1
|
Liu Z, Yu Q, Zhou F, Yu M, Shu H, Zhu M, Peng T. Repetitive transcranial magnetic stimulation and constraint-induced movement therapy combined in the treatment of post-stroke movement disorders: a narrative review. Front Hum Neurosci 2025; 19:1578258. [PMID: 40260173 PMCID: PMC12009840 DOI: 10.3389/fnhum.2025.1578258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 03/21/2025] [Indexed: 04/23/2025] Open
Abstract
Stroke is a significant cardiovascular and cerebrovascular condition and is among the primary causes of prolonged neurological impairment globally. Approximately 55%-75% of stroke survivors will experience some form of long-term sensorimotor impairment. Post-stroke, the upper limb typically exhibits restricted mobility, complicating daily chores for 70% of patients and impairing normal limb utilization. Repetitive Transcranial Magnetic Stimulation (rTMS), a prominent non-invasive neuromodulation technique designed to enhance functional recovery post-stroke, has garnered significant attention in clinical studies. Likewise, constraint-induced movement therapy (CIMT) has been extensively employed in therapeutic settings to promote neuroplasticity. However, there remain several issues with it in practical application. Recently, considerable focus has been directed toward a novel treatment known as rTMS in conjunction with obligatory motor therapy. This can circumvent the issues associated with conventional treatments and optimize the advantages of both. This article discusses the present status of clinical research with rTMS and CIMT.
Collapse
Affiliation(s)
- Zhennan Liu
- Graduate School of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Qingying Yu
- Department of Rehabilitation Medicine, Hongdu Hospital of Traditional Chinese Medicine, Nanchang, China
| | - Feng Zhou
- Department of Rehabilitation Medicine, Hongdu Hospital of Traditional Chinese Medicine, Nanchang, China
| | - Muyao Yu
- Graduate School of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Huan Shu
- Graduate School of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Manhua Zhu
- Department of Rehabilitation Medicine, Hongdu Hospital of Traditional Chinese Medicine, Nanchang, China
| | - Tianzhong Peng
- Department of Rehabilitation Medicine, Hongdu Hospital of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
2
|
Lin YL, Potter-Baker KA, Sankarasubramanian V, Cunningham DA, Li M, O'Laughlin K, Conforto AB, Wang X, Sakaie K, Knutson J, Machado AG, Plow EB. Stratification algorithm for repetitive TMS in stroke (START): Results from an exploratory crossover study. J Neurol Sci 2025; 473:123478. [PMID: 40209285 DOI: 10.1016/j.jns.2025.123478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/18/2025] [Accepted: 03/24/2025] [Indexed: 04/12/2025]
Abstract
The role of contralesional motor cortices in paretic upper extremity (UE) motor recovery following stroke varies based on available structural reserve. However, an optimal measure of the reserve to stratify patients for different contralesional brain stimulation remains unknown. This study aimed to establish severity criteria distinguishing which patients benefit more from inhibitory contralesional motor cortex (M1) stimulation versus facilitatory contralesional dorsal premotor cortex (cPMd) stimulation. Twenty-four chronic stroke participants underwent three repetitive transcranial magnetic stimulation (rTMS) sessions: inhibitory 1 Hz rTMS to contralesional M1, facilitatory 5 Hz rTMS to cPMd, and sham rTMS. Motor performance on a reaching task (RT) was assessed pre- and post-stimulation. Baseline assessments included UE Fugl-Meyer (UEFM), corticospinal integrity (fractional anisotropy), and motor evoked potentials (MEPs). Classification and Regression Tree (CART) analysis identified UEFM 42 as the threshold distinguishing patients who improved with cM1 inhibition versus cPMd facilitation rTMS, with 91.6 % and 83.3 % accuracy, respectively. Participants with UEFM>42 showed greater RT gains with inhibitory rTMS than more severely impaired individuals (p = 0.06), whereas those with UEFM≤42 demonstrated greater RT gains with facilitatory cPMd rTMS than sham (p = 0.003). Less-severe participants had larger increases in ipsilesional MEPs following inhibitory rTMS (p = 0.007), whereas more-severe (UEFM≤42) MEP-absent participants had larger reductions in interhemispheric inhibition (IHI) following facilitatory cPMd rTMS (p = 0.028). Our findings support the bimodal theory and introduce the START (Stratification Algorithm for rTMS) framework, utilizing clinical impairment and white matter integrity to stratify response. While promising, the START algorithm requires further validation in larger samples to develop targeted and effective neuromodulation treatments.
Collapse
Affiliation(s)
- Yin-Liang Lin
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Kelsey A Potter-Baker
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veteran's Affairs, Cleveland, OH, USA; Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | | | - David A Cunningham
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Physical Medicine and Rehabilitation, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Department of Physical Medicine and Rehabilitation, MetroHealth Medical Center, Cleveland, Ohio, USA; Cleveland Functional Electrical Stimulation Center, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, USA
| | - Manshi Li
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Kyle O'Laughlin
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Adriana B Conforto
- Hospital Israelita Albert Einstein and LIM-44/Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Xiaofeng Wang
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ken Sakaie
- Department of Diagnostic Radiology, Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jayme Knutson
- Department of Physical Medicine and Rehabilitation, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Department of Physical Medicine and Rehabilitation, MetroHealth Medical Center, Cleveland, Ohio, USA; Cleveland Functional Electrical Stimulation Center, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, USA
| | | | - Ela B Plow
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Physical Medicine and Rehabilitation, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA; Cleveland Clinic Rehabilitation Hospitals (CCRH), Cleveland, OH, USA.
| |
Collapse
|
3
|
Jia DM, Li X, Zhang BC, Zhang BR, Zhang QJ, Liu MW, Zhang LM. Therapeutic efficacy of repetitive transcranial magnetic stimulation on gait and limb balance function in patients with lower limb dysfunction post-cerebral infarction: a systematic review and meta-analysis. BMC Neurol 2025; 25:126. [PMID: 40128695 PMCID: PMC11931868 DOI: 10.1186/s12883-025-04112-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/26/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND This investigation is designed to evaluate the effects of rTMS and its varying stimulation parameters and target sites on the therapeutic outcomes for post-stroke lower limb motor impairment and balance, with the objective of pinpointing stimulation locations and parameters that are both reasonable and applicable in clinical practice. MATERIALS AND METHODS An exhaustive search was carried out across the PubMed, MEDLINE, Embase, CENTRAL, and Web of Science databases to identify RCTs that assessed the effectiveness of rTMS in the treatment of lower limb motor impairment following a stroke. Meta-analysis was performed usingR statistical environment (V.4.2.2, www.r-project.org ). The review period encompassed the interval from the databases' origination through to February 18, 2024. RESULTS Research reveals that applying rTMS to the unaffected motor cortex markedly enhances gait speed in stroke patients,exhibiting a significant effect (SMD: 1.117, 95% CI:0.40, 1.82, I2 = 0.0%). rTMS sessions comprising 1000-1500 pulses (SMD: 0.92, 95% CrI:0.63, 1.21, I2 = 42%, six studies), with a total session count ≥ 10 (SMD: 0.85, 95% CrI:0.53, 1.18, I2 = 54.1%, six studies), and high-frequency rTMS (SMD: 0.83, 95% CrI:0.34, 1.09, I2 = 46.3%, three studies) exhibit significant efficacyin improving lower limb balance and gait post-stroke. CONCLUSIONS The research indicates that rTMS has been instrumental in enhancing the post-stroke prognosis for gait and limb balance. Nevertheless, the therapeutic efficacy of rTMS is subject to the diversity in stimulation locations and parameter settings.
Collapse
Affiliation(s)
- De-Mei Jia
- Physical Examination Center, The Second People'S Hospital in Yunnan Province, Kunming, 650021, Yunnan, China
- The Affiliated Hospital of Yunnan University, Yunnan Provincial Cadre Physical Examination Center, 650021, Kunming, China
| | - Xuan Li
- Department of Rehabilitation Medicine, People's Hospital of Dali Bai Autonomous Prefecture, Dali, 671000, Yunnan, China
| | - Bin-Cang Zhang
- Department of Orthopaedics, People's Hospital of Dali Bai Autonomous Prefecture, Dali, 671000, Yunnan, China
| | - Bing-Ran Zhang
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Qiu-Juan Zhang
- Department of Emergency Medicine, Dali Bai Autonomous Prefecture People's Hospital, 35, Renmin South Road, Xiaguan Street, Dali, 671000, China
| | - Ming-Wei Liu
- Department of Emergency Medicine, Dali Bai Autonomous Prefecture People's Hospital, 35, Renmin South Road, Xiaguan Street, Dali, 671000, China.
| | - Lin-Ming Zhang
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, 295, Xichang Road, Wuhua District, Kunming, 650032, China.
| |
Collapse
|
4
|
Xie G, Wang T, Deng L, Zhou L, Zheng X, Zhao C, Li L, Sun H, Liao J, Yuan K. Repetitive transcranial magnetic stimulation for motor function in stroke: a systematic review and meta-analysis of randomized controlled studies. Syst Rev 2025; 14:47. [PMID: 39994795 PMCID: PMC11849290 DOI: 10.1186/s13643-025-02794-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
OBJECTIVE This study aimed to systematically evaluate the safety and effectiveness of repetitive transcranial magnetic stimulation (rTMS) in treating motor dysfunction in stroke patients. METHODS A systematic search was conducted in five online databases, namely, Medline, EMBASE, the Cochrane Central Register of Controlled Trials (CENTRAL), CINAHL, and SPORTDiscus, from their inception to July 29, 2024. Studies meeting the predetermined inclusion criteria were included. The data were analyzed using RevMan 5.4.1 software and Stata 15.0. The subgroup analysis was conducted based on various disease stages and intervention frequencies. The overall effects were estimated using either the fixed effects model or the random effects model, with standardized mean differences (SMDs). The level of evidence was assessed using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) framework. RESULTS A total of 70 studies encompassing 2951 stroke survivors were included. The results of the quantitative analysis revealed that the application of 1 Hz rTMS over the contralesional primary motor cortex (M1) significantly improved motor function during both the early stage (< 1 month) with moderate effect size (n = 443, SMD = 0.44, 95% CI 0.24 to 0.63, P < 0.00001, I2 = 47%, fixed-effect model) and recovery period (1-6 months) with moderate effect size (n = 233, SMD = 0.61, 95% CI 0.34 to 0.87, P < 0.0001, I2 = 33%, fixed-effect model). In the context of activities of daily living (ADLs), the application of 1 Hz rTMS over the contralesional M1 can lead to improvements in ADLs among individuals in the early stages of stroke with moderate effect size (n = 343, SMD = 0.67, 95% CI 0.44 to 0.89, I2 = 79%, P < 0.00001, fixed-effect model). However, evidence to support that 1 Hz rTMS over contralesional M1 can improve motor dysfunction in the chronic phase of stroke (> 6 months) is insufficient. CONCLUSION Moderate- to high-quality evidence suggests that 1 Hz rTMS over the contralesional M1 may enhance motor function and independence in ADL during the early stages of stroke and the recovery period (within 6 months) with moderate effect. Nonetheless, as for the efficacy of 3, 5, 10, and 20 Hz rTMS in the treatment of motor dysfunction after stroke, it needs to be further determined. It is important to interpret these findings with caution in clinical practice due to the small sample sizes and low quality of the studies reviewed. SYSTEMATIC REVIEW REGISTRATION INPLASY, Registration number is INPLASY202360042. DOI number is https://doi.org/10.37766/inplasy2023.6.0042 .
Collapse
Affiliation(s)
- Guanli Xie
- Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Tao Wang
- Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Li Deng
- Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Liming Zhou
- Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Xia Zheng
- Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Chongyu Zhao
- Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Li Li
- Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Haoming Sun
- Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Jianglong Liao
- Kunming Municipal Hospital of Chinese Medicine, & Kunming Combination of Chinese and Western Medicine Minimally Invasive Spine Technology Center, Kunming, Yunnan, China.
| | - Kai Yuan
- Yunnan University of Chinese Medicine, Kunming, Yunnan, China.
| |
Collapse
|
5
|
Cai G, Zhang C, Xu J, Jiang J, Chen G, Chen J, Liu Q, Xu G, Lan Y. Efficacy of Transcranial Magnetic Stimulation in Post-Stroke Motor Recovery: Impact of Impairment Severity. IEEE Trans Neural Syst Rehabil Eng 2025; 33:881-889. [PMID: 40031445 DOI: 10.1109/tnsre.2025.3543859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Stroke is a leading cause of impairment, with 70% of survivors experiencing upper limb motor deficits. While transcranial magnetic stimulation (TMS) is widely used in rehabilitation, the impact of impairment severity on treatment outcomes remains unclear. This study evaluated TMS effectiveness in post-stroke motor impairment and explored its neural mechanisms. Fifty-five stroke patients were divided into TMS (n =27) and control (n =28) groups. The TMS group received two weeks of intermittent theta-burst stimulation (iTBS), while controls received sham stimulation. Patients were stratified into mild/moderate (Fugl-Meyer Assessment [FMA] ) and severe (FMA <30) impairment subgroups. Motor function and electroencephalography (EEG) metrics were assessed before and after treatment. Overall FMA improvement showed no difference between groups, but the TMS-mild/moderate impairment group demonstrated significantly greater improvement compared to others. This group exhibited higher global and local alpha band power and global alpha efficiency. FMA improvement positively correlated with local alpha power changes. TMS of ipsilesional M1 improves motor function in mild/moderate impairments but shows limited efficacy in severe cases. EEG suggests TMS promotes recovery by modulating alpha activity and enhancing network efficiency. These findings support stratified treatment approaches and highlight the need for alternative interventions in severe impairment.
Collapse
|
6
|
Zhang JJY, Ang J, Saffari SE, Tor PC, Lo YL, Wan KR. Repetitive Transcranial Magnetic Stimulation for Motor Recovery After Stroke: A Systematic Review and Meta-Analysis of Randomized Controlled Trials With Low Risk of Bias. Neuromodulation 2025; 28:16-42. [PMID: 39320286 DOI: 10.1016/j.neurom.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/07/2024] [Accepted: 07/29/2024] [Indexed: 09/26/2024]
Abstract
OBJECTIVES Repetitive transcranial magnetic stimulation (rTMS) has shown promising results in enhancing motor recovery after stroke, but nuances regarding its use, such as the impact of the type and site of stimulation, are not yet established. We aimed to perform a systematic review and meta-analysis of randomized controlled trials (RCTs) with low risk of bias to investigate the effect of rTMS on motor recovery after both ischemic and hemorrhagic stroke. MATERIALS AND METHODS Three databases were searched systematically for all RCTs reporting comparisons between rTMS (including theta-burst stimulation) and either no stimulation or sham stimulation up to August 19, 2022. The primary outcome measure was the Fugl-Meyer Assessment for Upper Extremity (FMA-UE). Secondary outcome measures comprised the Action Research Arm Test, Box and Block Test, Modified Ashworth Scale for the wrist, and modified Rankin Scale (mRS). RESULTS A total of 37 articles reporting 48 unique comparisons were included. Pooled mean FMA-UE scores were significantly higher in the experimental group than the control group after intervention (MD = 5.4 [MD = 10.7 after correction of potential publication bias], p < 0.001) and at the last follow-up (MD = 5.2, p = 0.031). On subgroup analysis, the improvements in FMA-UE scores, both after intervention and at the last follow-up, were significant in the acute/subacute stage of stroke (within six months) and for patients with more severe baseline motor impairment. Both contralesional and ipsilesional stimulation yielded significant improvements in FMA-UE at the first assessment after rTMS but not at the last follow-up, while the improvements from bilateral rTMS only achieved statistical significance at the last follow-up. Among the secondary outcome measures, only mRS was significantly improved in the rTMS group after intervention (MD = -0.5, p = 0.013) and at the last follow-up (MD = -0.9, p = 0.001). CONCLUSIONS Current literature supports the use of rTMS for motor recovery after stroke, especially when done within six months and for patients with more severe stroke at baseline. Future studies with larger sample sizes may be helpful in clarifying the potential of rTMS in poststroke rehabilitation.
Collapse
Affiliation(s)
- John J Y Zhang
- Department of Neurosurgery, National Neuroscience Institute, Singapore; Department of Neurosurgery, National Neuroscience Institute, Singapore General Hospital, Singapore.
| | - Jensen Ang
- Department of Neurosurgery, National Neuroscience Institute, Singapore; Department of Neurosurgery, National Neuroscience Institute, Singapore General Hospital, Singapore
| | - Seyed Ehsan Saffari
- Centre for Quantitative Medicine, Duke-National University of Singapore Medical School, Singapore; Program in Health Services and Systems Research, Duke-National University of Singapore Medical School, Singapore
| | - Phern-Chern Tor
- Department of Mood and Anxiety, Institute of Mental Health, Singapore
| | - Yew Long Lo
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore; Duke-National University of Singapore Medical School, Singapore
| | - Kai Rui Wan
- Department of Neurosurgery, National Neuroscience Institute, Singapore; Department of Neurosurgery, National Neuroscience Institute, Singapore General Hospital, Singapore
| |
Collapse
|
7
|
Buccilli B. Pediatric stroke: We need to look for it. J Neurol Sci 2024; 467:123276. [PMID: 39510868 DOI: 10.1016/j.jns.2024.123276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/28/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024]
Abstract
PURPOSE This review provides a comprehensive overview of the characteristics and diagnosis of pediatric stroke, emphasizing the importance of early recognition and accurate assessment. Pediatric stroke is a complex condition with diverse etiologies, and its timely diagnosis is critical for initiating appropriate interventions and improving clinical outcomes. RECENT FINDINGS Recent advances in neuroimaging techniques, including magnetic resonance imaging (MRI) and magnetic resonance angiography (MRA), have significantly enhanced the diagnostic capabilities for pediatric stroke. Additionally, a better understanding of its underlying etiologies in specific cases, and of the importance of differential diagnosis have improved the outcome and prevention strategies in this vulnerable population. Despite these improvements, though, research still has a long way to go to optimize the management of this condition. SUMMARY Timely and accurate diagnosis of pediatric stroke remains a challenge due to its rarity and variability in clinical presentation, and to the presence of many mimic conditions. The integration of clinical evaluation, neuroimaging, and comorbidities analysis is crucial for achieving a precise diagnosis and guiding tailored treatment strategies for affected children.
Collapse
Affiliation(s)
- Barbara Buccilli
- Icahn School of Medicine at Mount Sinai, Department of Neurosurgery, 1 Gustave L. Levy Place, New York, NY 10029-6574, United States of America
| |
Collapse
|
8
|
Qian W, Liao X, Ju X, Gao Y, Wu M, Xie C, Zhang Y, Long X, Qian S, Gong Y. Effects of low frequency repetitive transcranial magnetic stimulation on motor recovery in subacute stroke patients with different motor evoked potential status: a randomized controlled trial. Front Neurol 2024; 15:1460925. [PMID: 39484050 PMCID: PMC11524934 DOI: 10.3389/fneur.2024.1460925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/26/2024] [Indexed: 11/03/2024] Open
Abstract
Objectives To explore the effects of low-frequency repetitive transcranial magnetic stimulation (LF-rTMS) on motor function and cortical excitability in stroke patients with different motor evoked potential (MEP) status. Methods A total of 80 stroke patients were enrolled in this randomized controlled trial and divided into two groups according to MEP status (- or +) of lesioned hemisphere. Then, each group was randomly assigned to receive either active or sham LF-rTMS. In addition to conventional rehabilitation, all participants received 20 sessions of rTMS at 1 Hz frequency through the active or the sham coil over 4 weeks. Fugl-Meyer Assessment (FMA), National Institutes of Health Stroke Scale (NIHSS), Shoulder Abduction Finger Extension (SAFE) and Barthel Index (BI), bilateral resting motor threshold (rMT), amplitude of Motor evoked potential (MEP) and Central Motor Conduction Time (CMCT), and Interhemispheric asymmetry (IHA) were blindly assessed at baseline, 4 weeks and 8 weeks after treatment, respectively. Results At 4 weeks after intervention, FMA and NIHSS changed scores in 1 Hz MEP(+) group were significantly higher than those in the other three groups (p < 0.001). After receiving 1 Hz rTMS, stroke patients with MEP(+) showed significant changes in their bilateral cortical excitability (p < 0.05). At 8 weeks after intervention, 1 Hz MEP(+) group experienced higher changes in NIHSS, FMA, SAFE, and BI scores than other groups (p < 0.001). Furthermore, 1 Hz rTMS intervention could decrease unaffected cortical excitability and enhance affected cortical excitability of stroke patients with MEP(+) (p < 0.05). The correlation analysis revealed that FMA motor change score was associated with decreased unaffected MEP amplitude (r = -0.401, p = 0.010) and decreased affected rMT (r = -0.584, p < 0.001) from baseline, which was only observed in the MEP(+) group. Conclusion The effects of LF-rTMS on motor recovery and cortical excitability were more effective in stroke patients with MEP than those with no MEP.
Collapse
Affiliation(s)
- Wenjun Qian
- Department of Rehabilitation Medicine, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, China
| | - Xiaoyu Liao
- Department of Rehabilitation Medicine, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, China
| | - Xiaowen Ju
- Department of Rehabilitation Medicine, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, China
| | - Yaxin Gao
- Department of Rehabilitation Medicine, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, China
| | - Miao Wu
- Department of Rehabilitation Medicine, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, China
| | - Chen Xie
- Department of Rehabilitation Medicine, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, China
| | - Yaoying Zhang
- Department of Rehabilitation Medicine, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, China
| | - Xianming Long
- Department of Rheumatology and Immunology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Surong Qian
- Department of Rehabilitation Medicine, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, China
| | - Yan Gong
- Department of Rehabilitation Medicine, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, China
| |
Collapse
|
9
|
Zhang N, Wang H, Wang H, Qie S. Impact of the combination of virtual reality and noninvasive brain stimulation on the upper limb motor function of stroke patients: a systematic review and meta-analysis. J Neuroeng Rehabil 2024; 21:179. [PMID: 39369259 PMCID: PMC11453052 DOI: 10.1186/s12984-024-01474-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/22/2024] [Indexed: 10/07/2024] Open
Abstract
BACKGROUND Stroke frequently results in upper limb motor dysfunction, with traditional therapies often failing to yield sufficient improvements. Emerging technologies such as virtual reality (VR) and noninvasive brain stimulation (NIBS) present promising new rehabilitation possibilities. OBJECTIVES This study systematically reviews and meta-analyses the effectiveness of VR and NIBS in improving upper limb motor function in stroke patients. METHODS Registered with PROSPERO (CRD42023494220) and adhering to the PRISMA guidelines, this study conducted a thorough search of databases including PubMed, MEDLINE, PEDro, REHABDATA, EMBASE, Web of Science, Cochrane, CNKI, Wanfang, and VIP from 2000 to December 1, 2023, to identify relevant studies. The inclusion criterion was stroke patients receiving combined VR and NIBS treatment, while exclusion criteria were studies with incomplete articles and data. The risk of bias was assessed using the Cochrane Collaboration tool. Statistical analysis was performed using Stata SE 15.0, employing either a fixed-effects model or a random-effects model based on the level of heterogeneity. RESULTS A total of 11 studies involving 493 participants were included, showing a significant improvement in Fugl-Meyer Assessment Upper Extremity (FMA-UE) scores in the combined treatment group compared to the control group (SMD = 0.85, 95% CI [0.40, 1.31], p = 0.017). The Modified Ashworth Scale (MAS) scores significantly decreased (SMD = - 0.51, 95% CI [- 0.83, - 0.20], p = 0.032), the Modified Barthel Index (MBI) scores significantly increased (SMD = 0.97, 95% CI [0.76, 1.17], p = 0.004), and the Wolf Motor Function Test (WMFT) scores also significantly increased (SMD = 0.36, 95% CI [0.08, 0.64], p = 0.021). Subgroup analysis indicated that the duration of treatment influenced the outcomes in daily living activities. CONCLUSIONS The combination of VR and NIBS demonstrates significant improvements in upper limb motor function in stroke patients. The duration of treatment plays a critical role in influencing the outcomes, particularly in activities of daily living. This systematic review has limitations, including language bias, unclear randomization descriptions, potential study omissions, and insufficient follow-up periods. Future studies should focus on exploring long-term effects and optimizing treatment duration to maximize the benefits of combined VR and NIBS therapy.
Collapse
Affiliation(s)
- Nuo Zhang
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, 100144, China
| | - Hujun Wang
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, 100144, China
| | - Hanming Wang
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, 100144, China
| | - Shuyan Qie
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, 100144, China.
| |
Collapse
|
10
|
Zhang W, Dai L, Liu W, Li X, Chen J, Zhang H, Chen W, Duan W. The effect and optimal parameters of repetitive transcranial magnetic stimulation on lower extremity motor function in stroke patient: a systematic review and meta-analysis. Disabil Rehabil 2024; 46:4889-4900. [PMID: 37991330 DOI: 10.1080/09638288.2023.2283605] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
PURPOSE This study aimed to evaluate the efficacy of repetitive transcranial magnetic stimulation (rTMS) in treating lower limb motor dysfunction after stroke and explore the optimal stimulation parameters. METHODS PubMed, Embase, Cochrane Library, and other relevant databases were systematically queried for randomised controlled trials (RCTs) investigating the efficacy of rTMS in addressing lower limb motor dysfunction post-stroke. The search encompassed records from inception to July 2022. The assessed outcomes encompassed parameters such as the Fugl-Meyer motor function score for lower limbs, balance function, and Barthel index (BI). Three independent researchers were responsible for research selection, data extraction, and quality assessment. Study screening, data extraction, and bias evaluation were performed independently by two reviewers. Data synthesis was undertaken using Review Manager 5.3, while Stata version 14.0 software was employed for generating the funnel plot. RESULTS A total of 13 studies and 428 patients were included. The meta-analysis indicated that rTMS had a positive effect on the BI (MD = 5.87, 95% CI [0.99, 10.76], p = 0.02, I2 = 86%, N of studies = 8, N of participants = 248). Subgroup analysis was performed on the stimulation frequency, treatment duration, and different stroke stages (stimulation frequency was low-frequency (LF)-rTMS (MD = 4.45, 95% CI [1.05, 7.85], p = 0.01, I2 = 0%, N of studies = 4, N of participants = 120); treatment time ≤ 15 d: (MD = 4.41, 95% CI [2.63, 6.18], p < 0.00001, I2 = 0%, N of studies = 4, N of participants = 124); post-stroke time ≤6 months: (MD = 4.37, 95% CI [2.42, 6.32], p < 0.0001, I2 = 0%, N of studies = 5, N of participants = 172). CONCLUSION LF-rTMS had a significant improvement effect on BI score, while high-frequency (HF)-rTMS and iTBS had no significant effect. And stroke time ≤6 months in patients with treatment duration ≤15 d had the best treatment effect.
Collapse
Affiliation(s)
- Wanying Zhang
- The Third Clinical College, Zhejiang Chinese Medical University, Hangzhou, PR China
- Rehabilitation Department, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Lei Dai
- The Third Clinical College, Zhejiang Chinese Medical University, Hangzhou, PR China
- Rehabilitation Department, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Wentan Liu
- The Third Clinical College, Zhejiang Chinese Medical University, Hangzhou, PR China
- Rehabilitation Department, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Xiang Li
- The Third Clinical College, Zhejiang Chinese Medical University, Hangzhou, PR China
- Rehabilitation Department, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Jianer Chen
- The Third Clinical College, Zhejiang Chinese Medical University, Hangzhou, PR China
- Rehabilitation Department, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
- Geriatric rehabilitation Department, Zhejiang Rehabilitation Medical Center, Hangzhou, PR China
| | - Huihang Zhang
- The Third Clinical College, Zhejiang Chinese Medical University, Hangzhou, PR China
- Rehabilitation Department, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Weihai Chen
- College of Automation Science and Electrical Engineering, Beihang University, Hangzhou, PR China
| | - Wen Duan
- College of Automation Science and Electrical Engineering, Beihang University, Hangzhou, PR China
| |
Collapse
|
11
|
Tang Z, Huang J, Zhou Y, Ren J, Duan X, Fu X, Pan R, Wang R, Zhang P, Ding M, Sun J, Zhang X, Chi Q, Zhang Y, Zhang X, Yu W, Xu L, Zhang H, Liu H. Efficacy and Safety of High-Dose TBS on Poststroke Upper Extremity Motor Impairment: A Randomized Controlled Trial. Stroke 2024; 55:2212-2220. [PMID: 39016009 PMCID: PMC11346718 DOI: 10.1161/strokeaha.124.046597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Upper extremity (UE) motor function impairment is a major poststroke complication whose recovery remains one of the most challenging tasks in neurological rehabilitation. This study examined the efficacy and safety of the personalized neuroimaging-guided high-dose theta-burst stimulation (TBS) for poststroke UE motor function recovery. METHODS Patients after stroke with UE motor impairment from a China rehabilitation center were randomly assigned to receive high-dose intermittent TBS (iTBS) to ipsilesional UE sensorimotor network, continuous TBS (cTBS) to contralesional UE sensorimotor network, or sham stimulation, along with conventional therapy for 3 weeks. The primary outcome was the score changes on the Fugl-Meyer assessment-UE from baseline to 1 and 3 weeks. The secondary outcomes included the response rate on Fugl-Meyer assessment-UE scores posttreatment (≥9-point improvement) and score changes in multidimensional scales measuring UE, lower extremity, and activities and participation. RESULTS From June 2021 to June 2022, 45 participants were randomized and 43 were analyzed. The iTBS and continuous TBS groups showed significantly greater improvement in Fugl-Meyer assessment-UE (mean improvement, iTBS: 10.73 points; continuous TBS: 10.79 points) than the sham group (2.43 points) and exhibited significantly greater response rates on Fugl-Meyer assessment-UE (iTBS, 60.0%; continuous TBS, 64.3%) than the sham group (0.0%). The active groups consistently exhibited superior improvement on the other 2 UE assessments at week 3. However, only the iTBS group showed greater efficacy on 1 lower extremity assessment than the sham group at week 3. Both active groups showed significant improvements in activities and participation assessments. CONCLUSIONS The study provides evidence for the efficacy and safety of high-dose TBS in facilitating poststroke UE rehabilitation. REGISTRATION URL: www.chictr.org.cn; Unique identifier: ChiCTR2100047340.
Collapse
Affiliation(s)
- Zhiqing Tang
- School of Rehabilitation, Capital Medical University, Beijing, China (Z.T., R.W., Xiaonian Zhang, Q.C., Y. Zhang, Xin Zhang, W.Y., H.Z.)
- Department of Neurorehabilitation (Z.T., R.W., Xiaonian Zhang, Q.C., Y. Zhang, Xin Zhang, H.Z.), Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing
| | - Jianting Huang
- Changping Laboratory, Beijing, China (J.H., Y. Zhou, J.R., X.D., X.F., P.Z., H.L.)
- Academy for Advanced Interdisciplinary Studies (J.H.), Peking University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China (J.H.)
| | - Ying Zhou
- Changping Laboratory, Beijing, China (J.H., Y. Zhou, J.R., X.D., X.F., P.Z., H.L.)
| | - Jianxun Ren
- Changping Laboratory, Beijing, China (J.H., Y. Zhou, J.R., X.D., X.F., P.Z., H.L.)
| | - Xinyu Duan
- Changping Laboratory, Beijing, China (J.H., Y. Zhou, J.R., X.D., X.F., P.Z., H.L.)
| | - Xiaoxuan Fu
- Changping Laboratory, Beijing, China (J.H., Y. Zhou, J.R., X.D., X.F., P.Z., H.L.)
| | - Ruiqi Pan
- Neural Galaxy, Inc, Beijing, China (R.P., M.D., J.S.)
| | - Rongrong Wang
- School of Rehabilitation, Capital Medical University, Beijing, China (Z.T., R.W., Xiaonian Zhang, Q.C., Y. Zhang, Xin Zhang, W.Y., H.Z.)
- Department of Neurorehabilitation (Z.T., R.W., Xiaonian Zhang, Q.C., Y. Zhang, Xin Zhang, H.Z.), Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing
| | - Ping Zhang
- Changping Laboratory, Beijing, China (J.H., Y. Zhou, J.R., X.D., X.F., P.Z., H.L.)
| | - Mengying Ding
- Neural Galaxy, Inc, Beijing, China (R.P., M.D., J.S.)
| | - Jian Sun
- Neural Galaxy, Inc, Beijing, China (R.P., M.D., J.S.)
| | - Xiaonian Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China (Z.T., R.W., Xiaonian Zhang, Q.C., Y. Zhang, Xin Zhang, W.Y., H.Z.)
- Department of Neurorehabilitation (Z.T., R.W., Xiaonian Zhang, Q.C., Y. Zhang, Xin Zhang, H.Z.), Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing
| | - Qianqian Chi
- School of Rehabilitation, Capital Medical University, Beijing, China (Z.T., R.W., Xiaonian Zhang, Q.C., Y. Zhang, Xin Zhang, W.Y., H.Z.)
- Department of Neurorehabilitation (Z.T., R.W., Xiaonian Zhang, Q.C., Y. Zhang, Xin Zhang, H.Z.), Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing
| | - Yue Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China (Z.T., R.W., Xiaonian Zhang, Q.C., Y. Zhang, Xin Zhang, W.Y., H.Z.)
- Department of Neurorehabilitation (Z.T., R.W., Xiaonian Zhang, Q.C., Y. Zhang, Xin Zhang, H.Z.), Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing
| | - Xin Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China (Z.T., R.W., Xiaonian Zhang, Q.C., Y. Zhang, Xin Zhang, W.Y., H.Z.)
- Department of Neurorehabilitation (Z.T., R.W., Xiaonian Zhang, Q.C., Y. Zhang, Xin Zhang, H.Z.), Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing
| | - Weiyong Yu
- School of Rehabilitation, Capital Medical University, Beijing, China (Z.T., R.W., Xiaonian Zhang, Q.C., Y. Zhang, Xin Zhang, W.Y., H.Z.)
- Department of Radiology (W.Y.), Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing
| | - Liu Xu
- West China Medical School, Sichuan University, Chengdu (L.X.)
| | - Hao Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China (Z.T., R.W., Xiaonian Zhang, Q.C., Y. Zhang, Xin Zhang, W.Y., H.Z.)
- Department of Neurorehabilitation (Z.T., R.W., Xiaonian Zhang, Q.C., Y. Zhang, Xin Zhang, H.Z.), Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing
- University of Health and Rehabilitation Sciences, Qingdao, China (H.Z.)
- Cheeloo College of Medicine, Shandong University, Jinan, China (H.Z.)
| | - Hesheng Liu
- Changping Laboratory, Beijing, China (J.H., Y. Zhou, J.R., X.D., X.F., P.Z., H.L.)
- Biomedical Pioneering Innovation Center (H.L.), Peking University, Beijing, China
| |
Collapse
|
12
|
Li LL, Wu JJ, Li KP, Jin J, Xiang YT, Hua XY, Zheng MX, Xu JG. Comparative efficacy of different noninvasive brain stimulation protocols on upper-extremity motor function and activities of daily living after stroke: a systematic review and network meta-analysis. Neurol Sci 2024; 45:3641-3681. [PMID: 38520639 DOI: 10.1007/s10072-024-07437-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/29/2024] [Indexed: 03/25/2024]
Abstract
The objectives of the study were to systematically evaluate the rehabilitation effect of noninvasive brain stimulation (NIBS) on upper extremity motor function and activities of daily living in stroke patients and to prioritize various stimulation protocols for reliable evidence-based medical recommendations in patients with upper extremity motor dysfunction after stroke. Web of Science, PubMed, Embase, Cochrane Library, CNKI, Wanfang, VIP, and CBM were searched to collect all randomized controlled trials (RCTs) of NIBS to improve upper extremity motor function in stroke patients. The retrieval time was from the establishment of all databases to May 2023. According to the Cochrane system evaluation manual, the quality of the included studies was evaluated, and the data were extracted. Statistical analysis was carried out by using RevMan 5.3, R 4.3.0, and Stata 17.0 software. Finally, 94 RCTs were included, with a total of 5546 patients. Meta-analysis showed that NIBS improved the Fugl-Meyer assessment (FMA) score (mean difference (MD) = 6.51, 95% CI 6.20 ~ 6.82, P < 0.05), MBI score (MD = 7.69, 95% CI 6.57 ~ 8.81, P < 0.05), ARAT score (MD = 5.06, 95% CI 3.85 ~ 6.27, P < 0.05), and motor evoked potential (MEP) amplitude. The modified Ashworth scale score (MD = - 0.37, 95% CI - 0.60 to - 0.14, P < 0.05), National Institutes of Health Stroke Scale score (MD = - 2.17, 95% CI - 3.32 to - 1.11, P < 0.05), incubation period of MEP (MD = - 0.72, 95% CI - 1.06 to - 0.38, P < 0.05), and central motor conduction time (MD = - 0.90, 95% CI - 1.29 to - 0.50, P < 0.05) were decreased in stroke patients. Network meta-analysis showed that the order of interventions in improving FMA scores from high to low was anodal-transcranial direct current stimulation (tDCS) (surface under the cumulative ranking curve (SUCRA) = 83.7%) > cathodal-tDCS (SUCRA = 80.2%) > high-frequency (HF)-repetitive transcranial magnetic stimulation (rTMS) (SUCRA = 68.5%) > low-frequency (LF)-rTMS (SUCRA = 66.5%) > continuous theta burst stimulation (cTBS) (SUCRA = 54.2%) > bilateral-tDCS (SUCRA = 45.2%) > intermittent theta burst stimulation (iTBS) (SUCRA = 34.1%) > sham-NIBS (SUCRA = 16.0%) > CR (SUCRA = 1.6%). In terms of improving MBI scores, the order from high to low was anodal-tDCS (SUCRA = 88.7%) > cathodal-tDCS (SUCRA = 85.4%) > HF-rTMS (SUCRA = 63.4%) > bilateral-tDCS (SUCRA = 56.0%) > LF-rTMS (SUCRA = 54.2%) > iTBS (SUCRA = 32.4%) > sham-NIBS (SUCRA = 13.8%) > CR (SUCRA = 6.1%). NIBS can effectively improve upper extremity motor function and activities of daily living after stroke. Among the various NIBS protocols, anodal-tDCS demonstrated the most significant intervention effect, followed by cathodal-tDCS and HF-rTMS.
Collapse
Affiliation(s)
- Ling-Ling Li
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jia-Jia Wu
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Kun-Peng Li
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jing Jin
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yun-Ting Xiang
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xu-Yun Hua
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Mou-Xiong Zheng
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Jian-Guang Xu
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
13
|
Duan X, Huang D, Zhong H, Wu J, Xiao Z, Yang P, Han Y, Jiang H, Zhou P, Liu X. Efficacy of rTMS in treating functional impairment in post-stroke patients: a systematic review and meta-analysis. Neurol Sci 2024; 45:3887-3899. [PMID: 38512529 DOI: 10.1007/s10072-024-07455-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Most stroke patients suffer from an imbalance in blood supply, which causes severe brain damage leading to functional deficits in motor, sensory, swallowing, cognitive, emotional, and speech functions. Repetitive transcranial magnetic stimulation (rTMS) is thought to restore functions impaired during the stroke process and improve the quality of life of stroke patients. However, the efficacy of rTMS in treating post-stroke function impairment varies significantly. Therefore, we conducted a meta-analysis of the number of patients with effective rTMS in treating post-stroke dysfunction. METHODS The PubMed, Embase, and Cochrane Library databases were searched. Screening and full-text review were performed by three investigators. Single-group rate meta-analysis was performed on the extracted data using a random variable model. Then subgroup analyses were performed at the levels of stroke acuity (acute, chronic, or subacute); post-stroke symptoms (including upper and lower limb motor function, dysphagia, depression, aphasia); rTMS stimulation site (affected side, unaffected side); and whether or not it was a combination therapy. RESULTS We obtained 8955 search records, and finally 33 studies (2682 patients) were included in the meta-analysis. The overall analysis found that effective strength (ES) of rTMS was 0.53. In addition, we found that the ES of rTMS from acute/subacute/chronic post-stroke was 0.69, 0.45, and 0.52. We also found that the ES of rTMS using high-frequency stimulation was 0.56, while the ES of rTMS using low-frequency stimulation was 0.53. From post-stroke symptoms, we found that the ES of rTMS in sensory aspects, upper limb functional aspects, swallowing function, and aphasia was 0.50, 0.52, 0.51, and 0.54. And from the site of rTMS stimulation, we found that the ES of rTMS applied to the affected side was 0.51, while the ES applied to the unaffected side was 0.54. What's more, we found that the ES of rTMS applied alone was 0.53, while the ES of rTMS applied in conjunction with other therapeutic modalities was 0.53. CONCLUSIONS By comparing the results of the data, we recommend rTMS as a treatment option for rehabilitation of functional impairment in patients after stroke. We also recommend that rehabilitation physicians or clinicians use combination therapy as one of the options for patients.
Collapse
Affiliation(s)
- Xiaodong Duan
- Department of Rehabilitation Medicine, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Luzhou, 646000, Sichuan, China
- Department of Rehabilitation Medicine, Southwest Medical University, Luzhou, Sichuan, China
- Rehabilitation Medicine and Engineering Key Laboratory of Luzhou, Luzhou, Sichuan, China
| | - Delong Huang
- Clinical Medical College, Southwest Medical University, Luzhou, Sichuan, China
| | - Haoshu Zhong
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| | - Junhao Wu
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhihan Xiao
- Clinical Medical College, Southwest Medical University, Luzhou, Sichuan, China
| | - Peng Yang
- Clinical Medical College, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuanhang Han
- Clinical Medical College, Southwest Medical University, Luzhou, Sichuan, China
| | - Haodong Jiang
- Clinical Medical College, Southwest Medical University, Luzhou, Sichuan, China
| | - Ping Zhou
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Luzhou, 646000, Sichuan, China.
| | - Xi Liu
- Department of Rehabilitation Medicine, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Luzhou, 646000, Sichuan, China.
- Department of Rehabilitation Medicine, Southwest Medical University, Luzhou, Sichuan, China.
- Rehabilitation Medicine and Engineering Key Laboratory of Luzhou, Luzhou, Sichuan, China.
| |
Collapse
|
14
|
Tam PK, Oey NE, Tang N, Ramamurthy G, Chew E. Facilitating Corticomotor Excitability of the Contralesional Hemisphere Using Non-Invasive Brain Stimulation to Improve Upper Limb Motor Recovery from Stroke-A Scoping Review. J Clin Med 2024; 13:4420. [PMID: 39124687 PMCID: PMC11313572 DOI: 10.3390/jcm13154420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Upper limb weakness following stroke poses a significant global psychosocial and economic burden. Non-invasive brain stimulation (NIBS) is a potential adjunctive treatment in rehabilitation. However, traditional approaches to rebalance interhemispheric inhibition may not be effective for all patients. The supportive role of the contralesional hemisphere in recovery of upper limb motor function has been supported by animal and clinical studies, particularly for those with severe strokes. This review aims to provide an overview of the facilitation role of the contralesional hemisphere for post-stroke motor recovery. While more studies are required to predict responses and inform the choice of NIBS approach, contralesional facilitation may offer new hope for patients in whom traditional rehabilitation and NIBS approaches have failed.
Collapse
Affiliation(s)
- Pui Kit Tam
- Division of Rehabilitation Medicine, Department of Medicine, National University Hospital, Singapore 119228, Singapore; (P.K.T.); (N.E.O.); (N.T.)
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Nicodemus Edrick Oey
- Division of Rehabilitation Medicine, Department of Medicine, National University Hospital, Singapore 119228, Singapore; (P.K.T.); (N.E.O.); (N.T.)
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Ning Tang
- Division of Rehabilitation Medicine, Department of Medicine, National University Hospital, Singapore 119228, Singapore; (P.K.T.); (N.E.O.); (N.T.)
| | - Guhan Ramamurthy
- BG Institute of Neurosciences, BG Hospital, Tiruchendur, Tuticorin 628216, Tamil Nadu, India;
| | - Effie Chew
- Division of Rehabilitation Medicine, Department of Medicine, National University Hospital, Singapore 119228, Singapore; (P.K.T.); (N.E.O.); (N.T.)
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| |
Collapse
|
15
|
Cai G, Xu J, Zhang C, Jiang J, Chen G, Chen J, Liu Q, Xu G, Lan Y. Identifying biomarkers related to motor function in chronic stroke: A fNIRS and TMS study. CNS Neurosci Ther 2024; 30:e14889. [PMID: 39073240 DOI: 10.1111/cns.14889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/07/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Upper limb motor impairment commonly occurs after stroke, impairing quality of life. Brain network reorganization likely differs between subgroups with differing impairment severity. This study explored differences in functional connectivity (FC) and corticospinal tract (CST) integrity between patients with mild/moderate versus severe hemiplegia poststroke to clarify the neural correlates underlying motor deficits. METHOD Sixty chronic stroke patients with upper limb motor impairment were categorized into mild/moderate and severe groups based on Fugl-Meyer scores. Resting-state FC was assessed using functional near-infrared spectroscopy (fNIRS) to compare connectivity patterns between groups across motor regions. CST integrity was evaluated by inducing motor evoked potentials (MEP) via transcranial magnetic stimulation. RESULTS Compared to the mild/moderate group, the severe group exhibited heightened premotor cortex-primary motor cortex (PMC-M1) connectivity (t = 4.56, p < 0.01). Absence of MEP was also more frequent in the severe group (χ2 = 12.31, p = 0.01). Bayesian models effectively distinguished subgroups and identified the PMC-M1 connection as highly contributory (accuracy = 91.30%, area under the receiver operating characteristic curve [AUC] = 0.86). CONCLUSION Distinct patterns of connectivity and corticospinal integrity exist between stroke subgroups with differing impairments. Strengthened connectivity potentially indicates recruitment of additional motor resources to compensate for damage. These findings elucidate the neural correlates underlying motor deficits poststroke and could guide personalized, network-based therapies targeting predictive biomarkers to improve rehabilitation outcomes.
Collapse
Affiliation(s)
- Guiyuan Cai
- Department of Rehabilitation Medicine, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
- Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiayue Xu
- Department of Rehabilitation Medicine, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
- Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Cailing Zhang
- Department of Rehabilitation Medicine, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
- Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Junbo Jiang
- Department of Rehabilitation Medicine, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
- Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Gengbin Chen
- Postgraduate Research Institute, Guangzhou Sport University, Guangzhou, China
| | - Jialin Chen
- Postgraduate Research Institute, Guangzhou Sport University, Guangzhou, China
| | - Quan Liu
- Postgraduate Research Institute, Guangzhou Sport University, Guangzhou, China
| | - Guangqing Xu
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yue Lan
- Department of Rehabilitation Medicine, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
- Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
- Guangzhou Key Laboratory of Aging Frailty and Neurorehabilitation, Guangzhou, China
| |
Collapse
|
16
|
Hong J, Chen J, Li C, Zhao F, Zhang J, Shan Y, Wen H. High-frequency rTMS alleviates cognitive impairment and regulates synaptic plasticity in the hippocampus of rats with cerebral ischemia. Behav Brain Res 2024; 467:115018. [PMID: 38678971 DOI: 10.1016/j.bbr.2024.115018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
Poststroke cognitive impairment (PSCI) is a common complication of stroke, but effective treatments are currently lacking. Repetitive transcranial magnetic stimulation (rTMS) is gradually being applied to treat PSCI, but there is limited evidence of its efficacy. To determine rTMS effects on PSCI, we constructed a transient middle cerebral artery occlusion (tMCAO) rat model. Rats were then grouped by random digital table method: the sham group (n = 10), tMCAO group (n = 10) and rTMS group (n = 10). The shuttle box and Morris water maze (MWM) tests were conducted to detect the cognitive functions of the rats. In addition, synaptic density and synaptic ultrastructural parameters, including the active zone length, synaptic cleft width, and postsynaptic density (PSD) thickness, were quantified and analyzed using an electron microscope. What's more, synaptic associated proteins, including PSD95, SYN, and BDNF were detected by western blot. According to the shuttle box and MWM tests, rTMS improved tMCAO rats' cognitive functions, including spatial learning and memory and decision-making abilities. Electron microscopy revealed that rTMS significantly increased the synaptic density, synaptic active zone length and PSD thickness and decreased the synaptic cleft width. The western blot results showed that the expression of PSD95, SYN, and BDNF was markedly increased after rTMS stimulation. Based on these results, we propose that 20 Hz rTMS can significantly alleviate cognitive impairment after stroke. The underlying mechanism might be modulating the synaptic plasticity and up-regulating the expression PSD95, SYN, and BDNF in the hippocampus.
Collapse
Affiliation(s)
- Jiena Hong
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Jiemei Chen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Chao Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Fei Zhao
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Jiantao Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Yilong Shan
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China.
| | - Hongmei Wen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China.
| |
Collapse
|
17
|
Chen Y, Xu Z, Liu T, Li D, Tian X, Zheng R, Ma Y, Zheng S, Xing J, Wang W, Sun F. Application of deep brain stimulation and transcranial magnetic stimulation in stroke neurorestoration: A review. JOURNAL OF NEURORESTORATOLOGY 2024; 12:100120. [DOI: 10.1016/j.jnrt.2024.100120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
18
|
Chen S, Mao M, Zhu G, Chen Y, Qiu Y, Ye B, Xu D. Cortical activity in patients with high-functioning ischemic stroke during the Purdue Pegboard Test: insights into bimanual coordinated fine motor skills with functional near-infrared spectroscopy. Neural Regen Res 2024; 19:1098-1104. [PMID: 37862214 PMCID: PMC10749618 DOI: 10.4103/1673-5374.385312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/05/2023] [Accepted: 08/08/2023] [Indexed: 10/22/2023] Open
Abstract
After stroke, even high-functioning individuals may experience compromised bimanual coordination and fine motor dexterity, leading to reduced functional independence. Bilateral arm training has been proposed as a promising intervention to address these deficits. However, the neural basis of the impairment of functional fine motor skills and their relationship to bimanual coordination performance in stroke patients remains unclear, limiting the development of more targeted interventions. To address this gap, our study employed functional near-infrared spectroscopy to investigate cortical responses in patients after stroke as they perform functional tasks that engage fine motor control and coordination. Twenty-four high-functioning patients with ischemic stroke (7 women, 17 men; mean age 64.75 ± 10.84 years) participated in this cross-sectional observational study and completed four subtasks from the Purdue Pegboard Test, which measures unimanual and bimanual finger and hand dexterity. We found significant bilateral activation of the sensorimotor cortices during all Purdue Pegboard Test subtasks, with bimanual tasks inducing higher cortical activation than the assembly subtask. Importantly, patients with better bimanual coordination exhibited lower cortical activation during the other three Purdue Pegboard Test subtasks. Notably, the observed neural response patterns varied depending on the specific subtask. In the unaffected hand task, the differences were primarily observed in the ipsilesional hemisphere. In contrast, the bilateral sensorimotor cortices and the contralesional hemisphere played a more prominent role in the bimanual task and assembly task, respectively. While significant correlations were found between cortical activation and unimanual tasks, no significant correlations were observed with bimanual tasks. This study provides insights into the neural basis of bimanual coordination and fine motor skills in high-functioning patients after stroke, highlighting task-dependent neural responses. The findings also suggest that patients who exhibit better bimanual performance demonstrate more efficient cortical activation. Therefore, incorporating bilateral arm training in post-stroke rehabilitation is important for better outcomes. The combination of functional near-infrared spectroscopy with functional motor paradigms is valuable for assessing skills and developing targeted interventions in stroke rehabilitation.
Collapse
Affiliation(s)
- Siyun Chen
- The Second Rehabilitation Hospital of Shanghai, Shanghai, China
- College of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Mengchai Mao
- The Second Rehabilitation Hospital of Shanghai, Shanghai, China
- College of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Guangyue Zhu
- College of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yufeng Chen
- College of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqi Qiu
- School of Statistics, East China Normal University, Shanghai, China
| | - Bin Ye
- The Third Rehabilitation Hospital of Shanghai, Shanghai, China
| | - Dongsheng Xu
- College of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
- Tongji University, Shanghai, China
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
19
|
Li R, Liu S, Li T, Yang K, Wang X, Wang W. The stratified effects of repetitive transcranial magnetic stimulation in upper limb motor impairment recovery after stroke: a meta-analysis. Front Neurol 2024; 15:1369836. [PMID: 38628695 PMCID: PMC11020108 DOI: 10.3389/fneur.2024.1369836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/11/2024] [Indexed: 04/19/2024] Open
Abstract
Background The recovery of upper extremity motor impairment after stroke remains a challenging task. The clinical effectiveness of repetitive transcranial magnetic stimulation (rTMS), which is believed to aid in the recovery process, is still uncertain. Methods A systematic search was conducted in Medline (Ovid), Cochrane and Embase electronic databases from March 28, 2014, to March 28, 2023. The inclusion criteria consisted of randomized controlled trials that assessed the effects of rTMS on the recovery of upper limb motor impairment among stroke patients. Various measurements, including the Fugl Meyer Assessment Upper Extremity Scale (FMA-UE), Brunnstrom recovery stage, Action Research Arm Test (ARAT), and Barthel index, were evaluated both before and after the intervention. Results Nineteen articles with 865 patients were included. When considering only the rTMS parameters, both inhibitory and excitatory rTMS improved FMA-UE (MD = 1.87, 95% CI = [0.88]-[2.86], p < 0.001) and Barthel index (MD = 9.73, 95% CI = [4.57]-[14.89], p < 0.001). When considering only the severity of upper limb hemiplegia, both less severe (MD = 1.56, 95% CI = [0.64]-[2.49], p < 0.001) and severe (MD = 2.05, 95% CI = [1.09]-[3.00], p < 0.001) hemiplegia benefited from rTMS based on FMA-UE. However, when considering the rTMS parameters, severity of hemiplegia and stroke stages simultaneously, inhibitory rTMS was found to be significantly effective for less severe hemiplegia in the acute and subacute phases (MD = 4.55, 95% CI = [2.49]-[6.60], p < 0.001), but not in the chronic phase based on FMA-UE. For severe hemiplegia, inhibitory rTMS was not significantly effective in the acute and subacute phases, but significantly effective in the chronic phase (MD = 2.10, 95% CI = [0.75]-[3.45], p = 0.002) based on FMA-UE. Excitatory rTMS was found to be significantly effective for less severe hemiplegia in the acute and subacute phases (MD = 1.93, 95% CI = [0.58]-[3.28], p = 0.005) based on FMA-UE. The improvements in Brunnstrom recovery stage and ARAT need further research. Conclusion The effectiveness of rTMS depends on its parameters, severity of hemiplegia, and stroke stages. It is important to consider all these factors together, as any single grouping method is incomplete.
Collapse
Affiliation(s)
- Ran Li
- Department of Rehabilitation Center, Fu Xing Hospital, Capital Medical University, Beijing, China
| | - Sihan Liu
- Capital Medical University Eighth Clinical School, Beijing, China
| | - Tianyuan Li
- Capital Medical University Eighth Clinical School, Beijing, China
| | - Kun Yang
- Department of Evidence-based Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Xue Wang
- Department of Medical Library, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Wenjiao Wang
- Department of Medical Library, Xuan Wu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Buccilli B. Exploring new horizons: Emerging therapeutic strategies for pediatric stroke. Exp Neurol 2024; 374:114701. [PMID: 38278205 DOI: 10.1016/j.expneurol.2024.114701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/31/2023] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Pediatric stroke presents unique challenges, and optimizing treatment strategies is essential for improving outcomes in this vulnerable population. This review aims to provide an overview of new, innovative, and potential treatments for pediatric stroke, with a primary objective to stimulate further research in this field. Our review highlights several promising approaches in the realm of pediatric stroke management, including but not limited to stem cell therapy and robotic rehabilitation. These innovative interventions offer new avenues for enhancing functional recovery, reducing long-term disability, and tailoring treatments to individual patient needs. The findings of this review underscore the importance of ongoing research and development of innovative treatments in pediatric stroke. These advancements hold significant clinical relevance, offering the potential to improve the lives of children affected by stroke by enhancing the precision, efficacy, and accessibility of therapeutic interventions. Embracing these innovations is essential in our pursuit of better outcomes and a brighter future for pediatric stroke care.
Collapse
Affiliation(s)
- Barbara Buccilli
- Icahn School of Medicine at Mount Sinai, Department of Neurosurgery, 1 Gustave L. Levy Pl, New York, NY 10029, United States of America.
| |
Collapse
|
21
|
Cai M, Zhang JL, Wang XJ, Cai KR, Li SY, Du XL, Wang LY, Yang RY, Han J, Hu JY, Lyu J. Clinical application of repetitive transcranial magnetic stimulation in improving functional impairments post-stroke: review of the current evidence and potential challenges. Neurol Sci 2024; 45:1419-1428. [PMID: 38102519 DOI: 10.1007/s10072-023-07217-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023]
Abstract
In recent years, the stroke incidence has been increasing year by year, and the related sequelae after stroke, such as cognitive impairment, motor dysfunction, and post-stroke depression, seriously affect the patient's rehabilitation and daily activities. Repetitive transcranial magnetic stimulation (rTMS), as a safe, non-invasive, and effective new rehabilitation method, has been widely recognized in clinical practice. This article reviews the application and research progress of rTMS in treating different functional impairments (cognitive impairment, motor dysfunction, unilateral spatial neglect, depression) after stroke in recent years, and preliminary summarized the possible mechanisms. It has been found that the key parameters that determine the effectiveness of rTMS in improving post-stroke functional impairments include pulse number, stimulated brain areas, stimulation intensity and frequency, as well as duration. Generally, high-frequency stimulation is used to excite the ipsilateral cerebral cortex, while low-frequency stimulation is used to inhibit the contralateral cerebral cortex, thus achieving a balance of excitability between the two hemispheres. However, the specific mechanisms and the optimal stimulation mode for different functional impairments have not yet reached a consistent conclusion, and more research is needed to explore and clarify the best way to use rTMS. Furthermore, we will identify the issues and challenges in the current research, explore possible mechanisms to deepen understanding of rTMS, propose future research directions, and offer insightful insights for better clinical applications.
Collapse
Affiliation(s)
- Ming Cai
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Jia-Ling Zhang
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xiao-Jun Wang
- Medical Research and Education Department, Shanghai Health Rehabilitation Hospital, Shanghai, 201615, China
| | - Ke-Ren Cai
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Shu-Yao Li
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xin-Lin Du
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Li-Yan Wang
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Ruo-Yu Yang
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Jia Han
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Jing-Yun Hu
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People's Hospital, Shanghai, 201299, China.
| | - Jie Lyu
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| |
Collapse
|
22
|
Wang MH, Wang YX, Xie M, Chen LY, He MF, Lin F, Jiang ZL. Transcutaneous auricular vagus nerve stimulation with task-oriented training improves upper extremity function in patients with subacute stroke: a randomized clinical trial. Front Neurosci 2024; 18:1346634. [PMID: 38525376 PMCID: PMC10957639 DOI: 10.3389/fnins.2024.1346634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/27/2024] [Indexed: 03/26/2024] Open
Abstract
Background Transcutaneous auricular vagus nerve stimulation (taVNS) has emerged as a promising brain stimulation modality in poststroke upper extremity rehabilitation. Although several studies have examined the safety and reliability of taVNS, the mechanisms underlying motor recovery in stroke patients remain unclear. Objectives This study aimed to investigate the effects of taVNS paired with task-oriented training (TOT) on upper extremity function in patients with subacute stroke and explore the potential underlying mechanisms. Methods In this double-blinded, randomized, controlled pilot trial, 40 patients with subacute stroke were randomly assigned to two groups: the VNS group (VG), receiving taVNS during TOT, and the Sham group (SG), receiving sham taVNS during TOT. The intervention was delivered 5 days per week for 4 weeks. Upper extremity function was measured using the Fugl-Meyer Assessment-Upper Extremity (FMA-UE), the Action Research Arm Test (ARAT). Activities of daily living were measured by the modified Barthel Index (MBI). Motor-evoked potentials (MEPs) were measured to evaluate cortical excitability. Assessments were administered at baseline and post-intervention. Additionally, the immediate effect of taVNS was detected using functional near-infrared spectroscopy (fNIRS) and heart rate variability (HRV) before intervention. Results The VG showed significant improvements in upper extremity function (FMA-UE, ARAT) and activities of daily living (MBI) compared to the SG at post-intervention. Furthermore, the VG demonstrated a higher rate of elicited ipsilesional MEPs and a shorter latency of MEPs in the contralesional M1. In the VG, improvements in FMA-UE were significantly associated with reduced latency of contralesional MEPs. Additionally, fNIRS revealed increased activation in the contralesional prefrontal cortex and ipsilesional sensorimotor cortex in the VG in contrast to the SG. However, no significant between-group differences were found in HRV. Conclusion The combination of taVNS with TOT effectively improves upper extremity function in patients with subacute stroke, potentially through modulating the bilateral cortex excitability to facilitate task-specific functional recovery.
Collapse
Affiliation(s)
- Meng-Huan Wang
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yi-Xiu Wang
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Min Xie
- Department of Rehabilitation Medicine, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Li-Yan Chen
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Meng-Fei He
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng Lin
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Rehabilitation Medicine, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhong-Li Jiang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Rehabilitation Medicine, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
23
|
Tang Z, Liu T, Han K, Liu Y, Su W, Wang R, Zhang H. The effects of rTMS on motor recovery after stroke: a systematic review of fMRI studies. Neurol Sci 2024; 45:897-909. [PMID: 37880452 DOI: 10.1007/s10072-023-07123-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/05/2023] [Indexed: 10/27/2023]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has been widely used in motor rehabilitation after stroke, and functional magnetic resonance imaging (fMRI) has been used to investigate the neural mechanisms of motor recovery during stroke therapy. However, there is no review on the mechanism of rTMS intervention for motor recovery after stroke based on fMRI explicitly. We aim to reveal and summarize the neural mechanism of the effects of rTMS on motor function after stroke as measured by fMRI. We carefully performed a literature search using PubMed, EMBASE, Web of Science, and Cochrane Library databases from their respective inceptions to November 2022 to identify any relevant randomized controlled trials. Researchers independently screened the literature, extracted data, and qualitatively described the included studies. Eleven studies with a total of 420 poststroke patients were finally included in this systematic review. A total of 338 of those participants received fMRI examinations before and after rTMS intervention. Five studies reported the effects of rTMS on activation of brain regions, and four studies reported results related to brain functional connectivity (FC). Additionally, five studies analyzed the correlation between fMRI and motor evaluation. The neural mechanism of rTMS in improving motor function after stroke may be the activation and FCs of motor-related brain areas, including enhancement of the activation of motor-related brain areas in the affected hemisphere, inhibition of the activation of motor-related brain areas in the unaffected hemisphere, and changing the FCs of intra-hemispheric and inter-hemispheric motor networks.
Collapse
Affiliation(s)
- Zhiqing Tang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Tianhao Liu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Kaiyue Han
- School of Rehabilitation, Capital Medical University, Beijing, China
- Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Ying Liu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Wenlong Su
- School of Rehabilitation, Capital Medical University, Beijing, China
- Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
| | - Rongrong Wang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Hao Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China.
- Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China.
- University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China.
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
24
|
Liang S, Wang W, Yu F, Pan L, Xu D, Hu R, Tian S, Xiang J, Zhu Y. Repetitive peripheral magnetic stimulation combined with transcranial magnetic stimulation in rehabilitation of upper extremity hemiparesis following stroke: a pilot study. J Rehabil Med 2024; 56:jrm19449. [PMID: 38298134 PMCID: PMC10847975 DOI: 10.2340/jrm.v56.19449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/20/2023] [Indexed: 02/02/2024] Open
Abstract
OBJECTIVE To investigate the effect of combined repetitive peripheral magnetic stimulation and transcranial magnetic stimulation on upper extremity function in subacute stroke patients. DESIGN Pilot study. SUBJECTS Subacute stroke patients. METHODS Included patients were randomized into 3 groups: a central-associated peripheral stimulation (CPS) group, a central-stimulation-only (CS) group, and a control (C) group. The CPS group underwent a new paired associative stimulation (combined repetitive peripheral magnetic stimulation and transcranial magnetic stimulation), the CS group underwent repetitive transcranial magnetic stimulation, and the C group underwent sham stimulation. All 3 groups received physiotherapy after the stimulation or sham stimulation. The treatment comprised 20 once-daily sessions. Primary outcome was the Fugl-Meyer Assessment Upper Extremity (FMA-UE) score, and secondary outcomes were the Barthel Index and Comprehensive Functional Assessment scores, and neurophysiological assessments were mainly short-interval intracortical inhibition. A 3-group (CPS, CS, C) × 2-time (before, after intervention) repeated measures analysis of variance was conducted to determine whether changes in scores were significantly different between the 3 groups. RESULTS A total of 45 patients were included in the analysis. Between-group comparisons on the FMA-UE demonstrated a significant improvement (group × time interaction, F2,42 = 4.86; p = 0.013; C vs CS, p = 0.020; C vs CPS, p = 0.016; CS vs CPS, p = 0.955). Correlation analysis did not find any substantial positive correlation between changes in FMA-UE and short-interval intracortical inhibition variables (C, r = -0.196, p = 0.483; CS, r = -0.169, p = 0.546; CPS, r = -0.424, p = 0.115). CONCLUSION This study suggests that the real-stimulus (CS and CPS) groups had better outcomes than the control (C) group. In addition, the CPS group showed a better trend in clinical and neurophysiological assessments compared with the CS group.
Collapse
Affiliation(s)
- Sijie Liang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China; Department of Rehabilitation Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Weining Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Fengyun Yu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Li Pan
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Dongyan Xu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruiping Hu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shan Tian
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Xiang
- Department of Rehabilitation Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yulian Zhu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
25
|
Dai L, Zhang W, Zhang H, Fang L, Chen J, Li X, Yu H, Song J, Chen S, Zheng B, Zhang Y, Li Z. Effects of robot-assisted upper limb training combined with intermittent theta burst stimulation (iTBS) on cortical activation in stroke patients: A functional near-infrared spectroscopy study. NeuroRehabilitation 2024; 54:421-434. [PMID: 38640179 DOI: 10.3233/nre-230355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
BACKGROUND The therapeutic effect and mechanism of robot-assisted upper limb training (RT) combined with intermittent theta burst stimulation (iTBS) for stroke patients are unclear. OBJECTIVE The purpose of this study was to evaluate changes in brain activation after combination therapy and RT alone using functional near-infrared spectroscopy (fNIRS). METHODS Patients were randomly assigned to two groups (iTBS + RT Group, n = 18, and RT Group, n = 18). Training was conducted five times a week for four weeks. fNIRS was used to measure changes in oxyhemoglobin in both the primary motor cortex (M1) and pre-motor and supplementary motor area (pSMA) during affected limb movement. Fugl-Meyer Assessment-Upper Extremity (FMA-UE) was employed for evaluating the function of upper limbs. RESULTS Thirty-two patients with subacute stroke completed the study. The cortex of both hemispheres was extensively activated prior to treatment in the RT group. After training, overactivation decreased. The brain activation of the combined treatment group transferred to the affected side after the treatment. There was a notable enhancement in the FMA-UE scores for both groups, with the combined group's progress significantly surpassing that of the RT group. CONCLUSION RT combined with iTBS can improve the motor function of stroke patients and promote the balance between cerebral hemispheres.
Collapse
Affiliation(s)
- Lei Dai
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wanying Zhang
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huihuang Zhang
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Linjie Fang
- Zhejiang Rehabilitation Medical Center, Hangzhou, China
| | - Jianer Chen
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Rehabilitation Medical Center, Hangzhou, China
| | - Xiang Li
- Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Hong Yu
- Zhejiang Rehabilitation Medical Center, Hangzhou, China
| | - Jianfei Song
- Zhejiang Rehabilitation Medical Center, Hangzhou, China
| | - Shishi Chen
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Beisi Zheng
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yujia Zhang
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhongyi Li
- Hangzhou Innovation Institute, Beihang University, Hangzhou, China
| |
Collapse
|
26
|
Yang T, Li X, Xia P, Wang X, Lu J, Wang L. Effects of rTMS combined with rPMS on stroke patients with arm paralysis after contralateral seventh cervical nerve transfer: a case-series. Int J Neurosci 2023; 133:999-1007. [PMID: 35094616 DOI: 10.1080/00207454.2022.2032044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/25/2021] [Accepted: 01/14/2022] [Indexed: 10/19/2022]
Abstract
OBJECTIVE We conducted this study to evaluate the effect of rTMS combined with rPMS on stroke patients with arm paralysis after CSCNTS. METHODS A case-series of four stroke patients with arm paralysis, ages ranging from 39 to 51 years, that underwent CSCNTS was conducted. Patients were treated with 10 HZ rTMS on the contralesional primary motor cortex combined with 20 HZ rPMS on groups of elbow and wrist muscles for 15 days. RESULTS The muscle tone of elbow flexor muscle (EFM), elbow extensor muscle (EEM), wrist flexor muscle (WFM) and flexor digitorum (FD) reduced immediately after operation followed by increasing gradually. After rehabilitation, the muscle tone of EEM and EFM reduced by 14% and 11%, respectively. There was a 13% and 45% change ratio in WFM and FD. The numeric rating scale (mean = 5.75 ± 1.71) was significantly lower (mean = 3.25 ± 1.90, t = 8.66, p = .00). Grip and pinch strength (mean = 23.65 ± 4.91; mean = 4.9 ± 0.59) were significantly higher (mean = 34.63 ± 5.23, t = -61.07, p = .00; mean = 7.1 ± 0.73, t = -13.91, p = .00). CONCLUSIONS The rehabilitation of stroke patients with arm paralysis after CSCNTS is a long, complicated process which includes great change of neuropathic pain, muscle tone, and muscle strength. In order to enhance the neural connection between the contralesional hemisphere and the hemiplegic limb, alleviate postoperative complications, as well as accelerate the rehabilitation process, we can consider to use rTMS combined with rPMS.
Collapse
Affiliation(s)
- Ting Yang
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xueping Li
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Peng Xia
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaoju Wang
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jianqiang Lu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Lin Wang
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
27
|
Petruseviciene L, Sack AT, Kubilius R, Savickas R. High-Frequency Ipsilesional versus Low-Frequency Contralesional Transcranial Magnetic Stimulation after Stroke: Differential Effects on Ipsilesional Upper Extremity Motor Recovery. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1955. [PMID: 38004004 PMCID: PMC10672822 DOI: 10.3390/medicina59111955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023]
Abstract
Background and Objectives: Stroke is a major cause of death and disability worldwide; therefore, transcranial magnetic stimulation (TMS) is being widely studied and clinically applied to improve motor deficits in the affected arm. However, recent studies indicate that the function of both arms can be affected after stroke. It currently remains unknown how various TMS methods affect the function of the ipsilesional upper extremity. Materials and Methods: Thirty-five subacute stroke patients with upper extremity motor deficits were enrolled in this study and randomly allocated into three groups, receiving either (1) low-frequency rTMS over the contralesional hemisphere; (2) high-frequency rTMS over the ipsilesional hemisphere; or (3) no stimulation. Experimental groups received 10 rTMS sessions over two weeks alongside standard rehabilitation, and the control group received the same procedures except for rTMS. Both affected and unaffected upper extremity motor function was evaluated using hand grip strength and Functional Independence Measure (FIM) tests before and after rehabilitation (7 weeks apart). Results: All groups showed significant improvement in both the affected and unaffected hand grip and FIM scores (p < 0.05). HF-rTMS led to a notably higher increase in unaffected hand grip strength than the control group (p = 0.007). There was no difference in the improvement in affected upper extremity motor function between the groups. The FIM score increase was lower in the control group compared to experimental groups, although not statistically significant. Conclusions: This study demonstrates the positive effect of ipsilesional HF-rTMS on the improvement in unaffected arm motor function and reveals the positive effect of both LF- and HF-rTMS on the affected upper extremity motor function recovery.
Collapse
Affiliation(s)
- Laura Petruseviciene
- Department of Rehabilitation, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (R.K.); (R.S.)
- Department of Physical Medicine and Rehabilitation, Hospital of Lithuanian University of Health Sciences Kaunas Clinics, 50161 Kaunas, Lithuania
| | - Alexander T. Sack
- Faculty of Psychology and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands;
| | - Raimondas Kubilius
- Department of Rehabilitation, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (R.K.); (R.S.)
- Department of Physical Medicine and Rehabilitation, Hospital of Lithuanian University of Health Sciences Kaunas Clinics, 50161 Kaunas, Lithuania
| | - Raimondas Savickas
- Department of Rehabilitation, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (R.K.); (R.S.)
- Department of Physical Medicine and Rehabilitation, Hospital of Lithuanian University of Health Sciences Kaunas Clinics, 50161 Kaunas, Lithuania
| |
Collapse
|
28
|
Ahmed I, Mustafaoglu R, Rossi S, Cavdar FA, Agyenkwa SK, Pang MYC, Straudi S. Non-invasive Brain Stimulation Techniques for the Improvement of Upper Limb Motor Function and Performance in Activities of Daily Living After Stroke: A Systematic Review and Network Meta-analysis. Arch Phys Med Rehabil 2023; 104:1683-1697. [PMID: 37245690 DOI: 10.1016/j.apmr.2023.04.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/21/2023] [Accepted: 04/22/2023] [Indexed: 05/30/2023]
Abstract
OBJECTIVE To compare the efficacy of non-invasive brain stimulation (NiBS) such as transcranial direct current stimulation (tDCS), repetitive transcranial magnetic stimulation (rTMS), theta-burst stimulation (TBS), and transcutaneous vagus nerve stimulation (taVNS) in upper limb stroke rehabilitation. DATA SOURCES PubMed, Web of Science, and Cochrane databases were searched from January 2010 to June 2022. DATA SELECTION Randomized controlled trials (RCTs) assessing the effects of "tDCS", "rTMS", "TBS", or "taVNS" on upper limb motor function and performance in activities of daily livings (ADLs) after stroke. DATA EXTRACTION Data were extracted by 2 independent reviewers. Risk of bias was evaluated with the Cochrane Risk of Bias tool. DATA SYNTHESIS 87 RCTs with 3750 participants were included. Pairwise meta-analysis showed that all NiBS except continuous TBS (cTBS) and cathodal tDCS were significantly more efficacious than sham stimulation for motor function (standardized mean difference [SMD] range 0.42-1.20), whereas taVNS, anodal tDCS, and both low and high frequency rTMS were significantly more efficacious than sham stimulation for ADLs (SMD range 0.54-0.99). NMA showed that taVNS was more effective than cTBS (SMD:1.00; 95% CI (0.02-2.02)), cathodal tDCS (SMD:1.07; 95% CI (0.21-1.92)), and Physical rehabilitation alone (SMD:1.46; 95% CI (0.59-2.33)) for improving motor function. P-score found that taVNS is best ranked treatment in improving motor function (SMD: 1.20; 95% CI (0.46-1.95)) and ADLs (SMD:1.20; 95% CI (0.45-1.94)) after stroke. After taVNS, excitatory stimulation protocols (intermittent TBS, anodal tDCS, and HF-rTMS) are most effective in improving motor function and ADLs after acute/sub-acute (SMD range 0.53-1.63) and chronic stroke (SMD range 0.39-1.16). CONCLUSIONS Evidence suggests that excitatory stimulation protocols are the most promising intervention in improving upper limb motor function and performance in ADLs. taVNS appeared to be a promising intervention for stroke patients, but further large RCTs are required to confirm its relative superiority.
Collapse
Affiliation(s)
- Ishtiaq Ahmed
- Pain in Motion International Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium; Istanbul University-Cerrahpasa, Institute of Graduate Studies, Department of Physiotherapy and Rehabilitation, Istanbul, Turkey.
| | - Rustem Mustafaoglu
- Istanbul University-Cerrahpasa, Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Istanbul, Turkey
| | - Simone Rossi
- Department of Medicine, Surgery, and Neuroscience, Si-BIN Lab, Human Physiology Section, Neurology and Clinical Neurophysiology Unit, University of Siena, Siena, Italy
| | - Fatih A Cavdar
- Istanbul University-Cerrahpasa, Institute of Graduate Studies, Department of Physiotherapy and Rehabilitation, Istanbul, Turkey; Istanbul Okan University, Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Istanbul, Turkey
| | - Seth Kwame Agyenkwa
- Istanbul University-Cerrahpasa, Institute of Graduate Studies, Department of Physiotherapy and Rehabilitation, Istanbul, Turkey
| | - Marco Y C Pang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | - Sofia Straudi
- Neuroscience and Rehabilitation Department, Ferrara University, Ferrara, Italy
| |
Collapse
|
29
|
Ren J, Ren W, Zhou Y, Dahmani L, Duan X, Fu X, Wang Y, Pan R, Zhao J, Zhang P, Wang B, Yu W, Chen Z, Zhang X, Sun J, Ding M, Huang J, Xu L, Li S, Wang W, Xie W, Zhang H, Liu H. Personalized functional imaging-guided rTMS on the superior frontal gyrus for post-stroke aphasia: A randomized sham-controlled trial. Brain Stimul 2023; 16:1313-1321. [PMID: 37652135 DOI: 10.1016/j.brs.2023.08.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Aphasia affects approximately one-third of stroke patients and yet its rehabilitation outcomes are often unsatisfactory. More effective strategies are needed to promote recovery. OBJECTIVE We aimed to examine the efficacy and safety of the theta-burst stimulation (TBS) on the language area in the superior frontal gyrus (SFG) localized by personalized functional imaging, in facilitating post-stroke aphasia recovery. METHODS This randomized sham-controlled trial uses a parallel design (intermittent TBS [iTBS] in ipsilesional hemisphere vs. continuous TBS [cTBS] in contralesional hemisphere vs. sham group). Participants had aphasia symptoms resulting from their first stroke in the left hemisphere at least one month prior. Participants received three-week speech-language therapy coupled with either active or sham stimulation applied to the left or right SFG. The primary outcome was the change in Western Aphasia Battery-Revised (WAB-R) aphasia quotient after the three-week treatment. The secondary outcome was WAB-R aphasia quotient improvement after one week of treatment. RESULTS Ninety-seven patients were screened between January 2021 and January 2022, 45 of whom were randomized and 44 received intervention (15 in each active group, 14 in sham). Both iTBS (estimated difference = 14.75, p < 0.001) and cTBS (estimated difference = 13.43, p < 0.001) groups showed significantly greater improvement than sham stimulation after the 3-week intervention and immediately after one week of treatment (p's < 0.001). The adverse events observed were similar across groups. A seizure was recorded three days after the termination of the treatment in the iTBS group. CONCLUSION The stimulation showed high efficacy and SFG is a promising stimulation target for post-stroke language recovery.
Collapse
Affiliation(s)
- Jianxun Ren
- Division of Brain Sciences, Changping Laboratory, Beijing, 102206, China
| | - Weijing Ren
- Department of Neurorehabilitation, Beijing Bo'ai Hospital, China Rehabilitation Research Center, School of Rehabilitation, Capital Medical University, Beijing, 100069, China; University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China
| | - Ying Zhou
- Division of Brain Sciences, Changping Laboratory, Beijing, 102206, China
| | - Louisa Dahmani
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Xinyu Duan
- Division of Brain Sciences, Changping Laboratory, Beijing, 102206, China
| | - Xiaoxuan Fu
- Division of Brain Sciences, Changping Laboratory, Beijing, 102206, China; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Yezhe Wang
- Division of Brain Sciences, Changping Laboratory, Beijing, 102206, China
| | - Ruiqi Pan
- Neural Galaxy Inc., Beijing, 102206, China
| | - Jingdu Zhao
- Department of Neurorehabilitation, Beijing Bo'ai Hospital, China Rehabilitation Research Center, School of Rehabilitation, Capital Medical University, Beijing, 100069, China
| | - Ping Zhang
- Division of Brain Sciences, Changping Laboratory, Beijing, 102206, China
| | - Bo Wang
- Department of Hearing and Language Rehabilitation, Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, 100068, China
| | - Weiyong Yu
- Department of Radiology, Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, 100068, China
| | - Zhenbo Chen
- Department of Radiology, Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, 100068, China
| | - Xin Zhang
- Department of Neurorehabilitation, Beijing Bo'ai Hospital, China Rehabilitation Research Center, School of Rehabilitation, Capital Medical University, Beijing, 100069, China
| | - Jian Sun
- Neural Galaxy Inc., Beijing, 102206, China
| | | | - Jianting Huang
- Division of Brain Sciences, Changping Laboratory, Beijing, 102206, China; Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China
| | - Liu Xu
- Division of Brain Sciences, Changping Laboratory, Beijing, 102206, China; West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Shiyi Li
- Division of Brain Sciences, Changping Laboratory, Beijing, 102206, China
| | | | - Wuxiang Xie
- Peking University Clinical Research Institute, Peking University Health Science Center, Beijing, 100191, China
| | - Hao Zhang
- Division of Brain Sciences, Changping Laboratory, Beijing, 102206, China; Department of Neurorehabilitation, Beijing Bo'ai Hospital, China Rehabilitation Research Center, School of Rehabilitation, Capital Medical University, Beijing, 100069, China; University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250100, China.
| | - Hesheng Liu
- Division of Brain Sciences, Changping Laboratory, Beijing, 102206, China; Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China.
| |
Collapse
|
30
|
Lim H, Madhavan S. Non-paretic leg movements can facilitate cortical drive to the paretic leg in individuals post stroke with severe motor impairment: Implications for motor priming. Eur J Neurosci 2023; 58:2853-2867. [PMID: 37354080 PMCID: PMC10530620 DOI: 10.1111/ejn.16069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 06/26/2023]
Abstract
Cross-education, a phenomenon where unilateral strength (or skill) training enhances strength (or skill) in the contralateral untrained limb, has been well studied in able-bodied individuals. Cross-education effect accompanies bilateral changes of corticomotor activity in the motor cortex (M1). Recent reports demonstrated greater cross-education effect in stroke survivors compared to healthy individuals, however, corticomotor responses to cross-education in stroke remains unclear. This study aimed to determine the effects of non-paretic leg movements on corticomotor excitability (CME) and reaction time of the paretic leg in severely impaired stroke survivors. Seventeen post stroke individuals with severe leg motor impairment (Fugl-Meyer lower extremity score less than 21 and absence of motor evoked potential in the paretic leg) performed three 20-min motor trainings using their non-paretic ankle: skill (targeted dynamic movements), strength (isometric resistance) and sham (sub-threshold electrical nerve stimulation). During training, verbal instructions were given to the participants to limit their movement to the non-paretic leg and this was confirmed with visual observation of the paretic leg. Transcranial magnetic stimulation measured CME of the contralateral pathways from the non-lesioned M1 to the non-paretic tibialis anterior (TA) muscle, ipsilateral pathways to the paretic TA and transcallosal inhibition (TCI) from the non-lesioned to lesioned M1. Paretic ankle reaction time was measured using a reaction time paradigm. All outcomes were measured before, immediately post, 30-min post and 60-min post priming. CME of the non-paretic TA increased after skill (.08 ± .10 mV) and strength (.06 ± .05 mV) training (p < .01). Ipsilateral CME of the paretic TA (.02 ± .01 mV) and TCI (.01 ± .01 s, ipsilateral silent period; more inhibition to the lesioned M1) increased after skill (p < .05) but not strength training. Reaction time of the paretic ankle improved after skill and strength training (-.11 ± .2 and -.13 ± .20 s, respectively; p < .05) and was sustained at 60 min. No changes were observed during the sham condition. Our findings may inform future studies for using non-paretic leg movements as a priming modality, especially for those who are contraindicated to other priming paradigms (e.g., brain stimulation) or unable to perform paretic leg movements. Conclusion: Non-paretic leg movements can be used as a priming modality, especially for those who are contraindicated to other priming paradigms (e.g., brain stimulation) or unable to perform paretic leg movements.
Collapse
Affiliation(s)
- Hyosok Lim
- Brain Plasticity Laboratory, Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL, USA
- Graduate Program in Rehabilitation Sciences, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Sangeetha Madhavan
- Brain Plasticity Laboratory, Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
31
|
Zhou L, Jin Y, Wu D, Cun Y, Zhang C, Peng Y, Chen N, Yang X, Zhang S, Ning R, Kuang P, Wang Z, Zhang P. Current evidence, clinical applications, and future directions of transcranial magnetic stimulation as a treatment for ischemic stroke. Front Neurosci 2023; 17:1177283. [PMID: 37534033 PMCID: PMC10390744 DOI: 10.3389/fnins.2023.1177283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/28/2023] [Indexed: 08/04/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive brain neurostimulation technique that can be used as one of the adjunctive treatment techniques for neurological recovery after stroke. Animal studies have shown that TMS treatment of rats with middle cerebral artery occlusion (MCAO) model reduced cerebral infarct volume and improved neurological dysfunction in model rats. In addition, clinical case reports have also shown that TMS treatment has positive neuroprotective effects in stroke patients, improving a variety of post-stroke neurological deficits such as motor function, swallowing, cognitive function, speech function, central post-stroke pain, spasticity, and other post-stroke sequelae. However, even though numerous studies have shown a neuroprotective effect of TMS in stroke patients, its possible neuroprotective mechanism is not clear. Therefore, in this review, we describe the potential mechanisms of TMS to improve neurological function in terms of neurogenesis, angiogenesis, anti-inflammation, antioxidant, and anti-apoptosis, and provide insight into the current clinical application of TMS in multiple neurological dysfunctions in stroke. Finally, some of the current challenges faced by TMS are summarized and some suggestions for its future research directions are made.
Collapse
Affiliation(s)
- Li Zhou
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yaju Jin
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Danli Wu
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yongdan Cun
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Chengcai Zhang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yicheng Peng
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Na Chen
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Xichen Yang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Simei Zhang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Rong Ning
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Peng Kuang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Zuhong Wang
- Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Pengyue Zhang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| |
Collapse
|
32
|
Tian D, Izumi SI. Different effects of I-wave periodicity repetitive TMS on motor cortex interhemispheric interaction. Front Neurosci 2023; 17:1079432. [PMID: 37457007 PMCID: PMC10349661 DOI: 10.3389/fnins.2023.1079432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Background Activity of the neural circuits in the human motor cortex can be probed using transcranial magnetic stimulation (TMS). Changing TMS-induced current direction recruits different cortical neural circuits. I-wave periodicity repetitive TMS (iTMS) substantially modulates motor cortex excitability through neural plasticity, yet its effect on interhemispheric interaction remains unclear. Objective To explore the modulation of interhemispheric interaction by iTMS applied in different current directions. Materials and Methods Twenty right-handed healthy young volunteers (aged 27.5 ± 5.0 years) participated in this study with three visits. On each visit, iTMS in posterior-anterior/anterior-posterior direction (PA-/AP-iTMS) or sham-iTMS was applied to the right hemisphere, with corticospinal excitability and intracortical facilitation of the non-stimulated left hemisphere evaluated at four timepoints. Ipsilateral silent period was also measured at each timepoint probing interhemispheric inhibition (IHI). Results PA- and AP-iTMS potentiated cortical excitability concurrently in the stimulated right hemisphere. Corticospinal excitability of the non-stimulated left hemisphere increased 10 min after both PA- and AP-iTMS intervention, with a decrease in short-interval intracortical facilitation (SICF) observed in AP-iTMS only. Immediately after the intervention, PA-iTMS tilted the IHI balance toward inhibiting the non-stimulated hemisphere, while AP-iTMS shifted the balance toward the opposite direction. Conclusions Our findings provide systematic evidence on the plastic modulation of interhemispheric interaction by PA- and AP-iTMS. We show that iTMS induces an interhemispheric facilitatory effect, and that PA- and AP-iTMS differs in modulating interhemispheric inhibition.
Collapse
Affiliation(s)
- Dongting Tian
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shin-Ichi Izumi
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Japan
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|
33
|
Cheng S, Xin R, Zhao Y, Wang P, Feng W, Liu P. Evaluation of fMRI activation in post-stroke patients with movement disorders after repetitive transcranial magnetic stimulation: a scoping review. Front Neurol 2023; 14:1192545. [PMID: 37404941 PMCID: PMC10315664 DOI: 10.3389/fneur.2023.1192545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/25/2023] [Indexed: 07/06/2023] Open
Abstract
Background Movement disorders are one of the most common stroke residual effects, which cause a major stress on their families and society. Repetitive transcranial magnetic stimulation (rTMS) could change neuroplasticity, which has been suggested as an alternative rehabilitative treatment for enhancing stroke recovery. Functional magnetic resonance imaging (fMRI) is a promising tool to explore neural mechanisms underlying rTMS intervention. Object Our primary goal is to better understand the neuroplastic mechanisms of rTMS in stroke rehabilitation, this paper provides a scoping review of recent studies, which investigate the alteration of brain activity using fMRI after the application of rTMS over the primary motor area (M1) in movement disorders patients after stroke. Method The database PubMed, Embase, Web of Science, WanFang Chinese database, ZhiWang Chinese database from establishment of each database until December 2022 were included. Two researchers reviewed the study, collected the information and the relevant characteristic extracted to a summary table. Two researchers also assessed the quality of literature with the Downs and Black criteria. When the two researchers unable to reach an agreement, a third researcher would have been consulted. Results Seven hundred and eleven studies in all were discovered in the databases, and nine were finally enrolled. They were of good quality or fair quality. The literature mainly involved the therapeutic effect and imaging mechanisms of rTMS on improving movement disorders after stroke. In all of them, there was improvement of the motor function post-rTMS treatment. Both high-frequency rTMS (HF-rTMS) and low-frequency rTMS (LF-rTMS) can induce increased functional connectivity, which may not directly correspond to the impact of rTMS on the activation of the stimulated brain areas. Comparing real rTMS with sham group, the neuroplastic effect of real rTMS can lead to better functional connectivity in the brain network in assisting stroke recovery. Conclusion rTMS allows the excitation and synchronization of neural activity, promotes the reorganization of brain function, and achieves the motor function recovery. fMRI can observe the influence of rTMS on brain networks and reveal the neuroplasticity mechanism of post-stroke rehabilitation. The scoping review helps us to put forward a series of recommendations that might guide future researchers exploring the effect of motor stroke treatments on brain connectivity.
Collapse
Affiliation(s)
- Siman Cheng
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Rong Xin
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yan Zhao
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Pu Wang
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Wuwei Feng
- Department of Neurology, Medical University of South Carolina, Charleston, SC, United States
| | - Peng Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
34
|
Recovery of Patients With Upper Limb Paralysis Due to Stroke Who Underwent Intervention Using Low-Frequency Repetitive Transcranial Magnetic Stimulation Combined With Occupational Therapy: A Retrospective Cohort Study. Neuromodulation 2023:S1094-7159(23)00104-6. [PMID: 36932028 DOI: 10.1016/j.neurom.2023.02.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 03/18/2023]
Abstract
OBJECTIVES The combination of repetitive transcranial magnetic stimulation (rTMS) and motor practice is based on the theory of neuromodulation and use-dependent plasticity. Predictive planning of occupational therapy (OT) is important for patients with rTMS conditioning. Recovery characteristics based on the severity of pretreatment upper extremity paralysis can guide the patient's practice plan for using the paretic hand. Therefore, we evaluated the recovery of patients with upper limb paralysis due to stroke who underwent a novel intervention of rTMS combined with OT (NEURO) according to the severity of upper limb paralysis based on the scores of the Fugl-Meyer assessment for upper extremity (FMA-UE) with recovery in proximal upper extremity, wrist, hand, and coordination. MATERIALS AND METHODS In this multicenter retrospective cohort study, the recovery of 1397 patients with upper limb paralysis was analyzed by severity at six hospitals that were accredited by the Japanese Stimulation Therapy Society for treatment. The delta values of the FMA-UE scores before and after NEURO were compared among the groups with severe, moderate, and mild paralysis using the generalized linear model. RESULTS NEURO significantly improved the FMA-UE total score according to the severity of paralysis (severe = 5.3, moderate = 6.0, and mild = 2.9). However, when the FMA-UE subscores were analyzed separately, the results indicated specific improvements in shoulder/elbow, wrist, fingers, and coordination movements, depending on the severity. CONCLUSIONS This study had enough patients who were divided according to severity and stratified by lesion location and handedness parameters. Our results suggest that independently of these factors, the extent of recovery of upper limb motor parts after NEURO varies according to the severity of paralysis.
Collapse
|
35
|
A Randomized Controlled Trial of the Effect of Repetitive Transcranial Magnetic Stimulation of the Motor Cortex on Lower Extremity Spasticity in Hereditary Spastic Paraplegia. J Clin Neurophysiol 2023; 40:173-179. [PMID: 34817445 DOI: 10.1097/wnp.0000000000000874] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Hereditary spastic paraplegia refers to a group of conditions characterized by a slow progression of spasticity in lower limbs resulting in gait abnormalities. Current treatment options have proven to be insufficient in terms of symptom alleviation. In this study, we tested the effectiveness of repetitive transcranial magnetic stimulation (rTMS) on lower limb spasticity in patients with hereditary spastic paraplegia. METHODS Eight patients were randomly assigned to receive either five sessions of active 5 Hz-rTMS ( n = 4) or sham rTMS ( n = 4). The primary outcome was a change in spasticity assessed by the modified Ashworth scale. Secondary outcomes were change in 10 m walking test, Fugl-Meyer assessment of lower extremity motor function, and quality-of-life short-form survey scores. Assessment of the outcomes was done before, upon completion, and 1 month after the intervention. We analyzed the data using repeated-measure analysis of variance. RESULTS Mean age of the participants was 38.5 (SD = 5.4) years, and 50% were women. Compared with sham rTMS, real rTMS was effective in decreasing modified Ashworth scale (rTMS × time: F [df = 2] = 7.44; P = 0.008). Real rTMS group had lower modified Ashworth scale scores at the end of rTMS sessions (estimate = -0.938; SE = 0.295; P = 0.019) and at the end of follow-up (estimate = -0.688; SE = 0.277; P = 0.048) compared with the sham rTMS group. Real and sham rTMS groups were not different in the secondary outcomes. CONCLUSIONS Repetitive transcranial magnetic stimulation is an effective method in reducing lower limb spasticity of patients with hereditary spastic paraplegia.
Collapse
|
36
|
Cerebral Hemodynamic Changes during Unaffected Handgrip Exercises in Stroke Patients: An fNIRS Study. Brain Sci 2023; 13:brainsci13010141. [PMID: 36672122 PMCID: PMC9857146 DOI: 10.3390/brainsci13010141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/07/2023] [Accepted: 01/08/2023] [Indexed: 01/18/2023] Open
Abstract
This study aimed to assess the effect of the altered strength of the sound limb on the hemodynamics in the affected brain of stroke patients. We recruited 20 stroke patients to detect changes in the HbO concentrations in the bilateral prefrontal cortex (PFC), sensorimotor cortex (SMC), and occipital lobe (OL). We performed functional near-infrared spectroscopy (fNIRS) to detect changes in oxyhemoglobin (HbO) concentrations in regions of interest (ROIs) in the bilateral cerebral hemispheres of stroke patients while they performed 20%, 50%, and 80% maximal voluntary contraction (MVC) levels of handgrip tasks with the unaffected hands. The results suggest that when patients performed handgrip tasks with 50% of the MVC force, SMC in the affected cerebral hemisphere was strongly activated and the change in the HbO concentration was similar to that of the handgrip with 80% of MVC. When the force was 50% of MVC, the SMC in the affected hemisphere showed a more proportional activation than that at 80% MVC. Overall, this research suggests that stroke patients with a poor upper limb function should perform motor training with their sound hands at 50% of the MVC grip task to activate the ipsilesional hemisphere.
Collapse
|
37
|
Gao T, Hu Y, Zhuang J, Bai Y, Lu R. Repetitive Transcranial Magnetic Stimulation of the Brain Region Activated by Motor Imagery Involving a Paretic Wrist and Hand for Upper-Extremity Motor Improvement in Severe Stroke: A Preliminary Study. Brain Sci 2022; 13:69. [PMID: 36672050 PMCID: PMC9856429 DOI: 10.3390/brainsci13010069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/14/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022] Open
Abstract
Approximately two-thirds of stroke survivors experience chronic upper-limb paresis; however, treatment options are limited. Repetitive transcranial magnetic stimulation (rTMS) can enhance motor function recovery in stroke survivors, but its efficacy is controversial. We compared the efficacy of stimulating different targets in 10 chronic stroke patients with severe upper-limb motor impairment. Motor imagery-based brain-computer interface training augmented with virtual reality was used to induce neural activity in the brain region during an imagery task. Participants were then randomly assigned to two groups: an experimental group (received high-frequency rTMS delivered to the brain region activated earlier) and a comparison group (received low-frequency rTMS delivered to the contralesional primary motor cortex). Behavioural metrics and diffusion tensor imaging were compared pre- and post rTMS. After the intervention, participants in both groups improved somewhat. This preliminary study indicates that in chronic stroke patients with severe upper-limb motor impairment, inducing activation in specific brain regions during motor imagery tasks and selecting these regions as a target is feasible. Further studies are needed to explore the efficacy of this intervention.
Collapse
Affiliation(s)
- Tianhao Gao
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yiqian Hu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jie Zhuang
- School of Psychology, Shanghai University of Sport, Shanghai 200438, China
| | - Yulong Bai
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Shanghai 200040, China
| | - Rongrong Lu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Shanghai 200040, China
| |
Collapse
|
38
|
Study Protocol for a Multicenter, Randomized Controlled Trial to Improve Upper Extremity Hemiparesis in Chronic Stroke Patients by One-to-One Training (NEURO ®) with Repetitive Transcranial Magnetic Stimulation. J Clin Med 2022; 11:jcm11226835. [PMID: 36431312 PMCID: PMC9695575 DOI: 10.3390/jcm11226835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
During recovery from upper limb motor paralysis after stroke, it is important to (1) set the exercise difficulty level according to the motor paralysis severity, (2) provide adequate exercises, and (3) motivate the patient to achieve the goal. However, these factors have not been well-formulated. This multicenter, randomized controlled trial study aims to examine the therapeutic effects of these three factors on patients undergoing a novel intervention using repetitive transcranial magnetic stimulation and intensive one-to-one training (NEURO®) and to formulate a corresponding research protocol. The control group will receive conventional NEURO® occupational therapy. In the intervention group, four practice plans will be selected according to the Fugl-Meyer assessment (FMA-UE) scores of the upper extremity. The goal is to predict the post-treatment outcomes based on the pre-treatment FMA-UE scores. Based on the degree of difficulty and amount of practice required, we can formulate a practice plan to promote upper limb motor recovery. This occupational therapy plan will be less influenced by the therapist's skill, facilitating effective rehabilitation. The study findings may be utilized to promote upper limb motor paralysis recovery and provide a basis for proposing activities of daily living adapted to upper limb function.
Collapse
|
39
|
Zou F, Chen X, Niu L, Wang Y, Chen J, Li C, Tong L, Li J. Effect of Repetitive Transcranial Magnetic Stimulation on Post-stroke Dysphagia in Acute Stage. Dysphagia 2022:10.1007/s00455-022-10533-2. [PMID: 36273334 DOI: 10.1007/s00455-022-10533-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 10/09/2022] [Indexed: 11/30/2022]
|
40
|
Wu ZY, Wang YQ, Wen XP, Wang MY, Wang LN, Lu LM, Li KB. Does noninvasive cerebellar stimulation improve the balance and walking function of patients with stroke: A meta-analysis of randomized controlled trials. Medicine (Baltimore) 2022; 101:e30302. [PMID: 36086722 PMCID: PMC10980459 DOI: 10.1097/md.0000000000030302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/17/2022] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES Investigating the efficacy and safety of noninvasive cerebellar stimulation in improving the balance and walking function of patients with stroke. METHODS We searched 7 databases for randomized controlled trials (RCTs) related to noninvasive cerebellar stimulation in the treatment of stroke. The Berg Balance Scale (BBS), 6-minute walk test (6MWT), and Barthel Index (BI) were used as the outcome indexes to evaluate balance, walking and activities of daily living (ADL). The quality of the research was evaluated using the Cochrane Risk of Bias Tool. A meta-analysis was performed to evaluate the difference between the noninvasive cerebellar stimulation and control groups. Heterogeneity tests were performed to assess differences in treatment effects across noninvasive cerebellar stimulation modalities. A sensitivity analysis was performed to evaluate the robustness of the results. RESULTS Seven studies were included, and 5 articles (71.43%) were rated as having a low risk of bias. Among the primary outcome indicators, 4 of the 7 articles were combined into the fixed effect model (I2 = 38%, P = .18). Compared with the control group, noninvasive cerebellar stimulation improved the BBS score, and the difference was statistically significant (mean difference [MD]: 3.00, 95% confidence interval [CI]: 1.10-5.40, P = .03); the sensitivity analysis showed that the statistical model was still stable after sequentially eliminating each article. Compared with the control group, noninvasive cerebellar stimulation improved the 6MWT results of patients with stroke (MD: 25.29, 95% CI: 4.86-45.73, P = .02). However, noninvasive cerebellar stimulation did not improve the BI (MD: 15.61, 95% CI: -7.91 to 39.13, P = .19). No safety problems or adverse reactions to noninvasive cerebellar stimulation were observed. CONCLUSIONS Noninvasive cerebellar stimulation improves balance and walking function of patients with stroke, but its effect on ADL is uncertain. Due to the methodological weaknesses in the included trials, more RCTs are needed to confirm our conclusions.
Collapse
Affiliation(s)
- Zhi-Yuan Wu
- Department of Neurological Rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yi-Qiao Wang
- Evidence-based Medicine and Data Science Centre, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Peng Wen
- Department of Neurological Rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Mei-Ying Wang
- Department of Neurological Rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Li-Na Wang
- Department of Neurological Rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Li-Ming Lu
- Evidence-based Medicine and Data Science Centre, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kun-Bin Li
- Department of Neurological Rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| |
Collapse
|
41
|
Tang Z, Han K, Wang R, Zhang Y, Zhang H. Excitatory Repetitive Transcranial Magnetic Stimulation Over the Ipsilesional Hemisphere for Upper Limb Motor Function After Stroke: A Systematic Review and Meta-Analysis. Front Neurol 2022; 13:918597. [PMID: 35795793 PMCID: PMC9251503 DOI: 10.3389/fneur.2022.918597] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/11/2022] [Indexed: 11/18/2022] Open
Abstract
Background Repetitive transcranial magnetic stimulation (rTMS) is a promising therapy to promote recovery of the upper limb after stroke. According to the regulation of cortical excitability, rTMS can be divided into excitatory rTMS and inhibitory rTMS, and excitatory rTMS includes high-frequency rTMS (HF-rTMS) or intermittent theta-burst stimulation (iTBS). We aimed to evaluate the effects of excitatory rTMS over the ipsilesional hemisphere on upper limb motor recovery after stroke. Methods Databases of PubMed, Embase, ISI Web of Science, and the Cochrane Library were searched for randomized controlled trials published before 31 December 2021. RCTs on the effects of HF-rTMS or iTBS on upper limb function in patients diagnosed with stroke were included. Two researchers independently screened the literature, extracted the data, and assessed quality. The meta-analysis was performed by using Review Manager Version 5.4 software. Results Fifteen studies with 449 participants were included in this meta-analysis. This meta-analysis found that excitatory rTMS had significant efficacy on upper limb motor function (MD = 5.88, 95% CI, 3.32–8.43, P < 0.001), hand strength (SMD = 0.53, 95% CI, 0.04–1.01, P = 0.03), and hand dexterity (SMD = 0.76, 95% CI, 0.39–1.14, P < 0.001). Subgroup analyses based on different types of rTMS showed that both iTBS and HF-rTMS significantly promoted upper limb motor function (iTBS, P < 0.001; HF-rTMS, P < 0.001) and hand dexterity (iTBS, P = 0.01; HF-rTMS, P < 0.001) but not hand strength (iTBS, P = 0.07; HF-rTMS, P = 0.12). Further subgroup analysis based on the duration of illness demonstrated that applying excitatory rTMS during the first 3 months (<1 month, P = 0.01; 1–3 months, P = 0.001) after stroke brought significant improvement in upper limb motor function but not in the patients with a duration longer than 3 months (P = 0.06). We found that HF-rTMS significantly enhanced the motor evoked potential (MEP) amplitude of affected hemisphere (SMD = 0.82, 95% CI, 0.32–1.33, P = 0.001). Conclusion Our study demonstrated that excitatory rTMS over the ipsilesional hemisphere could significantly improve upper limb motor function, hand strength, and hand dexterity in patients diagnosed with stroke. Both iTBS and HF-rTMS which could significantly promote upper limb motor function and hand dexterity, and excitatory rTMS were beneficial to upper limb motor function recovery only when applied in the first 3 months after stroke. HF-rTMS could significantly enhance the MEP amplitude of the affected hemisphere. High-quality and large-scale randomized controlled trials in the future are required to confirm our conclusions. Clinical Trial Registration www.crd.york.ac.uk/prospero/, identifier: CRD42022312288.
Collapse
Affiliation(s)
- Zhiqing Tang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Kaiyue Han
- School of Rehabilitation, Capital Medical University, Beijing, China
- Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Rongrong Wang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Yue Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Hao Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
- University of Health and Rehabilitation Sciences, Qingdao, China
- *Correspondence: Hao Zhang
| |
Collapse
|
42
|
Xia Y, Xu Y, Li Y, Lu Y, Wang Z. Comparative Efficacy of Different Repetitive Transcranial Magnetic Stimulation Protocols for Stroke: A Network Meta-Analysis. Front Neurol 2022; 13:918786. [PMID: 35785350 PMCID: PMC9240662 DOI: 10.3389/fneur.2022.918786] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/17/2022] [Indexed: 12/12/2022] Open
Abstract
Background Although repetitive transcranial magnetic stimulation (rTMS) has been proven to be effective in the upper limb motor function and activities of daily living (ADL), the therapeutic effects of different stimulation protocols have not been effectively compared. To fill this gap, this study carried out the comparison of the upper limb motor function and ADL performance of patients with stroke through a network meta-analysis. Methods Randomized controlled trials (RCTs) on the rTMS therapy for stroke were searched from various databases, including PubMed, web of science, Embase, Cochrane Library, ProQuest, Wanfang database, the China National Knowledge Infrastructure (CNKI), and VIP information (www.cqvip.com). The retrieval period was from the establishment of the database to January 2021. Meanwhile, five independent researchers were responsible for the study selection, data extraction, and quality evaluation. The outcome measures included Upper Extremity Fugl-Meyer Assessment (UE-FMA), Wolf Motor Function Test (WMFT), Modified Barthel Index (MBI), the National Institute of Health stroke scale (NIHSS), and adverse reactions. The Gemtc 0.14.3 software based on the Bayesian model framework was used for network meta-analysis, and funnel plots and network diagram plots were conducted using Stata14.0 software. Results Ninety-five studies and 5,016 patients were included ultimately. The intervention measures included were as follows: placebo, intermittent theta-burst stimulation (ITBS), continuous theta-burst stimulation (CTBS),1 Hz rTMS,3–5 Hz rTMS, and ≥10 Hz rTMS. The results of the network meta-analysis show that different rTMS protocols were superior to placebo in terms of UE-FMA, NIHSS, and MBI outcomes. In the probability ranking results, ≥10 Hz rTMS ranked first in UE-FMA, WMFT, and MBI. For the NIHSS outcome, the ITBS ranked first and 1 Hz rTMS ranked the second. The subgroup analyses of UE-FMA showed that ≥10 Hz rTMS was the best stimulation protocol for mild stroke, severe stroke, and the convalescent phase, as well as ITBS was for acute and subacute phases. In addition, it was reported in 13 included studies that only a few patients suffered from adverse reactions, such as headache, nausea, and emesis. Conclusion Overall, ≥10 Hz rTMS may be the best stimulation protocol for improving the upper limb motor function and ADL performance in patients with stroke. Considering the impact of stroke severity and phase on the upper limb motor function, ≥10 Hz rTMS may be the preferred stimulation protocol for mild stroke, severe stroke, and for the convalescent phase, and ITBS for acute and subacute phases. Systematic Review Registration https://www.crd.york.ac.uk/prospero/, identifier [CRD42020212253].
Collapse
Affiliation(s)
- Yuan Xia
- School of Health Sciences, Wuhan Sports University, Wuhan, China
| | - Yuxiang Xu
- School of Life Sciences, Henan University, Kaifeng, China
| | - Yongjie Li
- Department of Rehabilitation Medicine, Guizhou Provincial Orthopedics Hospital, Guiyang, China
- *Correspondence: Yongjie Li
| | - Yue Lu
- School of Health Sciences, Wuhan Sports University, Wuhan, China
| | - Zhenyu Wang
- School of Health Sciences, Wuhan Sports University, Wuhan, China
| |
Collapse
|
43
|
Repetitive transcranial magnetic stimulation (rTMS) for multiple neurological conditions in rodent animal models: A systematic review. Neurochem Int 2022; 157:105356. [DOI: 10.1016/j.neuint.2022.105356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/31/2022] [Accepted: 04/28/2022] [Indexed: 12/09/2022]
|
44
|
Luo J, Feng Y, Li M, Yin M, Qin F, Hu X. Repetitive Transcranial Magnetic Stimulation Improves Neurological Function and Promotes the Anti-inflammatory Polarization of Microglia in Ischemic Rats. Front Cell Neurosci 2022; 16:878345. [PMID: 35496902 PMCID: PMC9039226 DOI: 10.3389/fncel.2022.878345] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/15/2022] [Indexed: 12/19/2022] Open
Abstract
Ischemic stroke (IS) is a severe neurological disease that is difficult to recovery. Previous studies have shown that repetitive transcranial magnetic stimulation (rTMS) is a promising therapeutic approach, while the exact therapy mechanisms of rTMS in improving neural functional recovery remain unclear. Furthermore, the inflammatory environment may influence the rehabilitation efficacy. Our study shows that long-term rTMS stimulation will significantly promote neurogenesis, inhibit apoptosis, and control inflammation. rTMS inhibits the activation of transcription factors nuclear factor kappa b (NF-κB) and signal transducer and activator of transcription 6 (STAT6) and promotes the anti-inflammatory polarization of microglia. Obvious promotion of anti-inflammatory cytokines production is observed both in vitro and in vivo through rTMS stimulation on microglia. In addition, neural stem cells (NSCs) cultured in conditioned medium (CM) from microglia treated with rTMS showed downregulation of apoptosis and upregulation of neuronal differentiation. Overall, our results illustrate that rTMS can modulate microglia with anti-inflammatory polarization variation, promote neurogenesis, and improve neural function recovery.
Collapse
Affiliation(s)
- Jing Luo
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuan Feng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mingyue Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mingyu Yin
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Feng Qin
- Department of Neurosurgery, Lingnan Hospital, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Feng Qin,
| | - Xiquan Hu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Xiquan Hu,
| |
Collapse
|
45
|
Bai Z, Zhang J, Fong KNK. Effects of transcranial magnetic stimulation in modulating cortical excitability in patients with stroke: a systematic review and meta-analysis. J Neuroeng Rehabil 2022; 19:24. [PMID: 35193624 PMCID: PMC8862292 DOI: 10.1186/s12984-022-00999-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/28/2022] [Indexed: 12/13/2022] Open
Abstract
Background Transcranial magnetic stimulation (TMS) has attracted plenty of attention as it has been proved to be effective in facilitating motor recovery in patients with stroke. The aim of this study was to systematically review the effects of repetitive TMS (rTMS) and theta burst stimulation (TBS) protocols in modulating cortical excitability after stroke. Methods A literature search was carried out using PubMed, Medline, EMBASE, CINAHL, and PEDro, to identify studies that investigated the effects of four rTMS protocols—low and high frequency rTMS, intermittent and continuous TBS, on TMS measures of cortical excitability in stroke. A random-effects model was used for all meta-analyses. Results Sixty-one studies were included in the current review. Low frequency rTMS was effective in decreasing individuals’ resting motor threshold and increasing the motor-evoked potential of the non-stimulated M1 (affected M1), while opposite effects occurred in the stimulated M1 (unaffected M1). High frequency rTMS enhanced the cortical excitability of the affected M1 alone. Intermittent TBS also showed superior effects in rebalancing bilateral excitability through increasing and decreasing excitability within the affected and unaffected M1, respectively. Due to the limited number of studies found, the effects of continuous TBS remained inconclusive. Motor impairment was significantly correlated with various forms of TMS measures. Conclusions Except for continuous TBS, it is evident that these protocols are effective in modulating cortical excitability in stroke. Current evidence does support the effects of inhibitory stimulation in enhancing the cortical excitability of the affected M1. Supplementary Information The online version contains supplementary material available at 10.1186/s12984-022-00999-4.
Collapse
Affiliation(s)
- Zhongfei Bai
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.,Department of Occupational Therapy, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Shanghai, China.,Department of Rehabilitation Sciences, Tongji University School of Medicine, Shanghai, China
| | - Jiaqi Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Kenneth N K Fong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
46
|
Motolese F, Capone F, Di Lazzaro V. New tools for shaping plasticity to enhance recovery after stroke. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:299-315. [PMID: 35034743 DOI: 10.1016/b978-0-12-819410-2.00016-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Stroke is the second most common cause of death worldwide and its prevalence is projected to increase in the coming years in parallel with the increase of life expectancy. Despite the great improvements in the management of the acute phase of stroke, some residual disability persists in most patients thus requiring rehabilitation. One third of patients do not reach the maximal recovery potential and different approaches have been explored with the aim to boost up recovery. In this regard, noninvasive brain stimulation techniques have been widely used to induce neuroplasticity phenomena. Different protocols of repetitive transcranial magnetic stimulation (rTMS) and transcranial electrical stimulation (tES) can induce short- and long-term changes of synaptic excitability and are promising tools for enhancing recovery in stroke patients. New options for neuromodulation are currently under investigation. They include: vagal nerve stimulation (VNS) that can be delivered invasively, with implanted stimulators and noninvasively with transcutaneous VNS (tVNS); and extremely low-frequency (1-300Hz) magnetic fields. This chapter will provide an overview on the new techniques that are used for neuroprotection and for enhancing recovery after stroke.
Collapse
Affiliation(s)
- Francesco Motolese
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Fioravante Capone
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Vincenzo Di Lazzaro
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy.
| |
Collapse
|
47
|
Brancaccio A, Tabarelli D, Belardinelli P. A New Framework to Interpret Individual Inter-Hemispheric Compensatory Communication after Stroke. J Pers Med 2022; 12:jpm12010059. [PMID: 35055374 PMCID: PMC8778334 DOI: 10.3390/jpm12010059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/14/2021] [Accepted: 12/30/2021] [Indexed: 12/15/2022] Open
Abstract
Stroke constitutes the main cause of adult disability worldwide. Even after application of standard rehabilitation protocols, the majority of patients still show relevant motor impairment. Outcomes of standard rehabilitation protocols have led to mixed results, suggesting that relevant factors for brain re-organization after stroke have not been considered in explanatory models. Therefore, finding a comprehensive model to optimally define patient-dependent rehabilitation protocols represents a crucial topic in clinical neuroscience. In this context, we first report on the rehabilitation models conceived thus far in the attempt of predicting stroke rehabilitation outcomes. Then, we propose a new framework to interpret results in stroke literature in the light of the latest evidence regarding: (1) the role of the callosum in inter-hemispheric communication, (2) the role of prefrontal cortices in exerting a control function, and (3) diaschisis mechanisms. These new pieces of evidence on the role of callosum can help to understand which compensatory mechanism may take place following a stroke. Moreover, depending on the individual impairment, the prefrontal control network will play different roles according to the need of high-level motor control. We believe that our new model, which includes crucial overlooked factors, will enable clinicians to better define individualized motor rehabilitation protocols.
Collapse
|
48
|
Jiang YF, Zhang D, Zhang J, Hai H, Zhao YY, Ma YW. A Randomized Controlled Trial of Repetitive Peripheral Magnetic Stimulation applied in Early Subacute Stroke: Effects on Severe Upper-limb Impairment. Clin Rehabil 2022; 36:693-702. [PMID: 34985366 DOI: 10.1177/02692155211072189] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Repetitive peripheral magnetic stimulation (rPMS) is a non-invasive method that activates peripheral nerves and enhances muscle strength. This study aimed to investigate the effect of rPMS applied in early subacute stroke on severe upper extremity impairment. DESIGN Randomized controlled trial. SETTING Rehabilitation department of a university hospital. SUBJECTS People aged 30-80 years with no practical arm function within four weeks of a first stroke. INTERVENTIONS Participants were randomly assigned to either the rPMS group (n = 24, 20Hz and 2400 pulses of rPMS to triceps brachii and extensor digitorum muscles daily for two weeks in addition to conventional physiotherapy) or the control group (n = 20, conventional physiotherapy). MAIN MEASURES The primary outcome was the upper extremity motor section of Fugl-Meyer Assessment after treatment. Secondary outcomes included Barthel Index and root mean square of surface electromyography for muscle strength and stretch-induced spasticity of critical muscles of the upper extremity. Data presented: mean (SD) or median (IQR). RESULTS The rPMS group showed more significant improvements in the Fugl-Meyer Assessment (12.5 (2.5) vs. 7.0 (1.4), P < 0.001), Barthel Index (15 (5) vs. 10 (3.7), P < 0.001), and strength-root mean square (biceps brachii: 20.5 (4.8) vs. 6.2 (2.7), p < 0.001; triceps brachii: 14.9 (5.8) vs. 4.3 (1.2), p < 0.001; flexor digitorum: 5.1 (0.8) vs. 4.0 (1.1), p < 0.001) compared with the control group. CONCLUSION In patients with no functional arm movement, rPMS of upper limb extensors improves arm function and muscle strength for grip and elbow flexion and extension.
Collapse
Affiliation(s)
- Yi-Fan Jiang
- Department of Rehabilitation Medicine, the 159407First Affiliated Hospital of China Medical University, Shenyang, China *Equal contribution
| | - Dai Zhang
- Department of Rehabilitation Medicine, the 159407First Affiliated Hospital of China Medical University, Shenyang, China *Equal contribution
| | | | | | | | | |
Collapse
|
49
|
Leblhuber F, Geisler S, Ehrlich D, Steiner K, Kurz K, Fuchs D. High Frequency Repetitive Transcranial Magnetic Stimulation Improves Cognitive Performance Parameters in Patients with Alzheimer's Disease - An Exploratory Pilot Study. Curr Alzheimer Res 2022; 19:681-688. [PMID: 36125835 DOI: 10.2174/1567205019666220920090919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/20/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Currently available medication for Alzheimer's disease (AD) slows cognitive decline only temporarily but has failed to bring about long term positive effects. For this slowly progressive neurodegenerative disease, so far, no disease modifying therapy exists. OBJECTIVE The study aims to find out if non-pharmacologic non-invasive neuromodulatory repetitive transcranial magnetic stimulation (rTMS) may offer a new alternative or an add on therapeutic strategy against loss of cognitive functions. METHODS In this exploratory intervention study, safety and symptom development before and after frontopolar cortex stimulation (FPC) using intermittent theta burst stimulation (iTBS) at 10 subsequent working days was monitored as add-on treatment in 28 consecutive patients with AD. Out of these, 10 randomly selected patients received sham stimulation as a control. Serum concentrations of neurotransmitter precursor amino acids, immune activation and inflammation markers, brain-derived neurotrophic factor (BDNF), and nitrite were measured. RESULTS Treatment was well tolerated, and no serious adverse effects were observed. Improvement of cognition was detected by an increase in Mini Mental State Examination score (MMSE; p<0.01, paired rank test) and also by an increase in a modified repeat address phrase test, part of the 6-item cognitive impairment test (p<0.01). A trend to increase the clock drawing test (CDT; p = 0.08) was also found in the verum treated group. Furtheron, in 10 of the AD patients with additional symptoms of depression treated with iTBS, a significant decrease in the HAMD-7 scale (p<0.01) and a trend to lower serum phenylalanine concentrations (p = 0.08) was seen. No changes in the parameters tested were found in the sham treated patients. CONCLUSION Our preliminary results may indicate that iTBS is effective in the treatment of AD. Also a slight influence of iTBS on the metabolism of phenylalanine was found after 10 iTBS sessions. An impact of iTBS to influence the enzyme phenylalanine hydroxylase (PAH), as found in the previous series of treatment resistant depression, could not be seen in our first observational trial in 10 AD patients with comorbidity of depression. Longer treatment periods for several weeks in a higher number of AD patients with depression could cause more intense and disease modifying effects visible in different neurotransmitter concentrations important in the pathogenesis of AD.
Collapse
Affiliation(s)
| | - Simon Geisler
- Institute of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Daniela Ehrlich
- Department of Gerontology, Kepler University Clinic, Linz, Austria
| | - Kostja Steiner
- Department of Gerontology, Kepler University Clinic, Linz, Austria
| | - Katharina Kurz
- Department of Internal Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - Dietmar Fuchs
- Institute of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
50
|
Chen J, Fan Y, Wei W, Wang L, Wang X, Fan F, Jia Z, Li M, Wang J, Zou Q, Chen B, Lv Y. Repetitive transcranial magnetic stimulation modulates cortical-subcortical connectivity in sensorimotor network. Eur J Neurosci 2021; 55:227-243. [PMID: 34905661 DOI: 10.1111/ejn.15571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 11/30/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) holds the ability to modulate the connectivity within the stimulated network. However, whether and how the rTMS targeted over the primary motor cortex (M1) could affect the connectivity within the sensorimotor network (SMN) is not fully elucidated. Hence, in this study, we investigated the after-effects of rTMS over left M1 at different frequencies on connectivity within SMN. Forty-five healthy participants were recruited and randomly divided into three groups according to rTMS frequencies (high-frequency [HF], 3 Hz; low-frequency [LF], 1 Hz; and SHAM). Participants received 1-Hz, 3-Hz or sham stimulation and underwent two functional magnetic resonance imaging (fMRI) scanning sessions before and after rTMS intervention. Using resting-state functional connectivity (FC) approach, we found that high- and low-frequency rTMS had opposing effects on FC within the SMN, especially for connectivity with subcortical regions (i.e., putamen, thalamus and cerebellum). Specifically, the reductions in connectivity between cortical and subcortical regions within cortico-basal ganglia thalamo-cortical circuits and the cognitive loop of cerebellum, and increased connectivity between cortical and subdivisions within the sensorimotor loop of cerebellum were observed after high-frequency rTMS intervention, whereas the thalamus and cognitive cerebellum subdivisions exhibited increased connectivity, and sensorimotor cerebellum subdivisions showed decreased connectivity with stimulated target after low-frequency stimulation. Collectively, these findings demonstrated the alterations of connectivity within SMN after rTMS intervention at different frequencies and may help to understand the mechanisms of rTMS treatment for movement disorders associated with deficits in subcortical regions such as Parkinson's disease, Huntington's disease and Tourette's syndrome.
Collapse
Affiliation(s)
- Jing Chen
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institute of Psychological Science, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Yanzi Fan
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institute of Psychological Science, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Wei Wei
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institute of Psychological Science, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Luoyu Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institute of Psychological Science, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Xiaoyu Wang
- Department of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Fengmei Fan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, China
| | - Zejuan Jia
- Shijiazhuang Hospital of Traditional Chinese Medicine, Shijiazhuang, China
| | - Mengting Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
| | - Jinhui Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Qihong Zou
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Bing Chen
- School of Education, Hangzhou Normal University, Hangzhou, China
| | - Yating Lv
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institute of Psychological Science, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| |
Collapse
|