1
|
Madadi Asl M, Valizadeh A. Entrainment by transcranial alternating current stimulation: Insights from models of cortical oscillations and dynamical systems theory. Phys Life Rev 2025; 53:147-176. [PMID: 40106964 DOI: 10.1016/j.plrev.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
Signature of neuronal oscillations can be found in nearly every brain function. However, abnormal oscillatory activity is linked with several brain disorders. Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation technique that can potentially modulate neuronal oscillations and influence behavior both in health and disease. Yet, a complete understanding of how interacting networks of neurons are affected by tACS remains elusive. Entrainment effects by which tACS synchronizes neuronal oscillations is one of the main hypothesized mechanisms, as evidenced in animals and humans. Computational models of cortical oscillations may shed light on the entrainment effects of tACS, but current modeling studies lack specific guidelines to inform experimental investigations. This study addresses the existing gap in understanding the mechanisms of tACS effects on rhythmogenesis within the brain by providing a comprehensive overview of both theoretical and experimental perspectives. We explore the intricate interactions between oscillators and periodic stimulation through the lens of dynamical systems theory. Subsequently, we present a synthesis of experimental findings that demonstrate the effects of tACS on both individual neurons and collective oscillatory patterns in animal models and humans. Our review extends to computational investigations that elucidate the interplay between tACS and neuronal dynamics across diverse cortical network models. To illustrate these concepts, we conclude with a simple oscillatory neuron model, showcasing how fundamental theories of oscillatory behavior derived from dynamical systems, such as phase response of neurons to external perturbation, can account for the entrainment effects observed with tACS. Studies reviewed here render the necessity of integrated experimental and computational approaches for effective neuromodulation by tACS in health and disease.
Collapse
Affiliation(s)
- Mojtaba Madadi Asl
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran; Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran, Iran.
| | - Alireza Valizadeh
- Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran, Iran; Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran; The Zapata-Briceño Institute of Neuroscience, Madrid, Spain
| |
Collapse
|
2
|
Mimenza-Alvarado AJ, Aguilar-Navarro SG, Abarca-Jiménez IE, Vázquez-Villaseñor I, Luna-Umanzor DI, Dorard C, Villafuerte G. Low intensity gamma-frequency TMS safely modulates gamma oscillations in probable mild Alzheimer's dementia: a randomized 2 × 2 crossover pilot study. Front Neurol 2025; 16:1566476. [PMID: 40443505 PMCID: PMC12121370 DOI: 10.3389/fneur.2025.1566476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/16/2025] [Indexed: 06/02/2025] Open
Abstract
Introduction AD is a progressive neurodegenerative disorder characterized by cognitive decline and memory loss. While traditional treatments targeting beta-amyloid accumulation have shown limited success, there is a pressing need for novel therapeutic approaches. Recent studies have highlighted the role of disrupted gamma oscillations in AD pathology, leading to the exploration of gamma neuromodulation as a potential therapeutic strategy to modify disease progression in individuals with AD dementia. This pilot clinical trial aimed to investigate the electrophysiological effects of low intensity gamma transcranial magnetic stimulation (gTMS) on gamma oscillations in patients with a diagnosis of probable mild AD dementia. Methods Employing a randomized, double-blind, sham-controlled, 2 × 2 crossover design, participants underwent a single session of both real low intensity gTMS and sham stimulation. EEG recordings and cognitive assessments were conducted before and after stimulation to assess changes in brain activity and their impact on episodic memory. Results We observed statistically significant changes in EEG activity (n = 14), indicating transient modulation of gamma oscillations immediately after low intensity gTMS. There was no significant improvement in cognition compared to baseline scores, but we evidenced a positive correlation between electrophysiological changes and cognitive outcome. Importantly, the intervention was well-tolerated, with no significant adverse effects reported. Discussion Low intensity gTMS has shown the capability to induce significant changes in brain activity, particularly in gamma oscillations. These findings suggest that low intensity gTMS holds promise as a safe and non-invasive therapeutic approach, challenging the conventional belief that high intensity magnetic pulses are necessary for effective brain modulation. To corroborate these initial findings, further research with extended intervention durations and larger, well-defined cohorts of patients with mild AD dementia is essential. This will validate the potential benefits of low intensity gTMS on cognitive performance in this population. Clinical trial registration https://clinicaltrials.gov/study/NCT05784298?term=NCT05784298&rank=1, NCT05784298.
Collapse
Affiliation(s)
- A. J. Mimenza-Alvarado
- Department of Geriatric Medicine & Neurology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - S. G. Aguilar-Navarro
- Department of Geriatric Medicine & Neurology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - I. E. Abarca-Jiménez
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | | | - C. Dorard
- Actipulse Neuroscience, Inc., Cambridge, MA, United States
| | - G. Villafuerte
- Actipulse Neuroscience, Inc., Cambridge, MA, United States
| |
Collapse
|
3
|
Bartolini E, Di Crosta A, La Malva P, Marin A, Ceccato I, Prete G, Mammarella N, Di Domenico A, Palumbo R. Gamma oscillation modulation for cognitive impairment: A systematic review. J Alzheimers Dis 2025; 105:331-350. [PMID: 40151908 DOI: 10.1177/13872877251328698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
BackgroundGamma oscillation modulation has emerged as a potential non-invasive treatment to counteract cognitive impairment in Alzheimer's disease (AD) and mild cognitive impairment (MCI). Non-invasive brain stimulation techniques like transcranial alternating current stimulation (tACS), gamma sensory stimulation (GSS), and transcranial magnetic stimulation (TMS) show promise in supporting specific cognitive functions.ObjectiveTo review and evaluate the efficacy of gamma oscillation modulation techniques in benefiting cognitive functions among individuals with AD and MCI.MethodsA systematic review was conducted, analyzing studies from 2015 to 2023 across databases such as PubMed, Web of Science, and Scopus. Inclusion criteria focused on studies involving tACS, GSS, or TMS applied to older adults with MCI or AD. A total of 438 articles were screened, of which 10 met the eligibility criteria.ResultsFindings suggest that gamma tACS, especially targeting the precuneus and dorsolateral prefrontal cortex, benefits episodic memory and cognitive performance. GSS also showed potential in supporting memory and attention, while TMS exhibited inconsistent but promising results when applied to the angular gyrus. However, heterogeneity in study designs and small sample sizes limit the generalizability of these outcomes.ConclusionsGamma oscillation modulation offers potential cognitive benefits for patients with AD and MCI, particularly in memory support. Further studies with larger samples and well-designed protocols are needed to confirm its therapeutic efficacy and optimize intervention parameters.
Collapse
Affiliation(s)
- Emanuela Bartolini
- Department of Psychology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, CH, Italy
| | - Adolfo Di Crosta
- Department of Psychology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, CH, Italy
| | - Pasquale La Malva
- Department of Psychology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, CH, Italy
| | - Anna Marin
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Center for Translational Cognitive Neuroscience, VA Boston Healthcare System, Boston, MA, USA
| | - Irene Ceccato
- Department of Psychology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, CH, Italy
| | - Giulia Prete
- Department of Psychology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, CH, Italy
| | - Nicola Mammarella
- Department of Psychology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, CH, Italy
| | - Alberto Di Domenico
- Department of Psychology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, CH, Italy
| | - Rocco Palumbo
- Department of Psychology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, CH, Italy
| |
Collapse
|
4
|
Ferrazzano G, Maccarrone D, Guerra A, Collura A, Satriano F, Fratino M, Ievolella F, Belvisi D, Amato MP, Centonze D, Altieri M, Conte A, Leodori G. The effects of gamma-tACS on cognitive impairment in multiple sclerosis: A randomized, double-blind, sham-controlled, pilot study. Mult Scler 2025; 31:728-739. [PMID: 40285586 DOI: 10.1177/13524585251333575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
BACKGROUND Multiple sclerosis (MS) often causes impairment in working memory (WM), information processing speed (IPS), and verbal memory (VM). These deficits are linked to disrupted neural oscillatory activity. Transcranial alternating current stimulation (tACS), which modulates cortical oscillations, may hold promise for treating cognitive impairment in MS. OBJECTIVES To evaluate online and offline effects of gamma (γ)-tACS on WM, IPS, and VM while assessing changes in brain rhythms using electroencephalography (EEG). METHODS Thirty-six MS patients with single-domain impairment in WM (12), IPS (13), or VM (11) underwent γ-tACS and sham-tACS over the left dorsolateral prefrontal cortex (DLPFC) (WM, IPS) or precuneus (VM). Cognitive performance was assessed pre-tACS (T0), during (T1), and post-tACS (T2) using the Digit Span Backward (DSBW) for WM, Symbol Digit Modalities Test (SDMT) for IPS, and Rey Auditory Verbal Learning Test (RAVLT) for VM. EEG was recorded at T0 and T2 to analyze local power spectral density and local-to-global connectivity. RESULTS DSBW, SDMT, and RAVLT scores transiently improved during γ-tACS and not during sham. IPS-impaired patients showed a reduction in spectral power across all frequency bands, at the stimulation site, post-DLPFC γ-tACS. CONCLUSION γ-tACS briefly improves WM, IPS, and VM in MS patients, warranting further trials of this non-invasive intervention.
Collapse
Affiliation(s)
- Gina Ferrazzano
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Davide Maccarrone
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Andrea Guerra
- Padova Neuroscience Center, University of Padua, Padua, Italy
- Parkinson and Movement Disorders Unit, Study Center on Neurodegeneration, Department of Neuroscience, University of Padua, Padua, Italy
| | - Angelo Collura
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Federica Satriano
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Mariangela Fratino
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Fabrizio Ievolella
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Daniele Belvisi
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Maria Pia Amato
- Department Neurofarba, University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Diego Centonze
- IRCCS Neuromed, Pozzilli, Italy
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Marta Altieri
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Antonella Conte
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Giorgio Leodori
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
5
|
Manippa V, Caffò AO, Rivolta D. The Italian Face-Name Association Test (ItFNAT): a preliminary validation of three parallel versions. Neurol Sci 2025:10.1007/s10072-025-08165-z. [PMID: 40257529 DOI: 10.1007/s10072-025-08165-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 04/02/2025] [Indexed: 04/22/2025]
Abstract
BACKGROUND AND OBJECTIVES Associating names with faces is crucial for social interactions and reflects cognitive health. To address the need for reliable tools to assess associative memory, we developed and validated the Italian Face-Name Associative Test (ItFNAT), a tool allows clinicians to monitor cognitive functioning and detect early signs of cognitive decline. MATERIALS AND METHODS 101 Italian participants (51 females) aged 18-80 years completed the three parallel versions of the ItFNAT, which assessed immediate recall (IR), delayed free recall (DFR), and delayed recall with cues (DTR). ItFNAT was administered alongside other neuropsychological tests to explore its relationship with memory and attention. RESULTS ItFNAT demonstrated high internal consistency across its three versions. Principal Component Analysis revealed that IR, DFR, and DTR loaded strongly onto a single factor in each version. Kruskal-Wallis ANOVA indicated no significant differences in scores across versions. Non-parametric analyses showed that years of education significantly influenced all three scores, while age negatively correlated with DTR. Spearman's correlations revealed strong associations between ItFNAT scores and other widespread memory and attentive tests. DISCUSSIONS This study introduces the ItFNAT, a test designed to assess cross-modal associative memory. It includes three parallel versions with good internal consistency, and minimal score differences. Scores-IR, DFR, and DTR-reflect a shared underlying cognitive construct, correlating with both traditional memory tests and scales assessing working memory and attention. Education significantly influenced all three scores, while age negatively impacted DTR. Future research should refine its application for tracking cognitive function and detecting neurodegenerative changes.
Collapse
Affiliation(s)
- Valerio Manippa
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, Bari, Italy.
| | - Alessandro Oronzo Caffò
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, Bari, Italy
| | - Davide Rivolta
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
6
|
Uehara MA, Kalia S, Campuzano MG, Jafari-Jozani M, Lithgow B, Moussavi Z. Cognitive and Neuropsychiatric Effects of 40 Hz tACS Simultaneously with Cognitive Exercises for Dementia: A Randomized, Crossover, Double-Blind, Sham-Controlled Study. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:757. [PMID: 40283048 PMCID: PMC12029112 DOI: 10.3390/medicina61040757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
Background and Objectives: Transcranial alternating current stimulation (tACS) at 40 Hz has shown potential to enhance cognitive function. However, research on its combination with cognitive exercises, particularly its long-term effects in a dementia population, remains limited. This study investigated the effects of 40 Hz tACS paired with simultaneous cognitive exercises on cognition, neuropsychiatric symptoms, and the depression status of individuals with dementia in a sham-controlled, double-blind crossover design. Materials and Methods: A total of 42 participants with dementia were randomized into two groups: (1) the R1S2 group received 40 Hz real tACS with cognitive exercises, followed by a ≥8-week washout period, and then sham tACS with cognitive exercises; (2) the S1R2 group received the reversed sequence. tACS was applied at 1.5 mA peak-to-peak with electrodes over the left dorsolateral prefrontal cortex and contralateral supraorbital area. Participants received two 30 min stimulation sessions per day, 5 days per week, for 4 consecutive weeks, paired with cognitive exercises using the MindTriggers app (2.9.1). The primary outcome was the Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog) and the secondary outcomes included the Montgomery-Åsberg Depression Rating Scale (MADRS) and the Neuropsychiatric Inventory Questionnaire (NPI-Q). All outcome measures were assessed before and after each treatment block. Results: Real tACS paired with cognitive exercises significantly improved ADAS-Cog scores post-treatment compared to pre-treatment (p-value = 0.019), whereas sham tACS did not. Furthermore, real tACS produced significant long-term improvements approximately 2-3 months post-treatment in ADAS-Cog scores compared to sham (p-value = 0.048). Both real (p-value = 0.003) and sham (p-value = 0.015) tACS significantly reduced NPI-Q scores post-treatment. MADRS scores significantly improved (p-value = 0.007) post-treatment for real tACS but not sham. Conclusions: The 40 Hz tACS paired with cognitive exercises improves cognition, neuropsychiatric symptoms, and depression post-treatment in dementia, with sustained cognitive effects. The findings highlight its potential as a non-invasive therapeutic intervention for dementia.
Collapse
Affiliation(s)
- Maria Anabel Uehara
- Biomedical Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada;
| | - Sumeet Kalia
- Department of Statistics, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (S.K.); (M.J.-J.)
| | - Mari Garcia Campuzano
- Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada;
| | - Mohammad Jafari-Jozani
- Department of Statistics, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (S.K.); (M.J.-J.)
| | - Brian Lithgow
- Riverview Health Centre, Winnipeg, MB R3L 2P4, Canada;
- Monash Alfred Psychiatry Research Centre, Melbourne, VIC 3004, Australia
| | - Zahra Moussavi
- Biomedical Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada;
- Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada;
- Riverview Health Centre, Winnipeg, MB R3L 2P4, Canada;
| |
Collapse
|
7
|
Lu YT, Zhang X, Cheng J. Meta-analysis of the effect of cognitive stimulation therapy on cognitive function in patients with Alzheimer's disease. World J Psychiatry 2025; 15:102542. [PMID: 40309593 PMCID: PMC12038668 DOI: 10.5498/wjp.v15.i4.102542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/10/2025] [Accepted: 02/24/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND There is no effective treatment for Alzheimer's disease (AD), and pharmacological treatment of AD in clinical settings is expensive and prolonged, resulting in a huge psychological and economic burden on the patient's family and caregivers and society as a whole, AD is characterized by progressive, worsening cognitive impairment, and there are currently no drugs that can effectively reverse cognitive impairment. However, it is important to intervene early or delay cognitive impairment so that the condition can be delayed and, ultimately, the burden on patients and families can be reduced through maintenance treatment. It may be that non-pharmacological interventions such as cognitive stimulation therapy (CST) can help with cognitive dysfunction. AIM To provide a better treatment plan for AD patients and delay the deterioration of cognitive function, the effect of CST on cognitive function in AD was studied by Meta-analysis. METHODS Comprehensive search the Chinese and English databases were comprehensively searched by computer. Chinese databases: China Biomedical Literature Database (CBM), Wanfang Database, VIP Database, and China Periodicals Full-text Database (CNKI). The collection time limit is from July 21, 2010 to July 21, 2022 randomized controlled trials literature on the effects of CST on cognitive function in patients with AD. According to the inclusion and exclusion criteria, literature screening, data extraction, and quality evaluation were performed. Standardized mean difference (SMD) and 95%CI were used as evaluation criteria to evaluate the cognitive function of CST in AD patients. Sensitivity analysis and publication bias detection were performed on the results. Publication bias was assessed using funnel plots, and funnel plot symmetry was assessed with Eggr's test. RESULTS CST can not improve Mental State Examination Scale (MMSE) scores in AD patients. Meta-analysis of CST on MMSE scores showed that the heterogeneity was P = 0.14, I 2 = 35%. I 2 = 35% < 50%, and the Q test P > 0.1, choose the random effect model to integrate statistics, get SMD = 0.02, 95%CI: -0.37, 0.42, P > 0.05. Meta-analysis of CST on AD Cognitive Functioning Assessment Scale scores showed that the heterogeneity was P = 0.13, I 2 = 36%. I 2 = 36% < 50 choose a fixed effect model to integrate statistics, get SMD = -0.01, 95%CI: -0.40, 0.39, P > 0.05, the difference is not statistically significant. Meta-analysis of CST on the cognitive function indicators of patients showed that the heterogeneity was P = 0.17, I 2 = 31%. I 2 = 31% < 50%, the fixed effect model showed SMD = 0.01, 95%CI: -0.37, 0.38, P > 0.05, the difference was not statistically significant. CONCLUSION CST may not improve the cognitive function of AD patients, not improve the cognitive function of AD patients, not improve the ability of daily living, and not reduce mental behavior can improve the cognitive function of AD patients.
Collapse
Affiliation(s)
- Yi-Ting Lu
- Department of Psychiatry, Shenyang Mental Health Center, Shenyang 110000, Liaoning Province, China
| | - Xin Zhang
- Department of Neurology, Shenyang First People's Hospital, Shenyang 110000, Liaoning Province, China
| | - Jun Cheng
- Second Department of Psychology, Shenyang Mental Health Center, Shenyang 110000, Liaoning Province, China
| |
Collapse
|
8
|
Geng C, Li Y, Li L, Zhu X, Hou X, Liu T. Optimized Temporal Interference Stimulation Based on Convex Optimization: A Computational Study. IEEE Trans Neural Syst Rehabil Eng 2025; 33:1400-1410. [PMID: 40193272 DOI: 10.1109/tnsre.2025.3558306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Temporal interference (TI) stimulation is a non-invasive method targeting deep brain regions by applying two pairs of high-frequency currents with a slight frequency difference to the scalp. However, optimizing electrode configurations for TI via computational modeling is challenging and time-consuming due to the non-convex nature of the optimization. We propose a convex optimization-based method (CVXTI) for optimizing TI electrode configurations. We decompose the TI optimization into two convex steps, enabling rapid determination of electrode pair configurations. CVXTI accommodates various optimization objectives by incorporating different objective functions, thereby enhancing the focality of the stimulation field. Performance analysis of CVXTI shows superior results compared to other methods, particularly in deep brain regions. Subject variability analysis on four individuals highlights the necessity of customized stimulus optimization. CVXTI leverages the distribution characteristics of the TI envelope electric field to optimize electrode configurations, enhancing the optimization efficiency.
Collapse
|
9
|
Ding X, Zhou Y, Liu Y, Yao XL, Wang JX, Xie Q. Application and research progress of different frequency tACS in stroke rehabilitation: A systematic review. Brain Res 2025; 1852:149521. [PMID: 39983809 DOI: 10.1016/j.brainres.2025.149521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/09/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
After a stroke, abnormal changes in neural oscillations that are related to the severity and prognosis of the disease can occur. Resetting these abnormal neural oscillations is a potential approach for stroke rehabilitation. Transcranial alternating current stimulation (tACS) can modulate intrinsic neural oscillations noninvasively and has attracted attention as a possible technique to improve multiple post-stroke symptoms, including deficits in speech, vision, and motor ability and overall neurological recovery. The clinical effect of tACS varies according to the selected frequency. Therefore, choosing an appropriate frequency to optimize outcomes for specific dysfunctions is essential. This review focuses on the current research status and possibilities of tACS with different frequencies in stroke rehabilitation. We also discuss the possible mechanisms of tACS in stroke to provide a theoretical foundation for the method and highlight the controversial aspects that need further exploration. Although tACS has great potential, few clinical studies have applied it in the treatment of stroke, and no consensus has been reached. We analyze limitations in experimental designs and identify potential tACS approaches worthy of exploration in the future.
Collapse
Affiliation(s)
- Xue Ding
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Rehabilitation Medicine, Shanghai Ruijin Rehabilitation Hospital, Shanghai, China
| | - Yu Zhou
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Liu
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Ling Yao
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ji-Xian Wang
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qing Xie
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Rehabilitation Medicine, Shanghai Ruijin Rehabilitation Hospital, Shanghai, China.
| |
Collapse
|
10
|
Palacino F, Manganotti P, Benussi A. Targeting Neural Oscillations for Cognitive Enhancement in Alzheimer's Disease. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:547. [PMID: 40142358 PMCID: PMC11943909 DOI: 10.3390/medicina61030547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/13/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025]
Abstract
Alzheimer's disease (AD), the most prevalent form of dementia, is marked by progressive cognitive decline, affecting memory, language, orientation, and behavior. Pathological hallmarks include extracellular amyloid plaques and intracellular tau tangles, which disrupt synaptic function and connectivity. Neural oscillations, the rhythmic synchronization of neuronal activity across frequency bands, are integral to cognitive processes but become dysregulated in AD, contributing to network dysfunction and memory impairments. Targeting these oscillations has emerged as a promising therapeutic strategy. Preclinical studies have demonstrated that specific frequency modulations can restore oscillatory balance, improve synaptic plasticity, and reduce amyloid and tau pathology. In animal models, interventions, such as gamma entrainment using sensory stimulation and transcranial alternating current stimulation (tACS), have shown efficacy in enhancing memory function and modulating neuroinflammatory responses. Clinical trials have reported promising cognitive improvements with repetitive transcranial magnetic stimulation (rTMS) and deep brain stimulation (DBS), particularly when targeting key hubs in memory-related networks, such as the default mode network (DMN) and frontal-parietal network. Moreover, gamma-tACS has been linked to increased cholinergic activity and enhanced network connectivity, which are correlated with improved cognitive outcomes in AD patients. Despite these advancements, challenges remain in optimizing stimulation parameters, individualizing treatment protocols, and understanding long-term effects. Emerging approaches, including transcranial pulse stimulation (TPS) and closed-loop adaptive neuromodulation, hold promise for refining therapeutic strategies. Integrating neuromodulation with pharmacological and lifestyle interventions may maximize cognitive benefits. Continued interdisciplinary efforts are essential to refine these approaches and translate them into clinical practice, advancing the potential for neural oscillation-based therapies in AD.
Collapse
Affiliation(s)
| | | | - Alberto Benussi
- Neurology Unit, Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (F.P.); (P.M.)
| |
Collapse
|
11
|
Agboada D, Zhao Z, Wischnewski M. Neuroplastic effects of transcranial alternating current stimulation (tACS): from mechanisms to clinical trials. Front Hum Neurosci 2025; 19:1548478. [PMID: 40144589 PMCID: PMC11936966 DOI: 10.3389/fnhum.2025.1548478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/18/2025] [Indexed: 03/28/2025] Open
Abstract
Transcranial alternating current stimulation (tACS) is a promising non-invasive neuromodulation technique with the potential for inducing neuroplasticity and enhancing cognitive and clinical outcomes. A unique feature of tACS, compared to other stimulation modalities, is that it modulates brain activity by entraining neural activity and oscillations to an externally applied alternating current. While many studies have focused on online effects during stimulation, growing evidence suggests that tACS can induce sustained after-effects, which emphasizes the potential to induce long-term neurophysiological changes, essential for therapeutic applications. In the first part of this review, we discuss how tACS after-effects could be mediated by four non-mutually exclusive mechanisms. First, spike-timing-dependent plasticity (STDP), where the timing of pre- and postsynaptic spikes strengthens or weakens synaptic connections. Second, spike-phase coupling and oscillation phase as mediators of plasticity. Third, homeostatic plasticity, emphasizing the importance of neural activity to operate within dynamic physiological ranges. Fourth, state-dependent plasticity, which highlights the importance of the current brain state in modulatory effects of tACS. In the second part of this review, we discuss tACS applications in clinical trials targeting neurological and psychiatric disorders, including major depressive disorder, schizophrenia, Parkinson's disease, and Alzheimer's disease. Evidence suggests that repeated tACS sessions, optimized for individual oscillatory frequencies and combined with behavioral interventions, may result in lasting effects and enhance therapeutic outcomes. However, critical challenges remain, including the need for personalized dosing, improved current modeling, and systematic investigation of long-term effects. In conclusion, this review highlights the mechanisms and translational potential of tACS, emphasizing the importance of bridging basic neuroscience and clinical research to optimize its use as a therapeutic tool.
Collapse
Affiliation(s)
- Desmond Agboada
- Department of Psychology, University of the Bundeswehr Munich, Neubiberg, Germany
| | - Zhihe Zhao
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, MN, United States
| | - Miles Wischnewski
- Department of Psychology, University of Groningen, Groningen, Netherlands
| |
Collapse
|
12
|
Sánchez-Garrido Campos G, Zafra ÁM, Estévez-Rodríguez M, Cordones I, Ruffini G, Márquez-Ruiz J. Preclinical insights into gamma-tACS: foundations for clinical translation in neurodegenerative diseases. Front Neurosci 2025; 19:1549230. [PMID: 40143845 PMCID: PMC11936909 DOI: 10.3389/fnins.2025.1549230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Gamma transcranial alternating current stimulation (gamma-tACS) represents a novel neuromodulation technique with promising therapeutic applications across neurodegenerative diseases. This mini-review consolidates recent preclinical and clinical findings, examining the mechanisms by which gamma-tACS influences neural oscillations, enhances synaptic plasticity, and modulates neuroimmune responses. Preclinical studies have demonstrated the capacity of gamma-tACS to synchronize neuronal firing, support long-term neuroplasticity, and reduce markers of neuroinflammation, suggesting its potential to counteract neurodegenerative processes. Early clinical studies indicate that gamma-tACS may improve cognitive functions and network connectivity, underscoring its ability to restore disrupted oscillatory patterns central to cognitive performance. Given the intricate and multifactorial nature of gamma oscillations, the development of tailored, optimized tACS protocols informed by extensive animal research is crucial. Overall, gamma-tACS presents a promising avenue for advancing treatments that support cognitive resilience in a range of neurodegenerative conditions.
Collapse
Affiliation(s)
| | - Ángela M. Zafra
- Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Seville, Spain
| | - Marta Estévez-Rodríguez
- Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Seville, Spain
| | - Isabel Cordones
- Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Seville, Spain
| | - Giulio Ruffini
- Brain Modeling Department, Neuroelectrics Barcelona, Barcelona, Spain
| | - Javier Márquez-Ruiz
- Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Seville, Spain
| |
Collapse
|
13
|
Liu H, Qi Z, Wang Y, Yang Z, Fan L, Zuo N, Jiang T. A Novel Real-time Phase Prediction Network in EEG Rhythm. Neurosci Bull 2025; 41:391-405. [PMID: 39612043 PMCID: PMC11876478 DOI: 10.1007/s12264-024-01321-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/09/2024] [Indexed: 11/30/2024] Open
Abstract
Closed-loop neuromodulation, especially using the phase of the electroencephalography (EEG) rhythm to assess the real-time brain state and optimize the brain stimulation process, is becoming a hot research topic. Because the EEG signal is non-stationary, the commonly used EEG phase-based prediction methods have large variances, which may reduce the accuracy of the phase prediction. In this study, we proposed a machine learning-based EEG phase prediction network, which we call EEG phase prediction network (EPN), to capture the overall rhythm distribution pattern of subjects and map the instantaneous phase directly from the narrow-band EEG data. We verified the performance of EPN on pre-recorded data, simulated EEG data, and a real-time experiment. Compared with widely used state-of-the-art models (optimized multi-layer filter architecture, auto-regress, and educated temporal prediction), EPN achieved the lowest variance and the greatest accuracy. Thus, the EPN model will provide broader applications for EEG phase-based closed-loop neuromodulation.
Collapse
Affiliation(s)
- Hao Liu
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zihui Qi
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yihang Wang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhengyi Yang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lingzhong Fan
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Nianming Zuo
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tianzi Jiang
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Xiaoxiang Institute for Brain Health and Yongzhou Central Hospital, Yongzhou, 425000, China.
| |
Collapse
|
14
|
Deng Q, Wu C, Parker E, Zhu J, Liu TCY, Duan R, Yang L. Mystery of gamma wave stimulation in brain disorders. Mol Neurodegener 2024; 19:96. [PMID: 39695746 PMCID: PMC11657232 DOI: 10.1186/s13024-024-00785-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
Neuronal oscillations refer to rhythmic and periodic fluctuations of electrical activity in the central nervous system that arise from the cellular properties of diverse neuronal populations and their interactions. Specifically, gamma oscillations play a crucial role in governing the connectivity between distinct brain regions, which are essential in perception, motor control, memory, and emotions. In this context, we recapitulate various current stimulation methods to induce gamma entrainment. These methods include sensory stimulation, optogenetic modulation, photobiomodulation, and transcranial electrical or magnetic stimulation. Simultaneously, we explore the association between abnormal gamma oscillations and central nervous system disorders such as Alzheimer's disease, Parkinson's disease, stroke, schizophrenia, and autism spectrum disorders. Evidence suggests that gamma entrainment-inducing stimulation methods offer notable neuroprotection, although somewhat controversial. This review comprehensively discusses the functional role of gamma oscillations in higher-order brain activities from both physiological and pathological perspectives, emphasizing gamma entrainment as a potential therapeutic approach for neuropsychiatric disorders. Additionally, we discuss future opportunities and challenges in implementing such strategies.
Collapse
Affiliation(s)
- Qianting Deng
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Chongyun Wu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Emily Parker
- Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Jing Zhu
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Timon Cheng-Yi Liu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Rui Duan
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Luodan Yang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
15
|
Koch G, Altomare D, Benussi A, Bréchet L, Casula EP, Dodich A, Pievani M, Santarnecchi E, Frisoni GB. The emerging field of non-invasive brain stimulation in Alzheimer's disease. Brain 2024; 147:4003-4016. [PMID: 39562009 PMCID: PMC11734340 DOI: 10.1093/brain/awae292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/09/2024] [Accepted: 07/26/2024] [Indexed: 11/21/2024] Open
Abstract
Treating cognitive impairment is a holy grail of modern clinical neuroscience. In the past few years, non-invasive brain stimulation is increasingly emerging as a therapeutic approach to ameliorate performance in patients with cognitive impairment and as an augmentation approach in persons whose cognitive performance is within normal limits. In patients with Alzheimer's disease, better understanding of brain connectivity and function has allowed for the development of different non-invasive brain stimulation protocols. Recent studies have shown that transcranial stimulation methods enhancing brain plasticity with several modalities have beneficial effects on cognitive functions. Amelioration has been shown in preclinical studies on behaviour of transgenic mouse models for Alzheimer's pathology and in clinical studies with variable severity of cognitive impairment. While the field is still grappling with issues related to the standardization of target population, frequency, intensity, treatment duration and stimulated region, positive outcomes have been reported on cognitive functions and on markers of brain pathology. Here we review the most encouraging protocols based on repetitive transcranial magnetic stimulation, transcranial direct current stimulation, transcranial alternating current stimulation, visual-auditory stimulation, photobiomodulation and transcranial focused ultrasound, which have demonstrated efficacy to enhance cognitive functions or slow cognitive decline in patients with Alzheimer's disease. Beneficial non-invasive brain stimulation effects on cognitive functions are associated with the modulation of specific brain networks. The most promising results have been obtained targeting key hubs of higher-level cognitive networks, such as the frontal-parietal network and the default mode network. The personalization of stimulation parameters according to individual brain features sheds new light on optimizing non-invasive brain stimulation protocols for future applications.
Collapse
Affiliation(s)
- Giacomo Koch
- Experimental Neuropsychophysiology Lab, Santa Lucia Foundation IRCCS, 00179 Rome, Italy
- Department of Neuroscience and Rehabilitation, University of Ferrara and Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology (IIT), 44121 Ferrara, Italy
| | - Daniele Altomare
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
| | - Alberto Benussi
- Neurology Unit, Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Lucie Bréchet
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Elias P Casula
- Experimental Neuropsychophysiology Lab, Santa Lucia Foundation IRCCS, 00179 Rome, Italy
- Department of System Medicine, University of Tor Vergata, 00133 Rome, Italy
| | - Alessandra Dodich
- Center for Mind/Brain Sciences (CIMeC), University of Trento, 38068 Rovereto, Italy
| | - Michela Pievani
- Laboratory Alzheimer’s Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy
| | - Emiliano Santarnecchi
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 02114 Boston, USA
| | - Giovanni B Frisoni
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, 1205 Geneva, Switzerland
- Geneva Memory Center, Geneva University Hospitals, 1205 Geneva, Switzerland
| |
Collapse
|
16
|
Springer SD, Schantell M, Okelberry HJ, Willett MP, Johnson HJ, Wilson TW. Healthy aging is associated with altered visual gamma band onset and offset responses. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2024; 2:1-14. [PMID: 40041299 PMCID: PMC11873763 DOI: 10.1162/imag_a_00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 03/06/2025]
Abstract
Gamma oscillations have been shown to be critical for basic sensory processing, as well as visual attention and several other higher-order cognitive functions. Aberrant gamma oscillations have also been shown in neuropsychiatric and neurodegenerative diseases. Despite the possible clinical implications of altered gamma activity and emerging stimulation-based interventions targeting gamma, research into age-related changes in gamma oscillatory activity in healthy adults remains sparse. In the current study, we examined the neural oscillations underlying basic visual processing in 87 healthy aging adults using magnetoencephalography (MEG) and a visual grating stimulus. Neural activity elicited by the visual stimulus was imaged using a time-frequency resolved beamformer, and peak voxel time series were computed to characterize the visual oscillatory dynamics underlying these responses. We found significant age-related changes in visual gamma oscillations, but not in visual theta, alpha, or beta oscillations. Specifically, we found age-related increases in gamma band amplitude and inter-trial phase-locking (ITPL) immediately following stimulus presentation (i.e., gamma onset response). Conversely, gamma band amplitude and ITPL following stimulus removal (i.e., gamma offset response) were found to be decreased as a function of healthy aging. Critically, we demonstrated that the decreases in the gamma offset response predicted slower overall processing speed across all participants. Taken together, these findings indicate that healthy aging is uniquely associated with alterations in visual gamma oscillations and that these changes predict participant processing speed.
Collapse
Affiliation(s)
- Seth D. Springer
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, United States
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, United States
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Hannah J. Okelberry
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, United States
| | - Madelyn P. Willett
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, United States
| | - Hallie J. Johnson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, United States
| | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, United States
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, United States
| |
Collapse
|
17
|
Kraft JD, Hampstead BM. A Systematic Review of tACS Effects on Cognitive Functioning in Older Adults Across the Healthy to Dementia Spectrum. Neuropsychol Rev 2024; 34:1165-1190. [PMID: 37882864 PMCID: PMC11045666 DOI: 10.1007/s11065-023-09621-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 09/26/2023] [Indexed: 10/27/2023]
Abstract
Transcranial alternating current stimulation (tACS) is a form of noninvasive brain stimulation that has experienced rapid growth within the aging population over the past decade due to its potential for modulating cognitive functioning across the "intact" to dementia spectrum. For this reason, we performed a systematic review of the literature to evaluate the efficacy of tACS on cognitive functioning in older adults, including those with cognitive impairment. Our review was completed in June 2023 using Psych INFO, Embase, PubMed, and Cochrane databases. Out of 479 screened articles, 21 met inclusion criteria and were organized according to clinical diagnoses. Seven out of nine studies targeted cognitively intact older adults and showed some type of cognitive improvement after stimulation, whereas nine out of twelve studies targeted clinical diagnoses and showed improved cognitive performance to varying degrees. Studies showed considerable heterogeneity in methodology, stimulation parameters, participant characteristics, choice of cognitive task, and analytic strategy, all of which reinforce the need for standardized reporting of tACS methods. Through this heterogeneity, multiple patterns are described, such as disease progression influencing tACS effects and the need for individualized tailoring. For clinical translation, it is imperative that the field (a) better understand the physiological effects of tACS in these populations, especially in respect to biomarkers, (b) document a causal relationship between tACS delivery and neurophysiological/cognitive effects, and (c) systematically establish dosing parameters (e.g., amplitude, stimulation frequency, number and duration of sessions, need for booster/maintenance sessions).
Collapse
Affiliation(s)
- Jacob D Kraft
- Research Program On Cognition and Neuromodulation Based Interventions, Department of Psychiatry, University of Michigan, 4250 Plymouth Rd, Ann Arbor, MI, 48105, USA.
- Department of Psychiatry &, Behavioral Health, The Ohio State University, Columbus, OH, 43210, USA.
| | - Benjamin M Hampstead
- Research Program On Cognition and Neuromodulation Based Interventions, Department of Psychiatry, University of Michigan, 4250 Plymouth Rd, Ann Arbor, MI, 48105, USA
- Mental Health Service, Neuropsychology Section, VA Ann Arbor Healthcare System, Ann Arbor, MI, 48105, USA
| |
Collapse
|
18
|
Ichim AM, Barzan H, Moca VV, Nagy-Dabacan A, Ciuparu A, Hapca A, Vervaeke K, Muresan RC. The gamma rhythm as a guardian of brain health. eLife 2024; 13:e100238. [PMID: 39565646 DOI: 10.7554/elife.100238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/09/2024] [Indexed: 11/21/2024] Open
Abstract
Gamma oscillations in brain activity (30-150 Hz) have been studied for over 80 years. Although in the past three decades significant progress has been made to try to understand their functional role, a definitive answer regarding their causal implication in perception, cognition, and behavior still lies ahead of us. Here, we first review the basic neural mechanisms that give rise to gamma oscillations and then focus on two main pillars of exploration. The first pillar examines the major theories regarding their functional role in information processing in the brain, also highlighting critical viewpoints. The second pillar reviews a novel research direction that proposes a therapeutic role for gamma oscillations, namely the gamma entrainment using sensory stimulation (GENUS). We extensively discuss both the positive findings and the issues regarding reproducibility of GENUS. Going beyond the functional and therapeutic role of gamma, we propose a third pillar of exploration, where gamma, generated endogenously by cortical circuits, is essential for maintenance of healthy circuit function. We propose that four classes of interneurons, namely those expressing parvalbumin (PV), vasointestinal peptide (VIP), somatostatin (SST), and nitric oxide synthase (NOS) take advantage of endogenous gamma to perform active vasomotor control that maintains homeostasis in the neuronal tissue. According to this hypothesis, which we call GAMER (GAmma MEdiated ciRcuit maintenance), gamma oscillations act as a 'servicing' rhythm that enables efficient translation of neural activity into vascular responses that are essential for optimal neurometabolic processes. GAMER is an extension of GENUS, where endogenous rather than entrained gamma plays a fundamental role. Finally, we propose several critical experiments to test the GAMER hypothesis.
Collapse
Grants
- RO-NO-2019-0504 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- ERA-NET-FLAG-ERA-ModelDXConsciousness Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- ERANET-NEURON-2-UnscrAMBLY Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- ERANET-FLAG-ERA-MONAD Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- ERANET-NEURON-2-IBRAA Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- ERANET-NEURON-2-RESIST-D Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- PN-IV-P8-8.1-PRE-HE-ORG-2024-0185 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- 952096 NEUROTWIN European Commission
- INSPIRE POC 488/1/1/2014+/127725 Ministerul Investițiilor și Proiectelor Europene
Collapse
Affiliation(s)
- Ana Maria Ichim
- Transylvanian Institute of Neuroscience, Department of Experimental and Theoretical Neuroscience, Cluj-Napoca, Romania
- Preclinical MRI Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Harald Barzan
- Transylvanian Institute of Neuroscience, Department of Experimental and Theoretical Neuroscience, Cluj-Napoca, Romania
| | - Vasile Vlad Moca
- Transylvanian Institute of Neuroscience, Department of Experimental and Theoretical Neuroscience, Cluj-Napoca, Romania
| | - Adriana Nagy-Dabacan
- Transylvanian Institute of Neuroscience, Department of Experimental and Theoretical Neuroscience, Cluj-Napoca, Romania
| | - Andrei Ciuparu
- Transylvanian Institute of Neuroscience, Department of Experimental and Theoretical Neuroscience, Cluj-Napoca, Romania
| | - Adela Hapca
- Transylvanian Institute of Neuroscience, Department of Experimental and Theoretical Neuroscience, Cluj-Napoca, Romania
- Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Koen Vervaeke
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Raul Cristian Muresan
- Transylvanian Institute of Neuroscience, Department of Experimental and Theoretical Neuroscience, Cluj-Napoca, Romania
- STAR-UBB Institute, Babeș-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
19
|
Liu M, Li L, Chen R, Wang Q, Zeng T, Hu J, Yan C, Xiao J, Xia X. Whole-body vibration elicits 40 Hz cortical gamma oscillations and ameliorates age-related cognitive impairment through hippocampal astrocyte synapses in male rats. Biogerontology 2024; 26:11. [PMID: 39546054 PMCID: PMC11568021 DOI: 10.1007/s10522-024-10154-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
Age-related cognitive impairment is a prevalent issue in developed societies. Gamma oscil2lations at 40 Hz have been identified as a potential therapeutic approach for age-related cognitive decline and can be induced through various modalities, including auditory, visual, electrical, and magnetic stimulation. In this study, we investigated a novel modality of stimulation: whole-body vibration at 40 Hz. We examined the effects of 40 Hz vibration on cognitive performance and associated neuronal activity in the brains of aged male rats. Our findings revealed that only vibration at 40 Hz, rather than 20 Hz or 80 Hz, elicited cortical gamma oscillations in aged male rats. Additionally, following 8 weeks of prolonged treatment, the implementation of 40 Hz whole-body vibration significantly augmented the cognitive function of aged male rats as evidenced by behavioral assessments. Mechanistic studies demonstrated that these beneficial effects were attributed to the reduction of neuronal apoptosis in hippocampal CA1 through regulation of synaptic connections between astrocytes and neurons via 40 Hz gamma oscillations. Collectively, this suggests a promising intervention for age-related cognitive decline and identifies neuron-astrocyte synapses as potential therapeutic targets.
Collapse
Affiliation(s)
- Mingsong Liu
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541001, Guangxi, People's Republic of China
| | - Lei Li
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541001, Guangxi, People's Republic of China
| | - Ruizhe Chen
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541001, Guangxi, People's Republic of China
| | - Qilin Wang
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541001, Guangxi, People's Republic of China
| | - Tongfei Zeng
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541001, Guangxi, People's Republic of China
| | - Junhong Hu
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541001, Guangxi, People's Republic of China
| | - Changzhi Yan
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541001, Guangxi, People's Republic of China
| | - Jing Xiao
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541001, Guangxi, People's Republic of China
| | - Xuewei Xia
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541001, Guangxi, People's Republic of China.
| |
Collapse
|
20
|
Tang M, Guo JJ, Guo RX, Xu SJ, Lou Q, Hu QX, Li WY, Yu JB, Yao Q, Wang QW. Progress of research and application of non-pharmacologic intervention in Alzheimer's disease. J Alzheimers Dis 2024; 102:275-294. [PMID: 39573867 DOI: 10.1177/13872877241289396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease characterized by amyloid-β (Aβ) deposition and neurofibrillary tangles formed by high phosphorylation of tau protein. At present, drug therapy is the main strategy of AD treatment, but its effects are limited to delaying or alleviating AD. Recently, non-pharmacologic intervention has attracted more attention, and more studies have confirmed that non-pharmacologic intervention in AD can improve the patient's cognitive function and quality of life. This paper summarizes the current non-pharmacologic intervention in AD, to provide useful supplementary means for AD intervention.
Collapse
Affiliation(s)
- Min Tang
- Ningbo Rehabilitation Hospital, Ningbo, Zhejiang, China
| | - Jie-Jie Guo
- The First People's Hospital of Wenling, Taizhou, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Rong-Xia Guo
- School of Teacher Education, Ningbo University, Ningbo, Zhejiang, China
| | - Shu-Jun Xu
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Qiong Lou
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Qiao-Xia Hu
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Wan-Yi Li
- Ningbo Rehabilitation Hospital, Ningbo, Zhejiang, China
| | - Jing-Bo Yu
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Qi Yao
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Qin-Wen Wang
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
21
|
Benussi A, Cantoni V, Rivolta J, Zoppi N, Cotelli MS, Bianchi M, Cotelli M, Borroni B. Alpha tACS Improves Cognition and Modulates Neurotransmission in Dementia with Lewy Bodies. Mov Disord 2024; 39:1993-2003. [PMID: 39136447 DOI: 10.1002/mds.29969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Dementia with Lewy bodies (DLB) is characterized by a marked shift of electroencephalographic (EEG) power and dominant rhythm, from the α toward the θ frequency range. Transcranial alternate current stimulation (tACS) is a non-invasive brain stimulation technique that allows entrainment of cerebral oscillations at desired frequencies. OBJECTIVES Our goal is to evaluate the effects of occipital α-tACS on cognitive functions and neurophysiological measures in patients with DLB. METHODS We conducted a double-blind, randomized, sham-controlled, cross-over clinical trial in 14 participants with DLB. Participants were randomized to receive either α-tACS (60 minutes of 3 mA peak-to-peak stimulation at 12 Hz) or sham stimulation applied over the occipital cortex. Clinical evaluations were performed to assess visuospatial and executive functions, as well as verbal episodic memory. Neurophysiological assessments and EEG recordings were conducted at baseline and following both α-tACS and sham stimulations. RESULTS Occipital α-tACS was safe and well-tolerated. We observed a significant enhancement in visuospatial abilities and executive functions, but no improvement in verbal episodic memory. We observed an increase in short latency afferent inhibition, a neurophysiological marker indirectly and partially dependent on cholinergic transmission, coinciding with an increase in α power and a decrease in Δ power following α-tACS stimulation, effects not seen with sham stimulation. CONCLUSIONS This study demonstrates that occipital α-tACS is safe and enhances visuospatial and executive functions in patients with DLB. Improvements in indirect markers of cholinergic transmission and EEG changes indicate significant neurophysiological engagement. These findings justify further exploration of α-tACS as a therapeutic option for DLB patients. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Alberto Benussi
- Neurology Unit, Department of Medical, Surgical, and Health Sciences, University of Trieste, Trieste, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Valentina Cantoni
- Cognitive and Behavioural Neurology Unit, Department of Continuity of Care and Frailty, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Jasmine Rivolta
- Cognitive and Behavioural Neurology Unit, Department of Continuity of Care and Frailty, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Nicola Zoppi
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Department of Neurology, San Jacopo Hospital, Pistoia, Italy
| | - Maria Sofia Cotelli
- Cognitive and Behavioural Neurology Unit, Department of Continuity of Care and Frailty, ASST Spedali Civili di Brescia, Brescia, Italy
- Neurology Unit, Valle Camonica Hospital, Brescia, Italy
| | - Marta Bianchi
- Neurology Unit, Valle Camonica Hospital, Brescia, Italy
| | - Maria Cotelli
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Barbara Borroni
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Cognitive and Behavioural Neurology Unit, Department of Continuity of Care and Frailty, ASST Spedali Civili di Brescia, Brescia, Italy
| |
Collapse
|
22
|
Zhang X, Lv R, Sun Y, Liu TCY. The safety and effectiveness of 40 Hz γ-tACS in Alzheimer's disease: A meta-analysis. J Alzheimers Dis 2024; 102:295-307. [PMID: 39573866 DOI: 10.1177/13872877241289397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
BACKGROUND The efficacy and safety of 40 Hz gamma transcranial alternating current stimulation (γ-tACS) in Alzheimer's disease (AD) are still uncertain. OBJECTIVE This meta-analysis was conducted to investigate the therapeutic potential and safety of 40 Hz γ-tACS for AD. METHODS The meta-analysis was conducted by systematically searching four databases from their start to 28 December 2023. Subgroup analyses were performed to identify the intervention effects of γ-tACS. RESULTS Of the 7 included studies, γ-tACS has a notable impact on improving overall cognition [standardized mean difference (SMD): 0.49, 95% CI: 0.09 to 0.89], memory (SMD: 0.79, 95% CI: 0.18 to 1.41), and cholinergic transmission (weighted mean difference: -0.40, 95% CI: -0.43 to -0.37). Furthermore, subgroup analysis revealed that γ-tACS treatment had a substantial impact on enhancing memory targeting the left angular gyrus in both home (SMD: 3.12, 95% CI: 1.54 to 4.70) and non-home settings (SMD: 0.53, 95% CI: 0.24 to 0.82). However, γ-tACS had a positive effect on overall cognition in non-home settings (SMD: 0.55, 95% CI 0.11 to 0.98), but not in home settings (SMD: 0.22, 95% CI -0.76 to 1.20). Additionally, targeting temporo-frontal or bitemporal γ-tACS treatment resulted in improvement in overall cognition (SMD: 0.61, 95% CI: 0.06 to 1.16), but not targeting the left angular gyrus (SMD: 0.22, 95% CI: -0.76 to 1.20). CONCLUSIONS γ-tACS could be beneficial in enhancing cognition, memory and restoring cholinergic dysfunction in AD. The different selection of stimulation sites plays distinct roles. Meanwhile, AD patients are recommended to receive γ-tACS treatment at home.
Collapse
Affiliation(s)
- Xinyang Zhang
- Laboratory of Laser Sports Medicine, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Renhua Lv
- Department of rehabilitation, Xiangtan Central Hospital, Xiangtan, China
| | - Yanqiu Sun
- Department of Rehabilitation, Guangdong Province Women and Children Hospital, Guangzhou, China
| | - Timon Cheng-Yi Liu
- Laboratory of Laser Sports Medicine, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| |
Collapse
|
23
|
Fu Y, Yao L, Wang W, Ou J, Yang X, Chen Q, Fan H, Lu F, Song J, Li Y, Subramaniam P, Singh DKA. Transcranial alternating current stimulation for older adults with cognitive impairment: A bibliometric and knowledge map analysis. Medicine (Baltimore) 2024; 103:e39304. [PMID: 39331872 PMCID: PMC11441954 DOI: 10.1097/md.0000000000039304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/25/2024] [Indexed: 09/29/2024] Open
Abstract
As the population ages, cognitive impairment leading to dementia and related disorders presents an increasingly significant societal burden. Transcranial alternating current stimulation emerges as a potential noninvasive treatment, yet remains an area of ongoing research. Using the Science Citation Index Expanded within the Web of Science Core Collection database, we identified 144 relevant articles spanning from 1965 to December 1st, 2023. Analyzing these papers with tools like 6.2.R5Citespace and 1.6.20VOS viewer revealed gamma frequency as the predominant stimulus (32), followed by theta (19), alpha (11), delta (2), beta (3), and others (32). This topic was relatively novel, showing an upward trend, albeit with gaps in some countries. Significant contributions were observed, particularly from authors in the USA, Germany, and Italy. Brain connectivity and oscillation stood out as the primary research subjects, with electroencephalography being the most widely used tool to detect underlying mechanisms. Our findings suggest promising applications of transcranial alternating current stimulation, particularly 40 Hz-gamma, in cognitive impairment among older adults, highlighting the need for further investigation using multimodal cognitive assessment tools and rigorous clinical research.
Collapse
Affiliation(s)
- Yutong Fu
- Center for Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Liqing Yao
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Wenli Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Jibing Ou
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Xue Yang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Qian Chen
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Hong Fan
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Fang Lu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Jin Song
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Yanmei Li
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Ponnusamy Subramaniam
- Center for Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Devinder Kaur Ajit Singh
- Center for Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
24
|
Tang Y, Xing Y, Sun L, Wang Z, Wang C, Yang K, Zhu W, Shi X, Xie B, Yin Y, Mi Y, Wei T, Tong R, Qiao Y, Yan S, Wei P, Yang Y, Shan Y, Zhang X, Jia J, Teipel SJ, Howard R, Lu J, Li C, Zhao G. TRanscranial AlterNating current stimulation FOR patients with mild Alzheimer's Disease (TRANSFORM-AD): a randomized controlled clinical trial. Alzheimers Res Ther 2024; 16:203. [PMID: 39267112 PMCID: PMC11395938 DOI: 10.1186/s13195-024-01570-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND The mechanistic effects of gamma transcranial alternating current stimulation (tACS) on hippocampal gamma oscillation activity in Alzheimer's Disease (AD) remains unclear. This study aimed to clarify beneficial effects of gamma tACS on cognitive functioning in AD and to elucidate effects on hippocampal gamma oscillation activity. METHODS This is a double-blind, randomized controlled single-center trial. Participants with mild AD were randomized to tACS group or sham group, and underwent 30 one-hour sessions of either 40 Hz tACS or sham stimulation over consecutive 15 days. Cognitive functioning, structural magnetic resonance imaging (MRI), and simultaneous electroencephalography-functional MRI (EEG-fMRI) were evaluated at baseline, the end of the intervention and at 3-month follow-up from the randomization. RESULTS A total of 46 patients were enrolled (23 in the tACS group, 23 in the sham group). There were no group differences in the change of the primary outcome, 11-item cognitive subscale of the Alzheimer's Disease Assessment Scale (ADAS-Cog) score after intervention (group*time, p = 0.449). For secondary outcomes, compared to the control group, the intervention group showed significant improvement in MMSE (group*time, p = 0.041) and MoCA scores (non-parametric test, p = 0.025), which were not sustained at 3-month follow-up. We found an enhancement of theta-gamma coupling in the hippocampus, which was positively correlated with improvements of MMSE score and delayed recall. Additionally, fMRI revealed increase of the local neural activity in the hippocampus. CONCLUSION Effects on the enhancement of theta-gamma coupling and neural activity within the hippocampus suggest mechanistic models for potential therapeutic mechanisms of tACS. TRIAL REGISTRATION ClinicalTrials.gov, NCT03920826; Registration Date: 2019-04-19.
Collapse
Affiliation(s)
- Yi Tang
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China.
| | - Yi Xing
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Liwei Sun
- School of Biomedical Engineering, Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Zhibin Wang
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Changming Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Kun Yang
- The National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wei Zhu
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Xinrui Shi
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Beijia Xie
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Yunsi Yin
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Yingxin Mi
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Tao Wei
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Renjie Tong
- School of Biomedical Engineering, Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Yuchen Qiao
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Shaozhen Yan
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Penghu Wei
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yanfeng Yang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yongzhi Shan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xu Zhang
- School of Biomedical Engineering, Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Jianping Jia
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Stefan J Teipel
- Department of Psychosomatic Medicine, University Medicine Rostock & Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Rostock, Germany
| | - Robert Howard
- Division of Psychiatry, University College London, London, UK
| | - Jie Lu
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Chunlin Li
- School of Biomedical Engineering, Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China.
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
25
|
Gholamali Nezhad F, Martin J, Tassone VK, Swiderski A, Demchenko I, Khan S, Chaudhry HE, Palmisano A, Santarnecchi E, Bhat V. Transcranial alternating current stimulation for neuropsychiatric disorders: a systematic review of treatment parameters and outcomes. Front Psychiatry 2024; 15:1419243. [PMID: 39211537 PMCID: PMC11360874 DOI: 10.3389/fpsyt.2024.1419243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024] Open
Abstract
Background Transcranial alternating current stimulation (tACS) alters cortical excitability with low-intensity alternating current and thereby modulates aberrant brain oscillations. Despite the recent increase in studies investigating the feasibility and efficacy of tACS in treating neuropsychiatric disorders, its mechanisms, as well as optimal stimulation parameters, are not fully understood. Objectives This systematic review aimed to compile human research on tACS for neuropsychiatric disorders to delineate typical treatment parameters for these conditions and evaluate its outcomes. Methods A search for published studies and unpublished registered clinical trials was conducted through OVID (MEDLINE, PsycINFO, and Embase), ClinicalTrials.gov, and the International Clinical Trials Registry Platform. Studies utilizing tACS to treat neuropsychiatric disorders in a clinical trial setting were included. Results In total, 783 published studies and 373 clinical trials were screened; 53 published studies and 70 clinical trials were included. Published studies demonstrated a low risk of bias, as assessed by the Joanna Briggs Institute Critical Appraisal Tools. Neurocognitive, psychotic, and depressive disorders were the most common disorders treated with tACS. Both published studies (58.5%) and registered clinical trials (52%) most commonly utilized gamma frequency bands and tACS was typically administered at an intensity of 2 mA peak-to-peak, once daily for 20 or fewer sessions. Although the targeted brain locations and tACS montages varied across studies based on the outcome measures and specific pathophysiology of the disorders, the dorsolateral prefrontal cortex (DLPFC) was the most common target in both published studies (30.2%) and registered clinical trials (25.6%). Across studies that published results on tACS outcome measures, tACS resulted in enhanced symptoms and/or improvements in overall psychopathology for neurocognitive (all 11 studies), psychotic (11 out of 14 studies), and depressive (7 out of 8 studies) disorders. Additionally, 17 studies reported alterations in the power spectrum of the electroencephalogram around the entrained frequency band at the targeted locations following tACS. Conclusion Behavioral and cognitive symptoms have been positively impacted by tACS. The most consistent changes were reported in cognitive symptoms following gamma-tACS over the DLPFC. However, the paucity of neuroimaging studies for each neuropsychiatric condition highlights the necessity for replication studies employing biomarker- and mechanism-centric approaches.
Collapse
Affiliation(s)
- Fatemeh Gholamali Nezhad
- Interventional Psychiatry Program, St. Michael’s Hospital - Unity Health Toronto, Toronto, ON, Canada
| | - Josh Martin
- Interventional Psychiatry Program, St. Michael’s Hospital - Unity Health Toronto, Toronto, ON, Canada
| | - Vanessa K. Tassone
- Interventional Psychiatry Program, St. Michael’s Hospital - Unity Health Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Alyssa Swiderski
- Interventional Psychiatry Program, St. Michael’s Hospital - Unity Health Toronto, Toronto, ON, Canada
| | - Ilya Demchenko
- Interventional Psychiatry Program, St. Michael’s Hospital - Unity Health Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, Science, and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael’s Hospital - Unity Health Toronto, Toronto, ON, Canada
| | - Somieya Khan
- Interventional Psychiatry Program, St. Michael’s Hospital - Unity Health Toronto, Toronto, ON, Canada
| | - Hamzah E. Chaudhry
- Interventional Psychiatry Program, St. Michael’s Hospital - Unity Health Toronto, Toronto, ON, Canada
| | - Annalisa Palmisano
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Chair of Lifespan Developmental Neuroscience, TUD Dresden University of Technology, Dresden, Germany
| | - Emiliano Santarnecchi
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Venkat Bhat
- Interventional Psychiatry Program, St. Michael’s Hospital - Unity Health Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, Science, and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael’s Hospital - Unity Health Toronto, Toronto, ON, Canada
- Neuroscience Research Program, St. Michael’s Hospital - Unity Health Toronto, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
26
|
Sengupta A, Banerjee S, Ganesh S, Grover S, Sridharan D. The right posterior parietal cortex mediates spatial reorienting of attentional choice bias. Nat Commun 2024; 15:6938. [PMID: 39138185 PMCID: PMC11322534 DOI: 10.1038/s41467-024-51283-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
Attention facilitates behavior by enhancing perceptual sensitivity (sensory processing) and choice bias (decisional weighting) for attended information. Whether distinct neural substrates mediate these distinct components of attention remains unknown. We investigate the causal role of key nodes of the right posterior parietal cortex (rPPC) in the forebrain attention network in sensitivity versus bias control. Two groups of participants performed a cued attention task while we applied either inhibitory, repetitive transcranial magnetic stimulation (n = 28) or 40 Hz transcranial alternating current stimulation (n = 26) to the dorsal rPPC. We show that rPPC stimulation - with either modality - impairs task performance by selectively altering attentional modulation of bias but not sensitivity. Specifically, participants' bias toward the uncued, but not the cued, location reduced significantly following rPPC stimulation - an effect that was consistent across both neurostimulation cohorts. In sum, the dorsal rPPC causally mediates the reorienting of choice bias, one particular component of visual spatial attention.
Collapse
Affiliation(s)
- Ankita Sengupta
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
| | - Sanjna Banerjee
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
- Foundation of Art and Health India, Bangalore, 560066, India
| | - Suhas Ganesh
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
- Verily Life Sciences, San Francisco, CA, 94080, USA
| | - Shrey Grover
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, 02215, USA
| | - Devarajan Sridharan
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India.
- Department of Computer Science and Automation, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
27
|
Wu CF, Shen C, Wang ZD, Gong Y, Zhou LH, Qian WJ, Tang T. A bibliometric analysis of transcranial alternating current stimulation. Front Neurosci 2024; 18:1409492. [PMID: 39156631 PMCID: PMC11328521 DOI: 10.3389/fnins.2024.1409492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/04/2024] [Indexed: 08/20/2024] Open
Abstract
Background Transcranial alternating current stimulation (tACS) can apply currents of varying intensity to the scalp, modulating cortical excitability and brain activity. tACS is a relatively new neuromodulation intervention that is now widely used in clinical practice. Many papers related to tACS have been published in various journals. However, there are no articles that objectively and directly introduce the development trend and research hotspots of tACS. Therefore, the aim of this study is to use CiteSpace to visually analyze the recent tACS-related publications, systematically and in detail summarize the current research hotspots and trends in this field, and provide valuable information for future tACS-related research. Material and methods The database Web of Science Core Collection Science Citation Index Expanded was used and searched from build to 4 August 2023. Using the CiteSpace to analyze the authors, institutions, countries, keywords, co-cited authors, journals, and references. Results A total of 677 papers were obtained. From 2008 to 2023, the number of publications shows an increasing trend, albeit with some fluctuations. The most productive country in this field was Germany. The institution with the highest number of publications is Carl von Ossietzky University of Oldenburg (n = 50). According to Bradford's law, 7 journals are considered core journals in the field. Herrmann, CS was the author with the most publications (n = 40), while Antal, A was the author with the highest number of co-citations (n = 391) and betweenness centrality (n = 0.16). Disease, neural mechanisms of the brain and electric stimulation are the major research areas in the field. The effect of tACS in different diseases, multi-site stimulation, combined treatment and evaluation are the future research hotspots and trends. Conclusion tACS has research value and research potential, and more and more researchers are paying attention to it. The findings of this bibliometric study provide the current status and trends in the clinical research of tACS and may help researchers to identify hotspots s and explore new research directions in this field.
Collapse
Affiliation(s)
- Cheng-Fan Wu
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Chao Shen
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Zhao-Di Wang
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yan Gong
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Lu-Han Zhou
- The Fourth Rehabilitation Hospital of Shanghai, Shanghai, China
| | - Wen-Jun Qian
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Tong Tang
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
28
|
Petro NM, Webert LK, Springer SD, Okelberry HJ, John JA, Horne LK, Glesinger R, Rempe MP, Wilson TW. Optimal gamma-band entrainment of visual cortex. Hum Brain Mapp 2024; 45:e26775. [PMID: 38970249 PMCID: PMC11226544 DOI: 10.1002/hbm.26775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 07/08/2024] Open
Abstract
Visual entrainment is a powerful and widely used research tool to study visual information processing in the brain. While many entrainment studies have focused on frequencies around 14-16 Hz, there is renewed interest in understanding visual entrainment at higher frequencies (e.g., gamma-band entrainment). Notably, recent groundbreaking studies have demonstrated that gamma-band visual entrainment at 40 Hz may have therapeutic effects in the context of Alzheimer's disease (AD) by stimulating specific neural ensembles, which utilize GABAergic signaling. Despite such promising findings, few studies have investigated the optimal parameters for gamma-band visual entrainment. Herein, we examined whether visual stimulation at 32, 40, or 48 Hz produces optimal visual entrainment responses using high-density magnetoencephalography (MEG). Our results indicated strong entrainment responses localizing to the primary visual cortex in each condition. Entrainment responses were stronger for 32 and 40 Hz relative to 48 Hz, indicating more robust synchronization of neural ensembles at these lower gamma-band frequencies. In addition, 32 and 40 Hz entrainment responses showed typical patterns of habituation across trials, but this effect was absent for 48 Hz. Finally, connectivity between visual cortex and parietal and prefrontal cortices tended to be strongest for 40 relative to 32 and 48 Hz entrainment. These results suggest that neural ensembles in the visual cortex may resonate at around 32 and 40 Hz and thus entrain more readily to photic stimulation at these frequencies. Emerging AD therapies, which have focused on 40 Hz entrainment to date, may be more effective at lower relative to higher gamma frequencies, although additional work in clinical populations is needed to confirm these findings. PRACTITIONER POINTS: Gamma-band visual entrainment has emerged as a therapeutic approach for eliminating amyloid in Alzheimer's disease, but its optimal parameters are unknown. We found stronger entrainment at 32 and 40 Hz compared to 48 Hz, suggesting neural ensembles prefer to resonate around these relatively lower gamma-band frequencies. These findings may inform the development and refinement of innovative AD therapies and the study of GABAergic visual cortical functions.
Collapse
Affiliation(s)
- Nathan M. Petro
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Lauren K. Webert
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Seth D. Springer
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- College of MedicineUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Hannah J. Okelberry
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Jason A. John
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Lucy K. Horne
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Ryan Glesinger
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Maggie P. Rempe
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- College of MedicineUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Tony W. Wilson
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- College of MedicineUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
- Department of Pharmacology and NeuroscienceCreighton UniversityOmahaNebraskaUSA
| |
Collapse
|
29
|
De Paolis ML, Paoletti I, Zaccone C, Capone F, D'Amelio M, Krashia P. Transcranial alternating current stimulation (tACS) at gamma frequency: an up-and-coming tool to modify the progression of Alzheimer's Disease. Transl Neurodegener 2024; 13:33. [PMID: 38926897 PMCID: PMC11210106 DOI: 10.1186/s40035-024-00423-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
The last decades have witnessed huge efforts devoted to deciphering the pathological mechanisms underlying Alzheimer's Disease (AD) and to testing new drugs, with the recent FDA approval of two anti-amyloid monoclonal antibodies for AD treatment. Beyond these drug-based experimentations, a number of pre-clinical and clinical trials are exploring the benefits of alternative treatments, such as non-invasive stimulation techniques on AD neuropathology and symptoms. Among the different non-invasive brain stimulation approaches, transcranial alternating current stimulation (tACS) is gaining particular attention due to its ability to externally control gamma oscillations. Here, we outline the current knowledge concerning the clinical efficacy, safety, ease-of-use and cost-effectiveness of tACS on early and advanced AD, applied specifically at 40 Hz frequency, and also summarise pre-clinical results on validated models of AD and ongoing patient-centred trials.
Collapse
Affiliation(s)
- Maria Luisa De Paolis
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
| | - Ilaria Paoletti
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
| | - Claudio Zaccone
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
| | - Fioravante Capone
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 - 00128, Rome, Italy
| | - Marcello D'Amelio
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy.
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso Di Fiorano, 64 - 00143, Rome, Italy.
| | - Paraskevi Krashia
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso Di Fiorano, 64 - 00143, Rome, Italy
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
| |
Collapse
|
30
|
Biačková N, Adamová A, Klírová M. Transcranial alternating current stimulation in affecting cognitive impairment in psychiatric disorders: a review. Eur Arch Psychiatry Clin Neurosci 2024; 274:803-826. [PMID: 37682331 PMCID: PMC11127835 DOI: 10.1007/s00406-023-01687-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023]
Abstract
Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation method that, through its manipulation of endogenous oscillations, can affect cognition in healthy adults. Given the fact that both endogenous oscillations and cognition are impaired in various psychiatric diagnoses, tACS might represent a suitable intervention. We conducted a search of Pubmed and Web of Science databases and reviewed 27 studies where tACS is used in psychiatric diagnoses and cognition change is evaluated. TACS is a safe and well-tolerated intervention method, suitable for multiple-sessions protocols. It can be administered at home, individualized according to the patient''s anatomical and functional characteristics, or used as a marker of disease progression. The results are varying across diagnoses and applied protocols, with some protocols showing a long-term effect. However, the overall number of studies is small with a great variety of diagnoses and tACS parameters, such as electrode montage or used frequency. Precise mechanisms of tACS interaction with pathophysiological processes are only partially described and need further research. Currently, tACS seems to be a feasible method to alleviate cognitive impairment in psychiatric patients; however, a more robust confirmation of efficacy of potential protocols is needed to introduce it into clinical practise.
Collapse
Affiliation(s)
- Nina Biačková
- Neurostimulation Department, National Institute of Mental Health, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Andrea Adamová
- Neurostimulation Department, National Institute of Mental Health, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Monika Klírová
- Neurostimulation Department, National Institute of Mental Health, Klecany, Czech Republic.
- Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
31
|
Palmisano A, Pandit S, Smeralda CL, Demchenko I, Rossi S, Battelli L, Rivolta D, Bhat V, Santarnecchi E. The Pathophysiological Underpinnings of Gamma-Band Alterations in Psychiatric Disorders. Life (Basel) 2024; 14:578. [PMID: 38792599 PMCID: PMC11122172 DOI: 10.3390/life14050578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 05/26/2024] Open
Abstract
Investigating the biophysiological substrates of psychiatric illnesses is of great interest to our understanding of disorders' etiology, the identification of reliable biomarkers, and potential new therapeutic avenues. Schizophrenia represents a consolidated model of γ alterations arising from the aberrant activity of parvalbumin-positive GABAergic interneurons, whose dysfunction is associated with perineuronal net impairment and neuroinflammation. This model of pathogenesis is supported by molecular, cellular, and functional evidence. Proof for alterations of γ oscillations and their underlying mechanisms has also been reported in bipolar disorder and represents an emerging topic for major depressive disorder. Although evidence from animal models needs to be further elucidated in humans, the pathophysiology of γ-band alteration represents a common denominator for different neuropsychiatric disorders. The purpose of this narrative review is to outline a framework of converging results in psychiatric conditions characterized by γ abnormality, from neurochemical dysfunction to alterations in brain rhythms.
Collapse
Affiliation(s)
- Annalisa Palmisano
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, TUD Dresden University of Technology, 01069 Dresden, Germany
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA (E.S.)
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Siddhartha Pandit
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA (E.S.)
| | - Carmelo L. Smeralda
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA (E.S.)
- Siena Brain Investigation and Neuromodulation (SI-BIN) Laboratory, Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, 53100 Siena, Italy;
| | - Ilya Demchenko
- Interventional Psychiatry Program, St. Michael’s Hospital—Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (I.D.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Simone Rossi
- Siena Brain Investigation and Neuromodulation (SI-BIN) Laboratory, Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, 53100 Siena, Italy;
| | - Lorella Battelli
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
| | - Davide Rivolta
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Venkat Bhat
- Interventional Psychiatry Program, St. Michael’s Hospital—Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (I.D.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Emiliano Santarnecchi
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA (E.S.)
- Department of Neurology and Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
32
|
Davidson B, Vetkas A, Germann J, Tang-Wai D, Lozano AM. Deep brain stimulation for Alzheimer's disease - current status and next steps. Expert Rev Med Devices 2024; 21:285-292. [PMID: 38573133 DOI: 10.1080/17434440.2024.2337298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) requires novel therapeutic approaches due to limited efficacy of current treatments. AREAS COVERED This article explores AD as a manifestation of neurocircuit dysfunction and evaluates deep brain stimulation (DBS) as a potential intervention. Focusing on fornix-targeted stimulation (DBS-f), the article summarizes safety, feasibility, and outcomes observed in phase 1/2 trials, highlighting findings such as cognitive improvement, increased metabolism, and hippocampal growth. Topics for further study include optimization of electrode placement, and the role of stimulation-induced autobiographical-recall. Nucleus basalis of Meynert (DBS-NBM) DBS is also discussed and compared with DBS-f. Challenges with both DBS-f and DBS-NBM are identified, emphasizing the need for further research on optimal stimulation parameters. The article also reviews alternative DBS targets, including medial temporal lobe structures and the ventral capsule/ventral striatum. EXPERT OPINION Looking ahead, a phase-3 DBS-f trial, and the prospect of closed-loop stimulation using EEG-derived biomarkers or hippocampal theta activity are highlighted. Recent FDA-approved therapies and other neuromodulation techniques like temporal interference and low-intensity ultrasound are considered. The article concludes by underscoring the importance of imaging-based diagnosis and staging to allow for circuit-targeted therapies, given the heterogeneity of AD and varied stages of neurocircuit dysfunction.
Collapse
Affiliation(s)
- Benjamin Davidson
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - Artur Vetkas
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - Jürgen Germann
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
- Krembil Research Institute, Toronto, ON, Canada
| | - David Tang-Wai
- Krembil Research Institute, Toronto, ON, Canada
- Department of Neurology, Toronto Western Hospital, University Health Network, Toronto, University of Toronto, ON, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
- Krembil Research Institute, Toronto, ON, Canada
| |
Collapse
|
33
|
Libri I, Cantoni V, Benussi A, Rivolta J, Ferrari C, Fancellu R, Synofzik M, Alberici A, Padovani A, Borroni B. Comparing Cerebellar tDCS and Cerebellar tACS in Neurodegenerative Ataxias Using Wearable Sensors: A Randomized, Double-Blind, Sham-Controlled, Triple-Crossover Trial. CEREBELLUM (LONDON, ENGLAND) 2024; 23:570-578. [PMID: 37349632 PMCID: PMC10951038 DOI: 10.1007/s12311-023-01578-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
Cerebellar transcranial direct current stimulation (tDCS) represents a promising therapeutic approach for both motor and cognitive symptoms in neurodegenerative ataxias. Recently, transcranial alternating current stimulation (tACS) was also demonstrated to modulate cerebellar excitability by neuronal entrainment. To compare the effectiveness of cerebellar tDCS vs. cerebellar tACS in patients with neurodegenerative ataxia, we performed a double-blind, randomized, sham controlled, triple cross-over trial with cerebellar tDCS, cerebellar tACS or sham stimulation in twenty-six participants with neurodegenerative ataxia. Before entering the study, each participant underwent motor assessment with wearable sensors considering gait cadence (steps/minute), turn velocity (degrees/second) and turn duration (seconds), and a clinical evaluation with the scale for the Assessment and Rating of Ataxia (SARA) and the International Cooperative Ataxia Rating Scale (ICARS). After each intervention, participants underwent the same clinical assessment along with cerebellar inhibition (CBI) measurement, a marker of cerebellar activity. The gait cadence, turn velocity, SARA, and ICARS significantly improved after both tDCS and tACS, compared to sham stimulation (all p<0.010). Comparable effects were observed for CBI (p<0.001). Overall, tDCS significantly outperformed tACS on clinical scales and CBI (p<0.01). A significant correlation between changes of wearable sensors parameters from baseline and changes of clinical scales and CBI scores was detected. Cerebellar tDCS and cerebellar tACS are effective in ameliorating symptoms of neurodegenerative ataxias, with the former being more beneficial than the latter. Wearable sensors may serve as rater-unbiased outcome measures in future clinical trials. ClinicalTrial.gov Identifier: NCT05621200.
Collapse
Affiliation(s)
- Ilenia Libri
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Valentina Cantoni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili, Brescia, Italy
| | - Jasmine Rivolta
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili, Brescia, Italy
| | - Camilla Ferrari
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Roberto Fancellu
- UO Neurologia, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - Matthis Synofzik
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research and Centre of Neurology, Tübingen, Germany
- German Research Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Antonella Alberici
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili, Brescia, Italy
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili, Brescia, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili, Brescia, Italy.
| |
Collapse
|
34
|
Davidson B, Bhattacharya A, Sarica C, Darmani G, Raies N, Chen R, Lozano AM. Neuromodulation techniques - From non-invasive brain stimulation to deep brain stimulation. Neurotherapeutics 2024; 21:e00330. [PMID: 38340524 PMCID: PMC11103220 DOI: 10.1016/j.neurot.2024.e00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/14/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Over the past 30 years, the field of neuromodulation has witnessed remarkable advancements. These developments encompass a spectrum of techniques, both non-invasive and invasive, that possess the ability to both probe and influence the central nervous system. In many cases neuromodulation therapies have been adopted into standard care treatments. Transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and transcranial ultrasound stimulation (TUS) are the most common non-invasive methods in use today. Deep brain stimulation (DBS), spinal cord stimulation (SCS), and vagus nerve stimulation (VNS), are leading surgical methods for neuromodulation. Ongoing active clinical trials using are uncovering novel applications and paradigms for these interventions.
Collapse
Affiliation(s)
- Benjamin Davidson
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| | | | - Can Sarica
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada; Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Ghazaleh Darmani
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Nasem Raies
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Robert Chen
- Krembil Research Institute, University Health Network, Toronto, ON, Canada; Edmond J. Safra Program in Parkinson's Disease Morton and Gloria Shulman Movement Disorders Clinic, Division of Neurology, University of Toronto, Toronto, ON, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada; Krembil Research Institute, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
35
|
Oberman LM, Benussi A. Transcranial Magnetic Stimulation Across the Lifespan: Impact of Developmental and Degenerative Processes. Biol Psychiatry 2024; 95:581-591. [PMID: 37517703 PMCID: PMC10823041 DOI: 10.1016/j.biopsych.2023.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
Transcranial magnetic stimulation (TMS) has emerged as a pivotal noninvasive technique for investigating cortical excitability and plasticity across the lifespan, offering valuable insights into neurodevelopmental and neurodegenerative processes. In this review, we explore the impact of TMS applications on our understanding of normal development, healthy aging, neurodevelopmental disorders, and adult-onset neurodegenerative diseases. By presenting key developmental milestones and age-related changes in TMS measures, we provide a foundation for understanding the maturation of neurotransmitter systems and the trajectory of cognitive functions throughout the lifespan. Building on this foundation, the paper delves into the pathophysiology of neurodevelopmental disorders, including autism spectrum disorder, attention-deficit/hyperactivity disorder, Tourette syndrome, and adolescent depression. Highlighting recent findings on altered neurotransmitter circuits and dysfunctional cortical plasticity, we underscore the potential of TMS as a valuable tool for unraveling underlying mechanisms and informing future therapeutic interventions. We also review the emerging role of TMS in investigating and treating the most common adult-onset neurodegenerative disorders and late-onset depression. By outlining the therapeutic applications of noninvasive brain stimulation techniques in these disorders, we discuss the growing body of evidence supporting their use as therapeutic tools for symptom management and potentially slowing disease progression. The insights gained from TMS studies have advanced our understanding of the underlying mechanisms in both healthy and disease states, ultimately informing the development of more targeted diagnostic and therapeutic strategies for a wide range of neuropsychiatric conditions.
Collapse
Affiliation(s)
- Lindsay M Oberman
- National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, Maryland
| | - Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.
| |
Collapse
|
36
|
Zhu Y, Liao L, Gao S, Tao Y, Huang H, Fang X, Yuan C, Gao C. Neuroprotective effects of repetitive transcranial magnetic stimulation on Alzheimer's disease: Undetermined therapeutic protocols and mechanisms. NEUROPROTECTION 2024; 2:16-32. [DOI: 10.1002/nep3.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/24/2024] [Indexed: 01/03/2025]
Abstract
AbstractAlzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by gradual deterioration of cognitive functions, for which an effective treatment is currently unavailable. Repetitive transcranial magnetic stimulation (rTMS), a well‐established noninvasive brain stimulation method, is utilized in clinical settings to address various neuropsychiatric conditions, such as depression, neuropathic pain, and poststroke dysfunction. Increasing evidence suggests that rTMS may enhance cognitive abilities in individuals with AD. However, its optimal therapeutic protocols and precise mechanisms are currently unknown, impeding its clinical implementation. In the present review, we aimed to summarize and discuss the efficacy‐related parameters in rTMS treatment, encompassing stimulus frequency, stimulus pattern, stimulus intensity, and the configuration of the stimulus coil. Furthermore, we reviewed promising rTMS therapeutic protocols involving various combinations of these factors, that were examined in clinical studies. Based on our analysis, we propose that a multisite high‐frequency rTMS (HF‐rTMS) regimen has value in AD therapy, and that promising single‐site protocols, such as HF‐rTMS, applied over the left dorsolateral prefrontal cortex, precuneus, or cerebellum are required to be validated in larger clinical studies. Lastly, we provide a comprehensive review of the potential mechanisms underlying the neuroprotective effects of rTMS on cognition in AD in terms of brain network modulation as well as cellular and molecular reactions. In conclusion, the interaction of diverse mechanisms may be responsible for the total therapeutic effect of rTMS on AD. This review provides theoretical and practical evidence for the future clinical application and scientific research of rTMS in AD.
Collapse
Affiliation(s)
- Yang Zhu
- Department of Rehabilitation Medicine, Daping Hospital Army Medical University Chongqing China
| | - Lingyi Liao
- Department of Rehabilitation Medicine, Daping Hospital Army Medical University Chongqing China
| | - Shihao Gao
- Department of Rehabilitation Medicine, Daping Hospital Army Medical University Chongqing China
| | - Yong Tao
- Department of Rehabilitation Medicine, Daping Hospital Army Medical University Chongqing China
| | - Hao Huang
- Department of Rehabilitation Medicine, Daping Hospital Army Medical University Chongqing China
- Department of Rehabilitation Medicine General Hospital of Southern Theatre Command of PLA Guangzhou China
| | - Xiangqin Fang
- Department of Rehabilitation Medicine, Daping Hospital Army Medical University Chongqing China
| | - Changyan Yuan
- Department of Rehabilitation Medicine, Daping Hospital Army Medical University Chongqing China
| | - Changyue Gao
- Department of Rehabilitation Medicine, Daping Hospital Army Medical University Chongqing China
| |
Collapse
|
37
|
Manippa V, Palmisano A, Nitsche MA, Filardi M, Vilella D, Logroscino G, Rivolta D. Cognitive and Neuropathophysiological Outcomes of Gamma-tACS in Dementia: A Systematic Review. Neuropsychol Rev 2024; 34:338-361. [PMID: 36877327 PMCID: PMC10920470 DOI: 10.1007/s11065-023-09589-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 01/23/2023] [Indexed: 03/07/2023]
Abstract
Despite the numerous pharmacological interventions targeting dementia, no disease-modifying therapy is available, and the prognosis remains unfavorable. A promising perspective involves tackling high-frequency gamma-band (> 30 Hz) oscillations involved in hippocampal-mediated memory processes, which are impaired from the early stages of typical Alzheimer's Disease (AD). Particularly, the positive effects of gamma-band entrainment on mouse models of AD have prompted researchers to translate such findings into humans using transcranial alternating current stimulation (tACS), a methodology that allows the entrainment of endogenous cortical oscillations in a frequency-specific manner. This systematic review examines the state-of-the-art on the use of gamma-tACS in Mild Cognitive Impairment (MCI) and dementia patients to shed light on its feasibility, therapeutic impact, and clinical effectiveness. A systematic search from two databases yielded 499 records resulting in 10 included studies and a total of 273 patients. The results were arranged in single-session and multi-session protocols. Most of the studies demonstrated cognitive improvement following gamma-tACS, and some studies showed promising effects of gamma-tACS on neuropathological markers, suggesting the feasibility of gamma-tACS in these patients anyhow far from the strong evidence available for mouse models. Nonetheless, the small number of studies and their wide variability in terms of aims, parameters, and measures, make it difficult to draw firm conclusions. We discuss results and methodological limitations of the studies, proposing possible solutions and future avenues to improve research on the effects of gamma-tACS on dementia.
Collapse
Affiliation(s)
- Valerio Manippa
- Department of Education, Psychology and Communication, University of Bari "Aldo Moro", Bari, Italy.
| | - Annalisa Palmisano
- Department of Education, Psychology and Communication, University of Bari "Aldo Moro", Bari, Italy
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | - Marco Filardi
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro" at Pia Fondazione "Cardinale G. Panico", Tricase, Lecce, Italy
- Department of Basic Medicine, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Davide Vilella
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro" at Pia Fondazione "Cardinale G. Panico", Tricase, Lecce, Italy
| | - Giancarlo Logroscino
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro" at Pia Fondazione "Cardinale G. Panico", Tricase, Lecce, Italy
- Department of Basic Medicine, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Davide Rivolta
- Department of Education, Psychology and Communication, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
38
|
Diedrich L, Kolhoff HI, Chakalov I, Vékony T, Németh D, Antal A. Prefrontal theta-gamma transcranial alternating current stimulation improves non-declarative visuomotor learning in older adults. Sci Rep 2024; 14:4955. [PMID: 38418511 PMCID: PMC10901881 DOI: 10.1038/s41598-024-55125-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/20/2024] [Indexed: 03/01/2024] Open
Abstract
The rise in the global population of older adults underscores the significance to investigate age-related cognitive disorders and develop early treatment modalities. Previous research suggests that non-invasive transcranial Alternating Current Stimulation (tACS) can moderately improve cognitive decline in older adults. However, non-declarative cognition has received relatively less attention. This study investigates whether repeated (16-day) bilateral theta-gamma cross-frequency tACS targeting the Dorsolateral Prefrontal Cortex (DLPFC) enhances non-declarative memory. Computerized cognitive training was applied alongside stimulation to control for the state-of-the-brain. The Alternating Serial Reaction Time (ASRT) task was employed to assess non-declarative functions such as visuomotor skill and probabilistic sequence learning. Results from 35 participants aged 55-82 indicated that active tACS led to more substantial improvements in visuomotor skills immediately after treatment, which persisted 3 months later, compared to sham tACS. Treatment benefit was more pronounced in older adults of younger age and those with pre-existing cognitive decline. However, neither intervention group exhibited modulation of probabilistic sequence learning. These results suggest that repeated theta-gamma tACS can selectively improve distinct non-declarative cognitive aspects when targeting the DLPFC. Our findings highlight the therapeutic potential of tACS in addressing deficits in learning and retaining general skills, which could have a positive impact on the quality of life for cognitively impaired older individuals by preserving independence in daily activities.
Collapse
Affiliation(s)
- Lukas Diedrich
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.
| | - Hannah I Kolhoff
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Ivan Chakalov
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
| | - Teodóra Vékony
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, INSERM, CNRS, Université Claude Bernard Lyon 1, Bron, France
- Department of Education and Psychology, Faculty of Social Sciences, University of Atlántico Medio, Las Palmas de Gran Canaria, Spain
| | - Dezső Németh
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, INSERM, CNRS, Université Claude Bernard Lyon 1, Bron, France
- BML-NAP Research Group, Institute of Psychology, Eötvös Loránd University and Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Department of Education and Psychology, Faculty of Social Sciences, University of Atlántico Medio, Las Palmas de Gran Canaria, Spain
| | - Andrea Antal
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
39
|
Figueroa-Vargas A, Góngora B, Alonso MF, Ortega A, Soto-Fernández P, Z-Rivera L, Ramírez S, González F, Muñoz Venturelli P, Billeke P. The effect of a cognitive training therapy based on stimulation of brain oscillations in patients with mild cognitive impairment in a Chilean sample: study protocol for a phase IIb, 2 × 3 mixed factorial, double-blind randomised controlled trial. Trials 2024; 25:144. [PMID: 38395980 PMCID: PMC10885461 DOI: 10.1186/s13063-024-07972-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND The ageing population has increased the prevalence of disabling and high-cost diseases, such as dementia and mild cognitive impairment (MCI). The latter can be considered a prodromal phase of some dementias and a critical stage for interventions to postpone the impairment of functionality. Working memory (WM) is a pivotal cognitive function, representing the fundamental element of executive functions. This project proposes an intervention protocol to enhance WM in these users, combining cognitive training with transcranial electrical stimulation of alternating current (tACS). This technique has been suggested to enhance the neuronal plasticity needed for cognitive processes involving oscillatory patterns. WM stands to benefit significantly from this approach, given its well-defined electrophysiological oscillations. Therefore, tACS could potentially boost WM in patients with neurodegenerative diseases. METHODS This study is a phase IIb randomised, double-blind clinical trial with a 3-month follow-up period. The study participants will be 62 participants diagnosed with MCI, aged over 60, from Valparaíso, Chile. Participants will receive an intervention combining twelve cognitive training sessions with tACS. Participants will receive either tACS or placebo stimulation in eight out of twelve training sessions. Sessions will occur twice weekly over 6 weeks. The primary outcomes will be electroencephalographic measurements through the prefrontal theta oscillatory activity, while the secondary effects will be cognitive assessments of WM. The participants will be evaluated before, immediately after, and 3 months after the end of the intervention. DISCUSSION The outcomes of this trial will add empirical evidence about the benefits and feasibility of an intervention that combines cognitive training with non-invasive brain stimulation. The objective is to contribute tools for optimal cognitive treatment in patients with MCI. To enhance WM capacity, postpone the impairment of functionality, and obtain a better quality of life. TRIAL REGISTRATION ClinicalTrials.gov NCT05291208. Registered on 28 February 2022. ISRCTN87597719 retrospectively registered on 15 September 2023.
Collapse
Affiliation(s)
- Alejandra Figueroa-Vargas
- Laboratorio de Neurociencia Social y Neuromodulación del Centro de Investigación en Complejidad Social (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
- Laboratorio LaNCE, Centro Interdisciplinario de Neurociencia, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Begoña Góngora
- Centro de Investigación del Desarrollo en Cognición y Lenguaje (CIDCL), Universidad de Valparaíso, Valparaíso, Chile.
| | - María Francisca Alonso
- Centro de Investigación del Desarrollo en Cognición y Lenguaje (CIDCL), Universidad de Valparaíso, Valparaíso, Chile
| | - Alonso Ortega
- Centro de Investigación del Desarrollo en Cognición y Lenguaje (CIDCL), Universidad de Valparaíso, Valparaíso, Chile
| | - Patricio Soto-Fernández
- Centro de Investigación del Desarrollo en Cognición y Lenguaje (CIDCL), Universidad de Valparaíso, Valparaíso, Chile
| | - Lucía Z-Rivera
- Centro de Investigación del Desarrollo en Cognición y Lenguaje (CIDCL), Universidad de Valparaíso, Valparaíso, Chile
| | - Sebastián Ramírez
- Centro de Investigación del Desarrollo en Cognición y Lenguaje (CIDCL), Universidad de Valparaíso, Valparaíso, Chile
| | - Francisca González
- Centro de Estudios Clínicos, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Paula Muñoz Venturelli
- Centro de Estudios Clínicos, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Pablo Billeke
- Laboratorio de Neurociencia Social y Neuromodulación del Centro de Investigación en Complejidad Social (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile.
| |
Collapse
|
40
|
Blanco-Duque C, Chan D, Kahn MC, Murdock MH, Tsai LH. Audiovisual gamma stimulation for the treatment of neurodegeneration. J Intern Med 2024; 295:146-170. [PMID: 38115692 PMCID: PMC10842797 DOI: 10.1111/joim.13755] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Alzheimer's disease (AD) is the most common type of neurodegenerative disease and a health challenge with major social and economic consequences. In this review, we discuss the therapeutic potential of gamma stimulation in treating AD and delve into the possible mechanisms responsible for its positive effects. Recent studies reveal that it is feasible and safe to induce 40 Hz brain activity in AD patients through a range of 40 Hz multisensory and noninvasive electrical or magnetic stimulation methods. Although research into the clinical potential of these interventions is still in its nascent stages, these studies suggest that 40 Hz stimulation can yield beneficial effects on brain function, disease pathology, and cognitive function in individuals with AD. Specifically, we discuss studies involving 40 Hz light, auditory, and vibrotactile stimulation, as well as noninvasive techniques such as transcranial alternating current stimulation and transcranial magnetic stimulation. The precise mechanisms underpinning the beneficial effects of gamma stimulation in AD are not yet fully elucidated, but preclinical studies have provided relevant insights. We discuss preclinical evidence related to both neuronal and nonneuronal mechanisms that may be involved, touching upon the relevance of interneurons, neuropeptides, and specific synaptic mechanisms in translating gamma stimulation into widespread neuronal activity within the brain. We also explore the roles of microglia, astrocytes, and the vasculature in mediating the beneficial effects of gamma stimulation on brain function. Lastly, we examine upcoming clinical trials and contemplate the potential future applications of gamma stimulation in the management of neurodegenerative disorders.
Collapse
Affiliation(s)
- Cristina Blanco-Duque
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Diane Chan
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Martin C Kahn
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Mitchell H Murdock
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
41
|
Lai MH, Yu XM, Lu Y, Wang HL, Fu W, Zhou HX, Li YL, Hu J, Xia J, Hu Z, Shan CL, Wang F, Wang C. Effectiveness and brain mechanism of multi-target transcranial alternating current stimulation (tACS) on motor learning in stroke patients: study protocol for a randomized controlled trial. Trials 2024; 25:97. [PMID: 38291500 PMCID: PMC10826150 DOI: 10.1186/s13063-024-07913-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/05/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Transcranial alternating current stimulation (tACS) has proven to be an effective treatment for improving cognition, a crucial factor in motor learning. However, current studies are predominantly focused on the motor cortex, and the potential brain mechanisms responsible for the therapeutic effects are still unclear. Given the interconnected nature of motor learning within the brain network, we have proposed a novel approach known as multi-target tACS. This study aims to ascertain whether multi-target tACS is more effective than single-target stimulation in stroke patients and to further explore the potential underlying brain mechanisms by using techniques such as transcranial magnetic stimulation (TMS) and magnetic resonance imaging (MRI). METHODS This study employs a double-blind, sham-controlled, randomized controlled trial design with a 2-week intervention period. Both participants and outcome assessors will remain unaware of treatment allocation throughout the study. Thirty-nine stroke patients will be recruited and randomized into three distinct groups, including the sham tACS group (SS group), the single-target tACS group (ST group), and the multi-target tACS group (MT group), at a 1:1:1 ratio. The primary outcomes are series reaction time tests (SRTTs) combined with electroencephalograms (EEGs). The secondary outcomes include motor evoked potential (MEP), central motor conduction time (CMCT), short interval intracortical inhibition (SICI), intracortical facilitation (ICF), magnetic resonance imaging (MRI), Box and Block Test (BBT), and blood sample RNA sequencing. The tACS interventions for all three groups will be administered over a 2-week period, with outcome assessments conducted at baseline (T0) and 1 day (T1), 7 days (T2), and 14 days (T3) of the intervention phase. DISCUSSION The study's findings will determine the potential of 40-Hz tACS to improve motor learning in stroke patients. Additionally, it will compare the effectiveness of multi-target and single-target approaches, shedding light on their respective improvement effects. Through the utilization of techniques such as TMS and MRI, the study aims to uncover the underlying brain mechanisms responsible for the therapeutic impact. Furthermore, the intervention has the potential to facilitate motor learning efficiency, thereby contributing to the advancement of future stroke rehabilitation treatment. TRIAL REGISTRATION Chinese Clinical Trial Registry ChiCTR2300073465. Registered on 11 July 2023.
Collapse
Affiliation(s)
- Ming-Hui Lai
- Department of Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Datong Rd. 358, Shanghai, 200137, China
| | - Xiao-Ming Yu
- Department of Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Datong Rd. 358, Shanghai, 200137, China
| | - Yan Lu
- Department of Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Datong Rd. 358, Shanghai, 200137, China
| | - Hong-Lin Wang
- Department of Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Datong Rd. 358, Shanghai, 200137, China
| | - Wang Fu
- Department of Neurology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Huan-Xia Zhou
- Department of Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Datong Rd. 358, Shanghai, 200137, China
| | - Yuan-Li Li
- Department of Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Datong Rd. 358, Shanghai, 200137, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, 201203, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jun Hu
- The Second Rehabilitation Hospital of Shanghai, Shanghai, 200435, China
| | - Jiayi Xia
- The Second Rehabilitation Hospital of Shanghai, Shanghai, 200435, China
| | - Zekai Hu
- The Second Rehabilitation Hospital of Shanghai, Shanghai, 200435, China
| | - Chun-Lei Shan
- Department of Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Datong Rd. 358, Shanghai, 200137, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, 201203, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Feng Wang
- Department of Neurology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Cong Wang
- Department of Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Datong Rd. 358, Shanghai, 200137, China.
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, 201203, China.
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- The Second Rehabilitation Hospital of Shanghai, Shanghai, 200435, China.
- Queensland Brain Institute, the University of Queensland, Brisbane, 4072, Australia.
| |
Collapse
|
42
|
Manippa V, Filardi M, Vilella D, Logroscino G, Rivolta D. Gamma (60 Hz) auditory stimulation improves intrusions but not recall and working memory in healthy adults. Behav Brain Res 2024; 456:114703. [PMID: 37806563 DOI: 10.1016/j.bbr.2023.114703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/25/2023] [Accepted: 10/06/2023] [Indexed: 10/10/2023]
Abstract
Gamma-band (> 30 Hz) brain oscillations (γ) play a crucial role in memory and long-term potentiation, and their disruptions have been consistently documented in patients with Alzheimer's Disease (AD). Gamma-band oscillation entrainment through 60 Hz transcranial alternating stimulation (tACS) and 40 Hz tACS/sensory stimulation has been shown to enhance memory performance in healthy adults and patients with AD, respectively. However, the impact of gamma auditory stimulation on healthy adults' memory remains uncertain. In this balanced crossover study, 36 healthy subjects (27 Females) underwent three auditory stimulation conditions: no auditory stimulation (NO_AS), 40 Hz, and 60 Hz. Long-term verbal memory (LTM) and verbal working memory (WM) were assessed using, respectively, the Ray Auditory Verbal Test (RAVLT) and Digit Span Backward test (DS-B). We hypothesized that 60 Hz would improve LTM (as compared to NO_AS), but not WM; no specific effects were hypothesized for 40 Hz. We found that gamma-band auditory stimulation (40 Hz and 60 Hz) did not significantly affect RAVLT recall or WM. However, 60 Hz stimulation reduced RAVLT immediate recall intrusion; this outcome negatively correlated with DS-B performance, suggesting a positive impact of 60 Hz on executive functions. In summary, gamma-band auditory stimulation did not enhance memory in healthy adults, but 60 Hz stimulation potentially benefits executive functions. Further investigation is needed to understand gamma oscillation's role in cognitive processes for both healthy and clinical populations.
Collapse
Affiliation(s)
- Valerio Manippa
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, Bari, Italy.
| | - Marco Filardi
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione "Cardinale G. Panico", Tricase, Lecce, Italy; Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | - Davide Vilella
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione "Cardinale G. Panico", Tricase, Lecce, Italy
| | - Giancarlo Logroscino
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione "Cardinale G. Panico", Tricase, Lecce, Italy; Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | - Davide Rivolta
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
43
|
Benussi A, Borroni B. Brain Stimulation in Alzheimer's Disease Trials. J Alzheimers Dis 2024; 101:S545-S565. [PMID: 39422933 DOI: 10.3233/jad-230535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Alzheimer's disease (AD) continues to lack definitive curative therapies, necessitating an urgent exploration of innovative approaches. This review provides a comprehensive analysis of recent clinical trials focusing on invasive and non-invasive brain stimulation techniques as potential interventions for AD. Deep brain stimulation (DBS), repetitive transcranial magnetic stimulation (rTMS), transcranial direct current stimulation (tDCS), and transcranial alternating current stimulation (tACS) are evaluated for their therapeutic efficacy, safety, and applicability. DBS, though invasive, has shown promising results in mitigating cognitive decline, but concerns over surgical risks and long-term effects persist. On the other hand, non-invasive methods like rTMS, tDCS, and tACS have demonstrated potential in enhancing cognitive performance and delaying disease progression, with minimal side effects, but with varied consistency. The evidence hints towards an individualized, patient-centric approach to brain stimulation, considering factors such as disease stage, genetic traits, and stimulation parameters. The review also highlights emerging technologies and potential future directions, emphasizing the need for larger, multi-center trials to confirm preliminary findings and establish robust clinical guidelines. In conclusion, while brain stimulation techniques present a promising avenue in AD therapy, further research is imperative for more comprehensive understanding and successful clinical implementation. Through this review, we aim to catalyze the scientific discourse and stimulate further investigation into these novel interventions for AD.
Collapse
Affiliation(s)
- Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili di Brescia, Brescia, Italy
| |
Collapse
|
44
|
Luppi JJ, Stam CJ, Scheltens P, de Haan W. Virtual neural network-guided optimization of non-invasive brain stimulation in Alzheimer's disease. PLoS Comput Biol 2024; 20:e1011164. [PMID: 38232116 PMCID: PMC10824453 DOI: 10.1371/journal.pcbi.1011164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 01/29/2024] [Accepted: 12/19/2023] [Indexed: 01/19/2024] Open
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique with potential for counteracting disrupted brain network activity in Alzheimer's disease (AD) to improve cognition. However, the results of tDCS studies in AD have been variable due to different methodological choices such as electrode placement. To address this, a virtual brain network model of AD was used to explore tDCS optimization. We compared a large, representative set of virtual tDCS intervention setups, to identify the theoretically optimized tDCS electrode positions for restoring functional network features disrupted in AD. We simulated 20 tDCS setups using a computational dynamic network model of 78 neural masses coupled according to human structural topology. AD network damage was simulated using an activity-dependent degeneration algorithm. Current flow modeling was used to estimate tDCS-targeted cortical regions for different electrode positions, and excitability of the pyramidal neurons of the corresponding neural masses was modulated to simulate tDCS. Outcome measures were relative power spectral density (alpha bands, 8-10 Hz and 10-13 Hz), total spectral power, posterior alpha peak frequency, and connectivity measures phase lag index (PLI) and amplitude envelope correlation (AEC). Virtual tDCS performance varied, with optimized strategies improving all outcome measures, while others caused further deterioration. The best performing setup involved right parietal anodal stimulation, with a contralateral supraorbital cathode. A clear correlation between the network role of stimulated regions and tDCS success was not observed. This modeling-informed approach can guide and perhaps accelerate tDCS therapy development and enhance our understanding of tDCS effects. Follow-up studies will compare the general predictions to personalized virtual models and validate them with tDCS-magnetoencephalography (MEG) in a clinical AD patient cohort.
Collapse
Affiliation(s)
- Janne J. Luppi
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Department of Clinical Neurophysiology and MEG, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Cornelis J. Stam
- Department of Clinical Neurophysiology and MEG, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Willem de Haan
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Department of Clinical Neurophysiology and MEG, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
45
|
Löffler BS, Stecher HI, Meiser A, Fudickar S, Hein A, Herrmann CS. Attempting to counteract vigilance decrement in older adults with brain stimulation. FRONTIERS IN NEUROERGONOMICS 2023; 4:1201702. [PMID: 38234473 PMCID: PMC10790873 DOI: 10.3389/fnrgo.2023.1201702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 11/23/2023] [Indexed: 01/19/2024]
Abstract
Introduction Against the background of demographic change and the need for enhancement techniques for an aging society, we set out to repeat a study that utilized 40-Hz transcranial alternating current stimulation (tACS) to counteract the slowdown of reaction times in a vigilance experiment but with participants aged 65 years and older. On an oscillatory level, vigilance decrement is linked to rising occipital alpha power, which has been shown to be downregulated using gamma-tACS. Method We applied tACS on the visual cortex and compared reaction times, error rates, and alpha power of a group stimulated with 40 Hz to a sham and a 5-Hz-stimulated control group. All groups executed two 30-min-long blocks of a visual task and were stimulated according to group in the second block. We hypothesized that the expected increase in reaction times and alpha power would be reduced in the 40-Hz group compared to the control groups in the second block (INTERVENTION). Results Statistical analysis with linear mixed models showed that reaction times increased significantly over time in the first block (BASELINE) with approximately 3 ms/min for the SHAM and 2 ms/min for the 5-Hz and 40-Hz groups, with no difference between the groups. The increase was less pronounced in the INTERVENTION block (1 ms/min for SHAM and 5-Hz groups, 3 ms/min for the 40-Hz group). Differences among groups in the INTERVENTION block were not significant if the 5-Hz or the 40-Hz group was used as the base group for the linear mixed model. Statistical analysis with a generalized linear mixed model showed that alpha power was significantly higher after the experiment (1.37 μV2) compared to before (1 μV2). No influence of stimulation (40 Hz, 5 Hz, or sham) could be detected. Discussion Although the literature has shown that tACS offers potential for older adults, our results indicate that findings from general studies cannot simply be transferred to an old-aged group. We suggest adjusting stimulation parameters to the neurophysiological features expected in this group. Next to heterogeneity and cognitive fitness, the influence of motivation and medication should be considered.
Collapse
Affiliation(s)
- Birte S. Löffler
- Assistance Systems and Medical Device Technology, Department of Health Services Research, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Heiko I. Stecher
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster of Excellence “Hearing4all”, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Arnd Meiser
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster of Excellence “Hearing4all”, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Sebastian Fudickar
- Assistance Systems and Medical Device Technology, Department of Health Services Research, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Andreas Hein
- Assistance Systems and Medical Device Technology, Department of Health Services Research, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Christoph S. Herrmann
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster of Excellence “Hearing4all”, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
46
|
Van Hoornweder S, Nuyts M, Frieske J, Verstraelen S, Meesen RLJ, Caulfield KA. Outcome measures for electric field modeling in tES and TMS: A systematic review and large-scale modeling study. Neuroimage 2023; 281:120379. [PMID: 37716590 PMCID: PMC11008458 DOI: 10.1016/j.neuroimage.2023.120379] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Electric field (E-field) modeling is a potent tool to estimate the amount of transcranial magnetic and electrical stimulation (TMS and tES, respectively) that reaches the cortex and to address the variable behavioral effects observed in the field. However, outcome measures used to quantify E-fields vary considerably and a thorough comparison is missing. OBJECTIVES This two-part study aimed to examine the different outcome measures used to report on tES and TMS induced E-fields, including volume- and surface-level gray matter, region of interest (ROI), whole brain, geometrical, structural, and percentile-based approaches. The study aimed to guide future research in informed selection of appropriate outcome measures. METHODS Three electronic databases were searched for tES and/or TMS studies quantifying E-fields. The identified outcome measures were compared across volume- and surface-level E-field data in ten tES and TMS modalities targeting two common targets in 100 healthy individuals. RESULTS In the systematic review, we extracted 308 outcome measures from 202 studies that adopted either a gray matter volume-level (n = 197) or surface-level (n = 111) approach. Volume-level results focused on E-field magnitude, while surface-level data encompassed E-field magnitude (n = 64) and normal/tangential E-field components (n = 47). E-fields were extracted in ROIs, such as brain structures and shapes (spheres, hexahedra and cylinders), or the whole brain. Percentiles or mean values were mostly used to quantify E-fields. Our modeling study, which involved 1,000 E-field models and > 1,000,000 extracted E-field values, revealed that different outcome measures yielded distinct E-field values, analyzed different brain regions, and did not always exhibit strong correlations in the same within-subject E-field model. CONCLUSIONS Outcome measure selection significantly impacts the locations and intensities of extracted E-field data in both tES and TMS E-field models. The suitability of different outcome measures depends on the target region, TMS/tES modality, individual anatomy, the analyzed E-field component and the research question. To enhance the quality, rigor, and reproducibility in the E-field modeling domain, we suggest standard reporting practices across studies and provide four recommendations.
Collapse
Affiliation(s)
- Sybren Van Hoornweder
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium.
| | - Marten Nuyts
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
| | - Joana Frieske
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium; Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Stefanie Verstraelen
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
| | - Raf L J Meesen
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium; Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Kevin A Caulfield
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
47
|
Varadharajan A, Gandhi S, Menon AJ, Rai P, Issac TG. Transcranial Alternating Current Stimulation - A Novel Way Forward in Mild Cognitive Impairment and Dementia Therapeutics. Ann Indian Acad Neurol 2023; 26:1035-1036. [PMID: 38229621 PMCID: PMC10789416 DOI: 10.4103/aian.aian_586_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/07/2023] [Indexed: 01/18/2024] Open
Affiliation(s)
- Ashvin Varadharajan
- Centre for Brain Research, Indian Institute of Science, Bangalore, Karnataka, India
| | - Sandhya Gandhi
- Centre for Brain Research, Indian Institute of Science, Bangalore, Karnataka, India
| | - Anjana J Menon
- Centre for Brain Research, Indian Institute of Science, Bangalore, Karnataka, India
| | - Pooja Rai
- Centre for Brain Research, Indian Institute of Science, Bangalore, Karnataka, India
| | - Thomas Gregor Issac
- Centre for Brain Research, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
48
|
Altomare D, Benussi A, Cantoni V, Premi E, Rivolta J, Cupidi C, Martorana A, Santarnecchi E, Padovani A, Koch G, Borroni B. Home-based transcranial alternating current stimulation (tACS) in Alzheimer's disease: rationale and study design. Alzheimers Res Ther 2023; 15:155. [PMID: 37715232 PMCID: PMC10503166 DOI: 10.1186/s13195-023-01297-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/24/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND Gamma (γ) brain oscillations are dysregulated in Alzheimer's disease (AD) and can be modulated using transcranial alternating stimulation (tACS). In the present paper, we describe the rationale and design of a study assessing safety, feasibility, clinical and biological efficacy, and predictors of outcome of a home-based intervention consisting of γ-tACS over the precuneus. METHODS In a first phase, 60 AD patients will be randomized into two arms: ARM1, 8-week precuneus γ-tACS (frequency: 40 Hz, intensity: 2 mA, duration: 5 60-min sessions/week); and ARM2, 8-week sham tACS (same parameters as the real γ-tACS, with the current being discontinued 5 s after the beginning of the stimulation). In a second phase, all participants will receive 8-week γ-tACS (same parameters as the real γ-tACS in the first phase). The study outcomes will be collected at several timepoints throughout the study duration and include information on safety and feasibility, neuropsychological assessment, blood sampling, electroencephalography, transcranial magnetic stimulation neurotransmitter measures, and magnetic resonance imaging or amyloid positron emission tomography. RESULTS We expect that this intervention is safe and feasible and results in the improvement of cognition, entrainment of gamma oscillations, increased functional connectivity, reduction of pathological burden, and increased cholinergic transmission. CONCLUSIONS If our expected results are achieved, home-based interventions using γ-tACS, either alone or in combination with other therapies, may become a reality for treating AD. TRIAL REGISTRATION PNRR-POC-2022-12376021.
Collapse
Affiliation(s)
- Daniele Altomare
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy
| | - Alberto Benussi
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy
- Department of Continuity of Care and Frailty, ASST Spedali Civili, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Valentina Cantoni
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy
| | - Enrico Premi
- Stroke Unit, ASST Spedali Civili, Brescia, Italy
| | - Jasmine Rivolta
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy
| | - Chiara Cupidi
- Neurology Unit, Fondazione Istituto G. Giglio, Cefalù, Italy
| | - Alessandro Martorana
- Department of Systems Medicine, Memory Clinic, University of Rome Tor Vergata, Rome, Italy
| | - Emiliano Santarnecchi
- Department of Radiology, Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy
- Department of Continuity of Care and Frailty, ASST Spedali Civili, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Giacomo Koch
- Department of Clinical and Behavioral Neurology, Fondazione Santa Lucia IRCCS, Rome, Italy
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Barbara Borroni
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy.
- Department of Continuity of Care and Frailty, ASST Spedali Civili, Piazzale Spedali Civili 1, 25123, Brescia, Italy.
| |
Collapse
|
49
|
Jones KT, Gallen CL, Ostrand AE, Rojas JC, Wais P, Rini J, Chan B, Lago AL, Boxer A, Zhao M, Gazzaley A, Zanto TP. Gamma neuromodulation improves episodic memory and its associated network in amnestic mild cognitive impairment: a pilot study. Neurobiol Aging 2023; 129:72-88. [PMID: 37276822 PMCID: PMC10583532 DOI: 10.1016/j.neurobiolaging.2023.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 06/07/2023]
Abstract
Amnestic mild cognitive impairment (aMCI) is a predementia stage of Alzheimer's disease associated with dysfunctional episodic memory and limited treatment options. We aimed to characterize feasibility, clinical, and biomarker effects of noninvasive neurostimulation for aMCI. 13 individuals with aMCI received eight 60-minute sessions of 40-Hz (gamma) transcranial alternating current stimulation (tACS) targeting regions related to episodic memory processing. Feasibility, episodic memory, and plasma Alzheimer's disease biomarkers were assessed. Neuroplastic changes were characterized by resting-state functional connectivity (RSFC) and neuronal excitatory/inhibitory balance. Gamma tACS was feasible and aMCI participants demonstrated improvement in multiple metrics of episodic memory, but no changes in biomarkers. Improvements in episodic memory were most pronounced in participants who had the highest modeled tACS-induced electric fields and exhibited the greatest changes in RSFC. Increased RSFC was also associated with greater hippocampal excitability and higher baseline white matter integrity. This study highlights initial feasibility and the potential of gamma tACS to rescue episodic memory in an aMCI population by modulating connectivity and excitability within an episodic memory network.
Collapse
Affiliation(s)
- Kevin T Jones
- Department of Neurology, University of California-San Francisco, San Francisco, CA; Neuroscape, University of California-San Francisco, San Francisco, CA.
| | - Courtney L Gallen
- Department of Neurology, University of California-San Francisco, San Francisco, CA; Neuroscape, University of California-San Francisco, San Francisco, CA
| | - Avery E Ostrand
- Department of Neurology, University of California-San Francisco, San Francisco, CA; Neuroscape, University of California-San Francisco, San Francisco, CA
| | - Julio C Rojas
- Department of Neurology, University of California-San Francisco, San Francisco, CA; Weill Institute for Neurosciences, Memory and Aging Center, University of California-San Francisco, San Francisco, CA
| | - Peter Wais
- Department of Neurology, University of California-San Francisco, San Francisco, CA; Neuroscape, University of California-San Francisco, San Francisco, CA
| | - James Rini
- Department of Neurology, University of California-San Francisco, San Francisco, CA; Neuroscape, University of California-San Francisco, San Francisco, CA
| | - Brandon Chan
- Department of Neurology, University of California-San Francisco, San Francisco, CA; Weill Institute for Neurosciences, Memory and Aging Center, University of California-San Francisco, San Francisco, CA
| | - Argentina Lario Lago
- Department of Neurology, University of California-San Francisco, San Francisco, CA; Weill Institute for Neurosciences, Memory and Aging Center, University of California-San Francisco, San Francisco, CA
| | - Adam Boxer
- Department of Neurology, University of California-San Francisco, San Francisco, CA; Weill Institute for Neurosciences, Memory and Aging Center, University of California-San Francisco, San Francisco, CA
| | - Min Zhao
- Departments of Ophthalmology and Vision Science and Dermatology, Institute for Regenerative Cures, University of California-Davis, Davis, CA
| | - Adam Gazzaley
- Department of Neurology, University of California-San Francisco, San Francisco, CA; Neuroscape, University of California-San Francisco, San Francisco, CA; Departments of Physiology and Psychiatry, University of California-San Francisco, San Francisco, CA
| | - Theodore P Zanto
- Department of Neurology, University of California-San Francisco, San Francisco, CA; Neuroscape, University of California-San Francisco, San Francisco, CA.
| |
Collapse
|
50
|
Liu Q, Contreras A, Afaq MS, Yang W, Hsu DK, Russell M, Lyeth B, Zanto TP, Zhao M. Intensity-dependent gamma electrical stimulation regulates microglial activation, reduces beta-amyloid load, and facilitates memory in a mouse model of Alzheimer's disease. Cell Biosci 2023; 13:138. [PMID: 37507776 PMCID: PMC10386209 DOI: 10.1186/s13578-023-01085-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Gamma sensory stimulation may reduce AD-specific pathology. Yet, the efficacy of alternating electrical current stimulation in animal models of AD is unknown, and prior research has not addressed intensity-dependent effects. METHODS The intensity-dependent effect of gamma electrical stimulation (GES) with a sinusoidal alternating current at 40 Hz on Aβ clearance and microglia modulation were assessed in 5xFAD mouse hippocampus and cortex, as well as the behavioral performance of the animals with the Morris Water Maze. RESULTS One hour of epidural GES delivered over a month significantly (1) reduced Aβ load in the AD brain, (2) increased microglia cell counts, decreased cell body size, increased length of cellular processes of the Iba1 + cells, and (3) improved behavioral performance (learning & memory). All these effects were most pronounced when a higher stimulation current was applied. CONCLUSION The efficacy of GES on the reduction of AD pathology and the intensity-dependent feature provide guidance for the development of this promising therapeutic approach.
Collapse
Affiliation(s)
- Qian Liu
- Institute for Regenerative Cures, Department of Ophthalmology & Vision Science, Department of Dermatology, University of California Davis, Sacramento, CA, 95817, USA
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, China
| | - Adam Contreras
- Institute for Regenerative Cures, Department of Ophthalmology & Vision Science, Department of Dermatology, University of California Davis, Sacramento, CA, 95817, USA
| | - Muhammad Shan Afaq
- Institute for Regenerative Cures, Department of Ophthalmology & Vision Science, Department of Dermatology, University of California Davis, Sacramento, CA, 95817, USA
| | - Weijian Yang
- Department of Electrical and Computer Engineering, University of California, Davis, CA, 95616, USA
| | - Daniel K Hsu
- Institute for Regenerative Cures, Department of Ophthalmology & Vision Science, Department of Dermatology, University of California Davis, Sacramento, CA, 95817, USA
| | - Michael Russell
- Institute for Regenerative Cures, Department of Ophthalmology & Vision Science, Department of Dermatology, University of California Davis, Sacramento, CA, 95817, USA
| | - Bruce Lyeth
- Department of Neurological Surgery, University of California, Davis, CA, 95616, USA
| | - Theodore P Zanto
- Neuroscape, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA.
| | - Min Zhao
- Institute for Regenerative Cures, Department of Ophthalmology & Vision Science, Department of Dermatology, University of California Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|