of TMS are faster and potentially more effective than conventional repetitive TMS. Further exploration of targeting methods, use in special populations, and accelerated protocols is encouraged. This article provides an updated overview of topics relevant to the administration of TMS for depression and summarizes expert, consensus opinion on the practice of TMS in the United States.
Collapse
Affiliation(s)
- Nicholas T Trapp
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA.
| | - Anthony Purgianto
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Joseph J Taylor
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Manpreet K Singh
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Sacramento, CA, USA
| | - Lindsay M Oberman
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Brian J Mickey
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT, USA
| | - Nagy A Youssef
- Pine Rest Christian Mental Health Services, Grand Rapids, MI, USA; Division of Psychiatry and Behavioral Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Daniela Solzbacher
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT, USA
| | - Benjamin Zebley
- Department of Psychiatry, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Laura Y Cabrera
- Department of Engineering Science and Mechanics, Center for Neural Engineering, Pennsylvania State University, University Park, PA, USA
| | - Susan Conroy
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mario Cristancho
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Jackson R Richards
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | | | - Tracy Barbour
- Division of Neuropsychiatry and Neuromodulation, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel M Blumberger
- Department of Psychiatry, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Stephan F Taylor
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - David Feifel
- Kadima Neuropsychiatry Institute, La Jolla, CA, USA; University of California-San Diego, San Diego, CA, USA
| | - Irving M Reti
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Shawn M McClintock
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas,TX, USA
| | - Sarah H Lisanby
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA; Division of Translational Research, National Institute of Mental Health, Bethesda, MD, USA; Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Mustafa M Husain
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas,TX, USA; Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
5
|
Sun Y, Liu X, Li Y, Zhi Q, Xia Y. Effectiveness of individualized rTMS under sMRI guidance in reducing depressive symptoms and suicidal ideation in adolescents with depressive disorders: an open-label study. Front Psychiatry 2024; 15:1485878. [PMID: 39758440 PMCID: PMC11695401 DOI: 10.3389/fpsyt.2024.1485878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025] Open
Abstract
Background Major Depressive Disorder (MDD) is occurring at a progressively younger age, and suicide is now the second leading cause of death among adolescents with MDD. Studies have shown that structural magnetic resonance imaging (sMRI) can improve the positioning accuracy and anti-depressant effects of repetitive transcranial magnetic stimulation (rTMS), thereby reducing suicidal ideation. Objective To compare the efficacy of sMRI-guided rTMS combined with pharmacotherapy, surface 5-cm rTMS positioning combined with pharmacotherapy, and pharmacotherapy alone on reducing depressive symptoms and suicidal ideation (SI) in MDD adolescents. Methods This was an open-label study of adjustable-dose pharmacotherapy combined with rTMS for the treatment of depressive symptoms and suicidal ideation in MDD adolescents. The three study groups were as follows: sMRI navigation for individualized rTMS coordinates targeting the dorsolateral prefrontal cortex (DLPFC) and in combination with pharmacotherapy for 10 rTMS sessions over two weeks; surface 5-cm positioning for DLPFC in combination with pharmacotherapy for 10 rTMS sessions over two weeks; pharmacotherapy. All patients received only one type of SSRIs anti-depressant. A total of 123 Chinese adolescents aged 13-18 with MDD were enrolled, and psychological parameters were evaluated in the first and second weeks of treatment. Results Following treatment, the clinical symptoms improved in all three groups. The sMRI navigation group exhibited significantly more improvement in depressive symptoms and suicidal ideation, without severe adverse reactions. Conclusion Ten sessions of rTMS treatment are feasible and effective in improving depressive symptoms and reducing SI in MDD adolescents. The combination of sMRI navigation rTMS and pharmacotherapy was found to yield the best outcomes. Clinical trial registration https://www.medicalresearch.org.cn/index, identifier MR-33-24-030536.
Collapse
Affiliation(s)
| | | | | | | | - Yong Xia
- Department of Psychiatry, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Ke SC, Tseng P. Transcranial magnetic stimulation in schizophrenia: exploring dosage and working memory enhancement. Curr Opin Behav Sci 2024; 60:101461. [DOI: 10.1016/j.cobeha.2024.101461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Jiao Y, Cheng C, Jia M, Chu Z, Song X, Zhang M, Xu H, Zeng X, Sun JB, Qin W, Yang XJ. Neuro-cardiac-guided transcranial magnetic stimulation: Unveiling the modulatory effects of low-frequency and high-frequency stimulation on heart rate. Psychophysiology 2024; 61:e14631. [PMID: 38898649 DOI: 10.1111/psyp.14631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/18/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
Transcranial magnetic stimulation (TMS) is pivotal in the field of major depressive disorder treatment. Due to its unsatisfied response rate, an increasing number of researchers have turned their attention towards optimizing TMS site localization. Since the influence of TMS in reducing heart rate (HR) offers insights into its regulatory impact on the autonomic nervous system, a novel approach, called neurocardiac-guided TMS (NCG-TMS), has been proposed to pinpoint the brain region eliciting the maximal individual reduction in HR as a personalized optimal stimulation target. The present study intends to systematically explore the effects of stimulation frequency, left and right hemispheres, stimulation positions, and individual differences on HR modulation using the NCG-TMS method. In experiment 1, low-frequency TMS was administered to 30 subjects, and it was found that low-frequency NCG-TMS significantly downregulated HR, with more significant effects in the right hemisphere than in the left hemisphere and the prefrontal cortex than in other brain areas. In experiment 2, high-frequency NCG-TMS stimulation was administered to 30 subjects, showing that high-frequency NCG-TMS also downregulated HR and had the greatest modulatory effect in the right prefrontal region. Simultaneously, both experiments revealed sizeable individual variability in the optimal stimulation site, which in turn validated the feasibility of the NCG-TMS method. In conclusion, the present experiments independently replicated the effect of NCG-TMS, provided an effect of high-/low-frequency TMS stimulation to downregulate HR, and identified a right lateralization of the HR modulation effect.
Collapse
Affiliation(s)
- Yunyun Jiao
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
- Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaanxi, China
| | - Chen Cheng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
- Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaanxi, China
| | - Mengnan Jia
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
- Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaanxi, China
| | - Zhaoyang Chu
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
- Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaanxi, China
| | - Xiaoyu Song
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
- Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaanxi, China
| | - Mengkai Zhang
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
- Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaanxi, China
| | - Heng Xu
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
- Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaanxi, China
| | - Xiao Zeng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
- Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaanxi, China
- Guangzhou Institute of Technology, Xidian University, Xi'an, Shaanxi, China
| | - Jin-Bo Sun
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
- Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaanxi, China
- Guangzhou Institute of Technology, Xidian University, Xi'an, Shaanxi, China
| | - Wei Qin
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
- Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaanxi, China
- Guangzhou Institute of Technology, Xidian University, Xi'an, Shaanxi, China
| | - Xue-Juan Yang
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
- Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaanxi, China
- Guangzhou Institute of Technology, Xidian University, Xi'an, Shaanxi, China
| |
Collapse
|
8
|
Hsu TW, Yeh TC, Kao YC, Thompson T, Brunoni AR, Carvalho AF, Tu YK, Tseng PT, Yu CL, Cheng SL, Liang CS. Response trajectory to left dorsolateral prefrontal rTMS in major depressive disorder: A systematic review and meta-analysis: Trajectory of rTMS. Psychiatry Res 2024; 338:115979. [PMID: 38850891 DOI: 10.1016/j.psychres.2024.115979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/12/2024] [Accepted: 05/25/2024] [Indexed: 06/10/2024]
Abstract
The depression response trajectory after a course of repetitive transcranial magnetic stimulation(rTMS) remains understudied. We searched for blinded randomized controlled trials(RCTs) that examined conventional rTMS over left dorsolateral prefrontal cortex(DLPFC) for major depressive episodes(MDE). The effect size was calculated as the difference in depression improvement, between active and sham rTMS. We conducted a random-effects dose-response meta-analysis to model the response trajectory from the beginning of rTMS to the post-treatment follow-up phase. The area under curve (AUC) of the first 8-week response trajectory was calculated to compare antidepressant efficacy between different rTMS protocols. We included 40 RCTs(n = 2012). The best-fitting trajectory model exhibited a logarithmic curve(X2=17.7, P < 0.001), showing a gradual ascent with tapering off around the 3-4th week mark and maintaining until week 16. The maximum effect size was 6.1(95 %CI: 1.25-10.96) at week 16. The subgroup analyses showed distinct trajectories across different rTMS protocols. Besides, the comparisons of AUC showed that conventional rTMS protocols with more pulse/session group or more total pulses were associated with greater efficacy than those with fewer pulse/session or fewer total pulses, respectively. A course of conventional left DLPFC rTMS could lead to both acute antidepressant effects and sustained after-effects, which were modeled by different rTMS protocols in MDE.
Collapse
Affiliation(s)
- Tien-Wei Hsu
- Department of Psychiatry, E-DA Dachang Hospital, I-Shou University, Kaohsiung, Taiwan; Department of Psychiatry, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ta-Chuan Yeh
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Centre, Taipei, Taiwan
| | - Yu-Chen Kao
- Department of Psychiatry, National Defense Medical Centre, Taipei, Taiwan; Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, Taipei, Taiwan
| | - Trevor Thompson
- Centre for Chronic Illness and Ageing, University of Greenwich, London, UK
| | - Andre R Brunoni
- Service of Interdisciplinary Neuromodulation, Laboratory of Neurosciences (LIM-27), Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil; Service of Electroconvulsive Therapy, Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil
| | - Andre F Carvalho
- IMPACT (Innovation in Mental and Physical Health and Clinical Treatment) Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
| | - Yu-Kang Tu
- Institute of Epidemiology & Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Ping-Tao Tseng
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan; Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan; Prospect Clinic for Otorhinolaryngology & Neurology, Kaohsiung, Taiwan; Institute of Precision Medicine, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Chia-Ling Yu
- Department of Pharmacy, Chang Gung Memorial Hospital Linkou, Taipei, Taiwan
| | - Shu-Li Cheng
- Department of Nursing, Mackay Medical College, Taipei, Taiwan.
| | - Chih-Sung Liang
- Department of Psychiatry, National Defense Medical Centre, Taipei, Taiwan; Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, Taipei, Taiwan
| |
Collapse
|
9
|
Hsu TW, Yeh TC, Kao YC, Thompson T, Brunoni AR, Carvalho AF, Hsu CW, Tu YK, Liang CS. The dose-effect relationship of six stimulation parameters with rTMS over left DLPFC on treatment-resistant depression: A systematic review and meta-analysis. Neurosci Biobehav Rev 2024; 162:105704. [PMID: 38723735 DOI: 10.1016/j.neubiorev.2024.105704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/17/2024] [Accepted: 05/01/2024] [Indexed: 05/20/2024]
Abstract
This study aimed to evaluate the association of the six parameters, namely stimulation intensity, stimulation frequency, pulses per session, treatment duration, number of sessions, and total number of pulses with the efficacy of conventional transcranial magnetic stimulation (rTMS) over left dorsolateral prefrontal cortex for patients with treatment-resistant depression (TRD). A random-effects dose-response meta-analysis of blinded randomized controlled trials (RCTs) involving 2391 participants were conducted to examine the dose-effect relationship of six stimulation parameters. Any of the six parameters significantly individually predicted proportion of variance in efficacy: pulses per session (R²=52.7%), treatment duration (R²=51.2%), total sessions (R²=50.9%), frequency (R²=49.6%), total pulses (R²=49.5%), and intensity (R²= 40.4%). Besides, we identified frequency as a potential parameter interacting with the other five parameters, resulting in a significant increase in variance(ΔR2) ranging from 5.0% to 16.7%. Finally, we found that RCTs using frequency > 10 Hz compared to those of 10 Hz showed better dose-effect relationships. We conclude that the six stimulation parameters significantly predict the dose-effect relationship of conventional rTMS on TRD. Besides, higher stimulation frequency, higher stimulation intensity, and adequate number of pulses were associated with treatment efficacy.
Collapse
Affiliation(s)
- Tien-Wei Hsu
- Department of Psychiatry, E-DA Dachang Hospital, I-Shou University, Kaohsiung, Taiwan; Department of Psychaitry, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ta-Chuan Yeh
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Centre, Taipei, Taiwan; Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Yu-Chen Kao
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Centre, Taipei, Taiwan; Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, Taipei, Taiwan
| | - Trevor Thompson
- Centre for Chronic Illness and Ageing, University of Greenwich, London, UK
| | - Andre R Brunoni
- Service of Interdisciplinary Neuromodulation, Laboratory of Neurosciences (LIM-27), Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil; Service of Electroconvulsive Therapy, Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil
| | - Andre F Carvalho
- IMPACT (Innovation in Mental and Physical Health and Clinical Treatment) Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
| | - Chih-Wei Hsu
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Kang Tu
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; Institute of Health Data Analytics & Statistics, College of Public Health, National Taiwan University, Taiwan
| | - Chih-Sung Liang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Centre, Taipei, Taiwan; Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, Taipei, Taiwan.
| |
Collapse
|
10
|
Croarkin PE, Dojnov A, Middleton VJ, Bowman J, Kriske J, Donachie N, Siddiqi SH, Downar J. Accelerated 1 Hz dorsomedial prefrontal transcranial magnetic stimulation for generalized anxiety disorder in adolescents and young adults: A case series. Brain Stimul 2024; 17:269-271. [PMID: 38442801 DOI: 10.1016/j.brs.2024.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/07/2024] Open
Affiliation(s)
- Paul E Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.
| | | | | | | | | | | | - Shan H Siddiqi
- Center for Brain Circuit Therapeutics, Brigham & Women's Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, USA
| | - Jonathan Downar
- Institute of Medical Science and Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada.
| |
Collapse
|
11
|
Goodman MS, Vila-Rodriguez F, Barwick M, Burke MJ, Downar J, Hunter J, Kaster TS, Knyahnytska Y, Kurdyak P, Maunder R, Thorpe K, Trevizol AP, Voineskos D, Zhang W, Blumberger DM. A randomized sham-controlled trial of high-dosage accelerated intermittent theta burst rTMS in major depression: study protocol. BMC Psychiatry 2024; 24:28. [PMID: 38191370 PMCID: PMC10773082 DOI: 10.1186/s12888-023-05470-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/19/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Intermittent theta burst stimulation (iTBS), a novel form of repetitive transcranial magnetic stimulation (rTMS), can be administered in 1/10th of the time of standard rTMS (~ 3 min vs. 37.5 min) yet achieves similar outcomes in depression. The brief nature of the iTBS protocol allows for the administration of multiple iTBS sessions per day, thus reducing the overall course length to days rather than weeks. This study aims to compare the efficacy and tolerability of active versus sham iTBS using an accelerated regimen in patients with treatment-resistant depression (TRD). As a secondary objective, we aim to assess the safety, tolerability, and treatment response to open-label low-frequency right-sided (1 Hz) stimulation using an accelerated regimen in those who do not respond to the initial week of treatment. METHODS Over three years, approximately 230 outpatients at the Centre for Addiction and Mental Health and University of British Columbia Hospital, meeting diagnostic criteria for unipolar MDD, will be recruited and randomized to a triple blind sham-controlled trial. Patients will receive five consecutive days of active or sham iTBS, administered eight times daily at 1-hour intervals, with each session delivering 600 pulses of iTBS. Those who have not achieved response by the week four follow-up visit will be offered a second course of treatment, regardless of whether they initially received active or sham stimulation. DISCUSSION Broader implementation of conventional iTBS is limited by the logistical demands of the current standard course consisting of 4-6 weeks of daily treatment. If our proposed accelerated iTBS protocol enables patients to achieve remission more rapidly, this would offer major benefits in terms of cost and capacity as well as the time required to achieve clinical response. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT04255784.
Collapse
Affiliation(s)
- Michelle S Goodman
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Fidel Vila-Rodriguez
- Non-Invasive Neurostimulation Therapies Laboratory, Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Melanie Barwick
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Matthew J Burke
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Jonathan Downar
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Jonathan Hunter
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Mount Sinai Hospital, Toronto, ON, Canada
| | - Tyler S Kaster
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Yuliya Knyahnytska
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Paul Kurdyak
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, Toronto, Canada
| | - Robert Maunder
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Mount Sinai Hospital, Toronto, ON, Canada
| | - Kevin Thorpe
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Applied Health Research Centre, St. Michael's Hospital, Toronto, ON, Canada
| | - Alisson P Trevizol
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Daphne Voineskos
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Wei Zhang
- Centre for Advancing Health Outcomes, St Paul's Hospital, Vancouver, BC, Canada
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
12
|
Squires M, Tao X, Elangovan S, Gururajan R, Zhou X, Li Y, Acharya UR. Identifying predictive biomarkers for repetitive transcranial magnetic stimulation response in depression patients with explainability. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 242:107771. [PMID: 37717523 DOI: 10.1016/j.cmpb.2023.107771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/12/2023] [Accepted: 08/19/2023] [Indexed: 09/19/2023]
Abstract
Repetitive Transcranial Magnetic Stimulation (rTMS) is an evidence-based treatment for depression. However, the patterns of response to this treatment modality are inconsistent. Whilst many people see a significant reduction in the severity of their depression following rTMS treatment, some patients do not. To support and improve patient outcomes, recent work is exploring the possibility of using Machine Learning to predict rTMS treatment outcomes. Our proposed model is the first to combine functional magnetic resonance imaging (fMRI) connectivity with deep learning techniques to predict treatment outcomes before treatment starts. Furthermore, with the use of Explainable AI (XAI) techniques, we identify potential biomarkers that may discriminate between rTMS responders and non-responders. Our experiments utilize 200 runs of repeated bootstrap sampling on two rTMS datasets. We compare performances between our proposed feedforward deep neural network against existing methods, and compare the average accuracy, balanced accuracy and F1-score on a held-out test set. The results of these experiments show that our model outperforms existing methods with an average accuracy of 0.9423, balanced accuracy of 0.9423, and F1-score of 0.9461 in a sample of 61 patients. We found that functional connectivity measures between the Subgenual Anterior Cingulate Cortex and Centeral Opercular Cortex are a key determinant of rTMS treatment response. This knowledge provides psychiatrists with further information to explore the potential mechanisms of responses to rTMS treatment. Our developed prototype is ready to be deployed across large datasets in multiple centres and different countries.
Collapse
Affiliation(s)
- Matthew Squires
- School of Mathematics, Physics and Computing, University of Southern Queensland, Toowoomba, Australia.
| | - Xiaohui Tao
- School of Mathematics, Physics and Computing, University of Southern Queensland, Toowoomba, Australia.
| | | | - Raj Gururajan
- School of Business, University of Southern Queensland, Springfield, Australia.
| | - Xujuan Zhou
- School of Business, University of Southern Queensland, Springfield, Australia.
| | - Yuefeng Li
- School of Computer Science, Queensland University of Technology, Brisbane, Australia.
| | - U Rajendra Acharya
- School of Mathematics, Physics and Computing, University of Southern Queensland, Springfield, Australia.
| |
Collapse
|
13
|
Lee H, Lee JH, Hwang MH, Kang N. Repetitive transcranial magnetic stimulation improves cardiovascular autonomic nervous system control: A meta-analysis. J Affect Disord 2023; 339:443-453. [PMID: 37459970 DOI: 10.1016/j.jad.2023.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/15/2023] [Accepted: 07/08/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Cardiovascular autonomic system (ANS) may be affected by altered neural activations in the brain. This systematic review and meta-analysis investigated potential effects of repetitive transcranial magnetic stimulation (rTMS) protocols on cardiovascular ANS control. METHODS Through 19 qualified studies, we acquired 70 comparisons for data synthesis. Individual effect sizes were estimated by comparing changes in following cardiovascular ANS control variables between active and sham stimulation conditions: (a) blood pressure (BP), (b) heart rate (HR), and (c) heart rate variability (HRV). Moreover, two moderator variable analyses determined whether changes in cardiovascular ANS control were different based on (a) rTMS protocols (excitatory rTMS versus inhibitory rTMS) and (b) specific targeted cortical regions, respectively. RESULTS The random-effects model meta-analysis revealed significant improvements in cardiovascular ANS control after the rTMS protocols. Specifically, applying excitatory and inhibitory rTMS protocols significantly decreased values of BP and HR variables. For HRV variables, excitatory rTMS protocols showed significant positive effects. These improvements in cardiovascular ANS control were observed while applying either excitatory rTMS protocols to the left dorsolateral prefrontal cortex or inhibitory rTMS protocols to the right dorsolateral prefrontal cortex. LIMITATIONS Relatively small number of studies for inhibitory rTMS on the right dorsolateral prefrontal cortex were included in this meta-analysis. CONCLUSION These findings suggest that applying excitatory and inhibitory rTMS protocols on prefrontal cortical regions may be effective to improve cardiovascular ANS control.
Collapse
Affiliation(s)
- Hanall Lee
- Department of Human Movement Science, Incheon National University, Incheon, South Korea; Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea.
| | - Joon Ho Lee
- Department of Human Movement Science, Incheon National University, Incheon, South Korea; Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea.
| | - Moon-Hyon Hwang
- Department of Human Movement Science, Incheon National University, Incheon, South Korea; Division of Health & Kinesiology, Incheon National University, Incheon, South Korea.
| | - Nyeonju Kang
- Department of Human Movement Science, Incheon National University, Incheon, South Korea; Division of Sport Science, Sport Science Institute & Health Promotion Center, Incheon National University, Incheon, South Korea; Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea.
| |
Collapse
|
14
|
Chang YC, Chao PH, Kuan YM, Huang CJ, Chen LF, Mao WC, Su TP, Chen SH, Wei CS. Delay Analysis in Closed-Loop EEG Phase-Triggered Transcranial Magnetic Stimulation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083335 DOI: 10.1109/embc40787.2023.10340744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The recent development of closed-loop EEG phase-triggered transcranial magnetic stimulation (TMS) has advanced potential applications of adaptive neuromodulation based on the current brain state. Closed-loop TMS involves instantaneous acquisition of the EEG rhythm, timing prediction of the target phase, and triggering of TMS. However, the accuracy of EEG phase prediction algorithms is largely influenced by the system's transport delay, and their relationship is rarely considered in related work. This paper proposes a delay analysis that considers the delay of the closed-loop EEG phase-triggered TMS system as a primary factor in the validation of phase prediction algorithms. An in-silico validation using real EEG data was performed to compare the performance of commonly used algorithms. The experimental results indicate a significant influence of the total delay on the algorithm performance, and the performance ranking among algorithms varies at different levels of delay. We conclude that the delay analysis framework should be widely adopted in the design and validation of phase prediction algorithms for closed-loop EEG phase-triggered TMS systems.
Collapse
|
15
|
Berlow YA, Zandvakili A, Brennan MC, Williams LM, Price LH, Philip NS. Modeling the antidepressant treatment response to transcranial magnetic stimulation using an exponential decay function. Sci Rep 2023; 13:7138. [PMID: 37130868 PMCID: PMC10154303 DOI: 10.1038/s41598-023-33599-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 04/15/2023] [Indexed: 05/04/2023] Open
Abstract
Recovery from depression often demonstrates a nonlinear pattern of treatment response, where the largest reduction in symptoms is observed early followed by smaller improvements. This study investigated whether this exponential pattern could model the antidepressant response to repetitive transcranial magnetic stimulation (TMS). Symptom ratings from 97 patients treated with TMS for depression were collected at baseline and after every five sessions. A nonlinear mixed-effects model was constructed using an exponential decay function. This model was also applied to group-level data from several published clinical trials of TMS for treatment-resistant depression. These nonlinear models were compared to corresponding linear models. In our clinical sample, response to TMS was well modeled with the exponential decay function, yielding significant estimates for all parameters and demonstrating superior fit compared to a linear model. Similarly, when applied to multiple studies comparing TMS modalities as well as to previously identified treatment response trajectories, the exponential decay models yielded consistently better fits compared to linear models. These results demonstrate that the antidepressant response to TMS follows a nonlinear pattern of improvement that is well modeled with an exponential decay function. This modeling offers a simple and useful framework to inform clinical decisions and future studies.
Collapse
Affiliation(s)
- Yosef A Berlow
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA.
- VA RR&D Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, 830 Chalkstone Ave, Providence, RI, 02908, USA.
| | - Amin Zandvakili
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
- VA RR&D Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, 830 Chalkstone Ave, Providence, RI, 02908, USA
| | - McKenna C Brennan
- VA RR&D Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, 830 Chalkstone Ave, Providence, RI, 02908, USA
| | - Leanne M Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Sierra-Pacific Mental Illness Research, Education, and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Lawrence H Price
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
- Butler Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| | - Noah S Philip
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
- VA RR&D Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, 830 Chalkstone Ave, Providence, RI, 02908, USA
| |
Collapse
|
16
|
Chen L, Klooster DCW, Tik M, Thomas EHX, Downar J, Fitzgerald PB, Williams NR, Baeken C. Accelerated Repetitive Transcranial Magnetic Stimulation to Treat Major Depression: The Past, Present, and Future. Harv Rev Psychiatry 2023; 31:142-161. [PMID: 37171474 PMCID: PMC10188211 DOI: 10.1097/hrp.0000000000000364] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is an effective and evidence-based therapy for treatment-resistant major depressive disorder. A conventional course of rTMS applies 20-30 daily sessions over 4-6 weeks. The schedule of rTMS delivery can be accelerated by applying multiple stimulation sessions per day, which reduces the duration of a treatment course with a predefined number of sessions. Accelerated rTMS reduces time demands, improves clinical efficiency, and potentially induces faster onset of antidepressant effects. However, considerable heterogeneity exists across study designs. Stimulation protocols vary in parameters such as the stimulation target, frequency, intensity, number of pulses applied per session or over a course of treatment, and duration of intersession intervals. In this article, clinician-researchers and neuroscientists who have extensive research experience in accelerated rTMS synthesize a consensus based on two decades of investigation and development, from early studies ("Past") to contemporaneous theta burst stimulation, a time-efficient form of rTMS gaining acceptance in clinical settings ("Present"). We propose descriptive nomenclature for accelerated rTMS, recommend avenues to optimize therapeutic and efficiency potential, and suggest using neuroimaging and electrophysiological biomarkers to individualize treatment protocols ("Future"). Overall, empirical studies show that accelerated rTMS protocols are well tolerated and not associated with serious adverse effects. Importantly, the antidepressant efficacy of accelerated rTMS appears comparable to conventional, once daily rTMS protocols. Whether accelerated rTMS induces antidepressant effects more quickly remains uncertain. On present evidence, treatment protocols incorporating high pulse dose and multiple treatments per day show promise and improved efficacy.
Collapse
Affiliation(s)
- Leo Chen
- From the Monash Alfred Psychiatry Research Centre, Department of Psychiatry, Central Clinical School, Monash University, Melbourne, Australia (Drs. Chen, Thomas); Ghent Experimental Psychiatry (GHEP) Lab, Department of Head and Skin (UZGent), Ghent University, Ghent, Belgium (Drs. Klooster, Baeken); Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford University, Stanford, CA (Drs. Tik, Williams); Institute of Medical Science and Department of Psychiatry, University of Toronto, Canada (Dr. Downar); School of Medicine and Psychology, he Australian National University, Canberra, Australia (Dr. Fitzgerald)
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Cheung T, Li TMH, Ho YS, Kranz G, Fong KNK, Leung SF, Lam SC, Yeung WF, Lam JYT, Fong KH, Beisteiner R, Xiang YT, Cheng CPW. Effects of Transcranial Pulse Stimulation (TPS) on Adults with Symptoms of Depression-A Pilot Randomized Controlled Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20032333. [PMID: 36767702 PMCID: PMC9915638 DOI: 10.3390/ijerph20032333] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 05/29/2023]
Abstract
Transcranial pulse stimulation (TPS) is a recent development in non-invasive brain stimulations (NIBS) that has been proven to be effective in terms of significantly improving Alzheimer patients' cognition, memory, and execution functions. Nonetheless, there is, currently, no trial evaluating the efficacy of TPS on adults with major depression disorder (MDD) nationwide. In this single-blinded, randomized controlled trial, a 2-week TPS treatment comprising six 30 min TPS sessions were administered to participants. Participants were randomized into either the TPS group or the Waitlist Control (WC) group, stratified by gender and age according to a 1:1 ratio. Our primary outcome was evaluated by the Hamilton depression rating scale-17 (HDRS-17). We recruited 30 participants that were aged between 18 and 54 years, predominantly female (73%), and ethnic Chinese from 1 August to 31 October 2021. Moreover, there was a significant group x time interaction (F(1, 28) = 18.8, p < 0.001). Further, when compared with the WC group, there was a significant reduction in the depressive symptom severity in the TPS group (mean difference = -6.60, p = 0.02, and Cohen's d = -0.93). The results showed a significant intervention effect; in addition, the effect was large and sustainable at the 3-month follow-up. In this trial, it was found that TPS is effective in reducing depressive symptoms among adults with MDD.
Collapse
Affiliation(s)
- Teris Cheung
- School of Nursing, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Tim Man Ho Li
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuen Shan Ho
- School of Nursing, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Georg Kranz
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Kenneth N. K. Fong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Sau Fong Leung
- School of Nursing, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | | | - Wing Fai Yeung
- School of Nursing, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Joyce Yuen Ting Lam
- School of Nursing, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Kwan Hin Fong
- School of Nursing, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Roland Beisteiner
- Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Yu-Tao Xiang
- Unit of Psychiatry, Department of Public Health and Medicinal Administration, Institute of Translational Medicine, University of Macau, Macao SAR, China
| | | |
Collapse
|
18
|
Revisiting the Rotational Field TMS Method for Neurostimulation. J Clin Med 2023; 12:jcm12030983. [PMID: 36769630 PMCID: PMC9917411 DOI: 10.3390/jcm12030983] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive technique that has shown high efficacy in the treatment of major depressive disorder (MDD) and is increasingly utilized for various neuropsychiatric disorders. However, conventional TMS is limited to activating only a small fraction of neurons that have components parallel to the induced electric field. This likely contributes to the significant variability observed in clinical outcomes. A novel method termed rotational field TMS (rfTMS or TMS 360°) enables the activation of a greater number of neurons by reducing the sensitivity to orientation. Recruitment of a larger number of neurons offers the potential to enhance efficacy and reduce variability in the treatment of clinical indications for which neuronal recruitment and organization may play a significant role, such as MDD and stroke. The potential of the method remains to be validated in clinical trials. Here, we revisit and describe in detail the rfTMS method, its principles, mode of operation, effects on the brain, and potential benefits for clinical TMS.
Collapse
|
19
|
Noda Y, Fujii K, Mimura Y, Taniguchi K, Nakajima S, Kitahata R. A Case Series of Intermittent Theta Burst Stimulation Treatment for Depressive Symptoms in Individuals with Autistic Spectrum Disorder: Real World TMS Study in the Tokyo Metropolitan Area. J Pers Med 2023; 13:jpm13010145. [PMID: 36675806 PMCID: PMC9867406 DOI: 10.3390/jpm13010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social communication and the presence of restricted interests and repetitive behaviors. While the symptoms of ASD are present from early childhood, there has been an increase in the number of adults with ASD in recent years who visit healthcare professionals to seek the treatment of depression due to maladjustment resulting from the core symptoms and are eventually diagnosed with ASD. Currently, no treatment is available for the core symptoms of ASD, and pharmacotherapy and psychotherapy are often provided mainly for secondary disorders such as depression and anxiety. However, the effectiveness of these therapies is often limited in individuals with ASD compared to those with major depression. In this context, neuromodulation therapies such as transcranial magnetic stimulation (TMS) have gained increasing attention as potential treatments. In this case series, we retrospectively analyzed 18 cases with ASD from the TMS registry data who had failed to improve depressive symptoms with pharmacotherapy and were treated with intermittent theta burst stimulation (iTBS) therapy to the left dorsolateral prefrontal cortex (DLPFC). We also explored the relationship between treatment efficacy and clinical epidemiological profile. Our results indicated that, despite the limitations of an open-label preliminary case series, TMS therapy in the form of iTBS may have some beneficial therapeutic effects on depressive symptoms in individuals with ASD. The present findings warrant further validation through randomized, sham-controlled trials with larger sample sizes.
Collapse
Affiliation(s)
- Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
- Shinjuku-Yoyogi Mental Lab Clinic, Tokyo 151-0051, Japan
- Correspondence: ; Tel.: +81-3-3353-1211 (ext. 61857)
| | - Kyoshiro Fujii
- Shinjuku-Yoyogi Mental Lab Clinic, Tokyo 151-0051, Japan
| | - Yu Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
- Shinjuku-Yoyogi Mental Lab Clinic, Tokyo 151-0051, Japan
| | - Keita Taniguchi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
- Shinjuku-Yoyogi Mental Lab Clinic, Tokyo 151-0051, Japan
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
- Shinjuku-Yoyogi Mental Lab Clinic, Tokyo 151-0051, Japan
| | | |
Collapse
|
20
|
Brunelin J, Galvao F, Mondino M. Twice daily low frequency rTMS for treatment-resistant auditory hallucinations. Int J Clin Health Psychol 2023; 23:100344. [PMID: 36299491 PMCID: PMC9577245 DOI: 10.1016/j.ijchp.2022.100344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/29/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) has emerged as a therapeutic solution in patients with treatment-resistant auditory verbal hallucinations. However, the optimal stimulation parameters remain unclear, especially for patients with clozapine-resistant symptoms. METHOD In an open label retrospective study, we investigated whether parameters of stimulation that were useful in patients with major depressive disorder would help schizophrenia patients with treatment-resistant auditory verbal hallucinations. Fourteen participants, including 9 under clozapine, received 30 sessions of 1 Hz rTMS over 3 weeks (360 pulses per sessions delivered with 60 s 'on' and 30 s 'off' at 110% of the resting motor threshold, 2 sessions per day). Stimulations were applied over the left temporoparietal junction (T3-P3 according to 10/20 system). RESULTS After rTMS, a significant decrease of auditory verbal hallucinations was observed (-38.7% ± 31.8, p = 0.003) on the Auditory Hallucination Rating Scale. The beneficial effects were also significant in the 9 patients who were also receiving clozapine (-34.9% ± 28.4, p = 0.01). CONCLUSIONS Low frequency rTMS, 30 sessions over 3 weeks, appears to be a suitable approach to decrease treatment-resistant auditory verbal hallucinations, including in patients with clozapine-resistant symptoms. Results from the current retrospective study in the clinical settings need to be confirmed by large-scale randomized sham-controlled trials.
Collapse
Affiliation(s)
- Jérôme Brunelin
- Pôle Est, Centre Hospitalier Le Vinatier, F69500 Bron, France,PSYR2 Team, Lyon Neuroscience Research Center, INSERM, U1028, CNRS, UMR5292, F-69000 Lyon, France,Université Lyon 1, Lyon University, F-69100 Villeurbanne, France,Corresponding author at: CH le Vinatier, PSYR2 team, bat 416 – 1st floor, 95 boulevard Pinel, 69678, BRON Cedex BP 30039, France.
| | - Filipe Galvao
- Pôle Est, Centre Hospitalier Le Vinatier, F69500 Bron, France,PSYR2 Team, Lyon Neuroscience Research Center, INSERM, U1028, CNRS, UMR5292, F-69000 Lyon, France,Université Lyon 1, Lyon University, F-69100 Villeurbanne, France
| | - Marine Mondino
- Pôle Est, Centre Hospitalier Le Vinatier, F69500 Bron, France,PSYR2 Team, Lyon Neuroscience Research Center, INSERM, U1028, CNRS, UMR5292, F-69000 Lyon, France,Université Lyon 1, Lyon University, F-69100 Villeurbanne, France
| |
Collapse
|
21
|
Sheen JZ, Miron JP, Mansouri F, Dunlop K, Russell T, Zhou R, Hyde M, Fox L, Voetterl H, Daskalakis ZJ, Griffiths JD, Blumberger DM, Downar J. Cardiovascular biomarkers of response to accelerated low frequency repetitive transcranial magnetic stimulation in major depression. J Affect Disord 2022; 318:167-174. [PMID: 36055538 DOI: 10.1016/j.jad.2022.08.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 07/04/2022] [Accepted: 08/26/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND OBJECTIVE Repetitive transcranial magnetic stimulation (rTMS) is an effective and safe treatment for major depressive disorder (MDD). rTMS is in need of a reliable biomarker of treatment response. High frequency (HF) dorsolateral prefrontal cortex (DLPFC) rTMS has been reported to induce significant changes in the cardiac activity of MDD patients. Low frequency DLPFC rTMS has many advantages over HF-DLPFC rTMS and thus this study aims to further investigate the effect of low frequency 1 Hz right hemisphere (R)-DLPFC rTMS on the cardiac activity of MDD patients, as well as the potential of using electrocardiogram (ECG) parameters as biomarkers of treatment outcome. METHODS Baseline ECG sessions were performed for 19 MDD patients. All patients then underwent 40 sessions of accelerated 1 Hz R-DLPFC rTMS one week after the baseline session. RESULTS Heart rate (HR) significantly decreased from the resting period to the first and third minute of the 1 Hz R-DLPFC rTMS period. Resting HR was found to have a significant negative association with treatment outcome. Prior to Bonferroni correction, HR during stimulation and the degree of rTMS-induced HR reduction were significantly negatively associated with treatment outcome. No significant changes were observed for the heart rate variability (HRV) parameters. LIMITATIONS Sample size (n = 19); the use of electroencephalography equipment for ECG; lack of respiration monitoring; relatively short recording duration for HRV parameters. CONCLUSION This novel study provides further preliminary evidence that ECG may be utilized as a biomarker of rTMS treatment response in MDD. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT04376697.
Collapse
Affiliation(s)
- Jack Z Sheen
- Institute of Medical Science, University of Toronto, Toronto, Canada; Krembil Research Institute, University Health Network, Toronto, Canada
| | - Jean-Philippe Miron
- Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, Canada; Centre Hospitalier de l'Université de Montréal (CHUM), Centre de Recherche du CHUM (CRCHUM), Canada; Département de Psychiatrie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Farrokh Mansouri
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Katharine Dunlop
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Canada; Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, USA; Centre for Depression and Suicide Studies, St. Michael's Hospital, Unity Health Toronto, USA
| | - Thomas Russell
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Ryan Zhou
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Molly Hyde
- Institute of Medical Science, University of Toronto, Toronto, Canada; Krembil Research Institute, University Health Network, Toronto, Canada
| | - Linsay Fox
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Helena Voetterl
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Zafiris J Daskalakis
- Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, Canada; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Canada; Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - John D Griffiths
- Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, Canada; Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Canada
| | - Daniel M Blumberger
- Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, Canada; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Canada
| | - Jonathan Downar
- Institute of Medical Science, University of Toronto, Toronto, Canada; Krembil Research Institute, University Health Network, Toronto, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, Canada.
| |
Collapse
|
22
|
Menardi A, Dotti L, Ambrosini E, Vallesi A. Transcranial magnetic stimulation treatment in Alzheimer's disease: a meta-analysis of its efficacy as a function of protocol characteristics and degree of personalization. J Neurol 2022; 269:5283-5301. [PMID: 35781536 PMCID: PMC9468063 DOI: 10.1007/s00415-022-11236-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 12/06/2022]
Abstract
Alzheimer's disease (AD) represents the most common type of neurodegenerative disorder. Although our knowledge on the causes of AD remains limited and no curative treatments are available, several interventions have been proposed in trying to improve patients' symptomatology. Among those, transcranial magnetic stimulation (TMS) has been shown a promising, safe and noninvasive intervention to improve global cognitive functioning. Nevertheless, we currently lack agreement between research studies on the optimal stimulation protocol yielding the highest efficacy in these patients. To answer this query, we conducted a systematic literature search in PubMed, PsycINFO and Scopus databases and meta-analysis of studies published in the last 10 years (2010-2021) according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Differently from prior published meta-analytic work, we investigated whether protocols that considered participants-specific neuroimaging scans for the selection of individualized stimulation targets held more successful outcomes compared to those relying on a generalized targeting selection criteria. We then compared the effect sizes of subsets of studies based on additional protocol characteristics (frequency, duration of intervention, number of stimulation sites, use of concomitant cognitive training and patients' educational level). Our results confirm TMS efficacy in improving global cognitive functioning in mild-to-moderate AD patients, but also highlight the flaws of current protocols characteristics, including a possible lack of sufficient personalization in stimulation protocols.
Collapse
Affiliation(s)
- Arianna Menardi
- Department of Neuroscience, University of Padova, 35121, Padua, Italy.
- Padova Neuroscience Center, University of Padova, Padua, Italy.
| | - Lisa Dotti
- Department of General Psychology, University of Padova, Padua, Italy
| | - Ettore Ambrosini
- Department of Neuroscience, University of Padova, 35121, Padua, Italy
- Padova Neuroscience Center, University of Padova, Padua, Italy
- Department of General Psychology, University of Padova, Padua, Italy
| | - Antonino Vallesi
- Department of Neuroscience, University of Padova, 35121, Padua, Italy
- Padova Neuroscience Center, University of Padova, Padua, Italy
| |
Collapse
|
23
|
The Association Between Sample and Treatment Characteristics and the Efficacy of Repetitive Transcranial Magnetic Stimulation in Depression: A Meta-analysis and Meta-regression of Sham-controlled Trials. Neurosci Biobehav Rev 2022; 141:104848. [PMID: 36049675 DOI: 10.1016/j.neubiorev.2022.104848] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) is a form of non-invasive neuromodulation that is increasingly used to treat major depressive disorder (MDD). However, treatment with rTMS could be optimized by identifying optimal treatment parameters or characteristics of patients that are most likely to benefit. This meta-analysis and meta-regression aims to identify sample and treatment characteristics that are associated with change in depressive symptom level, treatment response and remission. METHODS The databases PubMed, Embase, Web of Science and Cochrane library were searched for randomized controlled trials (RCTs) reporting on the therapeutic efficacy of high-frequent, low-frequent, or bilateral rTMS for MDD compared to sham. Study and sample characteristics as well as rTMS parameters and outcome variables were extracted. Effect sizes were calculated for change in depression score and risk ratios for response and remission. RESULTS Sixty-five RCTs with a total of 2982 subjects were included in this meta-analysis. Active rTMS resulted in a larger depressive symptom reduction than sham protocol (Hedges' g = -0.791 95% CI -0.977; -0.605). Risk ratios for response and remission were 2.378 (95% CI 1.882; 3.005) and 2.450 (95% CI 1.779; 3.375), respectively. We found no significant association between sample and treatment parameters and rTMS efficacy. CONCLUSIONS rTMS is an efficacious treatment for MDD. No associations between sample or treatment characteristics and efficacy were found, for which we caution that publication bias, heterogeneity and lack of consistency in the definition of remission might bias these latter null findings. Our results are clinically relevant and support the use of rTMS as a non-invasive and effective treatment option for depression.
Collapse
|
24
|
Yu F, Huang Y, Chen T, Wang X, Guo Y, Fang Y, He K, Zhu C, Wang K, Zhang L. Repetitive transcranial magnetic stimulation promotes response inhibition in patients with major depression during the stop-signal task. J Psychiatr Res 2022; 151:427-438. [PMID: 35597226 DOI: 10.1016/j.jpsychires.2022.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/27/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Response inhibition (RI) deficit is an aspect of cognitive impairment in depressed individuals, but currently no effective treatment has been established. This study aimed to explore the effect of individualized repetitive transcranial magnetic stimulation (rTMS) targeting the left dorsolateral prefrontal cortex (lDLPFC)-nucleus accumbens (NAcc) network on RI in patients with major depressive disorder (MDD). METHODS Fourty-four patients diagnosed with MDD were randomized to receive 15 once-daily sessions of active (10 Hz, 100% of resting motor threshold) or sham rTMS within a double-blind, sham-controlled trial. We measured the efficacy of rTMS by the improvements in behavioral and neurological manifestations during the stop-signal task. The Hamilton Depression Rating Scale-17 items (HAMD-17) was used to assess depressive symptoms. We analyzed the differences in RI performance between MDD patients and 30 healthy controls (HCs) at baseline and assessed whether MDD patients who completed rTMS treatment had comparable RI ability to HCs. RESULTS At baseline, the depressed patients showed longer stop-signal response time (SSRT), smaller P3 amplitudes, and weaker theta-band power in successful stop trials (SSTs) than HCs. The active group exhibited RI ability comparable to that of HCs after rTMS treatment, but the improvements were not significant in the sham group. The active group showed significant remission in depression symptoms post-treatment compared to the sham group, and the changes in P3 amplitudes and theta-band power during SSTs were negatively correlated with the decrease of HAMD-17 scores. CONCLUSION The depressed patients have impaired RI and treatment with the individualized rTMS protocol may be an effective approach.
Collapse
Affiliation(s)
- Fengqiong Yu
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Yunheng Huang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Tingting Chen
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Xin Wang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Yaru Guo
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Ya Fang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | | | - Chunyan Zhu
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China; Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kai Wang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China; Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Lei Zhang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China; Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
25
|
Adu MK, Shalaby R, Chue P, Agyapong VIO. Repetitive Transcranial Magnetic Stimulation for the Treatment of Resistant Depression: A Scoping Review. Behav Sci (Basel) 2022; 12:195. [PMID: 35735405 PMCID: PMC9220129 DOI: 10.3390/bs12060195] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 12/28/2022] Open
Abstract
Treatment-resistant depression (TRD) is associated with significant disability, and due to its high prevalence, it results in a substantive socio-economic burden at a global level. TRD is the inability to accomplish and/or achieve remission after an adequate trial of antidepressant treatments. Studies comparing repetitive transcranial magnetic stimulation (rTMS) with electroconvulsive therapy (ECT) and pharmacotherapy have revealed evidence of the therapeutic efficacy of rTMS in TRD. These findings suggest a crucial role for rTMS in the management of TRD. This article aims to conduct a comprehensive scoping review of the current literature concerning the use of rTMS and its therapeutic efficacy as a treatment modality for TRD. PubMed, PsycINFO, Medline, Embase, and Cinahl were used to identify important articles on rTMS for TRD. The search strategy was limited to English articles within the last five years of data publication. Articles were included if they reported on a completed randomized controlled trial (RCT) of rTMS intervention for TRD. The exclusion criteria involved studies with rTMS for the treatment of conditions other than TRD, and study and experimental protocols of rTMS on TRD. In total, 17 studies were eligible for inclusion in this review. The search strategy spanned studies published in the last five years, to the date of the data search (14 February 2022). The regional breakdown of the extracted studies was North American (n = 9), European (n = 5), Asian (n = 2) and Australian (n = 1). The applied frequencies of rTMS ranged from 5 Hz to 50 Hz, with stimulation intensities ranging from 80% MT to 120% MT. Overall, 16 out of the 17 studies suggested that rTMS treatment was effective, safe and tolerated in TRD. For patients with TRD, rTMS appears to provide significant benefits through the reduction of depressive symptoms, and while there is progressive evidence in support of the same, more research is needed in order to define standardized protocols of rTMS application in terms of localization, frequency, intensity, and pulse parameters.
Collapse
Affiliation(s)
- Medard Kofi Adu
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, 1E1 Walter Mackenzie Health Sciences Centre (WMC), 8440 112 St NW, Edmonton, AB T6G 2B7, Canada; (R.S.); (P.C.); (V.I.O.A.)
| | - Reham Shalaby
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, 1E1 Walter Mackenzie Health Sciences Centre (WMC), 8440 112 St NW, Edmonton, AB T6G 2B7, Canada; (R.S.); (P.C.); (V.I.O.A.)
| | - Pierre Chue
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, 1E1 Walter Mackenzie Health Sciences Centre (WMC), 8440 112 St NW, Edmonton, AB T6G 2B7, Canada; (R.S.); (P.C.); (V.I.O.A.)
| | - Vincent I. O. Agyapong
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, 1E1 Walter Mackenzie Health Sciences Centre (WMC), 8440 112 St NW, Edmonton, AB T6G 2B7, Canada; (R.S.); (P.C.); (V.I.O.A.)
- Department of Psychiatry, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
26
|
Hebel T, Grözinger M, Landgrebe M, Padberg F, Schecklmann M, Schlaepfer T, Schönfeldt-Lecuona C, Ullrich H, Zwanzger P, Langguth B, Bajbouj M, Bewernick B, Brinkmann K, Cordes J, Di Pauli J, Eichhammer P, Freundlieb N, Hajak G, Höppner-Buchmann J, Hurlemann R, Kamp D, Kayser S, Kis B, Kreuzer PM, Kuhn J, Lammers M, Lugmayer B, Mielacher C, Nickl-Jockschat T, Nunhofer C, Palm U, Poeppl TB, Polak T, Sakreida K, Sartorius A, Silberbauer C, Zilles-Wegner D. Evidence and expert consensus based German guidelines for the use of repetitive transcranial magnetic stimulation in depression. World J Biol Psychiatry 2022; 23:327-348. [PMID: 34668449 DOI: 10.1080/15622975.2021.1995810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Non-invasive brain stimulation techniques such as repetitive transcranial magnetic stimulation (rTMS) offer a promising alternative to psychotherapeutic and pharmacological treatments for depression. This paper aims to present a practical guide for its clinical implementation based on evidence from the literature as well as on the experience of a group of leading German experts in the field. METHODS The current evidence base for the use of rTMS in depression was examined via review of the literature. From the evidence and from clinical experience, recommendations for the use of rTMS in clinical practice were derived. All members of the of the German Society for Brain Stimulation in Psychiatry and all members of the sections Clinical Brain Stimulation and Experimental Brain Stimulation of the German Society for Psychiatry, Psychotherapy, Psychosomatics and Mental Health were invited to participate in a poll on whether they consent with the recommendations. FINDINGS Among rTMS experts, a high consensus rate could be identified for clinical practice concerning the setting and the technical parameters of rTMS treatment in depression, indications and contra-indications, the relation of rTMS to other antidepressive treatment modalities and the frequency and management of side effects.
Collapse
Affiliation(s)
- Tobias Hebel
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
| | - Michael Grözinger
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH University, Aachen, Germany
| | - Michael Landgrebe
- Department of Psychiatry, Kbo-Lech-Mangfall Clinic, Agatharied, Germany
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, LMU University Munich, Munich, Germany
| | - Martin Schecklmann
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
| | - Thomas Schlaepfer
- Department of Psychiatry and Psychotherapy, Interventional Biological Psychiatry, University Freiburg, Freiburg, Germany
| | | | - Heiko Ullrich
- Department of Psychiatry, Psychotherapy and Psychosomatics, Siegen Hospital, Siegen, Germany
| | - Peter Zwanzger
- Department of Psychiatry and Psychotherapy, LMU University Munich, Munich, Germany.,Clinical Center for Psychiatry, Psychotherapy, Psychosomatic Medicine, Geriatrics and Neurology, Kbo-Inn-Salzach-Klinikum, Wasserburg/Inn, Germany
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
| | | | | | - Bettina Bewernick
- Departments of Geriatric Psychiatry, Psychiatry, and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Klaus Brinkmann
- Center for Psychosocial Medicine, Agaplesion Diakonieklinikum Hospital Rotenburg, Rotenburg, Germany
| | - Joachim Cordes
- Department of Psychiatry and Psychotherapy, Kaiserswerther Diakonie, Düsseldorf, Germany
| | - Jan Di Pauli
- Department of Adult Psychiatry, Rankweil Hospital, Vocklabruck, Austria
| | - Peter Eichhammer
- Clinic for Mental Health, Goldener Steig Hospital, Freyung, Germany
| | - Nils Freundlieb
- Department of Psychiatry and Psychotherapy, Center for Psychosocial Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Göran Hajak
- Department of Psychiatry and Psychotherapy, Sozialstiftung, Bamberg, Germany
| | - Jacqueline Höppner-Buchmann
- Department of Geriatric Psychiatry and Psychotherapy, Helios Hospital Schwerin, Carl-Friedrich-Flemming Hospital, Schwerin, Germany
| | - Rene Hurlemann
- Department of Psychiatry and Psychotherapy, Karl-Jaspers Hospital, University Oldenburg, Bad Zwischenahn, Germany
| | - Daniel Kamp
- Department of Psychiatry and Psychotherapy, LVR Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Sarah Kayser
- Department of General Psychiatry, Psychotherapy and Psychosomatics 3/Geriatric Psychiatry, Rheinhessen Hospital Alzey, Alzey, Germany
| | - Bernhard Kis
- Department of Psychiatry, Psychotherapy and Psychosomatics, Catholic Hospitals Ruhrhalbinsel, Hattingen, Germany
| | - Peter M Kreuzer
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
| | - Jens Kuhn
- Department of Psychiatry, Psychotherapy and Psychosomatics, Johanniter Hospital Oberhausen, Oberhausen, Germany
| | - Melisande Lammers
- Hospital for Psychosomatics and Psychotherapy, MediClin Reichshof Hospital, Reichshof-Eckenhagen, Germany
| | - Beatrix Lugmayer
- Department of Psychiatry, Salzkammergut Hospital Vöcklabruck, Vocklabruck, Austria
| | - Clemens Mielacher
- Department of Psychiatry and Psychotherapy, Section Clinical Psychology, University Hospital Bonn, Bonn, Germany
| | - Thomas Nickl-Jockschat
- Departments of Psychiatry, Neuroscience and Pharmacology, Iowa Neuroscience Institute Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Christian Nunhofer
- Private Practice in Neurology, Psychiatry and Psychotherapy, Neumarkt, Germany
| | - Ulrich Palm
- Medical Park Chiemseeblick, Bernau-Felden, Germany
| | - Timm B Poeppl
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH University, Aachen, Germany
| | - Thomas Polak
- Department and Clinic of Psychiatry, Psychosomatics and Psychotherapy, Neurovascular Functional Diagnostics, Center for Mental Health, Würzburg University Hospital, Wuerzburg, Germany
| | - Katrin Sakreida
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH University, Aachen, Germany
| | - Alexander Sartorius
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Germany
| | | | - David Zilles-Wegner
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, Georg-August University, Göttingen, Germany
| |
Collapse
|
27
|
Cheung T, Ho YS, Yeung JWF, Leung SF, Fong KNK, Fong T, Kranz GS, Beisteiner R, Cheng CPW. Effects of Transcranial Pulse Stimulation (TPS) on Young Adults With Symptom of Depression: A Pilot Randomised Controlled Trial Protocol. Front Neurol 2022; 13:861214. [PMID: 35401418 PMCID: PMC8990306 DOI: 10.3389/fneur.2022.861214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/24/2022] [Indexed: 02/01/2023] Open
Abstract
Background Since the emergence of the COVID-19 pandemic, there have been lots of published work examining the association between COVID-19 and mental health, particularly, anxiety and depression in the general populations and disease subpopulations globally. Depression is a debilitating disorder affecting individuals' level of bio-psychological-social functioning across different age groups. Since almost all studies were cross-sectional studies, there seems to be a lack of robust, large-scale, and technological-based interventional studies to restore the general public's optimal psychosocial wellbeing amidst the COVID-19 pandemic. Transcranial pulse stimulation (TPS) is a relatively new non-intrusive brain stimulation (NIBS) technology, and only a paucity of studies was conducted related to the TPS treatment on older adults with mild neurocognitive disorders. However, there is by far no study conducted on young adults with major depressive disorder nationwide. This gives us the impetus to execute the first nationwide study evaluating the efficacy of TPS on the treatment of depression among young adults in Hong Kong. Methods This study proposes a two-armed single-blinded randomised controlled trial including TPS as an intervention group and a waitlist control group. Both groups will be measured at baseline (T1), immediately after the intervention (T2), and at the 3- month follow-up (T3). Recruitment A total of 30 community-dwelling subjects who are aged 18 and above and diagnosed with major depressive disorder (MDD) will be recruited in this study. All subjects will be computer randomised into either the intervention group or the waitlist control group, balanced by gender and age on a 1:1 ratio. Intervention All subjects in each group will have to undertake functional MRI (fMRI) before and after six 30-min TPS sessions, which will be completed in 2 weeks' time. Outcomes Baseline measurements and post-TPS evaluation of the psychological outcomes (i.e., depression, cognition, anhedonia, and instrumental activities of daily living) will also be conducted on all participants. A 3-month follow-up period will be usedto assess the long-term sustainability of the TPS intervention. For statistical analysis, ANOVA with repeated measures will be used to analyse data. Missing data were managed by multiple mutations. The level of significance will be set to p < 0.05. Significance of the Study Results of this study will be used to inform health policy to determine whether TPS could be considered as a top treatment option for MDD. Clinical Trial Registration ClinicalTrials.gov, identifier: NCT05006365.
Collapse
Affiliation(s)
- Teris Cheung
- School of Nursing, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Yuen Shan Ho
- School of Nursing, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Jerry Wing-Fai Yeung
- School of Nursing, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Sau Fong Leung
- School of Nursing, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Kenneth N. K. Fong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Tommy Fong
- Department of Psychiatry, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Georg S. Kranz
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Roland Beisteiner
- Department of Neurology, Functional Diagnostics and Therapy, Medical University of Vienna, Vienna, Austria
| | - Calvin Pak Wing Cheng
- Department of Psychiatry, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
28
|
Pell GS, Harmelech T, Zibman S, Roth Y, Tendler A, Zangen A. Efficacy of Deep TMS with the H1 Coil for Anxious Depression. J Clin Med 2022; 11:1015. [PMID: 35207288 PMCID: PMC8879826 DOI: 10.3390/jcm11041015] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/06/2022] [Accepted: 02/09/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: While the therapeutic efficacy of Transcranial Magnetic Stimulation (TMS) for major depressive disorder (MDD) is well established, less is known about the technique's efficacy for treating comorbid anxiety. (2) Methods: Data were retrospectively analyzed from randomized controlled trials (RCTs) that used Deep TMS with the H1 Coil for MDD treatment. The primary endpoint was the difference relative to sham treatment following 4 weeks of stimulation. The effect size was compared to literature values for superficial TMS and medication treatments. (3) Results: In the pivotal RCT, active Deep TMS compared with sham treatment showed significantly larger improvements in anxiety score (effect size = 0.34, p = 0.03 (FDR)) which were sustained until 16 weeks (effect size = 0.35, p = 0.04). The pooled effect size between all the RCTs was 0.55, which compares favorably to alternative treatments. A direct comparison to Figure-8 Coil treatment indicated that treatment with the H1 Coil was significantly more effective (p = 0.042). In contrast to previously reported studies using superficial TMS and medication for which anxiety has been shown to be a negative predictor of effectiveness, higher baseline anxiety was found to be predictive of successful outcome for the H1-Coil treatment. (4) Conclusions: Deep TMS is effective in treating comorbid anxiety in MDD and, unlike alternative treatments, the outcome does not appear to be adversely affected by high baseline anxiety levels.
Collapse
Affiliation(s)
- Gaby S. Pell
- BrainsWay Ltd., Jerusalem 9777518, Israel; (T.H.); (S.Z.); (Y.R.); (A.T.)
- Department of Life Sciences, Ben-Gurion University of the Negev, Be’er-Sheva 8410501, Israel;
| | - Tal Harmelech
- BrainsWay Ltd., Jerusalem 9777518, Israel; (T.H.); (S.Z.); (Y.R.); (A.T.)
| | - Sam Zibman
- BrainsWay Ltd., Jerusalem 9777518, Israel; (T.H.); (S.Z.); (Y.R.); (A.T.)
- Department of Life Sciences, Ben-Gurion University of the Negev, Be’er-Sheva 8410501, Israel;
| | - Yiftach Roth
- BrainsWay Ltd., Jerusalem 9777518, Israel; (T.H.); (S.Z.); (Y.R.); (A.T.)
- Department of Life Sciences, Ben-Gurion University of the Negev, Be’er-Sheva 8410501, Israel;
| | - Aron Tendler
- BrainsWay Ltd., Jerusalem 9777518, Israel; (T.H.); (S.Z.); (Y.R.); (A.T.)
- Department of Life Sciences, Ben-Gurion University of the Negev, Be’er-Sheva 8410501, Israel;
- Advanced Mental Health Care Inc., Royal Palm Beach, FL 33411, USA
| | - Abraham Zangen
- Department of Life Sciences, Ben-Gurion University of the Negev, Be’er-Sheva 8410501, Israel;
| |
Collapse
|
29
|
Shaping plasticity with non-invasive brain stimulation in the treatment of psychiatric disorders: Present and future. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:497-507. [PMID: 35034757 PMCID: PMC9985830 DOI: 10.1016/b978-0-12-819410-2.00028-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The final chapter of this book addresses plasticity in the setting of treating psychiatric disorders. This chapter largely focuses on the treatment of depression and reviews the established antidepressant brain stimulation treatments, focusing on plasticity and maladaptive plasticity. Depression is a unique neuropsychiatric disease in that the brain goes from a healthy state into a pathologic state, and then, with appropriate treatment, can return to health often without permanent sequelae. Depression thus differs fundamentally from neurodegenerative brain diseases like Parkinson's disease or stroke. Some have theorized that depression involves a lack of flexibility or a lack of plasticity. The proven brain stimulation methods for treating depression cause plastic changes and include acute and maintenance electroconvulsive therapy (ECT), acute and maintenance transcranial magnetic stimulation (TMS), and chronically implanted cervical vagus nerve stimulation (VNS). These treatments vary widely in their speed of onset and durability. This variability in onset speed and durability raises interesting, and so far, largely unanswered questions about the underlying neurobiological mechanisms and forms of plasticity being invoked. The chapter also covers exciting recent work with vagus nerve stimulation (VNS) that is delivered paired with behaviors to cause learning and memory and plasticity changes. Taken together these current and future brain stimulation treatments for psychiatric disorders are especially promising. They are unlocking how to shape the brain in diseases to restore balance and health, with an increasing understanding of how to effectively and precisely induce therapeutic neuroplastic changes in the brain.
Collapse
|
30
|
Caulfield KA, Brown JC. The Problem and Potential of TMS' Infinite Parameter Space: A Targeted Review and Road Map Forward. Front Psychiatry 2022; 13:867091. [PMID: 35619619 PMCID: PMC9127062 DOI: 10.3389/fpsyt.2022.867091] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/21/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive, effective, and FDA-approved brain stimulation method. However, rTMS parameter selection remains largely unexplored, with great potential for optimization. In this review, we highlight key studies underlying next generation rTMS therapies, particularly focusing on: (1) rTMS Parameters, (2) rTMS Target Engagement, (3) rTMS Interactions with Endogenous Brain Activity, and (4) Heritable Predisposition to Brain Stimulation Treatments. METHODS We performed a targeted review of pre-clinical and clinical rTMS studies. RESULTS Current evidence suggests that rTMS pattern, intensity, frequency, train duration, intertrain interval, intersession interval, pulse and session number, pulse width, and pulse shape can alter motor excitability, long term potentiation (LTP)-like facilitation, and clinical antidepressant response. Additionally, an emerging theme is how endogenous brain state impacts rTMS response. Researchers have used resting state functional magnetic resonance imaging (rsfMRI) analyses to identify personalized rTMS targets. Electroencephalography (EEG) may measure endogenous alpha rhythms that preferentially respond to personalized stimulation frequencies, or in closed-loop EEG, may be synchronized with endogenous oscillations and even phase to optimize response. Lastly, neuroimaging and genotyping have identified individual predispositions that may underlie rTMS efficacy. CONCLUSIONS We envision next generation rTMS will be delivered using optimized stimulation parameters to rsfMRI-determined targets at intensities determined by energy delivered to the cortex, and frequency personalized and synchronized to endogenous alpha-rhythms. Further research is needed to define the dose-response curve of each parameter on plasticity and clinical response at the group level, to determine how these parameters interact, and to ultimately personalize these parameters.
Collapse
Affiliation(s)
- Kevin A Caulfield
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States
| | - Joshua C Brown
- Departments of Psychiatry and Neurology, Brown University Medical School, Providence, RI, United States
| |
Collapse
|
31
|
Wang X, He K, Chen T, Shi B, Yang J, Geng W, Zhang L, Zhu C, Ji G, Tian Y, Bai T, Dong Y, Luo Y, Wang K, Yu F. Therapeutic efficacy of connectivity-directed transcranial magnetic stimulation on anticipatory anhedonia. Depress Anxiety 2021; 38:972-984. [PMID: 34157193 DOI: 10.1002/da.23188] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/15/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND There are currently no effective treatments specifically targeting anticipatory anhedonia, a major symptom of severe depression which is associated with poor outcomes. The present study investigated the efficacy of individualized repetitive transcranial magnetic stimulation (rTMS) targeting the left dorsolateral prefrontal cortex (lDLPFC)-nucleus accumbens (NAcc) network on anticipatory anhedonia in depression. METHODS This randomized, double-blind, sham-controlled clinical trial (NCT03991572) enrolled 56 depression patients with anhedonia symptoms. Each participant received 15 once-daily sessions of rTMS at 10 Hz and 100% motor threshold. Stimulation was localized to the site of strongest IDLPFC-NAcc connectivity by functional magnetic resonance imaging. The Hamilton depression rating scale (HAMD) was used to measure depression severity, the temporal experience pleasure scale (TEPS) to measure anticipatory and consummatory anhedonia to specifically measure anticipatory/motivational anhedonia. Event-related potentials during the monetary incentive delay (MID) task were recorded to evaluate the electrophysiological correlates of reward anticipation and response. RESULTS Patients in the Real group showed significant improvements in anticipatory anhedonia and general depression symptoms posttreatment compared to the Sham group. The Real group also demonstrated more positive going cue-N2 and cue-P3 amplitude during MID reward trials after treatment. The change in cue-P3 posttreatment was positive correlated with improved TEPS-anti score. CONCLUSION Individualized rTMS of the lDLPFC-NAcc network can effectively alleviate anticipatory anhedonia and improved the reward seeking as evidenced by enhanced MID behavioral performance and more positive going cue-N2 and cue-P3. The lDLPFC-NAcc network plays a critical role in anticipatory reward and motivation processing.
Collapse
Affiliation(s)
- Xin Wang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | | | - Tingting Chen
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Bing Shi
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Jie Yang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Wanyue Geng
- School of the First Clinical Medicine, Anhui Medical University, Hefei, China
| | - Lei Zhang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chunyan Zhu
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Gongjun Ji
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yanghua Tian
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tongjian Bai
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yi Dong
- Anhui Mental Health Center, Hefei, China
| | - Yuejia Luo
- College of Psychology and Sociology of Shenzhen University, Shenzhen, China
| | - Kai Wang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fengqiong Yu
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
32
|
Chen L, Thomas EHX, Kaewpijit P, Miljevic A, Hughes R, Hahn L, Kato Y, Gill S, Clarke P, Ng F, Paterson T, Giam A, Sarma S, Hoy KE, Galletly C, Fitzgerald PB. Accelerated theta burst stimulation for the treatment of depression: A randomised controlled trial. Brain Stimul 2021; 14:1095-1105. [PMID: 34332155 DOI: 10.1016/j.brs.2021.07.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION Theta burst pattern repetitive transcranial magnetic stimulation (TBS) is increasingly applied to treat depression. TBS's brevity is well-suited to application in accelerated schedules. Sizeable trials of accelerated TBS are lacking; and optimal TBS parameters such as stimulation intensity are not established. METHODS We conducted a three arm, single blind, randomised, controlled, multi-site trial comparing accelerated bilateral TBS applied at 80 % or 120 % of the resting motor threshold and left unilateral 10 Hz rTMS. 300 patients with treatment-resistant depression (TRD) were recruited. TBS arms applied 20 bilateral prefrontal TBS sessions over 10 days, while the rTMS arm applied 20 daily sessions of 10 Hz rTMS to the left prefrontal cortex over 4 weeks. Primary outcome was depression treatment response at week 4. RESULTS The overall treatment response rate was 43.7 % and the remission rate was 28.2 %. There were no significant differences for response (p = 0.180) or remission (p = 0.316) across the three groups. Response rates between accelerated bilateral TBS applied at sub- and supra-threshold intensities were not significantly different (p = 0.319). Linear mixed model analysis showed a significant effect of time (p < 0.01), but not rTMS type (p = 0.680). CONCLUSION This is the largest accelerated bilateral TBS study to date and provides evidence that it is effective and safe in treating TRD. The accelerated application of TBS was not associated with more rapid antidepressant effects. Bilateral sequential TBS did not have superior antidepressant effect to unilateral 10 Hz rTMS. There was no significant difference in antidepressant efficacy between sub- and supra-threshold accelerated bilateral TBS.
Collapse
Affiliation(s)
- Leo Chen
- Epworth Centre for Innovation in Mental Health, Epworth Healthcare and Department of Psychiatry, Monash University, Camberwell, Victoria, Australia; Monash Alfred Psychiatry Research Centre, Department of Psychiatry, Monash University, Melbourne, Victoria, Australia; Alfred Mental and Addiction Health, Alfred Health, Melbourne, Victoria, Australia.
| | - Elizabeth H X Thomas
- Monash Alfred Psychiatry Research Centre, Department of Psychiatry, Monash University, Melbourne, Victoria, Australia
| | - Pakin Kaewpijit
- Epworth Centre for Innovation in Mental Health, Epworth Healthcare and Department of Psychiatry, Monash University, Camberwell, Victoria, Australia; Monash Alfred Psychiatry Research Centre, Department of Psychiatry, Monash University, Melbourne, Victoria, Australia; Bangkok Hospital, Bang Kapi, Bangkok, Thailand
| | - Aleksandra Miljevic
- Epworth Centre for Innovation in Mental Health, Epworth Healthcare and Department of Psychiatry, Monash University, Camberwell, Victoria, Australia
| | - Rachel Hughes
- Epworth Centre for Innovation in Mental Health, Epworth Healthcare and Department of Psychiatry, Monash University, Camberwell, Victoria, Australia
| | - Lisa Hahn
- The Adelaide Clinic, Ramsay Health Care (SA) Mental Health Services, South Australia, Australia
| | - Yuko Kato
- The Adelaide Clinic, Ramsay Health Care (SA) Mental Health Services, South Australia, Australia
| | - Shane Gill
- The Adelaide Clinic, Ramsay Health Care (SA) Mental Health Services, South Australia, Australia
| | - Patrick Clarke
- The Adelaide Clinic, Ramsay Health Care (SA) Mental Health Services, South Australia, Australia
| | - Felicity Ng
- The Adelaide Clinic, Ramsay Health Care (SA) Mental Health Services, South Australia, Australia; Discipline of Psychiatry, The University of Adelaide, South Australia, Australia
| | - Tom Paterson
- The Adelaide Clinic, Ramsay Health Care (SA) Mental Health Services, South Australia, Australia; Discipline of Psychiatry, The University of Adelaide, South Australia, Australia
| | - Andrew Giam
- Central Adelaide Local Health Network, South Australia, Australia
| | - Shanthi Sarma
- Department of Mental Health, Gold Coast University Hospital, Southport, Queensland, Australia
| | - Kate E Hoy
- Epworth Centre for Innovation in Mental Health, Epworth Healthcare and Department of Psychiatry, Monash University, Camberwell, Victoria, Australia
| | - Cherrie Galletly
- The Adelaide Clinic, Ramsay Health Care (SA) Mental Health Services, South Australia, Australia; Discipline of Psychiatry, The University of Adelaide, South Australia, Australia; Northern Adelaide Local Health Network, South Australia, Australia
| | - Paul B Fitzgerald
- Epworth Centre for Innovation in Mental Health, Epworth Healthcare and Department of Psychiatry, Monash University, Camberwell, Victoria, Australia
| |
Collapse
|
33
|
Ford H, Hahn L, Clarke P, Gill S, Carnell B, Galletly C. A comparison of 15 minute vs 30 minute repetitive transcranial magnetic stimulation sessions for treatment resistant depression - are longer treatment sessions more effective? J Affect Disord 2021; 282:974-978. [PMID: 33601742 DOI: 10.1016/j.jad.2021.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/07/2020] [Accepted: 01/04/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Repetitive Transcranial Magnetic Stimulation (rTMS) is a safe and effective treatment for treatment resistant depression (TRD). The number of patients able to be treated with rTMS is determined by the availability of the machine and staff. If treatment delivered in a shorter time were just as effective as longer treatments, then more patients could be treated with the same resources. METHOD This naturalistic study investigated 145 first-time patients treated with 15 minute (900 pulses) or 30 minute (1800 pulses) RLF rTMS for TRD 3 days/week for 6 weeks. Response and remission rates for the two groups were compared. We investigated whether longer right unilateral low (1Hz) frequency (RLF) repetitive transcranial magnetic stimulation (rTMS) treatment sessions are more effective than shorter sessions in achieving response and remission for treatment resistant depression (TRD). RESULTS The duration of rTMS treatment sessions had no effect on treatment outcomes over the course of 6 weeks. The group treated with 15 minute rTMS sessions showed a partial response rate of 28.2%, a response rate of 11.5% and remission rate of 21.8%, which did not differ significantly from patients receiving 30 minute sessions who had a partial response rate of 25.4%, response rate of 17.9% and remission rate of 22.4%. LIMITATIONS Participants were not randomized and the inclusion criteria were broad and reflected the nature of patients seen in routine practice. CONCLUSIONS Fifteen minute rTMS sessions 3 days/week for 6 weeks were as effective as 30 minute sessions, providing a pragmatic advantage for shorter treatments.
Collapse
Affiliation(s)
- Hannah Ford
- School of Medicine, Flinders University, Adelaide, SA, Australia
| | - Lisa Hahn
- The Adelaide Clinic, Ramsay Health Care (SA) Mental Health Services, Adelaide, SA, Australia
| | - Patrick Clarke
- The Adelaide Clinic, Ramsay Health Care (SA) Mental Health Services, Adelaide, SA, Australia
| | - Shane Gill
- The Adelaide Clinic, Ramsay Health Care (SA) Mental Health Services, Adelaide, SA, Australia
| | - Ben Carnell
- The Adelaide Clinic, Ramsay Health Care (SA) Mental Health Services, Adelaide, SA, Australia
| | - Cherrie Galletly
- The Adelaide Clinic, Ramsay Health Care (SA) Mental Health Services; Discipline of Psychiatry, University of Adelaide; Northern Adelaide Local Health Network, Adelaide, SA, Australia.
| |
Collapse
|
34
|
Clinical and Functional Connectivity Outcomes of 5-Hz Repetitive Transcranial Magnetic Stimulation as an Add-on Treatment in Cocaine Use Disorder: A Double-Blind Randomized Controlled Trial. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:745-757. [PMID: 33508499 DOI: 10.1016/j.bpsc.2021.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/04/2020] [Accepted: 01/14/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Cocaine use disorder (CUD) is a global condition lacking effective treatment. Repetitive transcranial magnetic stimulation (rTMS) may reduce craving and frequency of cocaine use, but little is known about its efficacy and neural effects. We sought to elucidate short- and long-term clinical benefits of 5-Hz rTMS as an add-on to standard treatment in patients with CUD and discern underlying functional connectivity effects using magnetic resonance imaging. METHODS A total of 44 patients with CUD were randomly assigned to complete the 2-week double-blind randomized controlled trial (acute phase) (sham [n = 20, 2 female] and active [n = 24, 4 female]), in which they received two daily sessions of rTMS on the left dorsolateral prefrontal cortex (PFC). Subsequently, 20 patients with CUD continued to an open-label maintenance phase for 6 months (two weekly sessions for up to 6 mo). RESULTS rTMS plus standard treatment for 2 weeks significantly reduced craving (baseline: 3.9 ± 3.6; 2 weeks: 1.5 ± 2.4, p = .013, d = 0.77) and impulsivity (baseline: 64.8 ± 16.8; 2 weeks: 53.1 ± 17.4, p = .011, d = 0.79) in the active group. We also found increased functional connectivity between the left dorsolateral PFC and ventromedial PFC and between the ventromedial PFC and right angular gyrus. Clinical and functional connectivity effects were maintained for 3 months, but they dissipated by 6 months. We did not observe reduction in positive results for cocaine in urine; however, self-reported frequency and grams consumed for 6 months were reduced. CONCLUSIONS With this randomized controlled trial, we show that 5-Hz rTMS has potential promise as an adjunctive treatment for CUD and merits further research.
Collapse
|
35
|
Efficacy, efficiency and safety of high-frequency repetitive transcranial magnetic stimulation applied more than once a day in depression: A systematic review. J Affect Disord 2020; 277:986-996. [PMID: 33065843 DOI: 10.1016/j.jad.2020.09.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/23/2020] [Accepted: 09/04/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) is an effective treatment for depression but a standard course can be time-consuming. Of all rTMS protocols, high-frequency rTMS (HF rTMS) is the most studied and applied in clinical settings. Little is known about applying multiple sessions of HF rTMS per day, in so-called accelerated schedules. METHODS We systematically searched electronic records up to September 2019 for studies that applied HF rTMS in accelerated schedules to treat depression to review its efficacy, efficiency and safety. Treatment effect sizes of accelerated rTMS versus standard and sham rTMS were calculated from comparison studies and pooled to derive overall treatment effect. RESULTS Of 1,361 records screened, 12 met review criteria. Qualitative synthesis suggested accelerated HF rTMS was equally effective as once-daily scheduling in treating depression. It is equivocal if accelerated HF rTMS results in more rapid antidepressant response. Accelerated HF rTMS was well-tolerated. The small number of studies suitable for quantitative analysis led to pooled effect sizes that did not reach statistical significance. LIMITATIONS There was an overall paucity of studies examining the accelerated application of HF rTMS and even fewer studies comparing accelerated HF rTMS with once-daily or sham rTMS. CONCLUSION Our review found comparable antidepressant efficacy between accelerated and once-daily HF rTMS. Between group differences in therapeutic effect sizes were not clinically meaningful. More studies investigating accelerated rTMS protocols are needed to validate its utility and guide clinical decision making.
Collapse
|
36
|
Fitzgerald PB. An update on the clinical use of repetitive transcranial magnetic stimulation in the treatment of depression. J Affect Disord 2020; 276:90-103. [PMID: 32697721 DOI: 10.1016/j.jad.2020.06.067] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 06/03/2020] [Accepted: 06/23/2020] [Indexed: 01/23/2023]
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) is an increasingly used treatment for patients with depression. The use of rTMS in depression is supported by over 20 years of clinical trials. There has been a significant increase in knowledge around the use of rTMS in recent years. OBJECTIVE The aim of this paper was to review the use of rTMS in depression to provide an update for rTMS practitioners and clinicians interested in the clinical use of this treatment. METHODS A targeted review of the literature around the use of rTMS treatment of depression with a specific focus on studies published in the last 3 years. RESULTS High-frequency rTMS applied to the left dorsolateral prefrontal cortex is an effective treatment for acute episodes of major depressive disorder. There are several additional methods of rTMS delivery that are supported by clinical trials and meta-analyses but no substantive evidence that any one approach is any more effective than any other. rTMS is effective in unipolar depression and most likely bipolar depression. rTMS courses may be repeated in the management of depressive relapse but there is less evidence for the use of rTMS in the maintenance phase. CONCLUSIONS The science around the use of rTMS is rapidly evolving and there is a considerable need for practitioners to remain abreast of the current state of this literature and its implications for clinical practice. rTMS is an effective antidepressant treatment but its optimal use should be continually informed by knowledge of the state of the art.
Collapse
Affiliation(s)
- Paul B Fitzgerald
- Epworth Centre for Innovation in Mental Health, Epworth Healthcare and Monash University Central Clinical School, 888 Toorak Rd, Camberwell, Victoria 3004, Australia.
| |
Collapse
|
37
|
Low frequency right-sided and high frequency left-sided repetitive transcranial magnetic stimulation for depression: The evidence of equivalence. Brain Stimul 2020; 13:1793-1795. [PMID: 33065359 PMCID: PMC7552991 DOI: 10.1016/j.brs.2020.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/29/2020] [Accepted: 10/11/2020] [Indexed: 11/26/2022] Open
|
38
|
Kazemi R, Rostami R, Dehghan S, Nasiri Z, Lotfollahzadeh S, L Hadipour A, Khomami S, Ishii R, Ikeda S. Alpha frequency rTMS modulates theta lagged nonlinear connectivity in dorsal attention network. Brain Res Bull 2020; 162:271-281. [PMID: 32619694 DOI: 10.1016/j.brainresbull.2020.06.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/14/2020] [Accepted: 06/26/2020] [Indexed: 11/24/2022]
Abstract
Dorsolateral prefrontal cortex (DLPFC) is a key structure in dorsal attention network (DAN) that facilitates sustained attention by modulating activity in task related and unrelated regions of the brain. Alpha and theta frequency bands enhance connectivity among different parts of the attention network and these connections are facilitated by long-range nonlinear connectivity in theta and alpha frequency bands. This study is an investigation of the behavioral and electrophysiological effects of alpha and theta frequency repetitive transcranial magnetic stimulation (rTMS) over RDLPFC. 20 healthy participants were randomly assigned to two groups of theta (n = 11, f = 6 Hz) and alpha (n = 9, f = 10 Hz) rTMS. Electroencephalogram (EEG) was recorded before and after each session while resting and performing tasks. Current source density (CSD) and functional connectivity (FC) in DAN and default mode network (DMN) and their correlations with rapid visual information processing task (RVIP) scores were calculated . Alpha frequency rTMS resulted in significant changes in RVIP scores. Active theta rTMS caused an increase in CSD in Postcentral gyrus and active alpha rTMS resulted in significant CSD changes in inferior parietal lobule (IPL). Theta lagged nonlinear connectivity was mudulated by alpha rTMSand FC changes were observed in DAN and DMN. Positive correlations were observed between DAN regions and RVIP scores in the alpha rTMS group. Increased activity in theta frequency band in left aPFC and left DLPFC correlated positively with higher total hits in RVIP. This study showed for the first time that theta and alpha frequency rTMS are able to modulate FC in DAN and DMN in a way that results in better performance in a sustained attention task.
Collapse
Affiliation(s)
- Reza Kazemi
- Cognitive Lab, Department of Psychology, University of Tehran, Tehran, Iran; Atieh Clinical Neuroscience Center, Tehran, Iran.
| | - Reza Rostami
- Department of Psychology, University of Tehran, Tehran, Iran
| | | | - Zahra Nasiri
- Atieh Clinical Neuroscience Center, Tehran, Iran
| | | | - Abed L Hadipour
- Atieh Clinical Neuroscience Center, Tehran, Iran; Department of Psychology, University of Tehran, Tehran, Iran
| | | | - Ryouhei Ishii
- Smart Rehabilitation Research Center, Osaka Prefecture University, Graduate School of Comprehensive Rehabilitation, Habikino, Japan; Department of Psychiatry, Osaka University, Graduate School of Medicine, Osaka, Japan
| | - Shunichiro Ikeda
- Department of Neuropsychiatry, Kansai Medical University, Osaka, Japan
| |
Collapse
|
39
|
Yu F, Tang X, Hu R, Liang S, Wang W, Tian S, Wu Y, Yuan TF, Zhu Y. The After-Effect of Accelerated Intermittent Theta Burst Stimulation at Different Session Intervals. Front Neurosci 2020; 14:576. [PMID: 32670006 PMCID: PMC7330092 DOI: 10.3389/fnins.2020.00576] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/11/2020] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE The study aims to investigate the after-effect of three sessions of intermittent theta-burst stimulation (iTBS) on motor cortical excitability. The iTBS was induced over the primary motor cortex (M1) at different time intervals. METHODS The study has a crossover design. Sixteen participants were assigned to three groups and received different accelerated iTBS (aiTBS) protocols during each visit: (1) three continuous sessions with no interval (iTBS18000); (2) three iTBS sessions with 10-min intervals (iTBS600 × 3∗10); and (3) three iTBS sessions with 30-min intervals (iTBS600 × 3∗30). As washout period, each visit is separated by at least 7 days. We measured the motor cortical excitability changes and intracortical inhibition. RESULTS A dose of 1,800 pulses of aiTBS per day is tolerable. The iTBS1800 led to a reduced cortical excitability; whereas iTBS600 × 3∗10 and iTBS600 × 3∗30 enhanced cortical excitability to a differential extent. After a total dose of 1,800 pulses, iTBS600 × 3∗30 exhibited the longer effect and highest percentage of individuals with enhanced cortical excitability. CONCLUSION The results suggest that aiTBS protocols at different time intervals result in different motor cortical excitability after-effects.
Collapse
Affiliation(s)
- Fengyun Yu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xinwei Tang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruiping Hu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Sijie Liang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Weining Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Shan Tian
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yulian Zhu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
40
|
Miron JP, Sheen J, Mansouri F, Blumberger DM, Daskalakis ZJ, Vila-Rodriguez F, Downar J. The role of low-frequency repetitive transcranial magnetic stimulation in major depression: A call to increase the evidence base. Brain Stimul 2020; 13:1296-1297. [PMID: 32580026 PMCID: PMC7306196 DOI: 10.1016/j.brs.2020.06.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/15/2020] [Indexed: 12/24/2022] Open
Affiliation(s)
- Jean-Philippe Miron
- Krembil Research Institute, University Health Network, Toronto, ON, Canada; Poul Hansen Family Centre for Depression, University Health Network, Toronto, ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Unité de Neuromodulation Psychiatrique, Centre Hospitalier de L'Université de Montréal, Montréal, QC, Canada.
| | - Jack Sheen
- Krembil Research Institute, University Health Network, Toronto, ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Farrokh Mansouri
- Krembil Research Institute, University Health Network, Toronto, ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Daniel M Blumberger
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Temerty Centre for Therapeutic Brain Intervention at the Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Zafiris J Daskalakis
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Temerty Centre for Therapeutic Brain Intervention at the Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Fidel Vila-Rodriguez
- Non-Invasive Neurostimulation Therapies Laboratory, Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Jonathan Downar
- Krembil Research Institute, University Health Network, Toronto, ON, Canada; Poul Hansen Family Centre for Depression, University Health Network, Toronto, ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
41
|
Pan F, Shen Z, Jiao J, Chen J, Li S, Lu J, Duan J, Wei N, Shang D, Hu S, Xu Y, Huang M. Neuronavigation‐Guided rTMS for the Treatment of Depressive Patients With Suicidal Ideation: A Double‐Blind, Randomized, Sham‐Controlled Trial. Clin Pharmacol Ther 2020; 108:826-832. [PMID: 32319673 DOI: 10.1002/cpt.1858] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/06/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Fen Pan
- Department of Psychiatry First Affiliated Hospital College of Medicine Zhejiang University Hangzhou China
- The Key Laboratory of Mental Disorder’s Management of Zhejiang Province Hangzhou China
| | - Zhe Shen
- Department of Psychiatry First Affiliated Hospital College of Medicine Zhejiang University Hangzhou China
- The Key Laboratory of Mental Disorder’s Management of Zhejiang Province Hangzhou China
| | - JianPing Jiao
- Department of Psychiatry First Affiliated Hospital College of Medicine Zhejiang University Hangzhou China
- The Key Laboratory of Mental Disorder’s Management of Zhejiang Province Hangzhou China
| | - Jinkai Chen
- Department of Psychiatry First Affiliated Hospital College of Medicine Zhejiang University Hangzhou China
- The Key Laboratory of Mental Disorder’s Management of Zhejiang Province Hangzhou China
| | - Shangda Li
- Department of Psychiatry First Affiliated Hospital College of Medicine Zhejiang University Hangzhou China
- The Key Laboratory of Mental Disorder’s Management of Zhejiang Province Hangzhou China
| | - Jing Lu
- Department of Psychiatry First Affiliated Hospital College of Medicine Zhejiang University Hangzhou China
- The Key Laboratory of Mental Disorder’s Management of Zhejiang Province Hangzhou China
| | - Jinfeng Duan
- Department of Psychiatry First Affiliated Hospital College of Medicine Zhejiang University Hangzhou China
- The Key Laboratory of Mental Disorder’s Management of Zhejiang Province Hangzhou China
| | - Ning Wei
- Department of Psychiatry First Affiliated Hospital College of Medicine Zhejiang University Hangzhou China
- The Key Laboratory of Mental Disorder’s Management of Zhejiang Province Hangzhou China
| | - Desheng Shang
- Department of Radiology First Affiliated Hospital College of Medicine The Key Laboratory of Mental Disorder’s Management of Zhejiang Province Zhejiang University Hangzhou China
| | - Shaohua Hu
- Department of Psychiatry First Affiliated Hospital College of Medicine Zhejiang University Hangzhou China
- The Key Laboratory of Mental Disorder’s Management of Zhejiang Province Hangzhou China
| | - Yi Xu
- Department of Psychiatry First Affiliated Hospital College of Medicine Zhejiang University Hangzhou China
- The Key Laboratory of Mental Disorder’s Management of Zhejiang Province Hangzhou China
- Department of Neurobiology NHC and CAMS Key Laboratory of Medical Neurobiology Zhejiang University School of Medicine Hangzhou Zhejiang China
| | - Manli Huang
- Department of Psychiatry First Affiliated Hospital College of Medicine Zhejiang University Hangzhou China
- The Key Laboratory of Mental Disorder’s Management of Zhejiang Province Hangzhou China
| |
Collapse
|
42
|
Abstract
Psychiatry has been at the forefront of advancing clinical transcranial magnetic stimulation (TMS) since the mid-1990s, shortly after the invention of modern TMS in 1985 by Barker. Clinical TMS for psychiatric applications is advancing rapidly, with novel methods and innovations for treating depression, as well as a new clinical indication in obsessive-compulsive disorder. This review summarizes the recent findings and peers into the near future of this fertile and rapidly changing field. It is possible that many, perhaps even most, psychiatrists will be incorporating some form of brain stimulation into their practice within the next decade. The author summarizes the reasons for this optimistic view.
Collapse
Affiliation(s)
- Mark S George
- Department of Psychiatry and Behavioral Sciences and Institute of Psychiatry, Medical University of South Carolina, Charleston; and Ralph H. Johnson VA Medical Center, Charleston
| |
Collapse
|