1
|
Lim MJ, Tan J, Robert C, Tan WY, Venketasubramanian N, Chen C, Hilal S. The effect of hippocampal subfield volumes on cognitive decline and incident dementia in a memory clinic cohort. J Alzheimers Dis 2025; 105:538-549. [PMID: 40183347 DOI: 10.1177/13872877251329574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
BackgroundThe hippocampus plays a central role in cognition and hippocampal atrophy is a key hallmark of Alzheimer's disease. Evidence has suggested associations between hippocampal subfield volumes and specific cognitive domains and dementia risk. However, to our knowledge, no study has examined the role of hippocampal subfield volumes in cognitive decline across different domains over time.ObjectiveWe investigated associations between hippocampal subfield volumes and changes in cognitive domains together with incident dementia in a memory clinic cohort.MethodsAssociations between hippocampal subfield volumes and cognitive decline over three years (n = 443) were analyzed using generalized estimating equations, and associations with incident dementia (n = 283) using multiple logistic regression.ResultsAt baseline, all hippocampal subfield volumes were associated with diagnosis of dementia, while the CA4-dentate gyrus, molecular layer, subicular complex, and fimbria volumes were associated with diagnosis of CIND. Over three years, all subfields except the hippocampal fissure were associated with memory. Decreased molecular layer (OR:2.26, 95%CI:1.50;3.50) size was associated with increased risk of dementia.ConclusionsOur findings suggest that hippocampal atrophy of the cornu ammonis, CA4-dentate gyrus, and molecular layer may first manifest with cognitive impairment in memory before other subfields of the hippocampus, and that molecular layer volume may be an early biomarker of dementia. Further research demonstrating the biological role of hippocampal subfields in specific cognitive domains is required.
Collapse
Affiliation(s)
- Mervyn Jr Lim
- Division of Neurosurgery, University Surgical Centre, National University Health System, Singapore
- Memory Ageing and Cognition Center, National University Health System, Singapore
| | - Jaclyn Tan
- Division of Neurosurgery, University Surgical Centre, National University Health System, Singapore
| | - Caroline Robert
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wei Ying Tan
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | | | - Christopher Chen
- Memory Ageing and Cognition Center, National University Health System, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Saima Hilal
- Memory Ageing and Cognition Center, National University Health System, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| |
Collapse
|
2
|
Kragel JE, Lurie SM, Issa NP, Haider HA, Wu S, Tao JX, Warnke PC, Schuele S, Rosenow JM, Zelano C, Schatza M, Disterhoft JF, Widge AS, Voss JL. Closed-loop control of theta oscillations enhances human hippocampal network connectivity. Nat Commun 2025; 16:4061. [PMID: 40307237 PMCID: PMC12043829 DOI: 10.1038/s41467-025-59417-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 04/16/2025] [Indexed: 05/02/2025] Open
Abstract
Theta oscillations are implicated in regulating information flow within cortico-hippocampal networks to support memory and cognition. However, causal evidence tying theta oscillations to network communication in humans is lacking. Here we report experimental findings using a closed-loop, phase-locking algorithm to apply direct electrical stimulation to neocortical nodes of the hippocampal network precisely timed to ongoing hippocampal theta rhythms in human neurosurgical patients. We show that repetitive stimulation of lateral temporal cortex synchronized to hippocampal theta increases hippocampal theta while it is delivered, suggesting theta entrainment of hippocampal neural activity. After stimulation, network connectivity is persistently increased relative to baseline, as indicated by theta-phase synchrony of hippocampus to neocortex and increased amplitudes of the hippocampal evoked response to isolated neocortical stimulation. These indicators of network connectivity are not affected by control stimulation delivered with approximately the same rhythm but without phase locking to hippocampal theta. These findings support the causal role of theta oscillations in routing neural signals across the hippocampal network and suggest phase-synchronized stimulation as a promising method to modulate theta- and hippocampal-dependent behaviors.
Collapse
Affiliation(s)
- James E Kragel
- Department of Neurology, University of Chicago, Chicago, IL, USA.
| | - Sarah M Lurie
- Interdepartmental Neuroscience Program, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Naoum P Issa
- Department of Neurology, University of Chicago, Chicago, IL, USA
| | - Hiba A Haider
- Department of Neurology, University of Chicago, Chicago, IL, USA
| | - Shasha Wu
- Department of Neurology, University of Chicago, Chicago, IL, USA
| | - James X Tao
- Department of Neurology, University of Chicago, Chicago, IL, USA
| | - Peter C Warnke
- Department of Neurological Surgery, University of Chicago, Chicago, IL, USA
| | - Stephan Schuele
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Joshua M Rosenow
- Department of Neurosurgery, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Christina Zelano
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Mark Schatza
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - John F Disterhoft
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Alik S Widge
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Joel L Voss
- Department of Neurology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
3
|
Gelinas JN, Khodagholy D. Interictal network dysfunction and cognitive impairment in epilepsy. Nat Rev Neurosci 2025:10.1038/s41583-025-00924-3. [PMID: 40295879 DOI: 10.1038/s41583-025-00924-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2025] [Indexed: 04/30/2025]
Abstract
Epilepsy is diagnosed when neural networks become capable of generating excessive or hypersynchronous activity patterns that result in observable seizures. In many cases, epilepsy is associated with cognitive comorbidities that persist between seizures and negatively impact quality of life. Dysregulation of the coordinated physiological network interactions that are required for cognitive function has been implicated in mediating these enduring symptoms, but the causal mechanisms are often elusive. Here, we provide an overview of neural network abnormalities with the potential to contribute to cognitive dysfunction in epilepsy. We examine these pathological interactions across spatial and temporal scales, additionally highlighting the dynamics that arise in response to the brain's intrinsic capacity for plasticity. Understanding these processes will facilitate development of network-level interventions to address cognitive comorbidities that remain undertreated by currently available epilepsy therapeutics.
Collapse
Affiliation(s)
- Jennifer N Gelinas
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.
- Department of Paediatrics, University of California, Irvine, CA, USA.
- Children's Hospital of Orange County, Orange, CA, USA.
| | - Dion Khodagholy
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.
- Department of Electrical Engineering, University of California, Irvine, CA, USA.
- Department of Biomedical Engineering, University of California, Irvine, CA, USA.
- Department of Materials Science and Engineering, University of California, Irvine, CA, USA.
| |
Collapse
|
4
|
Hollearn MK, Manns JR, Blanpain LT, Hamann SB, Bijanki K, Gross RE, Drane DL, Campbell JM, Wahlstrom KL, Light GF, Tasevac A, Demarest P, Brunner P, Willie JT, Inman CS. Exploring individual differences in amygdala-mediated memory modulation. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2025; 25:188-209. [PMID: 39702728 DOI: 10.3758/s13415-024-01250-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/22/2024] [Indexed: 12/21/2024]
Abstract
Amygdala activation by emotional arousal during memory formation can prioritize events for long-term memory. Building upon our prior demonstration that brief electrical stimulation to the human amygdala reliably improved long-term recognition memory for images of neutral objects without eliciting an emotional response, our study aims to explore and describe individual differences and stimulation-related factors in amygdala-mediated memory modulation. Thirty-one patients undergoing intracranial monitoring for intractable epilepsy were shown neutral object images paired with direct amygdala stimulation during encoding with recognition memory tested immediately and one day later. Adding to our prior sample, we found an overall memory enhancement effect without subjective emotional arousal at the one-day delay, but not at the immediate delay, for previously stimulated objects compared to not stimulated objects. Importantly, we observed a larger variation in performance across this larger sample than our initial sample, including some participants who showed a memory impairment for stimulated objects. Of the explored individual differences, the factor that most accounted for variability in memory modulation was each participant's pre-operative memory performance. Worse memory performance on standardized neuropsychological tests was associated with a stronger susceptibility to memory modulation in a positive or negative direction. Sex differences and the frequency of interictal epileptiform discharges (IEDs) during testing also accounted for some variance in amygdala-mediated memory modulation. Given the potential and challenges of this memory modulation approach, we discuss additional individual and stimulation factors that we hope will differentiate between memory enhancement and impairment to further optimize the potential of amygdala-mediated memory enhancement for therapeutic interventions.
Collapse
Affiliation(s)
- Martina K Hollearn
- Department of Psychology, University of Utah, 380 S 1530 E BEH S 502, Salt Lake City, UT, 84112, USA
| | | | - Lou T Blanpain
- Neuroscience, Emory School of Medicine, Atlanta, GA, USA
| | | | - Kelly Bijanki
- Neurosurgery, Baylor College of Medicine, Huston, TX, USA
| | - Robert E Gross
- Neurosurgery, Emory School of Medicine, Atlanta, GA, USA
| | | | - Justin M Campbell
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, USA
| | - Krista L Wahlstrom
- Department of Psychology, University of Utah, 380 S 1530 E BEH S 502, Salt Lake City, UT, 84112, USA
| | - Griffin F Light
- Department of Psychology, University of Utah, 380 S 1530 E BEH S 502, Salt Lake City, UT, 84112, USA
| | - Aydin Tasevac
- Department of Psychology, University of Utah, 380 S 1530 E BEH S 502, Salt Lake City, UT, 84112, USA
| | - Phillip Demarest
- Biomedical Engineering, Washington University School of Medicine, Saint Louis, MO, USA
| | - Peter Brunner
- Neurosurgery, Washington University School of Medicine, Saint Louis, MO, USA
- Biomedical Engineering, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jon T Willie
- Neurosurgery, Washington University School of Medicine, Saint Louis, MO, USA
- Barnes-Jewish Hospital, Saint Louis, MO, USA
| | - Cory S Inman
- Department of Psychology, University of Utah, 380 S 1530 E BEH S 502, Salt Lake City, UT, 84112, USA.
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
5
|
Mohan UR, Jacobs J. Why does invasive brain stimulation sometimes improve memory and sometimes impair it? PLoS Biol 2024; 22:e3002894. [PMID: 39453948 PMCID: PMC11616832 DOI: 10.1371/journal.pbio.3002894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/04/2024] [Indexed: 10/27/2024] Open
Abstract
Invasive brain stimulation is used to treat individuals with episodic memory loss; however, studies to date report both enhancement and impairment of memory. This Essay discusses the sources of this variability, and suggests a path towards developing customized stimulation protocols for more consistent memory enhancement.
Collapse
Affiliation(s)
- Uma R. Mohan
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joshua Jacobs
- Department of Biomedical Engineering, Columbia University, New York City, New York, United States of America
- Department of Neurological Surgery, Columbia University, New York City, New York, United States of America
| |
Collapse
|
6
|
Ueda R, Sakakura K, Mitsuhashi T, Sonoda M, Firestone E, Kuroda N, Kitazawa Y, Uda H, Luat AF, Johnson EL, Ofen N, Asano E. Cortical and white matter substrates supporting visuospatial working memory. Clin Neurophysiol 2024; 162:9-27. [PMID: 38552414 PMCID: PMC11102300 DOI: 10.1016/j.clinph.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/24/2024] [Accepted: 03/11/2024] [Indexed: 05/19/2024]
Abstract
OBJECTIVE In tasks involving new visuospatial information, we rely on working memory, supported by a distributed brain network. We investigated the dynamic interplay between brain regions, including cortical and white matter structures, to understand how neural interactions change with different memory loads and trials, and their subsequent impact on working memory performance. METHODS Patients undertook a task of immediate spatial recall during intracranial EEG monitoring. We charted the dynamics of cortical high-gamma activity and associated functional connectivity modulations in white matter tracts. RESULTS Elevated memory loads were linked to enhanced functional connectivity via occipital longitudinal tracts, yet decreased through arcuate, uncinate, and superior-longitudinal fasciculi. As task familiarity grew, there was increased high-gamma activity in the posterior inferior-frontal gyrus (pIFG) and diminished functional connectivity across a network encompassing frontal, parietal, and temporal lobes. Early pIFG high-gamma activity was predictive of successful recall. Including this metric in a logistic regression model yielded an accuracy of 0.76. CONCLUSIONS Optimizing visuospatial working memory through practice is tied to early pIFG activation and decreased dependence on irrelevant neural pathways. SIGNIFICANCE This study expands our knowledge of human adaptation for visuospatial working memory, showing the spatiotemporal dynamics of cortical network modulations through white matter tracts.
Collapse
Affiliation(s)
- Riyo Ueda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan 48201, USA; National Center Hospital, National Center of Neurology and Psychiatry, Tokyo 1878551, Japan.
| | - Kazuki Sakakura
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan 48201, USA; Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois 60612, USA; Department of Neurosurgery, University of Tsukuba, Tsukuba 3058575, Japan.
| | - Takumi Mitsuhashi
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan 48201, USA; Department of Neurosurgery, Juntendo University, School of Medicine, Tokyo 1138421, Japan.
| | - Masaki Sonoda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan 48201, USA; Department of Neurosurgery, Yokohama City University, Yokohama 2360004, Japan.
| | - Ethan Firestone
- Department of Physiology, Wayne State University, Detroit, Michigan 48202, USA.
| | - Naoto Kuroda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan 48201, USA; Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai 9808575, Japan.
| | - Yu Kitazawa
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan 48201, USA; Department of Neurology and Stroke Medicine, Yokohama City University, Yokohama 2360004, Japan.
| | - Hiroshi Uda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan 48201, USA; Department of Neurosurgery, Osaka Metropolitan University Graduate School of Medicine, Osaka 5458585, Japan.
| | - Aimee F Luat
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan 48201, USA; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan 48201, USA; Department of Pediatrics, Central Michigan University, Mt. Pleasant, Michigan 48858, USA.
| | - Elizabeth L Johnson
- Departments of Medical Social Sciences, Pediatrics, and Psychology, Northwestern University, Chicago, Illinois 60611, USA.
| | - Noa Ofen
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology and Merrill Palmer Skillman Institute, Wayne State University, Detroit, Michigan 48202, USA; Department of Psychology, Wayne State University, Detroit, Michigan 48202, USA.
| | - Eishi Asano
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan 48201, USA; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan 48201, USA; Translational Neuroscience Program, Wayne State University, Detroit, Michigan 48201, USA.
| |
Collapse
|
7
|
Lee K, Paulk AC, Ro YG, Cleary DR, Tonsfeldt KJ, Kfir Y, Pezaris JS, Tchoe Y, Lee J, Bourhis AM, Vatsyayan R, Martin JR, Russman SM, Yang JC, Baohan A, Richardson RM, Williams ZM, Fried SI, Hoi Sang U, Raslan AM, Ben-Haim S, Halgren E, Cash SS, Dayeh SA. Flexible, scalable, high channel count stereo-electrode for recording in the human brain. Nat Commun 2024; 15:218. [PMID: 38233418 PMCID: PMC10794240 DOI: 10.1038/s41467-023-43727-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 11/14/2023] [Indexed: 01/19/2024] Open
Abstract
Over the past decade, stereotactically placed electrodes have become the gold standard for deep brain recording and stimulation for a wide variety of neurological and psychiatric diseases. Current electrodes, however, are limited in their spatial resolution and ability to record from small populations of neurons, let alone individual neurons. Here, we report on an innovative, customizable, monolithically integrated human-grade flexible depth electrode capable of recording from up to 128 channels and able to record at a depth of 10 cm in brain tissue. This thin, stylet-guided depth electrode is capable of recording local field potentials and single unit neuronal activity (action potentials), validated across species. This device represents an advance in manufacturing and design approaches which extends the capabilities of a mainstay technology in clinical neurology.
Collapse
Affiliation(s)
- Keundong Lee
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Angelique C Paulk
- Department of Neurology, Harvard Medical School, Boston, MA, 02114, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Yun Goo Ro
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Daniel R Cleary
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Neurological Surgery, University of California San Diego, La Jolla, CA, 92093, USA
| | - Karen J Tonsfeldt
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yoav Kfir
- Department of Neurosurgery, Harvard Medical School, Boston, MA, 02114, USA
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - John S Pezaris
- Department of Neurosurgery, Harvard Medical School, Boston, MA, 02114, USA
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Youngbin Tchoe
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jihwan Lee
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Andrew M Bourhis
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ritwik Vatsyayan
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Joel R Martin
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Samantha M Russman
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jimmy C Yang
- Department of Neurosurgery, Harvard Medical School, Boston, MA, 02114, USA
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Amy Baohan
- Department of Neurosurgery, Harvard Medical School, Boston, MA, 02114, USA
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - R Mark Richardson
- Department of Neurosurgery, Harvard Medical School, Boston, MA, 02114, USA
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Ziv M Williams
- Department of Neurosurgery, Harvard Medical School, Boston, MA, 02114, USA
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Shelley I Fried
- Department of Neurosurgery, Harvard Medical School, Boston, MA, 02114, USA
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - U Hoi Sang
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ahmed M Raslan
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Sharona Ben-Haim
- Department of Neurological Surgery, University of California San Diego, La Jolla, CA, 92093, USA
| | - Eric Halgren
- Department of Radiology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Sydney S Cash
- Department of Neurology, Harvard Medical School, Boston, MA, 02114, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Shadi A Dayeh
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
8
|
Ezzyat Y, Kragel JE, Solomon EA, Lega BC, Aronson JP, Jobst BC, Gross RE, Sperling MR, Worrell GA, Sheth SA, Wanda PA, Rizzuto DS, Kahana MJ. Functional and anatomical connectivity predict brain stimulation's mnemonic effects. Cereb Cortex 2024; 34:bhad427. [PMID: 38041253 PMCID: PMC10793570 DOI: 10.1093/cercor/bhad427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 12/03/2023] Open
Abstract
Closed-loop direct brain stimulation is a promising tool for modulating neural activity and behavior. However, it remains unclear how to optimally target stimulation to modulate brain activity in particular brain networks that underlie particular cognitive functions. Here, we test the hypothesis that stimulation's behavioral and physiological effects depend on the stimulation target's anatomical and functional network properties. We delivered closed-loop stimulation as 47 neurosurgical patients studied and recalled word lists. Multivariate classifiers, trained to predict momentary lapses in memory function, triggered the stimulation of the lateral temporal cortex (LTC) during the study phase of the task. We found that LTC stimulation specifically improved memory when delivered to targets near white matter pathways. Memory improvement was largest for targets near white matter that also showed high functional connectivity to the brain's memory network. These targets also reduced low-frequency activity in this network, an established marker of successful memory encoding. These data reveal how anatomical and functional networks mediate stimulation's behavioral and physiological effects, provide further evidence that closed-loop LTC stimulation can improve episodic memory, and suggest a method for optimizing neuromodulation through improved stimulation targeting.
Collapse
Affiliation(s)
- Youssef Ezzyat
- Dept. of Psychology, Wesleyan University, Middletown, CT 06459, USA
| | - James E Kragel
- Dept. of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Ethan A Solomon
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bradley C Lega
- Dept. of Neurosurgery, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Joshua P Aronson
- Dept. of Neurosurgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Barbara C Jobst
- Dept. of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Robert E Gross
- Dept. of Neurosurgery, Emory University Hospital, Atlanta, GA 30322, USA
| | - Michael R Sperling
- Dept. of Neurology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | - Sameer A Sheth
- Dept. of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paul A Wanda
- Dept. of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel S Rizzuto
- Dept. of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J Kahana
- Dept. of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
Huang S, Howard CM, Hovhannisyan M, Ritchey M, Cabeza R, Davis SW. Hippocampal Functions Modulate Transfer-Appropriate Cortical Representations Supporting Subsequent Memory. J Neurosci 2024; 44:e1135232023. [PMID: 38050089 PMCID: PMC10851689 DOI: 10.1523/jneurosci.1135-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/12/2023] [Accepted: 10/14/2023] [Indexed: 12/06/2023] Open
Abstract
The hippocampus plays a central role as a coordinate system or index of information stored in neocortical loci. Nonetheless, it remains unclear how hippocampal processes integrate with cortical information to facilitate successful memory encoding. Thus, the goal of the current study was to identify specific hippocampal-cortical interactions that support object encoding. We collected fMRI data while 19 human participants (7 female and 12 male) encoded images of real-world objects and tested their memory for object concepts and image exemplars (i.e., conceptual and perceptual memory). Representational similarity analysis revealed robust representations of visual and semantic information in canonical visual (e.g., occipital cortex) and semantic (e.g., angular gyrus) regions in the cortex, but not in the hippocampus. Critically, hippocampal functions modulated the mnemonic impact of cortical representations that are most pertinent to future memory demands, or transfer-appropriate representations Subsequent perceptual memory was best predicted by the strength of visual representations in ventromedial occipital cortex in coordination with hippocampal activity and pattern information during encoding. In parallel, subsequent conceptual memory was best predicted by the strength of semantic representations in left inferior frontal gyrus and angular gyrus in coordination with either hippocampal activity or semantic representational strength during encoding. We found no evidence for transfer-incongruent hippocampal-cortical interactions supporting subsequent memory (i.e., no hippocampal interactions with cortical visual/semantic representations supported conceptual/perceptual memory). Collectively, these results suggest that diverse hippocampal functions flexibly modulate cortical representations of object properties to satisfy distinct future memory demands.Significance Statement The hippocampus is theorized to index pieces of information stored throughout the cortex to support episodic memory. Yet how hippocampal processes integrate with cortical representation of stimulus information remains unclear. Using fMRI, we examined various forms of hippocampal-cortical interactions during object encoding in relation to subsequent performance on conceptual and perceptual memory tests. Our results revealed novel hippocampal-cortical interactions that utilize semantic and visual representations in transfer-appropriate manners: conceptual memory supported by hippocampal modulation of frontoparietal semantic representations, and perceptual memory supported by hippocampal modulation of occipital visual representations. These findings provide important insights into the neural mechanisms underlying the formation of information-rich episodic memory and underscore the value of studying the flexible interplay between brain regions for complex cognition.
Collapse
Affiliation(s)
- Shenyang Huang
- Department of Psychology & Neuroscience, Duke University, Durham 27708, North Carolina
| | - Cortney M Howard
- Department of Psychology & Neuroscience, Duke University, Durham 27708, North Carolina
| | | | - Maureen Ritchey
- Department of Psychology, Boston College, 02467 Massachusetts
| | - Roberto Cabeza
- Department of Psychology & Neuroscience, Duke University, Durham 27708, North Carolina
| | - Simon W Davis
- Department of Psychology & Neuroscience, Duke University, Durham 27708, North Carolina
- Department of Neurology, Duke University School of Medicine, Durham 27708, North Carolina
| |
Collapse
|
10
|
Da X, Hempel E, Ou Y, Rowe OE, Malchano Z, Hajós M, Kern R, Megerian JT, Cimenser A. Noninvasive Gamma Sensory Stimulation May Reduce White Matter and Myelin Loss in Alzheimer's Disease. J Alzheimers Dis 2024; 97:359-372. [PMID: 38073386 PMCID: PMC10789351 DOI: 10.3233/jad-230506] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Patients with Alzheimer's disease (AD) demonstrate progressive white matter atrophy and myelin loss. Restoring myelin content or preventing demyelination has been suggested as a therapeutic approach for AD. OBJECTIVE Herein, we investigate the effects of non-invasive, combined visual and auditory gamma-sensory stimulation on white matter atrophy and myelin content loss in patients with AD. METHODS In this study, we used the magnetic resonance imaging (MRI) data from the OVERTURE study (NCT03556280), a randomized, controlled, clinical trial in which active treatment participants received daily, non-invasive, combined visual and auditory, 40 Hz stimulation for six months. A subset of OVERTURE participants who meet the inclusion criteria for detailed white matter (N = 38) and myelin content (N = 36) assessments are included in the analysis. White matter volume assessments were performed using T1-weighted MRI, and myelin content assessments were performed using T1-weighted/T2-weighted MRI. Treatment effects on white matter atrophy and myelin content loss were assessed. RESULTS Combined visual and auditory gamma-sensory stimulation treatment is associated with reduced total and regional white matter atrophy and myelin content loss in active treatment participants compared to sham treatment participants. Across white matter structures evaluated, the most significant changes were observed in the entorhinal region. CONCLUSIONS The study results suggest that combined visual and auditory gamma-sensory stimulation may modulate neuronal network function in AD in part by reducing white matter atrophy and myelin content loss. Furthermore, the entorhinal region MRI outcomes may have significant implications for early disease intervention, considering the crucial afferent connections to the hippocampus and entorhinal cortex.
Collapse
Affiliation(s)
- Xiao Da
- Cognito Therapeutics, Inc., Cambridge, MA, USA
| | - Evan Hempel
- Cognito Therapeutics, Inc., Cambridge, MA, USA
| | - Yangming Ou
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | | | | | - Mihály Hajós
- Cognito Therapeutics, Inc., Cambridge, MA, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Ralph Kern
- Cognito Therapeutics, Inc., Cambridge, MA, USA
| | | | | |
Collapse
|
11
|
Wang Q, Tang B, Hao S, Wu Z, Yang T, Tang J. Forniceal deep brain stimulation in a mouse model of Rett syndrome increases neurogenesis and hippocampal memory beyond the treatment period. Brain Stimul 2023; 16:1401-1411. [PMID: 37704033 PMCID: PMC11152200 DOI: 10.1016/j.brs.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Rett syndrome (RTT), caused by mutations in the X-linked gene encoding methyl-CpG binding protein 2 (MeCP2), severely impairs learning and memory. We previously showed that forniceal deep brain stimulation (DBS) stimulates hippocampal neurogenesis with concomitant improvements in hippocampal-dependent learning and memory in a mouse model of RTT. OBJECTIVES To determine the duration of DBS benefits; characterize DBS effects on hippocampal neurogenesis; and determine whether DBS influences MECP2 genotype and survival of newborn dentate granular cells (DGCs) in RTT mice. METHODS Chronic DBS was delivered through an electrode implanted in the fimbria-fornix. We tested separate cohorts of mice in contextual and cued fear memory at different time points after DBS. We then examined neurogenesis, DGC apoptosis, and the expression of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) after DBS by immunohistochemistry. RESULTS After two weeks of forniceal DBS, memory improvements lasted between 6 and 9 weeks. Repeating DBS every 6 weeks was sufficient to maintain the improvement. Forniceal DBS stimulated the birth of more MeCP2-positive than MeCP2-negative DGCs and had no effect on DGC survival. It also increased the expression of BDNF but not VEGF in the RTT mouse dentate gyrus. CONCLUSION Improvements in learning and memory from forniceal DBS in RTT mice extends well beyond the treatment period and can be maintained by repeated DBS. Stimulation of BDNF expression correlates with improvements in hippocampal neurogenesis and memory benefits.
Collapse
Affiliation(s)
- Qi Wang
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Bin Tang
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Shuang Hao
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zhenyu Wu
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Tingting Yang
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jianrong Tang
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
12
|
Ezzyat Y, Kragel JE, Solomon EA, Lega BC, Aronson JP, Jobst BC, Gross RE, Sperling MR, Worrell GA, Sheth SA, Wanda PA, Rizzuto DS, Kahana MJ. Functional and anatomical connectivity predict brain stimulation's mnemonic effects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.27.550851. [PMID: 37609181 PMCID: PMC10441352 DOI: 10.1101/2023.07.27.550851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Closed-loop direct brain stimulation is a promising tool for modulating neural activity and behavior. However, it remains unclear how to optimally target stimulation to modulate brain activity in particular brain networks that underlie particular cognitive functions. Here, we test the hypothesis that stimulation's behavioral and physiological effects depend on the stimulation target's anatomical and functional network properties. We delivered closed-loop stimulation as 47 neurosurgical patients studied and recalled word lists. Multivariate classifiers, trained to predict momentary lapses in memory function, triggered stimulation of the lateral temporal cortex (LTC) during the study phase of the task. We found that LTC stimulation specifically improved memory when delivered to targets near white matter pathways. Memory improvement was largest for targets near white matter that also showed high functional connectivity to the brain's memory network. These targets also reduced low-frequency activity in this network, an established marker of successful memory encoding. These data reveal how anatomical and functional networks mediate stimulation's behavioral and physiological effects, provide further evidence that closed-loop LTC stimulation can improve episodic memory, and suggest a method for optimizing neuromodulation through improved stimulation targeting.
Collapse
Affiliation(s)
- Youssef Ezzyat
- Dept. of Psychology, Wesleyan University, Middletown CT 06459
| | | | - Ethan A. Solomon
- Perelman School of Medicine, University of Pennsylvania, Philadelphia PA 19104
| | - Bradley C. Lega
- Dept. of Neurosurgery, University of Texas Southwestern, Dallas TX 75390
| | - Joshua P. Aronson
- Dept. of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon NH 03756
| | - Barbara C. Jobst
- Dept. of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon NH 03756
| | - Robert E. Gross
- Dept. of Neurosurgery, Emory University Hospital, Atlanta GA 30322
| | - Michael R. Sperling
- Dept. of Neurology, Thomas Jefferson University Hospital, Philadelphia PA 19107
| | | | - Sameer A. Sheth
- Dept. of Neurosurgery, Columbia University Medical Center, New York, NY 10032
| | - Paul A. Wanda
- Dept. of Psychology, University of Pennsylvania, Philadelphia PA 19104
| | - Daniel S. Rizzuto
- Dept. of Psychology, University of Pennsylvania, Philadelphia PA 19104
| | - Michael J. Kahana
- Dept. of Psychology, University of Pennsylvania, Philadelphia PA 19104
| |
Collapse
|
13
|
Geva-Sagiv M, Mankin EA, Eliashiv D, Epstein S, Cherry N, Kalender G, Tchemodanov N, Nir Y, Fried I. Augmenting hippocampal-prefrontal neuronal synchrony during sleep enhances memory consolidation in humans. Nat Neurosci 2023; 26:1100-1110. [PMID: 37264156 PMCID: PMC10244181 DOI: 10.1038/s41593-023-01324-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 04/06/2023] [Indexed: 06/03/2023]
Abstract
Memory consolidation during sleep is thought to depend on the coordinated interplay between cortical slow waves, thalamocortical sleep spindles and hippocampal ripples, but direct evidence is lacking. Here, we implemented real-time closed-loop deep brain stimulation in human prefrontal cortex during sleep and tested its effects on sleep electrophysiology and on overnight consolidation of declarative memory. Synchronizing the stimulation to the active phases of endogenous slow waves in the medial temporal lobe (MTL) enhanced sleep spindles, boosted locking of brain-wide neural spiking activity to MTL slow waves, and improved coupling between MTL ripples and thalamocortical oscillations. Furthermore, synchronized stimulation enhanced the accuracy of recognition memory. By contrast, identical stimulation without this precise time-locking was not associated with, and sometimes even degraded, these electrophysiological and behavioral effects. Notably, individual changes in memory accuracy were highly correlated with electrophysiological effects. Our results indicate that hippocampo-thalamocortical synchronization during sleep causally supports human memory consolidation.
Collapse
Affiliation(s)
- Maya Geva-Sagiv
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Center of Neuroscience, University of California, Davis, Davis, CA, USA
| | - Emily A Mankin
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Dawn Eliashiv
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shdema Epstein
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Natalie Cherry
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Guldamla Kalender
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Natalia Tchemodanov
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yuval Nir
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel.
| | - Itzhak Fried
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
14
|
A wearable platform for closed-loop stimulation and recording of single-neuron and local field potential activity in freely moving humans. Nat Neurosci 2023; 26:517-527. [PMID: 36804647 PMCID: PMC9991917 DOI: 10.1038/s41593-023-01260-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 01/17/2023] [Indexed: 02/22/2023]
Abstract
Advances in technologies that can record and stimulate deep brain activity in humans have led to impactful discoveries within the field of neuroscience and contributed to the development of novel therapies for neurological and psychiatric disorders. Further progress, however, has been hindered by device limitations in that recording of single-neuron activity during freely moving behaviors in humans has not been possible. Additionally, implantable neurostimulation devices, currently approved for human use, have limited stimulation programmability and restricted full-duplex bidirectional capability. In this study, we developed a wearable bidirectional closed-loop neuromodulation system (Neuro-stack) and used it to record single-neuron and local field potential activity during stationary and ambulatory behavior in humans. Together with a highly flexible and customizable stimulation capability, the Neuro-stack provides an opportunity to investigate the neurophysiological basis of disease, develop improved responsive neuromodulation therapies, explore brain function during naturalistic behaviors in humans and, consequently, bridge decades of neuroscientific findings across species.
Collapse
|
15
|
Gupta A, Vardalakis N, Wagner FB. Neuroprosthetics: from sensorimotor to cognitive disorders. Commun Biol 2023; 6:14. [PMID: 36609559 PMCID: PMC9823108 DOI: 10.1038/s42003-022-04390-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Neuroprosthetics is a multidisciplinary field at the interface between neurosciences and biomedical engineering, which aims at replacing or modulating parts of the nervous system that get disrupted in neurological disorders or after injury. Although neuroprostheses have steadily evolved over the past 60 years in the field of sensory and motor disorders, their application to higher-order cognitive functions is still at a relatively preliminary stage. Nevertheless, a recent series of proof-of-concept studies suggest that electrical neuromodulation strategies might also be useful in alleviating some cognitive and memory deficits, in particular in the context of dementia. Here, we review the evolution of neuroprosthetics from sensorimotor to cognitive disorders, highlighting important common principles such as the need for neuroprosthetic systems that enable multisite bidirectional interactions with the nervous system.
Collapse
Affiliation(s)
- Ankur Gupta
- grid.462010.1Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | | | - Fabien B. Wagner
- grid.462010.1Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| |
Collapse
|
16
|
Khodagholy D, Ferrero JJ, Park J, Zhao Z, Gelinas JN. Large-scale, closed-loop interrogation of neural circuits underlying cognition. Trends Neurosci 2022; 45:968-983. [PMID: 36404457 PMCID: PMC10437206 DOI: 10.1016/j.tins.2022.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
Cognitive functions are increasingly understood to involve coordinated activity patterns between multiple brain regions, and their disruption by neuropsychiatric disorders is similarly complex. Closed-loop neurostimulation can directly modulate neural signals with temporal and spatial precision. How to leverage such an approach to effectively identify and target distributed neural networks implicated in mediating cognition remains unclear. We review current conceptual and technical advances in this area, proposing that devices that enable large-scale acquisition, integrated processing, and multiregion, arbitrary waveform stimulation will be critical for mechanistically driven manipulation of cognitive processes in physiological and pathological brain networks.
Collapse
Affiliation(s)
- Dion Khodagholy
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA.
| | - Jose J Ferrero
- Institute for Genomic Medicine, Columbia University Irving Medical Center, 701 W 168(th) St., New York, NY 10032, USA
| | - Jaehyo Park
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| | - Zifang Zhao
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA; Institute for Genomic Medicine, Columbia University Irving Medical Center, 701 W 168(th) St., New York, NY 10032, USA
| | - Jennifer N Gelinas
- Institute for Genomic Medicine, Columbia University Irving Medical Center, 701 W 168(th) St., New York, NY 10032, USA; Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA..
| |
Collapse
|
17
|
Roeder BM, Riley MR, She X, Dakos AS, Robinson BS, Moore BJ, Couture DE, Laxton AW, Popli G, Munger Clary HM, Sam M, Heck C, Nune G, Lee B, Liu C, Shaw S, Gong H, Marmarelis VZ, Berger TW, Deadwyler SA, Song D, Hampson RE. Patterned Hippocampal Stimulation Facilitates Memory in Patients With a History of Head Impact and/or Brain Injury. Front Hum Neurosci 2022; 16:933401. [PMID: 35959242 PMCID: PMC9358788 DOI: 10.3389/fnhum.2022.933401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022] Open
Abstract
Rationale: Deep brain stimulation (DBS) of the hippocampus is proposed for enhancement of memory impaired by injury or disease. Many pre-clinical DBS paradigms can be addressed in epilepsy patients undergoing intracranial monitoring for seizure localization, since they already have electrodes implanted in brain areas of interest. Even though epilepsy is usually not a memory disorder targeted by DBS, the studies can nevertheless model other memory-impacting disorders, such as Traumatic Brain Injury (TBI). Methods: Human patients undergoing Phase II invasive monitoring for intractable epilepsy were implanted with depth electrodes capable of recording neurophysiological signals. Subjects performed a delayed-match-to-sample (DMS) memory task while hippocampal ensembles from CA1 and CA3 cell layers were recorded to estimate a multi-input, multi-output (MIMO) model of CA3-to-CA1 neural encoding and a memory decoding model (MDM) to decode memory information from CA3 and CA1 neuronal signals. After model estimation, subjects again performed the DMS task while either MIMO-based or MDM-based patterned stimulation was delivered to CA1 electrode sites during the encoding phase of the DMS trials. Each subject was sorted (post hoc) by prior experience of repeated and/or mild-to-moderate brain injury (RMBI), TBI, or no history (control) and scored for percentage successful delayed recognition (DR) recall on stimulated vs. non-stimulated DMS trials. The subject’s medical history was unknown to the experimenters until after individual subject memory retention results were scored. Results: When examined compared to control subjects, both TBI and RMBI subjects showed increased memory retention in response to both MIMO and MDM-based hippocampal stimulation. Furthermore, effects of stimulation were also greater in subjects who were evaluated as having pre-existing mild-to-moderate memory impairment. Conclusion: These results show that hippocampal stimulation for memory facilitation was more beneficial for subjects who had previously suffered a brain injury (other than epilepsy), compared to control (epilepsy) subjects who had not suffered a brain injury. This study demonstrates that the epilepsy/intracranial recording model can be extended to test the ability of DBS to restore memory function in subjects who previously suffered a brain injury other than epilepsy, and support further investigation into the beneficial effect of DBS in TBI patients.
Collapse
Affiliation(s)
- Brent M. Roeder
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Mitchell R. Riley
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Xiwei She
- Department Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Alexander S. Dakos
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Brian S. Robinson
- Department Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Bryan J. Moore
- Department Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Daniel E. Couture
- Department of Neurosurgery, Wake Forest School of Medicine/Atrium Health Wake Forest Baptist, Winston-Salem, NC, United States
| | - Adrian W. Laxton
- Department of Neurosurgery, Wake Forest School of Medicine/Atrium Health Wake Forest Baptist, Winston-Salem, NC, United States
| | - Gautam Popli
- Department of Neurology, Wake Forest School of Medicine/Atrium Health Wake Forest Baptist, Winston-Salem, NC, United States
| | - Heidi M. Munger Clary
- Department of Neurology, Wake Forest School of Medicine/Atrium Health Wake Forest Baptist, Winston-Salem, NC, United States
| | - Maria Sam
- Department of Neurology, Wake Forest School of Medicine/Atrium Health Wake Forest Baptist, Winston-Salem, NC, United States
| | - Christi Heck
- Department of Neurology, W. M. Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - George Nune
- Department of Neurology, W. M. Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Brian Lee
- Department of Neurosurgery, W. M. Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Charles Liu
- Department of Neurosurgery, W. M. Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Susan Shaw
- Department of Neurology, Rancho Los Amigos National Rehabilitation Hospital, Los Angeles, CA, United States
| | - Hui Gong
- Department of Neurology, Rancho Los Amigos National Rehabilitation Hospital, Los Angeles, CA, United States
| | - Vasilis Z. Marmarelis
- Department Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Theodore W. Berger
- Department Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Sam A. Deadwyler
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Dong Song
- Department Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Robert E. Hampson
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
- Department of Neurology, Wake Forest School of Medicine/Atrium Health Wake Forest Baptist, Winston-Salem, NC, United States
| |
Collapse
|
18
|
Kaestner E, Pedersen NP, Hu R, Vosoughi A, Alwaki A, Ruiz AR, Staikova E, Hewitt KC, Epstein C, McDonald CR, Gross RE, Drane DL. Electrical Wada for pre-surgical memory testing: a case report. Epileptic Disord 2022; 24:411-416. [PMID: 34874269 PMCID: PMC9133096 DOI: 10.1684/epd.2021.1390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/22/2021] [Indexed: 11/17/2022]
Abstract
We report a case study of a surgical candidate, a 51-year-old woman with left temporal lobe epilepsy, who failed a left injection intracarotid amobarbital procedure (e.g., Wada test), scoring 0 of 8 items. This raised concerns for postoperative memory decline. However, the patient was uninterested in a neuromodulatory approach and wished to be reconsidered for surgery. A stereotactic laser amygdalohippocampotomy (SLAH) was considered, encouraging the need for an alternative test to evaluate risk of memory decline. We developed a novel approach to testing memory during stimulation of a depth electrode implanted in the hippocampus, i.e., an electric Wada. During multiple stimulation trials across a range of amplitudes, the patient scored up to 8 of 8 items, which suggested strong contralateral memory support. The surgical team proceeded with a radiofrequency ablation and a subsequent SLAH. The patient remains seizure-free at 12 months post SLAH with no evidence of verbal or visuospatial memory decline based on a post-surgical neuropsychological battery. We believe that this case study provides a proof of concept for the feasibility and possible utility of an electric version of the Wada procedure. Future studies are needed to develop an optimal paradigm and to validate this approach.
Collapse
Affiliation(s)
- Erik Kaestner
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA
| | - Nigel P Pedersen
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA, Department of Biomedical Engineering, Georgia Tech, Atlanta, GA, USA
| | - Ranling Hu
- Department of Radiology, Emory University, GA, USA
| | - Armin Vosoughi
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Abdulrahman Alwaki
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Ekaterina Staikova
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Kelsey C Hewitt
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Charles Epstein
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Carrie R McDonald
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA, Department of Psychiatry, University of California, San Diego, CA, USA, San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Robert E Gross
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA, Department of Neurosurgery, Emory University, Atlanta, GA, USA
| | - Daniel L Drane
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA, Department of Neurology, University of Washington, Seattle, WA, USA
| |
Collapse
|
19
|
What déjà vu and the “dreamy state” tell us about episodic memory networks. Clin Neurophysiol 2022; 136:173-181. [DOI: 10.1016/j.clinph.2022.01.126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 11/22/2022]
|
20
|
Faillot M, Chaillet A, Palfi S, Senova S. Rodent models used in preclinical studies of deep brain stimulation to rescue memory deficits. Neurosci Biobehav Rev 2021; 130:410-432. [PMID: 34437937 DOI: 10.1016/j.neubiorev.2021.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 11/28/2022]
Abstract
Deep brain stimulation paradigms might be used to treat memory disorders in patients with stroke or traumatic brain injury. However, proof of concept studies in animal models are needed before clinical translation. We propose here a comprehensive review of rodent models for Traumatic Brain Injury and Stroke. We systematically review the histological, behavioral and electrophysiological features of each model and identify those that are the most relevant for translational research.
Collapse
Affiliation(s)
- Matthieu Faillot
- Neurosurgery department, Henri Mondor University Hospital, APHP, DMU CARE, Université Paris Est Créteil, Mondor Institute for Biomedical Research, INSERM U955, Team 15, Translational Neuropsychiatry, France
| | - Antoine Chaillet
- Laboratoire des Signaux et Systèmes (L2S-UMR8506) - CentraleSupélec, Université Paris Saclay, Institut Universitaire de France, France
| | - Stéphane Palfi
- Neurosurgery department, Henri Mondor University Hospital, APHP, DMU CARE, Université Paris Est Créteil, Mondor Institute for Biomedical Research, INSERM U955, Team 15, Translational Neuropsychiatry, France
| | - Suhan Senova
- Neurosurgery department, Henri Mondor University Hospital, APHP, DMU CARE, Université Paris Est Créteil, Mondor Institute for Biomedical Research, INSERM U955, Team 15, Translational Neuropsychiatry, France.
| |
Collapse
|
21
|
Solomon EA, Sperling MR, Sharan AD, Wanda PA, Levy DF, Lyalenko A, Pedisich I, Rizzuto DS, Kahana MJ. Theta-burst stimulation entrains frequency-specific oscillatory responses. Brain Stimul 2021; 14:1271-1284. [PMID: 34428553 PMCID: PMC9161680 DOI: 10.1016/j.brs.2021.08.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND Brain stimulation has emerged as a powerful tool in human neuroscience, becoming integral to next-generation psychiatric and neurologic therapeutics. Theta-burst stimulation (TBS), in which electrical pulses are delivered in rhythmic bouts of 3-8 Hz, seeks to recapitulate neural activity seen endogenously during cognitive tasks. A growing literature suggests that TBS can be used to alter or enhance cognitive processes, but little is known about how these stimulation events influence underlying neural activity. OBJECTIVE Our study sought to investigate the effect of direct electrical TBS on mesoscale neural activity in humans by asking (1) whether TBS evokes persistent theta oscillations in cortical areas, (2) whether these oscillations occur at the stimulated frequency, and (3) whether stimulation events propagate in a manner consistent with underlying functional and structural brain architecture. METHODS We recruited 20 neurosurgical epilepsy patients with indwelling electrodes and delivered direct cortical TBS at varying locations and frequencies. Simultaneous iEEG was recorded from non-stimulated electrodes and analyzed to understand how TBS influences mesoscale neural activity. RESULTS We found that TBS rapidly evoked theta rhythms in widespread brain regions, preferentially at the stimulation frequency, and that these oscillations persisted for hundreds of milliseconds post stimulation offset. Furthermore, the functional connectivity between recording and stimulation sites predicted the strength of theta response, suggesting that underlying brain architecture guides the flow of stimulation through the brain. CONCLUSIONS By demonstrating that cortical TBS induces frequency-specific oscillatory responses, our results suggest this technology can be used to directly and predictably influence the activity of cognitively-relevant brain networks.
Collapse
Affiliation(s)
- Ethan A Solomon
- University of Pennsylvania, Perelman School of Medicine, Philadelphia PA 19104, USA; University of Pennsylvania, Department of Psychology, Philadelphia PA 19104, USA.
| | - Michael R Sperling
- Thomas Jefferson University Hospital, Department of Neurology, Philadelphia PA 19107, USA
| | - Ashwini D Sharan
- Thomas Jefferson University Hospital, Department of Neurosurgery, Philadelphia PA 19107, USA
| | - Paul A Wanda
- University of Pennsylvania, Department of Psychology, Philadelphia PA 19104, USA
| | - Deborah F Levy
- University of Pennsylvania, Department of Psychology, Philadelphia PA 19104, USA
| | - Anastasia Lyalenko
- University of Pennsylvania, Department of Psychology, Philadelphia PA 19104, USA
| | - Isaac Pedisich
- University of Pennsylvania, Department of Psychology, Philadelphia PA 19104, USA
| | - Daniel S Rizzuto
- University of Pennsylvania, Department of Psychology, Philadelphia PA 19104, USA; Nia Therapeutics Inc., Bala Cynwyd, PA 19004, USA
| | - Michael J Kahana
- University of Pennsylvania, Department of Psychology, Philadelphia PA 19104, USA.
| |
Collapse
|
22
|
Lee SJ, Beam DE, Schjetnan AGP, Paul LK, Chandravadia N, Reed CM, Chung JM, Ross IB, Valiante TA, Mamelak AN, Rutishauser U. Single-neuron correlate of epilepsy-related cognitive deficits in visual recognition memory in right mesial temporal lobe. Epilepsia 2021; 62:2082-2093. [PMID: 34289113 PMCID: PMC8403636 DOI: 10.1111/epi.17010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Impaired memory is a common comorbidity of refractory temporal lobe epilepsy (TLE) and often perceived by patients as more problematic than the seizures themselves. The objective of this study is to understand what the relationship of these behavioral impairments is to the underlying pathophysiology, as there are currently no treatments for these deficits, and it remains unknown what circuits are affected. METHODS We recorded single neurons in the medial temporal lobes (MTLs) of 62 patients (37 with refractory TLE) who performed a visual recognition memory task to characterize the relationship between behavior, tuning, and anatomical location of memory selective and visually selective neurons. RESULTS Subjects with a seizure onset zone (SOZ) in the right but not left MTL demonstrated impaired ability to recollect as indicated by the degree of asymmetry of the receiver operating characteristic curve. Of the 1973 recorded neurons, 159 were memory selective (MS) and 366 were visually selective (VS) category cells. The responses of MS neurons located within right but not left MTL SOZs were impaired during high-confidence retrieval trials, mirroring the behavioral deficit seen both in our task and in standardized neuropsychological tests. In contrast, responses of VS neurons were unimpaired in both left and right MTL SOZs. Our findings show that neuronal dysfunction within SOZs in the MTL was specific to a functional cell type and behavior, whereas other cell types respond normally even within the SOZ. We show behavioral metrics that detect right MTL SOZ-related deficits and identify a neuronal correlate of this impairment. SIGNIFICANCE Together, these findings show that single-cell responses can be used to assess the causal effects of local circuit disruption by an SOZ in the MTL, and establish a neural correlate of cognitive impairment due to epilepsy that can be used as a biomarker to assess the efficacy of novel treatments.
Collapse
Affiliation(s)
- Seung J Lee
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Neurologic Surgery, Mayo Clinic, Jacksonville, FLA, USA
| | - Danielle E Beam
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Lynn K Paul
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Nand Chandravadia
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Chrystal M Reed
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jeffrey M Chung
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ian B Ross
- Department of Neurosurgery, Huntington Memorial Hospital, Pasadena, CA, USA
| | - Taufik A Valiante
- Krembil Neuroscience Centre, University Health Network, Toronto, ON, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Adam N Mamelak
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.,Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|