1
|
Cao H, Shang L, Hu D, Huang J, Wang Y, Li M, Song Y, Yang Q, Luo Y, Wang Y, Cai X, Liu J. Neuromodulation techniques for modulating cognitive function: Enhancing stimulation precision and intervention effects. Neural Regen Res 2026; 21:491-501. [PMID: 39665818 DOI: 10.4103/nrr.nrr-d-24-00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/19/2024] [Indexed: 12/13/2024] Open
Abstract
Neuromodulation techniques effectively intervene in cognitive function, holding considerable scientific and practical value in fields such as aerospace, medicine, life sciences, and brain research. These techniques utilize electrical stimulation to directly or indirectly target specific brain regions, modulating neural activity and influencing broader brain networks, thereby regulating cognitive function. Regulating cognitive function involves an understanding of aspects such as perception, learning and memory, attention, spatial cognition, and physical function. To enhance the application of cognitive regulation in the general population, this paper reviews recent publications from the Web of Science to assess the advancements and challenges of invasive and non-invasive stimulation methods in modulating cognitive functions. This review covers various neuromodulation techniques for cognitive intervention, including deep brain stimulation, vagus nerve stimulation, and invasive methods using microelectrode arrays. The non-invasive techniques discussed include transcranial magnetic stimulation, transcranial direct current stimulation, transcranial alternating current stimulation, transcutaneous electrical acupoint stimulation, and time interference stimulation for activating deep targets. Invasive stimulation methods, which are ideal for studying the pathogenesis of neurological diseases, tend to cause greater trauma and have been less researched in the context of cognitive function regulation. Non-invasive methods, particularly newer transcranial stimulation techniques, are gentler and more appropriate for regulating cognitive functions in the general population. These include transcutaneous acupoint electrical stimulation using acupoints and time interference methods for activating deep targets. This paper also discusses current technical challenges and potential future breakthroughs in neuromodulation technology. It is recommended that neuromodulation techniques be combined with neural detection methods to better assess their effects and improve the accuracy of non-invasive neuromodulation. Additionally, researching closed-loop feedback neuromodulation methods is identified as a promising direction for future development.
Collapse
Affiliation(s)
- Hanwen Cao
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Li Shang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Deheng Hu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Jianbing Huang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yu Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Ming Li
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yilin Song
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Qianzi Yang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Luo
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Wang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Juntao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Donovan KM, Adams JD, Park KY, Demarest P, Tan G, Willie JT, Brunner P, Gorlewicz JL, Leuthardt EC. Vibrotactile auricular vagus nerve stimulation alters limbic system connectivity in humans: A pilot study. PLoS One 2025; 20:e0310917. [PMID: 40440290 PMCID: PMC12121794 DOI: 10.1371/journal.pone.0310917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 04/15/2025] [Indexed: 06/02/2025] Open
Abstract
Vibration offers a potential alternative modality for transcutaneous auricular vagus nerve stimulation (taVNS). However, mechanisms of action are not well-defined. The goal of this pilot study was to evaluate the potential of vibrotactile stimulation of the outer ear as a method for activating central brain regions similarly to established vagal nerve stimulation methods. Seven patients with intractable epilepsy undergoing stereotactic electroencephalography (sEEG) monitoring participated in the study. Vibrotactile taVNS was administered across five vibration frequencies (2, 6, 12, 20, and 40 Hz) following a randomized stimulation pattern with 30 trials per frequency. Spectral coherence during stimulation was analyzed across theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and broadband gamma (70-170 Hz) frequency bands. At the group level, vibrotactile taVNS significantly increased coherence in theta (effect sizes 6 Hz: r = 0.311; 20 Hz: r = 0.316; 40 Hz: r = 0.264) and alpha bands (effect sizes 20 Hz: r = 0.455; 40 Hz: r = 0.402). Anatomically, multiple limbic brain regions exhibited increased coherence during taVNS compared to baseline. The percentage of total electrode pairs demonstrating increased coherence was also quantified at the individual level. Twenty Hz vibration resulted in the highest percentage of responder pairs across low-frequency coherence measures, with a group-average of 33% of electrode pairs responding, though inter-subject variability was present. Overall, vibrotactile taVNS induced significant low-frequency coherence increases involving several limbic system structures. Further, parametric characterization revealed the presence of inter-subject variability in terms of identifying the vibration frequency with the greatest coherence response. These findings encourage continued research into vibrotactile stimulation as an alternative modality for noninvasive vagus nerve stimulation.
Collapse
Affiliation(s)
- Kara M. Donovan
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States of America
- Division of Neurotechnology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Joshua D. Adams
- Department of Aerospace and Mechanical Engineering, Saint Louis University, St. Louis, Missouri, United States of America
| | - Ki Yun Park
- Division of Neurotechnology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Phillip Demarest
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States of America
- Division of Neurotechnology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Gansheng Tan
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States of America
- Division of Neurotechnology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jon T. Willie
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States of America
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Peter Brunner
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States of America
- Division of Neurotechnology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jenna L. Gorlewicz
- Department of Aerospace and Mechanical Engineering, Saint Louis University, St. Louis, Missouri, United States of America
| | - Eric C. Leuthardt
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States of America
- Division of Neurotechnology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, Missouri, United States of America
- Center for Innovation in Neuroscience and Technology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Brain Laser Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
3
|
An S, Oh SJ, Noh S, Jun SB, Sung JE. Enhancing cognitive abilities through transcutaneous auricular vagus nerve stimulation: Findings from prefrontal functional connectivity analysis and virtual brain simulation. Neuroimage 2025; 311:121179. [PMID: 40158670 DOI: 10.1016/j.neuroimage.2025.121179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025] Open
Abstract
Recent studies have indicated the potential of transcutaneous auricular vagus nerve stimulation (taVNS) as an intervention for cognitive decline. In this study, we systematically analyzed the effects of taVNS on cognitive enhancement from the perspective of brain networks, by combining functional near-infrared spectroscopy (fNIRS) signal analysis with virtual brain simulations. Behavioral experiments with older adults demonstrated that participants with low baseline performance experienced significant improvements in working memory performance following taVNS, while those with high baseline performance tended to decline. This pattern was closely associated with functional connectivity (FC) in the prefrontal cortex (PFC) concurrently measured during the behavioral tasks, i.e., task performance correlated with FC in the PFC, particularly in the medial PFC (mPFC). Moreover, the changes in performance due to taVNS, which varied based on baseline performance, exhibited a notable alignment with the FC changes in the mPFC. These findings were further explored through virtual brain simulations. The simulation results demonstrated that the brain's functional state could vary depending on the network coupling parameter-capable of reflecting loss of structural brain connectivity associated with aging-and that the modulation effects induced by taVNS may also differ based on those functional states. Current results indicate that the efficacy of taVNS interventions for cognitive enhancement may vary according to the pre-intervention structural and functional states of individual brains. Therefore, the development of personalized optimization strategies for taVNS intervention is crucial, and digital brain research holds significant promise in advancing this field.
Collapse
Affiliation(s)
- Sora An
- Department of Electronic and Electrical Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Se Jin Oh
- Department of Communication Disorders, Ewha Womans University, Seoul, Republic of Korea
| | - Shinhee Noh
- Department of Communication Disorders, Ewha Womans University, Seoul, Republic of Korea
| | - Sang Beom Jun
- Department of Electronic and Electrical Engineering, Ewha Womans University, Seoul, Republic of Korea; Graduate Program in Smart Factory, Ewha Womans University, Seoul, Republic of Korea; Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, Republic of Korea.
| | - Jee Eun Sung
- Department of Communication Disorders, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Gong H, Zheng F, Niu B, Wang B, Xu L, Yang Y, Wang J, Tang X, Bi Y. Auricular Transcutaneous Vagus Nerve Stimulation Enhances Post-Stroke Neurological and Cognitive Recovery in Mice by Suppressing Ferroptosis Through α7 Nicotinic Acetylcholine Receptor Activation. CNS Neurosci Ther 2025; 31:e70439. [PMID: 40376919 DOI: 10.1111/cns.70439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/12/2025] [Accepted: 05/02/2025] [Indexed: 05/18/2025] Open
Abstract
AIMS Ferroptosis plays a critical role in stroke pathophysiology, yet its dynamics during recovery remain unclear. This study aimed to investigate the evolution of ferroptosis throughout post-stroke recovery and evaluate auricular transcutaneous vagus nerve stimulation (atVNS) as a therapeutic intervention, focusing on the involvement of α7 nicotinic acetylcholine receptor (α7nAChR)-mediated mechanisms. METHODS Using a middle cerebral artery occlusion (MCAO) mouse model, we examined ferroptosis-related protein expression (GPX4, ACSL4, TfR) and iron levels across acute to chronic recovery phases. The therapeutic effects of atVNS were evaluated through the assessment of ferroptosis markers, neurogenesis, angiogenesis, cognitive function, and neuroinflammation. α7nAChR knockout mice were used to investigate the receptor's role in atVNS-mediated recovery. RESULTS We observed sustained alterations in ferroptosis markers and iron levels throughout post-stroke recovery. atVNS treatment reduced ferroptosis progression by modulating GPX4 and ACSL4 expression, enhanced neurogenesis and angiogenesis, improved cognitive recovery, and reduced neuroinflammation. These beneficial effects were absent in α7nAChR knockout mice, while atVNS increased neuronal α7nAChR expression in wild-type mice. CONCLUSIONS This study reveals the persistent involvement of ferroptosis in stroke recovery and demonstrates that atVNS provides comprehensive neuroprotection through α7nAChR-dependent mechanisms. These findings establish atVNS as a promising noninvasive therapeutic approach for stroke recovery and highlight α7nAChR signaling as a potential therapeutic target.
Collapse
Affiliation(s)
- Hongyan Gong
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao Hospital of Health and Rehabilitation Sciences University, Qingdao, China
| | - Fang Zheng
- Department of Imaging Center, Qingdao Municipal Hospital, Qingdao Hospital of Health and Rehabilitation Sciences University, Qingdao, China
| | - Bochao Niu
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Bin Wang
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao Hospital of Health and Rehabilitation Sciences University, Qingdao, China
| | - Lin Xu
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao Hospital of Health and Rehabilitation Sciences University, Qingdao, China
| | - Yunchao Yang
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao Hospital of Health and Rehabilitation Sciences University, Qingdao, China
| | - Jiahan Wang
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao Hospital of Health and Rehabilitation Sciences University, Qingdao, China
| | - Xiaopeng Tang
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Yanlin Bi
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao Hospital of Health and Rehabilitation Sciences University, Qingdao, China
| |
Collapse
|
5
|
Fisicaro F, Cortese K, Bella R, Pennisi M, Lanza G, Yuasa K, Ugawa Y, Terao Y. Effects of off-line auricular transcutaneous vagus nerve stimulation (taVNS) on a short-term memory task: a pilot study. Front Aging Neurosci 2025; 17:1549167. [PMID: 40357230 PMCID: PMC12066449 DOI: 10.3389/fnagi.2025.1549167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 04/11/2025] [Indexed: 05/15/2025] Open
Abstract
Introduction One of the commonly used indices of short-term memory (STM) is the digit span task. Prior studies have proposed pupil dilation as a measure of task engagement and as a promising biomarker of vagal activation. Transcutaneous auricular vagus nerve stimulation (taVNS) is a novel non-invasive brain stimulation technique which might be used to improve cognition and modulate pupil size through its effects on the noradrenergic release in the locus coeruleus. No previous study has investigated the effects of off-line taVNS on a digit span task. With this single-blind, sham-controlled, crossover design trial, we aimed to assess whether taVNS was able to improve the digit span score, as well as to modulate the pupillary response to cognitive load in a sample of 18 elderly Japanese volunteers with no self-reported cognitive impairments. Results Subjects were randomized to receive either real or sham taVNS during a digit span task while recording the pupil size, and then switched over to the other treatment group. We found that real stimulation significantly reduced the mean number of errors performed at span length 7, 8, and 9 (-0.83, -0.90, and -0.39, respectively compared to pre-stimulation values, and -0.71, -1.08, and -0.79, respectively, compared to sham stimulation). Additionally, real taVNS stimulation slightly but significantly increased the pupil size at all span lengths during the encoding period of the task, with larger effects for span 7-10 compared to pre-stimulation, and for span 5-10 compared to sham. No effect over the pupil size was found during the recall period. Discussion Our results suggest that taVNS might selectively improve the cognitive performance during the encoding phase of the task. Although further studies are needed to better clarify the optimal stimulation parameters, findings from this study could support the use of taVNS as a safe neuromodulation technique to improve cognitive function.
Collapse
Affiliation(s)
- Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Department of Medical Physiology, Kyorin University, Shinkawa, Tokyo, Japan
| | - Klizia Cortese
- Department of Educational Sciences, University of Catania, Catania, Italy
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy
| | - Kaoru Yuasa
- Department of Medical Physiology, Kyorin University, Shinkawa, Tokyo, Japan
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Yasuo Terao
- Department of Medical Physiology, Kyorin University, Shinkawa, Tokyo, Japan
| |
Collapse
|
6
|
Yang X, Li B, Wu L, Cui Y. Acupuncture treatment of vascular cognitive impairment through peripheral nerve stimulation pathway: a scoping review. Front Aging Neurosci 2025; 17:1515327. [PMID: 40357233 PMCID: PMC12066784 DOI: 10.3389/fnagi.2025.1515327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 04/14/2025] [Indexed: 05/15/2025] Open
Abstract
Objective This study aims to explore the central effects of acupuncture on vascular cognitive impairment (VCI) through peripheral nerve stimulation. Methods This scoping review followed the methodological framework proposed by Arksey and O'Malley and the PRISMA-ScR guidelines. A comprehensive search of databases, including PubMed, Web of Science, MEDLINE, and Embase, was conducted, including 79 studies on acupuncture interventions for VCI. Acupoints and their underlying anatomical structures related to peripheral nerves were summarized, and the potential pathways of acupuncture effects via different peripheral nerves were explored. Results The results showed that acupuncture, by stimulating specific acupoints on the head, face, torso, and limbs, significantly affects peripheral nerve networks, including the cervical, lumbar, and sacral plexuses, thoracic nerves, vagus nerve, trigeminal nerve and its branches. The nerve stimulation effects of acupuncture can enhance the regulation of cerebral blood flow, modulate neuroimmune responses, improve brain function, and promote neuroplasticity through multiple central nervous system pathways, ultimately improving cognitive function and treating VCI. Conclusion Acupuncture is a treatment modality that influences the central nervous system through peripheral nerve stimulation to treat VCI. A deeper understanding of the central effects induced by acupuncture-triggered neural reflexes can contribute to the improvement of existing therapies and help elucidate the scientific principles underlying acupuncture's therapeutic effects.
Collapse
Affiliation(s)
- Xinming Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Bo Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Qinghai Provincial Hospital of Traditional Chinese Medicine, Xining, China
| | - Linna Wu
- The First Clinical Medical School, Yunnan University of Chinese Medicine, Kunming, China
| | - Ying Cui
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
7
|
Chan NH, Ng SSM. Effectiveness of transcutaneous electrical nerve stimulation in improving cognitive function in older adults with cognitive impairment: a systematic review and meta-analysis. Front Neurol 2025; 16:1556506. [PMID: 40337170 PMCID: PMC12056508 DOI: 10.3389/fneur.2025.1556506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/07/2025] [Indexed: 05/09/2025] Open
Abstract
Background Transcutaneous electrical nerve stimulation (TENS), which involves the application of electrical stimulation to peripheral nerves, is used to improve or maintain cognitive function. Although many studies have examined the effect of TENS on cognition over the past 20 years, a comprehensive review and meta-analysis on this topic is lacking. This study aimed to evaluate the efficacy of TENS in improving cognitive function in older adults with cognitive impairment. Methods A systematic search was performed in six electronic databases (CINAHL, Cochrane Library, Embase, Medline, PubMed, and Web of Science) to identify relevant studies published until May 2024. Moreover, the registered clinical trials, forward citation searches, and reference lists of identified publications were reviewed to identify additional relevant studies. Randomised controlled trials investigating the effect of TENS on cognitive function in older adults with cognitive impairment were included. Results Seven studies including 247 older adults with cognitive impairment were included. The findings revealed a trend towards positive effects of TENS on face recognition memory [mean difference (MD) = 1.19, 95% confidence interval (CI) = -0.13 to 2.52] and verbal fluency [standardised MD (SMD) = 0.29, 95% CI = -0.01 to 0.59] when compared with placebo stimulation (control condition). TENS demonstrated a significant positive delayed effect on visual memory (SMD = 0.55, 95% CI = 0.11 to 0.98). Subgroup analysis indicated that TENS applied on the concha was more effective than that applied on the spinal column and earlobe in improving verbal memory in the delayed condition. Conclusion A positive trend of immediate effect and a significant long-term effect on some cognitive domains were found after applying TENS in in older adults with cognitive impairment. Future studies with robust experimental designs and adequate sample sizes are warranted to investigate the efficacy of TENS in improving cognitive function. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/view/CRD42023408611, PROSPERO: CRD42023408611.
Collapse
Affiliation(s)
- Nga Huen Chan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Shamay S. M. Ng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| |
Collapse
|
8
|
Kumagai S, Shiramatsu TI, Kawai K, Takahashi H. Vagus nerve stimulation as a predictive coding modulator that enhances feedforward over feedback transmission. Front Neural Circuits 2025; 19:1568655. [PMID: 40297016 PMCID: PMC12034665 DOI: 10.3389/fncir.2025.1568655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Vagus nerve stimulation (VNS) has emerged as a promising therapeutic intervention across various neurological and psychiatric conditions, including epilepsy, depression, and stroke rehabilitation; however, its mechanisms of action on neural circuits remain incompletely understood. Here, we present a novel theoretical framework based on predictive coding that conceptualizes VNS effects through differential modulation of feedforward and feedback neural circuits. Based on recent evidence, we propose that VNS shifts the balance between feedforward and feedback processing through multiple neuromodulatory systems, resulting in enhanced feedforward signal transmission. This framework integrates anatomical pathways, receptor distributions, and physiological responses to explain the influence of the VNS on neural dynamics across different spatial and temporal scales. Vagus nerve stimulation may facilitate neural plasticity and adaptive behavior through acetylcholine and noradrenaline (norepinephrine), which differentially modulate feedforward and feedback signaling. This mechanistic understanding serves as a basis for interpreting the cognitive and therapeutic outcomes across different clinical conditions. Our perspective provides a unified theoretical framework for understanding circuit-specific VNS effects and suggests new directions for investigating their therapeutic mechanisms.
Collapse
Affiliation(s)
- Shinichi Kumagai
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Tomoyo Isoguchi Shiramatsu
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Kensuke Kawai
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Hirokazu Takahashi
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Zhu Q, Chen M, Li X, Huang L, Qiao J, Chen M, Ma H. Comparative Evaluation of the Montreal Cognitive Assessment Basic Scale Against the Mini-Mental State Examination for Post-Stroke Cognitive Impairment. ALPHA PSYCHIATRY 2025; 26:39895. [PMID: 40352061 PMCID: PMC12059766 DOI: 10.31083/ap39895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 08/23/2024] [Accepted: 10/15/2024] [Indexed: 05/14/2025]
Abstract
Background The Montreal Cognitive Assessment Basic scale (MoCA-B) is more sensitive than the Mini-Mental State Examination (MMSE) for detecting mild cognitive impairment due to Alzheimer's disease (AD). To explore the diagnostic efficacy of the Chinese version of the MoCA-B against the MMSE for post-stroke cognitive impairment (PSCI). Methods Eighty four patients with acute cerebral infarction were grouped into a post-stroke cognitive normal (PSCN) or a PSCI group based on their scores on the Clinical Dementia Rating scale (CDR), the gold standard for diagnosing PSCI. They were evaluated by using the MMSE and MoCA-B scales, then the area under the receiver operating characteristic (ROC) curve (AUC) was used for evaluation. Results Most factors of the MoCA-B were significantly different between the two groups, and the PSCN group completed the MoCA-B faster (p < 0.05). The AUC analysis showed that for the MoCA-B with a cut-off total score of 23, sensitivity = 85.71%, specificity = 61.22%, Youden's J Index = 0.469, and AUC = 0.832. For the MMSE with a cut-off total score of 25, sensitivity = 70.59%, specificity = 93.75%, Youden's J Index = 0.643, and AUC = 0.885. The AUC of the MMSE was higher than that of the MoCA-B (p > 0.05). The MoCA-B had greater sensitivity and negative predictive value than the MMSE. When considering the cutoffs for identifying mild cognitive impairment (MCI) across different education levels, the MoCA-B had a higher positive rate for PSCI identification (51.2% vs 25%, p < 0.001), indicating that the MoCA-B is suitable for identifying PSCI. Conclusion The MoCA-B demonstrates higher sensitivity and negative predictive value compared with the MMSE in the screening of post-stroke cognitive impairment patients.
Collapse
Affiliation(s)
- Qingjun Zhu
- Department of Psychology & Fudan Development Institute, Fudan University, 200433 Shanghai, China
| | - Meirong Chen
- Department of Neurology, Jiangwan Hospital of Hongkou District, 200081 Shanghai, China
| | - Xiang Li
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90024, USA
| | - Lin Huang
- Department of Gerontology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200030 Shanghai, China
| | - Jinling Qiao
- Department of Neurology, Jiangwan Hospital of Hongkou District, 200081 Shanghai, China
| | - Miaocun Chen
- Department of Rehabilitation, Putuo People’s Hospital, Tongji University, 200060 Shanghai, China
| | - Huizhi Ma
- Department of Neurology, Jiangwan Hospital of Hongkou District, 200081 Shanghai, China
| |
Collapse
|
10
|
Chen M, Jiang J, Chen H, Liu X, Zhang X, Peng L. The effects of transcranial magnetic stimulation on cognitive flexibility among undergraduates with insomnia symptoms: A prospective, single-blind, randomized control trial. Int J Clin Health Psychol 2025; 25:100567. [PMID: 40276332 PMCID: PMC12019015 DOI: 10.1016/j.ijchp.2025.100567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 04/03/2025] [Indexed: 04/26/2025] Open
Abstract
Backgrounds Repetitive transcranial magnetic stimulation(rTMS) has been widely used in the treatment of insomnia, but there is a lack of research on whether this method could enhance the cognitive flexibility(CF) of individuals with insomnia symptoms. Objectives To investigate the effects of rTMS on the CF of undergraduates with insomnia symptoms. Methods 29 participants were randomly assigned into Active group(n = 15) and Sham group(n = 14), receiving 1 Hz rTMS interventions targeting the left dorsolateral prefrontal cortex for 2 weeks, comprising 10 sessions (active vs sham stimulation). Sleep quality and CF were assessed using the Pittsburgh Sleep Quality Index(PSQI), Insomnia Severity Index(ISI), Cognitive Flexibility Inventory(CFI), and the Number-Letter Task (N-L task) at baseline(T0), post-intervention(T1), and 8 weeks' follow-up(T2), and event-related potential(ERP) data during the N-L task were recorded. Results Following the intervention, compared to the Sham group, the ISI and PSQI scores in the Active group were significantly decreased, and the CFI score was significantly increased (P < 0.01); the results of the N-L task indicated that at T1, the switch cost of reaction time and accuracy for the Sham group were significantly higher than those for the Active group(P < 0.05). ERP analysis indicated that at T2, under switch conditions, the amplitude of the frontal area P2 in the Active group was significantly greater than that in the Sham group, and the beta-band ERD at parietal region in the Active group was significantly lower than that in the Sham group (P < 0.05). Conclusions rTMS could improve sleep quality and enhance the CF of undergraduates with insomnia symptoms. Clinical Trials Registration The effect of transcranial magnetic stimulation on cognitive flexibility in college students with insomnia (ChiCTR2400081263) URL: https://www.chictr.org.cn/showproj.html?proj=202951.
Collapse
Affiliation(s)
- Muyu Chen
- Department of Military Psychology, School of Psychology, Army Medical University, Chongqing, China
| | - Jun Jiang
- Department of Basic Psychology, School of Psychology, Army Medical University, Chongqing, China
| | - Han Chen
- Department of Rehabilitation, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xinyu Liu
- Department of Military Psychology, School of Psychology, Army Medical University, Chongqing, China
| | - Xinpeng Zhang
- Department of Military Psychology, School of Psychology, Army Medical University, Chongqing, China
| | - Li Peng
- Department of Military Psychology, School of Psychology, Army Medical University, Chongqing, China
| |
Collapse
|
11
|
Markser A, Vöckel J, Schneider A, Baumeister-Lingens L, Sigrist C, Koenig J. Non-Invasive Brain Stimulation for Post-COVID-19 Conditions: A Systematic Review. Am J Med 2025; 138:681-697. [PMID: 39089436 DOI: 10.1016/j.amjmed.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/06/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Alongside the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic, the number of patients with persistent symptoms following acute infection with SARS-CoV-2 is of concern. It is estimated that at least 65 million people worldwide meet criteria for what the World Health Organization (WHO) defines as "post-COVID-19 condition" - a multisystem disease comprising a wide range of symptoms. Effective treatments are lacking. In the present review, we aim to summarize the current evidence for the effectiveness of non-invasive or minimally invasive brain stimulation techniques in reducing symptoms of post-COVID-19. METHODS After pre-registration with PROSPERO, the review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Guidelines (PRISMA). The four electronic databases PubMed/MEDLINE, PsycINFO, Web of Science and Scopus were systematically searched for all relevant studies through April 2nd, 2024. Two independent investigators selected empirical papers that reported on the application of non- or minimally invasive brain stimulation in patients with post-COVID-19 conditions. RESULTS A total of 19 studies were identified, one using transcutaneous vagus nerve stimulation (tVNS), another using transorbital alternating current stimulation (toACS), 6 studies on transcranial magnetic stimulation (TMS) and 11 studies on transcranial direct current stimulation (tDCS) for the treatment of post-COVID-19 symptoms. CONCLUSIONS Existing studies report first promising results, illustrating improvement in clinical outcome parameters. Yet, the mechanistic understanding of post-COVID-19 and how brain stimulation techniques may be benefitial are limited. Directions for future research in the field are discussed.
Collapse
Affiliation(s)
- Anna Markser
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Cologne, Germany.
| | - Jasper Vöckel
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Cologne, Germany
| | - Alexa Schneider
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Cologne, Germany
| | - Luise Baumeister-Lingens
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Cologne, Germany
| | - Christine Sigrist
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Cologne, Germany
| | - Julian Koenig
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Cologne, Germany
| |
Collapse
|
12
|
Zhong C, Yang K, Wang N, Yang L, Yang Z, Xu L, Wang J, Zhang L. Advancements in Surgical Therapies for Drug-Resistant Epilepsy: A Paradigm Shift towards Precision Care. Neurol Ther 2025; 14:467-490. [PMID: 39928287 PMCID: PMC11906941 DOI: 10.1007/s40120-025-00710-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/03/2025] [Indexed: 02/11/2025] Open
Abstract
Epilepsy, a prevalent neurological disorder characterized by recurrent seizures, affects millions worldwide, with a significant proportion resistant to pharmacological treatments. Surgical interventions have emerged as pivotal in managing drug-resistant epilepsy (DRE), aiming to reduce seizure frequency or achieve seizure freedom. Traditional resective surgeries have evolved with technological advances, enhancing precision and safety. Neurostimulation techniques, such as responsive neurostimulation (RNS) and deep brain stimulation (DBS), now provide personalized, real-time seizure management, offering alternatives to traditional surgery. Minimally invasive ablative methods, such as laser interstitial thermal therapy (LITT) and Magnetic Resonance-guided Focused Ultrasound (MRgFUS), allow for targeted destruction of epileptogenic tissue with reduced risks and faster recovery times. The use of stereo-electroencephalography (SEEG) and robotic assistance has further refined surgical precision, enhancing outcomes. These advancements mark a paradigm shift towards precision medicine in epilepsy care, promising improved seizure management and quality of life for patients globally. This review outlines the latest innovations in epilepsy surgery, emphasizing their mechanisms and clinical implications to improve outcomes for patients with DRE.
Collapse
Affiliation(s)
- Chen Zhong
- Departments of Neurosurgery, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), 818 Renmin Street, Wuling District, Changde, 415003, Hunan, China
| | - Kang Yang
- Departments of Neurosurgery, and National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Nianhua Wang
- Departments of Neurosurgery, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), 818 Renmin Street, Wuling District, Changde, 415003, Hunan, China
| | - Liang Yang
- Department of Neurosurgery, The 3rd Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Zhuanyi Yang
- Departments of Neurosurgery, and National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Lixin Xu
- Departments of Neurosurgery, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), 818 Renmin Street, Wuling District, Changde, 415003, Hunan, China
| | - Jun Wang
- Departments of Neurosurgery, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), 818 Renmin Street, Wuling District, Changde, 415003, Hunan, China
| | - Longbo Zhang
- Departments of Neurosurgery, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), 818 Renmin Street, Wuling District, Changde, 415003, Hunan, China.
- Departments of Neurosurgery, and National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Departments of Neurosurgery, and Cellular & Molecular Physiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8082, USA.
| |
Collapse
|
13
|
Miniussi C, Pellicciari MC. Learning from missteps: Potential of transcranial electrical stimulation in neuropsychological rehabilitation. J Neuropsychol 2025. [PMID: 40123078 DOI: 10.1111/jnp.12425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025]
Abstract
Transcranial electrical stimulation (tES) holds promise for neuropsychological rehabilitation by leveraging the brain's inherent plasticity to enhance cognitive and motor functions. However, early results have been variable due to oversimplified approaches. This manuscript explores the potential and complexities of tES, particularly focusing on a protocol defined transcranial direct current stimulation as a reference model for all tES protocols, emphasising the need for precision in tailoring stimulation parameters to individual characteristics. By integrating intrinsic (i.e. the neuro-physiological system state) and extrinsic factors (i.e. experimental set up), highlighting the critical role of state-dependent effects and the synergy with cognitive tasks, we aim to refine tES protocols. This approach not only addresses the complexity of the brain system (as defined by its current state) but also highlights the importance of collaborative research and data sharing to understand the underlying mechanisms of tES-induced changes and optimising therapeutic efficacy. Emphasising the integration of tES with targeted tasks and clearer hypotheses, this work underscores the potential for more effective neurorehabilitation strategies.
Collapse
Affiliation(s)
- Carlo Miniussi
- Center for Mind/Brain Sciences-CIMeC, University of Trento, Rovereto, Italy
| | | |
Collapse
|
14
|
Shen MY, Lou QY, Liu S, Li ZJ, Lin TC, Zhou R, Feng DD, Yang DD, Wu JN. The efficacy and safety of auricular acupoint therapy on treating functional dyspepsia with insomnia: study protocol for a randomized controlled trial. Front Med (Lausanne) 2025; 12:1496502. [PMID: 40144883 PMCID: PMC11937052 DOI: 10.3389/fmed.2025.1496502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 02/28/2025] [Indexed: 03/28/2025] Open
Abstract
Background Functional dyspepsia (FD) is a prevalent health issue currently lacking optimal treatment options, with its global incidence rate increasing in recent years. Clinical studies have recently focused on the application of auriculotherapy in functional gastrointestinal disorders that are accompanied by negative emotions. However, few randomized controlled trials have investigated the use of auriculotherapy for FD patients with insomnia, leaving the therapeutic efficacy and safety largely undefined. This study aims to evaluate the clinical efficacy and safety of auriculotherapy in treating FD patients with insomnia. Methods and analysis This study is a single-center, randomized controlled clinical trial involving 80 patients with FD and insomnia. Using a central randomization system, the subjects are randomly assigned to the auricular acupressure group or the sham auricular acupressure group at a 1:1 ratio, with the auricular acupressure group targeting the concha region and the sham auricular acupressure group targeting the earlobe region. The primary outcome is the response rate at 2 weeks, and the secondary outcomes include the response rate at 8 weeks, sleep data assessed by actigraphy, modified Functional Dyspepsia Symptom Diary, short form-Nepean Dyspepsia Index, Self-rated Anxiety Scale, Self-rated Depression Scale, High Arousal Scale, and Heart Rate Variability. Efficacy results will be evaluated at baseline and at 2 and 8 weeks after treatment. Adverse events will be monitored throughout the study observation period. Discussion The results of this trial are anticipated to validate the efficacy and safety of auriculotherapy in improving symptoms of FD and insomnia, as well as in reducing negative emotional states. Clinical trial registration ClinicalTrials.gov, NCT06466044. Registered 14th May 2024, https://register.clinicaltrials.gov.
Collapse
Affiliation(s)
- Meng-Yuan Shen
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Qin-Yi Lou
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Shan Liu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Ze-Jiong Li
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Tian-Chen Lin
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Rong Zhou
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Dan-Dan Feng
- Department of Intensive Care Unit, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, China
| | - Dong-Dong Yang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Jian-Nong Wu
- Department of Intensive Care Unit, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, China
| |
Collapse
|
15
|
Yin ZH, Bao QN, Li YQ, Liu YW, Wang ZQ, Ye F, He X, Zhang XY, Zhong WQ, Wu KX, Yao J, Chen ZW, Zhao L, Liang FR. Discovery of the microbiota-gut-brain axis mechanisms of acupuncture for amnestic mild cognitive impairment based on multi-omics analyses: A pilot study. Complement Ther Med 2025; 88:103118. [PMID: 39667708 DOI: 10.1016/j.ctim.2024.103118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024] Open
Abstract
OBJECTIVES Acupuncture is a promising therapy for amnestic mild cognitive impairment (aMCI). Growing evidence suggest that alterations in the microbiota-gut-brain (MGB) axis contribute to the development and progression of aMCI. However, little is known about whether and how acupuncture change the MGB axis of aMCI individuals. METHODS This was a randomized, controlled, clinical trial. Forty patients with aMCI were randomly allocated to either the acupuncture group or the waitlist group. The primary outcome was the change in the Alzheimer's Disease Assessment Scale-Cognitive Scale (ADAS-Cog) score. In addition, multi-omics was performed to detect changes in brain function, gut microbiota, and serum metabolites. Generalized estimating equations were used to estimate the outcomes, and correlational analyses were performed to explore the relationships between the clinical and multi-omics data. RESULTS Compared to a mean baseline to week 12 change of -3.94 in the acupuncture group, the mean change in the waitlist group was 1.72 (net difference, -5.66 [95 % CI, -6.98 to -4.35]). Compared to the waitlist group, acupuncture's MGB axis modulatory effect exhibited altered the regional homogeneity values of Frontal_Med_Orb_L, Cingulum_Mid_L, and Frontal_Sup_Medial_L, relative abundance of gut Ruminococcus_sp_AF43_11 and s_Eubacterium_coprostanoligenes, and levels of serum (11E,15Z)-9,10,13-trihydroxyoctadeca-11,15-dienoic acid, dipropylene glycol dimethyl ether, N6-Me-dA, and DPK, which correlated with changes in ADAS-Cog scores. CONCLUSIONS Our data imply that acupuncture ameliorates overall cognitive function, along with changes in brain activity, gut microbiota, and serum metabolites, providing preliminary evidence of the mechanisms acting through the MGB axis underlying the effects of acupuncture on aMCI.
Collapse
Affiliation(s)
- Zi-Han Yin
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Sichuan Provincial Acupuncture Clinical Medicine Research Center, Chengdu, China.
| | - Qiong-Nan Bao
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Sichuan Provincial Acupuncture Clinical Medicine Research Center, Chengdu, China.
| | - Ya-Qin Li
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yi-Wei Liu
- The West China Hospital, Chengdu, China.
| | - Zi-Qi Wang
- The Fourth People's Hospital of Chengdu, Chengdu, China.
| | - Fang Ye
- The Sichuan Province People's Hospital, Chengdu, China.
| | - Xia He
- The Rehabilitation Hospital of Sichuan Province, Chengdu, China.
| | - Xin-Yue Zhang
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Sichuan Provincial Acupuncture Clinical Medicine Research Center, Chengdu, China.
| | - Wan-Qi Zhong
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Sichuan Provincial Acupuncture Clinical Medicine Research Center, Chengdu, China.
| | - Ke-Xin Wu
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Sichuan Provincial Acupuncture Clinical Medicine Research Center, Chengdu, China.
| | - Jin Yao
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Sichuan Provincial Acupuncture Clinical Medicine Research Center, Chengdu, China.
| | - Zi-Wen Chen
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Sichuan Provincial Acupuncture Clinical Medicine Research Center, Chengdu, China.
| | - Ling Zhao
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Sichuan Provincial Acupuncture Clinical Medicine Research Center, Chengdu, China.
| | - Fan-Rong Liang
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Sichuan Provincial Acupuncture Clinical Medicine Research Center, Chengdu, China.
| |
Collapse
|
16
|
Zhou H, Song A, Zhang H, Zhang L. Effects of transcutaneous auricular vagus nerve stimulation on postoperative delirium in older patients with hip fracture: protocol for a randomised controlled trial. BMJ Open 2025; 15:e092413. [PMID: 39979049 PMCID: PMC11843011 DOI: 10.1136/bmjopen-2024-092413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/30/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Postoperative delirium (POD) is an acute neurocognitive impairment and is commonly observed in older patients with hip fractures. POD is associated with poor outcomes, including increased postoperative complications, prolonged hospitalisation, high costs and increased perioperative mortality. Therefore, reducing the occurrence of POD and improving cognitive abilities in older patients are critical and urgent. Transcutaneous auricular vagus nerve stimulation (TAVNS) is a simple, safe, non-invasive treatment and has great potential to improve cognitive function. This clinical study will evaluate the effectiveness of TAVNS in reducing the incidence of POD in older patients and further elucidate the possible underlying mechanisms. METHODS AND ANALYSIS This randomised, double-blind, single-centre controlled trial will enroll 154 older patients undergoing hip fracture surgery, who will be randomly assigned to the TAVNS group (n=77), receiving TAVNS from 1 hour before anaesthetic induction to the end of the surgery, or the sham stimulation group (n=77), receiving sham stimulation in the same manner. The primary outcome measure will be the incidence of POD during the first 7 days post-surgery, as assessed by the confusion assessment method for the intensive care unit. The secondary outcomes include the incidence of delayed neurocognitive recovery; serum acetylcholinesterase and butyrylcholinesterase levels; the concentrations of tumour necrosis factor-α, interleukin-1β, interleukin-6 and S100β; unplanned intensive care unit admission rates; the length and cost of hospital stay; the incidence of postoperative complications during hospitalisation; and mortality at 1 month, 6 months and 1 year after surgery. ETHICS AND DISSEMINATION This study was approved by the Ethics Committee of the Chongqing Traditional Chinese Medicine Hospital on 15 May 2024 (2024-KY-HY-13). The findings will be published in the international peer-reviewed academic journals and presented orally at academic conferences. TRIAL REGISTRATION NUMBER ChiCTR2400085508.
Collapse
Affiliation(s)
- Hongyan Zhou
- Department of Anesthesiology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Ailin Song
- Department of Anesthesiology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Hui Zhang
- Department of Anesthesiology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Liang Zhang
- Department of Anesthesiology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| |
Collapse
|
17
|
Lammers-Lietz F, Spies C, Maggioni MA. The autonomous nervous system and the cholinergic anti-inflammatory reflex in postoperative neurocognitive disorders. Curr Opin Anaesthesiol 2025; 38:1-8. [PMID: 39585207 DOI: 10.1097/aco.0000000000001446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
PURPOSE OF REVIEW Postoperative delirium (POD) is a common and serious complication after surgery. It is associated with postoperative neurocognitive disorder (PNCD). The vagal cholinergic anti-inflammatory pathway (CAP) has been hypothesized to play a role in POD/PNCD and may be a target for interventions such as transcutaneous auricular stimulation (taVNS). We aim to review associations of heart rate variability (HRV) as an indicator of vagal function with POD and postoperative immune reaction as well as taVNS as a potential preventive intervention for POD. RECENT FINDINGS Autonomous nervous system (ANS) dysfunction was a common finding in studies analysing HRV in POD and postoperative cognitive dysfunction, but results were heterogeneous. There was no evidence from HRV analysis that vagal activity prevents overshooting postoperative immune activation, but HRV may help to identify patients at risk for postoperative infections. Animal studies and preliminary trials suggest that taVNS may be used to prevent POD/PNCD. SUMMARY Our review provides no evidence that CAP suppression is associated with POD/PNCD. Future studies should consider that high vagal tone may also mediate immunosuppression in surgical patients, yielding an increased risk for postoperative infections. Although taVNS is a promising approach to prevent POD/POCD, future studies should take these concerns into account.
Collapse
Affiliation(s)
- Florian Lammers-Lietz
- Charité-Universitätsmedizin Berlin, Department of Anesthesiology and Intensive Care Medicine | CCM | CVK, Augustenburger Platz 1, 13353 Berlin
| | - Claudia Spies
- Charité-Universitätsmedizin Berlin, Department of Anesthesiology and Intensive Care Medicine | CCM | CVK, Augustenburger Platz 1, 13353 Berlin
| | - Martina A Maggioni
- Charité-Universitätsmedizin Berlin, Institute of Physiology, Center for Space Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milano, Italy
| |
Collapse
|
18
|
Niu X, Bao W, Luo Z, Du P, Zhou H, Liu H, Wang B, Zhang H, Wang B, Guo B, Ma H, Lu T, Zhang Y, Mu J, Ma S, Liu J, Zhang M. The association among individual gray matter volume of frontal-limbic circuitry, fatigue susceptibility, and comorbid neuropsychiatric symptoms following COVID-19. Neuroimage 2025; 306:121011. [PMID: 39798827 DOI: 10.1016/j.neuroimage.2025.121011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/06/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025] Open
Abstract
BACKGROUND Fatigue is often accompanied by comorbid sleep disturbance and psychiatric distress following the COVID-19 infection. However, identifying individuals at risk for developing post-COVID fatigue remains challenging. This study aimed to identify the neurobiological markers underlying fatigue susceptibility and further investigate their effect on COVID-19-related neuropsychiatric symptoms. METHODS Individuals following a mild SARS-CoV-2 infection (COV+) underwent neuropsychiatric measurements (n = 335) and MRI scans (n = 271) within 1 month (baseline), and 191 (70.5 %) of the individuals were followed up 3 months after infection. Sixty-seven healthy controls (COV-) completed the same recruitment protocol. RESULTS Whole-brain voxel-wise analysis showed that gray matter volume (GMV) during the acute phase did not differ between the COV+ and COV- groups. GMV in the right dorsolateral prefrontal cortex (DLPFC) and left dorsal anterior cingulate cortex (dACC) were associated with fatigue severity only in the COV+ group at baseline, which were assigned to the frontal system and limbic system, respectively. Furthermore, fatigue mediated the associations between volume differences in fatigue susceptibility and COVID-related sleep, post-traumatic stress disorder, anxiety and depression. Crucially, the initial GMV in the right DLPFC can predict fatigue symptoms 3 months after infection. CONCLUSIONS We provide novel evidence on the neuroanatomical basis of fatigue vulnerability and emphasize that acute fatigue is an important link between early GMV in the frontal-limbic regions and comorbid neuropsychiatric symptoms at baseline and 3 months after infection. Our findings highlight the role of the frontal-limbic system in predisposing individuals to develop post-COVID fatigue.
Collapse
Affiliation(s)
- Xuan Niu
- Department of Medical Imaging, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Wenrui Bao
- School of Future Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Zhaoyao Luo
- Department of Medical Imaging, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Pang Du
- Department of Medical Imaging, Xi'an QinHuang Hospital, Xi'an, Shaanxi Province, China
| | - Heping Zhou
- Medical Imaging Centre, Ankang Central Hospital, Ankang, Shaanxi Province, China
| | - Haiyang Liu
- Department of Medical Imaging, Shangluo Central Hospital, Shangluo, Shaanxi Province, China
| | - Baoqi Wang
- Department of Medical Imaging, Yanan Traditional Chinese Medicine Hospital, Yan'an, Shaanxi Province, China
| | - Huawen Zhang
- Department of Medical Imaging, No.215 Hospital of Shaanxi Nuclear Geology, Xianyang, China
| | - Bo Wang
- Department of Medical Imaging, Hanzhong Central Hospital, Hanzhong, Shaanxi Province, China
| | - Baoqin Guo
- Department of Medical Imaging, Xi'an Jiaotong University First Hospital Yulin, Yulin, Shaanxi Province, China
| | - Hui Ma
- Department of Medical Imaging, Baoji High-tech Hospital, Baoji, Shaanxi Province, China
| | - Tao Lu
- Department of Medical Imaging, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Yuchen Zhang
- Department of Nuclear Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Junya Mu
- Department of Medical Imaging, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Shaohui Ma
- Department of Medical Imaging, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jixin Liu
- School of Life Science and Technology, Xidian University, Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, Xi'an, Shaanxi, China.
| | - Ming Zhang
- Department of Medical Imaging, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.
| |
Collapse
|
19
|
Cheng C, Xue X, Jiao Y, Du M, Zhang M, Zeng X, Sun JB, Qin W, Deng H, Yang XJ. Can earlobe stimulation serve as a sham for transcutaneous auricular vagus stimulation? Evidence from an alertness study following sleep deprivation. Psychophysiology 2025; 62:e14744. [PMID: 39727264 DOI: 10.1111/psyp.14744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/17/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024]
Abstract
Transcutaneous auricular vagus nerve stimulation (taVNS) has garnered increasing attention as a safe and effective peripheral neuromodulation technique in various clinical and cognitive neuroscience fields. However, there is ongoing debate about whether the commonly used earlobe control interferes with the objective assessment of taVNS regulatory effects. This study aims to further explore the regulatory effects of taVNS and earlobe stimulation (ES) on alertness levels and physiological indicators following 24 h of sleep deprivation (SD), based on previous findings that both taVNS and ES showed significant positive effects. The goal is to evaluate whether ES can serve as a neutral sham condition. Using a within-subject randomized experimental design involving 56 participants, we assessed alertness, heart rate variability (HRV), and salivary alpha-amylase (sAA) levels in the morning of the first day. After 24 h of SD and 30 min of either taVNS or ES intervention, these indicators were re-evaluated, and the changes in both groups were analyzed. The results indicated that both taVNS and ES improved alertness levels following SD. However, taVNS significantly increased sAA levels, indicating activation of the LC-NE system, whereas ES significantly increased HR and reduced HRV, promoting sympathetic nervous activity. Additionally, the regulatory effect of taVNS on the alertness showed a higher correlation with SD impairment. Although taVNS and ES may involve different and separable neuromodulation mechanisms, both can enhance alertness following SD. Future studies should carefully consider the potential regulatory effects of ES when using it as a sham condition in taVNS research.
Collapse
Affiliation(s)
- Chen Cheng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
- Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, China
| | - Xinxin Xue
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
- Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, China
| | - Yunyun Jiao
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
- Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, China
| | - Mengyu Du
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
- Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, China
| | - Mengkai Zhang
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
- Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, China
| | - Xiao Zeng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
- Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, China
- Guangzhou Institute of Technology, Xidian University, Xi'an, China
| | - Jin-Bo Sun
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
- Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, China
- Guangzhou Institute of Technology, Xidian University, Xi'an, China
| | - Wei Qin
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
- Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, China
- Guangzhou Institute of Technology, Xidian University, Xi'an, China
| | - Hui Deng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
- Center of Journal Publication, Xidian University, Xi'an, China
| | - Xue-Juan Yang
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
- Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, China
- Guangzhou Institute of Technology, Xidian University, Xi'an, China
| |
Collapse
|
20
|
Wang C, Wu B, Lin R, Cheng Y, Huang J, Chen Y, Bai J. Vagus nerve stimulation: a physical therapy with promising potential for central nervous system disorders. Front Neurol 2024; 15:1516242. [PMID: 39734634 PMCID: PMC11671402 DOI: 10.3389/fneur.2024.1516242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/29/2024] [Indexed: 12/31/2024] Open
Abstract
The diseases of the central nervous system (CNS) often cause irreversible damage to the human body and have a poor prognosis, posing a significant threat to human health. They have brought enormous burdens to society and healthcare systems. However, due to the complexity of their causes and mechanisms, effective treatment methods are still lacking. Vagus nerve stimulation (VNS), as a physical therapy, has been utilized in the treatment of various diseases. VNS has shown promising outcomes in some CNS diseases and has been approved by the Food and Drug Administration (FDA) in the United States for epilepsy and depression. Moreover, it has demonstrated significant potential in the treatment of stroke, consciousness disorders, and Alzheimer's disease. Nevertheless, the exact efficacy of VNS, its beneficiaries, and its mechanisms of action remain unclear. This article discusses the current clinical evidence supporting the efficacy of VNS in CNS diseases, providing updates on the progress, potential, and potential mechanisms of action of VNS in producing effects on CNS diseases.
Collapse
Affiliation(s)
- Chaoran Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bangqi Wu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Ruolan Lin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yupei Cheng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingjie Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuyan Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Bai
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
21
|
Zhi J, Zhang S, Huang M, Qin H, Xu H, Chang Q, Wang Y. Transcutaneous auricular vagus nerve stimulation as a potential therapy for attention deficit hyperactivity disorder: modulation of the noradrenergic pathway in the prefrontal lobe. Front Neurosci 2024; 18:1494272. [PMID: 39697776 PMCID: PMC11652481 DOI: 10.3389/fnins.2024.1494272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/15/2024] [Indexed: 12/20/2024] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by developmental impairments, inattention, motor hyperactivity, and impulsivity. Currently, there is no effective intervention that can completely cure it. One of the pathogenic mechanisms of ADHD involves abnormalities in the norepinephrine (NE) pathway within the prefrontal cortex (PFC). In recent years, transcutaneous auricular vagus nerve stimulation (taVNS), a non-invasive neuromodulation technique, has demonstrated promising potential in the treatment of neurological and psychiatric disorders. However, its application in the management of ADHD remains relatively unexplored. Previous studies have shown that taVNS exerts therapeutic effects on attention, cognition, arousal, perception, and behavioral regulation primarily through activating the vagus nerve conduction pathway, specifically targeting the nucleus tractus solitarius - locus coeruleus - NE pathway. These findings have led to the hypothesis that taVNS may be an effective intervention for ADHD, with NE and its pathway playing a pivotal role in this context. Therefore, this review comprehensively examines the correlation between NE pathway alterations in the PFC and ADHD, the mechanism of action of taVNS, and the potential role of the NE pathway in treating ADHD with taVNS, aiming to provide a theoretical foundation for clinical applications.
Collapse
Affiliation(s)
- Jincao Zhi
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shiwen Zhang
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Meiling Huang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Huan Qin
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - He Xu
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qing Chang
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yan Wang
- Rehabilitation Center, The Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
22
|
Wang M, Qian Y, Yu X, Xing Y. Effectiveness of Horticultural Therapy in Older Patients With Dementia: A Meta-Analysis Systemic Review. J Clin Nurs 2024; 33:4543-4553. [PMID: 39275900 DOI: 10.1111/jocn.17444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/20/2024] [Accepted: 09/01/2024] [Indexed: 09/16/2024]
Abstract
AIM Our study aims to assess the effectiveness of horticultural therapy in improving outcomes in older patients with dementia. DESIGN A systematic review and meta-analysis. METHODS The included studies comprised randomised controlled trials (RCTs) that aimed to assess the effectiveness of horticultural therapy on cognitive function in older patients with dementia. The study design and data extraction were independently conducted by two investigators, who also evaluated the risk of bias using RoB 2.0. The meta-analysis was carried out using Stata 15.1 software. DATA SOURCES On November 2023, we searched relevant English and Chinese publications in PubMed, Web of Science, Cochrane Library, Embase, CNKI and Wanfang databases. RESULTS The meta-analysis included a total of 9 RCTs, involving 655 older patients diagnosed with dementia. The findings from these studies demonstrated that horticultural therapy had a significant positive impact on various aspects of the patients' well-being when compared to conventional care. Specifically, it was found to improve cognitive function scores, alleviate symptoms of depression, enhance daily activities and enhance overall quality of life. When conducting a subgroup analysis, it was observed that horticultural therapy had a statistically significant effect on cognitive function in older patients with dementia when the intervention frequency was at least two times per week. Furthermore, interventions with a duration of less than 6 months were found to be more effective than those lasting 6 months or longer. Additionally, outdoor horticultural therapy was found to be superior to indoor interventions. Moreover, structured interventions were observed to yield better outcomes compared to non-structured interventions. CONCLUSION More high-quality studies are needed to further corroborate these findings due to the low quality of the included studies. Horticultural therapy has been found to have a significantly positive impact on the cognitive function, depression status, ADL, and quality of life of older patients with dementia. IMPLICATIONS FOR THE PROFESSION AND/OR PATIENT CARE We provide references for non-pharmacologic treatment of older patients with dementia. WHAT PROBLEM DID THE STUDY ADDRESS?: This study aimed to measure the efficacy of horticultural therapy in older patients with dementia across four dimensions: cognitive function, depression levels, daily living activities and overall quality of life. WHAT WERE THE MAIN FINDINGS?: In older patients with dementia, horticultural therapy has been proven to have a significant positive impact on cognitive function, depressive status, activities of daily living and quality of life. WHERE AND ON WHOM WILL THE RESEARCH HAVE AN IMPACT?: This study will inform non-pharmacological interventions for older patients with dementia worldwide. PATIENT OR PUBLIC CONTRIBUTION No Patient or Public Contribution.
Collapse
Affiliation(s)
- Min Wang
- School of Nursings, Hangzhou Normal University, Hangzhou, China
| | - Ying Qian
- School of Nursings, Hangzhou Normal University, Hangzhou, China
| | - Xiaoyun Yu
- School of Nursings, Hangzhou Normal University, Hangzhou, China
| | - Yubo Xing
- School of Nursings, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
23
|
Gerges ANH, Williams EER, Hillier S, Uy J, Hamilton T, Chamberlain S, Hordacre B. Clinical application of transcutaneous auricular vagus nerve stimulation: a scoping review. Disabil Rehabil 2024; 46:5730-5760. [PMID: 38362860 DOI: 10.1080/09638288.2024.2313123] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 02/17/2024]
Abstract
PURPOSE Transcutaneous auricular vagus nerve stimulation (taVNS) is an emerging non-invasive neuromodulation therapy. This study aimed to explore the therapeutic use of taVNS, optimal stimulation parameters, effective sham protocols, and safety. METHODS A scoping review was conducted. Five databases and grey literature were searched. The data extracted included stimulation parameters, adverse events (AEs), and therapeutic effects on clinical outcomes. RESULTS 109 studies were included. taVNS was used across 21 different clinical populations, most commonly in psychiatric, cardiac, and neurological disorders. Overall, 2,214 adults received active taVNS and 1,017 received sham taVNS. Reporting of stimulation parameters was limited and inconsistent. taVNS appeared to have a favourable therapeutic effect across a wide range of clinical populations with varied parameters. Three sham protocols were reported but their effectiveness was documented in only two of the 54 sham-controlled studies. Most reported adverse events were localised to stimulation site. CONCLUSION There is growing evidence for taVNS therapeutic effect. taVNS appears safe and tolerable. Sham protocols need evaluation. Standardised and comprehensive reporting of both stimulation parameters and adverse events is required. Two different questionnaires have been proposed to evaluate adverse events and the effectiveness of sham methods in blinding participants.
Collapse
Affiliation(s)
- Ashraf N H Gerges
- Innovation, Implementation and Clinical Translation (IIMPACT) in Health, Allied Health and Human Performance, University of South Australia, Adelaide, Australia
| | - Ellen E R Williams
- School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Susan Hillier
- Innovation, Implementation and Clinical Translation (IIMPACT) in Health, Allied Health and Human Performance, University of South Australia, Adelaide, Australia
| | - Jeric Uy
- Innovation, Implementation and Clinical Translation (IIMPACT) in Health, Allied Health and Human Performance, University of South Australia, Adelaide, Australia
| | - Taya Hamilton
- Perron Institute for Neurological and Translational Science, Perth, Australia
- Fourier Intelligence International Pte Ltd., Global Headquarters, Singapore, Singapore
| | - Saran Chamberlain
- Innovation, Implementation and Clinical Translation (IIMPACT) in Health, Allied Health and Human Performance, University of South Australia, Adelaide, Australia
| | - Brenton Hordacre
- Innovation, Implementation and Clinical Translation (IIMPACT) in Health, Allied Health and Human Performance, University of South Australia, Adelaide, Australia
| |
Collapse
|
24
|
Wang MH, Jin YJ, He MF, Zhou AN, Zhu ML, Lin F, Li WW, Jiang ZL. Transcutaneous auricular vagus nerve stimulation improves cognitive decline by alleviating intradialytic cerebral hypoxia in hemodialysis patients: A fNIRS pilot study. Heliyon 2024; 10:e39841. [PMID: 39975458 PMCID: PMC11838084 DOI: 10.1016/j.heliyon.2024.e39841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 02/21/2025] Open
Abstract
Cognitive impairment is common in hemodialysis patients, possibly due to inadequate cerebral blood flow during hemodialysis. No effective non-pharmacological interventions are available. This study investigates the impact of hemodialysis-induced cerebral hypoxia on cognitive decline in hemodialysis patients and the potential of transcutaneous auricular vagus nerve stimulation (taVNS) as a non-pharmacological intervention. A randomized controlled trial with 36 participants showed that cognitive performance and cerebral oxygenation in the dorsolateral prefrontal cortex (DLPFC) significantly declined in the sham group. In contrast, taVNS improved cognitive function by increasing cerebral oxygenation, with significant correlations to reaction times and MoCA scores. The study suggests that Hemodialysis-induced cerebral hypoxia may contribute to persistent cognitive decline in MHD patients. However, taVNS could be an effective intervention to prevent cognitive impairment in hemodialysis patients by alleviating cerebral hypoxia.
Collapse
Affiliation(s)
- Meng-Huan Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
- Department of Rehabilitation Medicine, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, 211100, China
| | - Yi-Jie Jin
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
- Department of Rehabilitation Medicine, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, 211100, China
| | - Meng-Fei He
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
- Department of Rehabilitation Medicine, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, 211100, China
| | - An-Nan Zhou
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211100, China
| | - Mei-Ling Zhu
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211100, China
| | - Feng Lin
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
- Department of Rehabilitation Medicine, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, 211100, China
| | - Wen-Wen Li
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211100, China
| | - Zhong-Li Jiang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
- Department of Rehabilitation Medicine, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, 211100, China
| |
Collapse
|
25
|
Chen X, Zhou Z, Chong K, Zhao J, Wu Y, Ren M, Huang Y, Chen S, Shan C. Transcutaneous auricular vagus nerve stimulation for long-term post-stroke cognitive impairment: a DTI case report. Front Hum Neurosci 2024; 18:1473535. [PMID: 39444545 PMCID: PMC11497276 DOI: 10.3389/fnhum.2024.1473535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Purpose Long-term post-stroke cognitive impairment (PSCI) exhibits an accelerated rate of long-term cognitive decline, which can impair communication, limit social engagement, and increase rate of institutional dependence. The aim of this case report is to provide evidence for the potential of home-based transcutaneous auricular vagus nerve stimulation (taVNS) for home-bound patients with severe, long-term PSCI. Methods A 71-year-old male suffered a stroke two and a half years ago, which imaging reported foci of cerebral infarction visible in the left temporal and parietal lobes. The patient was performed taVNS twice a day for 30 min, 5 times a week for 8 weeks. The patient was evaluated the changes of cognitive function and brain white matter at 4 time points: baseline (t0), 4 weeks without taVNS after baseline (t1), 4 weeks of intervention (t2), and 8 weeks of intervention (t3). The effect of taVNS on white matter changes was visualized by DTI. Results After 8 weeks of taVNS treatment, the scores of Montreal cognitive assessment improved and the time to complete the shape trails test decreased. The DTI results showed that white matter in bilateral dorsal lateral prefrontal cortex remodeled after taVNS. Conclusion Eight-week home-based taVNS may be beneficial to long-term PSCI. Further studies of home-based taVNS treating patients with long-term PSCI are needed.
Collapse
Affiliation(s)
- Xixi Chen
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Zhiqing Zhou
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
- Department of Rehabilitation Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kayee Chong
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Jingjun Zhao
- Peking University People's Hospital, Beijing, China
| | - Yuwei Wu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng Ren
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Yu Huang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Songmei Chen
- Department of Rehabilitation Medicine, Shanghai No. 3 Rehabilitation Hospital, Shanghai, China
| | - Chunlei Shan
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
- Department of Rehabilitation Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Yuanshen Rehabilitation Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Yu CC, Wang XF, Wang J, Li C, Xiao J, Wang XS, Han R, Wang SQ, Lin YF, Kong LH, Du YJ. Electroacupuncture Alleviates Memory Deficits in APP/PS1 Mice by Targeting Serotonergic Neurons in Dorsal Raphe Nucleus. Curr Med Sci 2024; 44:987-1000. [PMID: 38990450 DOI: 10.1007/s11596-024-2908-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/17/2024] [Indexed: 07/12/2024]
Abstract
OBJECTIVE Alzheimer's disease (AD) has become a significant global concern, but effective drugs able to slow down AD progression is still lacked. Electroacupuncture (EA) has been demonstrated to ameliorate cognitive impairment in individuals with AD. However, the underlying mechanisms remains poorly understood. This study aimed at examining the neuroprotective properties of EA and its potential mechanism of action against AD. METHODS APP/PS1 transgenic mice were employed to evaluate the protective effects of EA on Shenshu (BL 23) and Baihui (GV 20). Chemogenetic manipulation was used to activate or inhibit serotonergic neurons within the dorsal raphe nucleus (DRN). Learning and memory abilities were assessed by the novel object recognition and Morris water maze tests. Golgi staining, western blot, and immunostaining were utilized to determine EA-induced neuroprotection. RESULTS EA at Shenshu (BL 23) and Baihui (GV 20) effectively ameliorated learning and memory impairments in APP/PS1 mice. EA attenuated dendritic spine loss, increased the expression levels of PSD95, synaptophysin, and brain-derived neurotrophic factor in hippocampus. Activation of serotonergic neurons within the DRN can ameliorate cognitive deficits in AD by activating glutamatergic neurons mediated by 5-HT1B. Chemogenetic inhibition of serotonergic neurons in the DRN reversed the effects of EA on synaptic plasticity and memory. CONCLUSION EA can alleviate cognitive dysfunction in APP/PS1 mice by activating serotonergic neurons in the DRN. Further study is necessary to better understand how the serotonergic neurons-related neural circuits involves in EA-induced memory improvement in AD.
Collapse
Affiliation(s)
- Chao-Chao Yu
- Department of Rehabilitation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Tuina, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518000, China
- The 4th Clinical College, Guangzhou University of Chinese Medicine, Shenzhen, 518000, China
| | - Xiao-Fei Wang
- Department of Rehabilitation, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, 430074, China
| | - Jia Wang
- Department of Acupuncture and Moxibustion, Wuhan Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan, 430030, China
| | - Chu Li
- Department of Tuina, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518000, China
- The 4th Clinical College, Guangzhou University of Chinese Medicine, Shenzhen, 518000, China
| | - Juan Xiao
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xue-Song Wang
- College of Acupuncture-Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang, 050299, China
| | - Rui Han
- Department of Child Rehabilitation Medicine, Qujing Hospital of Maternity and Childcare, Qujing, 655002, China
| | - Shu-Qin Wang
- Department of Tuina, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518000, China
- The 4th Clinical College, Guangzhou University of Chinese Medicine, Shenzhen, 518000, China
| | - Yuan-Fang Lin
- Department of Tuina, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518000, China
- The 4th Clinical College, Guangzhou University of Chinese Medicine, Shenzhen, 518000, China
| | - Li-Hong Kong
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Yan-Jun Du
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| |
Collapse
|
27
|
Xu W, Ding Z, Weng H, Chen J, Tu W, Song Y, Bai Y, Yan S, Xu G. Transcutaneous Electrical Acupoint Stimulation for Elders with Amnestic Mild Cognitive Impairment: A Randomized Controlled Pilot and Feasibility Trial. Healthcare (Basel) 2024; 12:1945. [PMID: 39408125 PMCID: PMC11475481 DOI: 10.3390/healthcare12191945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/02/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Amnestic mild cognitive impairment (aMCI) is an important window of opportunity for early intervention and rehabilitation in dementia. The aim of this study was to investigate the feasibility and effect of delivering transcutaneous electrical acupuncture stimulation (TEAS) intervention to elders with aMCI. METHODS A total of 61 aMCI patients were randomly allocated into the intervention group (receiving a 12-week TEAS) and control group (receiving health education). The feasibility outcomes included recruitment rate, retention rate, adherence rate, and an exploration of patients' views and suggestions on the research. The effective outcomes included cognitive function, sleep quality, and life quality, which were measured by the Montreal cognitive assessment scale (MoCA), auditory verbal learning test-Huashan version (AVLT-H), Pittsburgh sleep quality index (PSQI), and quality of life short-term-12 (QoL SF-12). RESULTS The recruitment rate, retention rate, and adherence rate were 67.35%, 92.42%, and 85.29%, respectively. Most aspects of the research design and administration of the TEAS intervention were acceptable. The quantitative analysis suggests that compared with the control group, the scores of MoCA, AVLT-H, and SF-12 (mental component summary) were significantly better (p < 0.05); however, the differences were not statistically significant in PSQI and SF-12 (physical component summary) (p > 0.05). CONCLUSIONS The findings demonstrated that the study was feasible. TEAS awas possible for enhancing cognitive function and mental health in people with aMCI.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shuxia Yan
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China; (W.X.); (Z.D.); (H.W.); (J.C.); (W.T.); (Y.S.); (Y.B.)
| | - Guihua Xu
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China; (W.X.); (Z.D.); (H.W.); (J.C.); (W.T.); (Y.S.); (Y.B.)
| |
Collapse
|
28
|
Melillo A, Perrottelli A, Caporusso E, Coltorti A, Giordano GM, Giuliani L, Pezzella P, Bucci P, Mucci A, Galderisi S, Maj M. Research evidence on the management of the cognitive impairment component of the post-COVID condition: a qualitative systematic review. Eur Psychiatry 2024; 67:e60. [PMID: 39328154 PMCID: PMC11457117 DOI: 10.1192/j.eurpsy.2024.1770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Cognitive impairment (CI) is one of the most prevalent and burdensome consequences of COVID-19 infection, which can persist up to months or even years after remission of the infection. Current guidelines on post-COVID CI are based on available knowledge on treatments used for improving CI in other conditions. The current review aims to provide an updated overview of the existing evidence on the efficacy of treatments for post-COVID CI. METHODS A systematic literature search was conducted for studies published up to December 2023 using three databases (PubMed-Scopus-ProQuest). Controlled and noncontrolled trials, cohort studies, case series, and reports testing interventions on subjects with CI following COVID-19 infection were included. RESULTS After screening 7790 articles, 29 studies were included. Multidisciplinary approaches, particularly those combining cognitive remediation interventions, physical exercise, and dietary and sleep support, may improve CI and address the different needs of individuals with post-COVID-19 condition. Cognitive remediation interventions can provide a safe, cost-effective option and may be tailored to deficits in specific cognitive domains. Noninvasive brain stimulation techniques and hyperbaric oxygen therapy showed mixed and preliminary results. Evidence for other interventions, including pharmacological ones, remains sparse. Challenges in interpreting existing evidence include heterogeneity in study designs, assessment tools, and recruitment criteria; lack of long-term follow-up; and under-characterization of samples in relation to confounding factors. CONCLUSIONS Further research, grounded on shared definitions of the post-COVID condition and on the accurate assessment of COVID-related CI, in well-defined study samples and with longer follow-ups, is crucial to address this significant unmet need.
Collapse
Affiliation(s)
- Antonio Melillo
- World Health Organization (WHO) Collaborating Center, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Andrea Perrottelli
- World Health Organization (WHO) Collaborating Center, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Edoardo Caporusso
- World Health Organization (WHO) Collaborating Center, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Andrea Coltorti
- World Health Organization (WHO) Collaborating Center, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Giulia Maria Giordano
- World Health Organization (WHO) Collaborating Center, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Luigi Giuliani
- World Health Organization (WHO) Collaborating Center, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Pasquale Pezzella
- World Health Organization (WHO) Collaborating Center, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Paola Bucci
- World Health Organization (WHO) Collaborating Center, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Armida Mucci
- World Health Organization (WHO) Collaborating Center, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Silvana Galderisi
- World Health Organization (WHO) Collaborating Center, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Mario Maj
- World Health Organization (WHO) Collaborating Center, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
29
|
Kamoga R, Rukundo GZ, Kalungi S, Adriko W, Nakidde G, Obua C, Obongoloch J, Ihunwo AO. Vagus nerve stimulation in dementia: A scoping review of clinical and pre-clinical studies. AIMS Neurosci 2024; 11:398-420. [PMID: 39431268 PMCID: PMC11486617 DOI: 10.3934/neuroscience.2024024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 10/22/2024] Open
Abstract
Background Dementia is a prevalent, progressive, neurodegenerative condition with multifactorial causes. Due to the lack of effective pharmaceutical treatments for dementia, there are growing clinical and research interests in using vagus nerve stimulation (VNS) as a potential non-pharmacological therapy for dementia. However, the extent of the research volume and nature into the effects of VNS on dementia is not well understood. This study aimed to examine the extent and nature of research activities in relation to the use of VNS in dementia and disseminate research findings for the potential utility in dementia care. Methods We performed a scoping review of literature searches in PubMed, HINARI, Google Scholar, and the Cochrane databases from 1980 to November 30th, 2023, including the reference lists of the identified studies. The following search terms were utilized: brain stimulation, dementia, Alzheimer's disease, vagal stimulation, memory loss, Deme*, cognit*, VNS, and Cranial nerve stimulation. The included studies met the following conditions: primary research articles pertaining to both humans and animals for both longitudinal and cross-sectional study designs and published in English from January 1st, 1980, to November 30th, 2023; investigated VNS in either dementia or cognitive impairment; and were not case studies, conference proceedings/abstracts, commentaries, or ordinary review papers. Findings and conclusions We identified 8062 articles, and after screening for eligibility (sequentially by titles, abstracts and full text reading, and duplicate removal), 10 studies were included in the review. All the studies included in this literature review were conducted over the last three decades in high-income geographical regions (i.e., Europe, the United States, the United Kingdom, and China), with the majority of them (7/10) being performed in humans. The main reported outcomes of VNS in the dementia cases were enhanced cognitive functions, an increased functional connectivity of various brain regions involved in learning and memory, microglial structural modifications from neurodestructive to neuroprotective configurations, a reduction of cerebral spinal fluid tau-proteins, and significant evoked brain tissue potentials that could be utilized to diagnose neurodegenerative disorders. The study outcomes highlight the potential for VNS to be used as a non-pharmacological therapy for cognitive impairment in dementia-related diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Ronald Kamoga
- Department of Anatomy, Mbarara University of Science and Technology, P.O. Box 1410, Mbarara, Uganda
| | - Godfrey Zari Rukundo
- Department of Psychiatry, Mbarara University of Science and Technology, P.O.Box 1410, Mbarara, Uganda
| | - Samuel Kalungi
- Makerere University, School of health sciences, Department of Pathology. Kampala, Uganda
| | - Wilson Adriko
- Library department, Mbarara University of Science and Technology, P.O. Box 1410, Mbarara Uganda
| | - Gladys Nakidde
- Faculty of Nursing and Health Sciences, Bishop Stuart University, Mbarara, Uganda
| | - Celestino Obua
- Department of Pharmacology, Mbarara University of Science and Technology, P.O.Box 1410, Mbarara, Uganda
| | - Johnes Obongoloch
- Department of Biomedical engineering, Mbarara University of Science and Technology, P.O.Box 1410, Mbarara, Uganda
| | - Amadi Ogonda Ihunwo
- University of the Witwatersrand, School of Anatomical Sciences, Faculty of Health Sciences, Johannesburg, South Africa
| |
Collapse
|
30
|
Guo K, Lu Y, Wang X, Duan Y, Li H, Gao F, Wang J. Multi-level exploration of auricular acupuncture: from traditional Chinese medicine theory to modern medical application. Front Neurosci 2024; 18:1426618. [PMID: 39376538 PMCID: PMC11456840 DOI: 10.3389/fnins.2024.1426618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/22/2024] [Indexed: 10/09/2024] Open
Abstract
As medical research advances and technology rapidly develops, auricular acupuncture has emerged as a point of growing interest. This paper delves into the intricate anatomy of auricular points, their significance and therapeutic principles in traditional Chinese medicine (TCM), and the underlying mechanisms of auricular acupuncture in contemporary medicine. The aim is to delve deeply into this ancient and mysterious medical tradition, unveiling its multi-layered mysteries in the field of neurostimulation. The anatomical structure of auricular points is complex and delicate, and their unique neurovascular network grants them a special status in neurostimulation therapy. Through exploration of these anatomical features, we not only comprehend the position of auricular points in TCM theory but also provide a profound foundation for their modern medical applications. Through systematic review, we synthesize insights from traditional Chinese medical theory for modern medical research. Building upon anatomical and classical theoretical foundations, we focus on the mechanisms of auricular acupuncture as a unique neurostimulation therapy. This field encompasses neuroregulation, pain management, psychological wellbeing, metabolic disorders, and immune modulation. The latest clinical research not only confirms the efficacy of auricular stimulation in alleviating pain symptoms and modulating metabolic diseases at the endocrine level but also underscores its potential role in regulating patients' psychological wellbeing. This article aims to promote a comprehensive understanding of auricular acupuncture by demonstrating its diverse applications and providing substantial evidence to support its broader adoption in clinical practice.
Collapse
Affiliation(s)
- Kaixin Guo
- Department of Acupuncture, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Lu
- Department of Acupuncture, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiuping Wang
- Department of Acupuncture, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunfeng Duan
- Department of Acupuncture, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hui Li
- Department of Acupuncture, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fengxiao Gao
- Department of Acupuncture, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jian Wang
- Department of Acupuncture, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Acupuncture and Moxibustion, The First Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
31
|
Deng Y, Deng J, Jiang K, Shi Y, Feng Z, Wu R, Zhou A, Shi Z, Zhao Y. Correlation between Vegetable and Fruit Intake and Cognitive Function in Older Adults: A Cross-Sectional Study in Chongqing, China. Nutrients 2024; 16:3193. [PMID: 39339793 PMCID: PMC11435275 DOI: 10.3390/nu16183193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
OBJECTIVE To explore the correlation between different types of vegetable and fruit intake and cognitive function among the older adults in Chongqing, China, and to provide a scientific basis for developing efficient lifestyle interventions for the prevention of Mild Cognitive Impairment (MCI). METHOD Approximately 728 older adults in urban and rural areas of Chongqing were surveyed using face-to-face questionnaires. Cognitive function was assessed with the Montreal Cognitive Assessment-Basic (MoCA-B) scale, and the vegetable and fruit intake groups were investigated with the Simple Food Frequency Counting Survey Scale. Binary logistic regression was used to explore the effect of the vegetable and fruit intake group on cognitive function. Subgroup analysis was used to demonstrate the robustness of the results. RESULT Of the 728 participants in the study, 36.40% were likely to have MCI, which is higher than the national average for this condition. After adjusting for confounders, compared to the Q1 group, fruit and root vegetable intake was a protective factor for MCI, showing a dose-response relationship (p < 0.05). Only lower intake (Q2) of total vegetables, medium intake (Q2, Q3) of solanaceous vegetables, and medium-high intake (Q2, Q4) of fungi and algae was protective against MCI, whereas the leafy vegetables showed no relation to MCI. Apart from this, participants who were older, female, unmarried, non-smoking, and engaged in physical labor, and who had an average monthly income of less than 3000 RMB were more likely to suffer from cognitive impairment. CONCLUSION This suggested that the fruit-intake groups and some vegetable-intake groups showed a protective effect on cognitive function, and might behave differently depending on their different intake and demographic characteristics. A sensible, healthy diet can help prevent MCI.
Collapse
Affiliation(s)
- Yingjiao Deng
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
- Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing 400016, China
- Research Center for Public Health Security, Chongqing Medical University, Chongqing 400016, China
- Nutrition Innovation Platform-Sichuan and Chongqing, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Jiaxin Deng
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
- Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing 400016, China
- Research Center for Public Health Security, Chongqing Medical University, Chongqing 400016, China
- Nutrition Innovation Platform-Sichuan and Chongqing, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Ke Jiang
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
- Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing 400016, China
- Research Center for Public Health Security, Chongqing Medical University, Chongqing 400016, China
- Nutrition Innovation Platform-Sichuan and Chongqing, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Ya Shi
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
- Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing 400016, China
- Research Center for Public Health Security, Chongqing Medical University, Chongqing 400016, China
- Nutrition Innovation Platform-Sichuan and Chongqing, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Ziling Feng
- Department of Epidemiology and Health Statistics, Xiang Ya School of Public Health, Central South University, Changsha 410013, China
| | - Rongxin Wu
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
- Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing 400016, China
- Research Center for Public Health Security, Chongqing Medical University, Chongqing 400016, China
- Nutrition Innovation Platform-Sichuan and Chongqing, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Ailin Zhou
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
- Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing 400016, China
- Research Center for Public Health Security, Chongqing Medical University, Chongqing 400016, China
- Nutrition Innovation Platform-Sichuan and Chongqing, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Zumin Shi
- Human Nutrition Department, College of Health Science, Qatar University, Doha 2713, Qatar
| | - Yong Zhao
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
- Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing 400016, China
- Research Center for Public Health Security, Chongqing Medical University, Chongqing 400016, China
- Nutrition Innovation Platform-Sichuan and Chongqing, School of Public Health, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Child Nutrition and Health, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| |
Collapse
|
32
|
Yu Y, Yao R, Liu Z, Lu Y, Zhu Y, Cao J. Feasibility and effectiveness of transcutaneous auricular vagus nerve stimulation (taVNS) in awake mice. CNS Neurosci Ther 2024; 30:e70043. [PMID: 39258798 PMCID: PMC11388527 DOI: 10.1111/cns.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 08/14/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024] Open
Abstract
AIMS Transcutaneous auricular vagus nerve stimulation (taVNS) is widely used to treat a variety of disorders because it is noninvasive, safe, and well tolerated by awake patients. However, long-term and repetitive taVNS is difficult to achieve in awake mice. Therefore, developing a new taVNS method that fully mimics the method used in clinical settings and is well-tolerated by awake mice is greatly important for generalizing research findings related to the effects of taVNS. The study aimed to develop a new taVNS device for use in awake mice and to test its reliability and effectiveness. METHODS We demonstrated the reliability of this taVNS device through retrograde neurotropic pseudorabies virus (PRV) tracing and evaluated its effectiveness through morphological analysis. After 3 weeks of taVNS application, the open field test (OFT) and elevated plus maze (EPM) were used to evaluate anxiety-like behaviors, and the Y-maze test and novel object recognition test (NORT) were used to evaluate recognition memory behaviors, respectively. RESULTS We found that repetitive taVNS was well tolerated by awake mice, had no effect on anxiety-like behaviors, and significantly improved memory. CONCLUSION Our findings suggest that this new taVNS device for repetitive stimulation of awake mice is safe, tolerable, and effective.
Collapse
Affiliation(s)
- Yu‐Mei Yu
- Jiangsu Province Key Laboratory of AnesthesiologyXuzhou Medical UniversityXuzhouJiangsuChina
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application TechnologyXuzhou Medical UniversityXuzhouJiangsuChina
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouJiangsuChina
| | - Rui Yao
- Department of AnesthesiologyXuzhou First People's HospitalXuzhouJiangsuChina
| | - Zhou‐Liang Liu
- Jiangsu Province Key Laboratory of AnesthesiologyXuzhou Medical UniversityXuzhouJiangsuChina
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application TechnologyXuzhou Medical UniversityXuzhouJiangsuChina
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouJiangsuChina
| | - Yao Lu
- Jiangsu Province Key Laboratory of AnesthesiologyXuzhou Medical UniversityXuzhouJiangsuChina
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application TechnologyXuzhou Medical UniversityXuzhouJiangsuChina
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouJiangsuChina
| | - Yang‐Zi Zhu
- Jiangsu Province Key Laboratory of AnesthesiologyXuzhou Medical UniversityXuzhouJiangsuChina
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application TechnologyXuzhou Medical UniversityXuzhouJiangsuChina
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouJiangsuChina
- Department of AnesthesiologyXuzhou Central HospitalXuzhouJiangsuChina
| | - Jun‐Li Cao
- Jiangsu Province Key Laboratory of AnesthesiologyXuzhou Medical UniversityXuzhouJiangsuChina
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application TechnologyXuzhou Medical UniversityXuzhouJiangsuChina
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouJiangsuChina
- Department of AnesthesiologyAffiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| |
Collapse
|
33
|
Liu Y, Wei X, Wang L, Yang Y, Xu L, Sun T, Yang L, Cai S, Liu X, Qin Z, Bin L, Sun S, Lu Y, Cui J, Liu Z, Wu J. Efficacy and safety of transcutaneous auricular vagus nerve stimulation for frequent premature ventricular complexes: rationale and design of the TASC-V trial. BMC Complement Med Ther 2024; 24:288. [PMID: 39075454 PMCID: PMC11285463 DOI: 10.1186/s12906-024-04568-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/25/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Premature Ventricular Complexes (PVCs) are very common in clinical practice, with frequent PVCs (more than 30 beats per hour) or polymorphic PVCs significantly increasing the risk of mortality. Previous studies have shown that vagus nerve stimulation improves ventricular arrhythmias. Stimulation of the auricular distribution of the vagus nerve has proven to be a simple, safe, and effective method to activate the vagus nerve. Transcutaneous au ricular vagus nerve stimulation (taVNS) has shown promise in both clinical and experimental setting for PVCs; however, high-quality clinical studies are lacking, resulting in insufficient evidence of efficacy. METHODS The study is a prospective, randomized, parallel-controlled trial with a 1:1 ratio between the two groups. Patients will be randomized to either the treatment group (taVNS) or the control group (Sham-taVNS) with a 6-week treatment and a subsequent 12-week follow-up period. The primary outcome is the proportion of patients with a ≥ 50% reduction in the number of PVCs monitored by 24-hour Holter. Secondary outcomes include the proportion of patients with a ≥ 75% reduction in PVCs, as well as the changes in premature ventricular beats, total heartbeats, and supraventricular premature beats recorded by 24-hour Holter. Additional assessments compared score changes in PVCs-related symptoms, as well as the score change of self-rating anxiety scale (SAS), self-rating depression scale (SDS), and 36-item short form health survey (SF-36). DISCUSSION The TASC-V trial will help to reveal the efficacy and safety of taVNS for frequent PVCs, offering new clinical evidence for the clinical practice. TRIAL REGISTRATION Clinicaltrials.gov: NCT04415203 (Registration Date: May 30, 2020).
Collapse
Affiliation(s)
- Yu Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- China Center for Evidence Based Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100102, China
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Xinyao Wei
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Lixin Wang
- Peking University Third Hospital Yanqing Hospital, Beijing, 102199, China
| | - Yanling Yang
- Peking University Third Hospital Yanqing Hospital, Beijing, 102199, China
| | - Liya Xu
- Beijing Longfu Hospital, Beijing, 100010, China
| | - Tianheng Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Li Yang
- Peking University Third Hospital Yanqing Hospital, Beijing, 102199, China
| | - Song Cai
- Beijing Longfu Hospital, Beijing, 100010, China
| | - Xiaojie Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Zongshi Qin
- Peking University Clinical Research Institute, Beijing, 100083, China
| | - Lulu Bin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Shaoxin Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yao Lu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Jiaming Cui
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Zhishun Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Jiani Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
34
|
Zhang Y, Lin X, Ye C, Zhang P. Hyperbaric Oxygen Improves Long-Term Learning and Memory Impairment by Attenuating Neuronal Apoptosis in aMCI Rats. J Inflamm Res 2024; 17:3043-3055. [PMID: 38770175 PMCID: PMC11103017 DOI: 10.2147/jir.s455155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024] Open
Abstract
Background With the aging of the population and the increasing incidence of neurological diseases, amnestic mild cognitive impairment (aMCI) has attracted attention. Hyperbaric oxygen (HBO) has gradually shown the potential in the treatment of aMCI as an emerging treatment method in recent times. This study is to observe the effect of HBO on the long-term learning memory of aMCI rats, and investigate the associated mechanisms. Methods Seventy-two male rats (4-month-old) were randomly divided into control (CON) group, aMCI group, HBO group, 24 rats in each group. Each group was randomly divided into CON1, CON7, CON28; aMCI1, aMCI7, aMCI28; HBO1, HBO7, HBO28, 8 rats in each group. The aMCI model rats were established in aMCI and HBO groups. HBO group was treated with HBO for 7 days. The ethological and cytopathology which include Morris water maze (MWM) test, HE staining, TUNEL staining and the expression of Fas/FasL on neuron membrane were conducted to evaluate the effects of HBO on day 1, day 7 and day 28 after HBO treatment. Results MWM test showed that the spatial learning and memory ability of the rats decreased in aMCI group, and recovered in HBO group; Compared with aMCI group, the pathological damage of hippocampal nerve cells was alleviated, the number of apoptotic cells was significantly reduced (P < 0.05), and the expression of Fas/FasL on the surface of nerve cell membrane was significantly weakened in HBO group (P < 0.05). There were no significant changes in the spatial learning and memory ability, pathological damage of hippocampal neurons, the number of apoptotic cells, and the changes of Fas/FasL on the surface of hippocampal neurons in HBO1, HBO7, and HBO28 groups (P > 0.05). However, in aMCI1, aMCI7, and aMCI28 groups gradually aggravated (P < 0.05). Conclusion 1. HBO can improve the long-term learning and memory impairment by attenuating neuronal apoptosis in aMCI rats. 2. Fas/FasL mediated cell receptor death pathway is involved in the apoptosis of hippocampal neurons.
Collapse
Affiliation(s)
- Yonggui Zhang
- Department of Anesthesiology, The Second Hospital of Longyan, Fujian, People’s Republic of China
| | - Xianzhong Lin
- Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
| | - Chen Ye
- Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
| | - Peiling Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, People’s Republic of China
| |
Collapse
|
35
|
Zheng ZS, Simonian N, Wang J, Rosario ER. Transcutaneous vagus nerve stimulation improves Long COVID symptoms in a female cohort: a pilot study. Front Neurol 2024; 15:1393371. [PMID: 38756213 PMCID: PMC11097097 DOI: 10.3389/fneur.2024.1393371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024] Open
Abstract
Background Long COVID, also known as Post-COVID-19 syndrome, is characterized by multisystemic symptoms that persists for weeks to years beyond acute infection. It disproportionately affects women and those with pre-existing anxiety/depression, conditions more prevalent in females. The vagus nerve, with its extensive innervation and regulation of critical bodily functions, has become a focal point for therapeutic interventions. Transcutaneous vagus nerve stimulation (t-VNS) has emerged as a promising non-invasive treatment for COVID-19 conditions. Methods This pilot study assessed the efficacy of t-VNS in 24 female Long COVID patients (45.8 ± 11.7 years old; 20.2 ± 7.1 months since infection), who underwent a 10-day t-VNS intervention at home (30 min/session, twice a day). Cognition was considered the primary outcome, with anxiety, depression, sleep, fatigue, and smell as secondary outcomes. Outcomes were measured at baseline, post-intervention, and 1-month follow-up. Results Significant improvements were observed in various cognitive functions, anxiety, depression, and sleep at post-intervention, with benefits remaining or progressing at 1-month follow-up. Improvements in fatigue were delayed, reaching statistical significance at 1-month follow-up compared to baseline. No significant changes were noted in olfactory performance. Conclusion This pilot study provides preliminary evidence supporting the potential of t-VNS as a therapeutic intervention for female Long COVID patients. The encouraging results justify further rigorous investigation through larger, randomized controlled trials to confirm the efficacy of t-VNS, assess its generalizability to male cohorts, and explore biological markers to inform personalized treatment approaches. Our findings support the allocation of resources to conduct such trials and advance the understanding of t-VNS as a potential treatment for Long COVID.
Collapse
Affiliation(s)
- Zhong Sheng Zheng
- Research Institute, Casa Colina Hospital and Centers for Healthcare, Pomona, CA, United States
| | - Ninette Simonian
- Institute of Advanced Consciousness Studies, Santa Monica, CA, United States
| | - Jing Wang
- Research Institute, Casa Colina Hospital and Centers for Healthcare, Pomona, CA, United States
| | - Emily R. Rosario
- Research Institute, Casa Colina Hospital and Centers for Healthcare, Pomona, CA, United States
| |
Collapse
|
36
|
Wang YN, Wen XN, Chen Y, Xu N, Zhang JH, Hou X, Liu JP, Li P, Chen JY, Wang JH, Sun XY. Effects of movement training based on rhythmic auditory stimulation in cognitive impairment: a meta-analysis of randomized controlled clinical trial. Front Neurosci 2024; 18:1360935. [PMID: 38686327 PMCID: PMC11057238 DOI: 10.3389/fnins.2024.1360935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
Objective According to the World Alzheimer's Disease Report in 2015,there were 9.9 million new cases of dementia in the world every year. At present, the number of patients suffering from dementia in China has exceeded 8 million, and it may exceed 26 million by 2040.Mild cognitive impairment (MCI) refers to the pathological state of pre-dementia with the manifestation of the progressive decline of memory or other cognitive functions but without decline of activities of daily life. It is particularly important to prevent or prolong the development of MCI into dementia. Research showing effects of rhythmic auditory stimulation based-movement training(RASMT) interventions on cognitive function is also emerging. Therefore, the present meta-analysis briefly summarize findings regarding the impacts of RASMT programs on cognitive impairment. Methods Data from Pubmed, Embase, and Cochrane Library were utilized. The impact of RASMT on cognitive functions was evaluated using indicators such as overall cognitive status, memory, attention, and executive functions. The REVMAN5.3 software was employed to analyze bias risks integrated into the study and the meta-analysis results for each indicator. Results A total of 1,596 studies were retrieved, of which 1,385 non-randomized controlled studies and 48 repetitive studies were excluded. After reviewing titles and abstracts of the remaining 163 articles, 133 irrelevant studies were excluded, 30 studies were downloaded and read the full text. Among 30 articles, 18 articles that did not meet the inclusion criteria were excluded, the other 12 studies were included in this meta-analysis. Utilizing the Cochrane Collaborative Network Bias Risk Assessment Scale, it was found that 11 studies explained the method of random sequence generation, nine studies did not describe allocation concealment, four were single-blinded to all researchers, and eight reported single-blinding in the evaluation of experimental results. In the meta-analysis, the main outcomes showed statistically significant differences in overall cognitive status [MD = 1.19, 95%CI (0.09, 2.29), (p < 0.05)], attention [MD = -1.86, 95%CI (-3.53, -0.19), (p < 0.05)], memory [MD = 0.71, 95%CI (0.33, 1.09), (p < 0.01)], and executive function [MD = -0.23, 95% CI (-0.44, -0.02), (p < 0.05)]. Secondary outcomes indicated no statistically significant differences in verbal fluency [MD = -0.51, 95%CI (-1.30, 0.27), (p = 0.20)], while depression [MD = -0.29, 95% CI (-0.42, -0.16), (p < 0.01)] and anxiety [MD = 0.19, 95% CI (0.06, 0.32), (p < 0.01)] exhibited statistically significant differences. The GRADEpro GDT online tool assessed the quality of evidence for the outcome measures, revealing one low-quality outcome, two moderate-quality outcomes, and one high-quality outcome in this review. Conclusion This study shows that RASMT can improve the general cognitive status, memory, attention and executive function of patients with cognitive impairment. The quality of evidence revealed that MMSE was low, attention and memory were moderate, and executive function was high. The RAMST program (type of exercise: play percussion instruments; time of exercise: 30-60 min; frequency of exercise: 2-3 times/week; duration of exercise: more than 12 weeks) was proved to be more effective in improving cognitive function. However, the sample size is relatively insufficient, the future needs further study. Systematic review registration PROSPERO, identifier: CRD42023483561.
Collapse
Affiliation(s)
- Ya Nan Wang
- Xi'an Physical Education University, Xi'an, China
| | - Xiao Ni Wen
- School of Exercise and Health Sciences, Xi'an Physical Education University, Xi'an, China
| | - Yu Chen
- Xi'an Physical Education University, Xi'an, China
| | - Nuo Xu
- Xi'an Physical Education University, Xi'an, China
| | | | - Xue Hou
- Xi'an Physical Education University, Xi'an, China
| | | | - Ping Li
- School of Exercise and Health Sciences, Xi'an Physical Education University, Xi'an, China
| | - Jia Yu Chen
- School of Exercise and Health Sciences, Xi'an Physical Education University, Xi'an, China
| | - Jun Hao Wang
- School of Exercise and Health Sciences, Xi'an Physical Education University, Xi'an, China
| | - Xin Yue Sun
- School of Exercise and Health Sciences, Xi'an Physical Education University, Xi'an, China
| |
Collapse
|
37
|
Zhou Y, Yang H, You M, Feng Z, Dong X. Cognition-Enhancement Effect of Median Nerve Electrical Stimulation in Patients with Cognitive Impairment: A Retrospective Cohort Study. World Neurosurg 2024; 184:e537-e545. [PMID: 38320650 DOI: 10.1016/j.wneu.2024.01.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/08/2024]
Abstract
OBJECTIVE People with cognitive impairment often face quality-of-life problems and require ongoing support, which has profound consequences for caregivers and society. Noninvasive brain stimulation techniques, such as median nerve electrical stimulation (MNS), have shown promising potentials in improving cognitive ability in patients with cognitive impairment. Therefore, we aimed to investigate the positive effect and safety of MNS in cognitive impairment. METHODS Patients diagnosed with cognitive impairment from the hospital record management system of the First Affiliated Hospital of Nanchang University from April 1, 2020, to December 31, 2022, were enrolled. Data on patients' basic characteristics, treatment records, and examination results such as the Mini-Mental State Examination (MMSE), activities of daily living (ADL), and P300 event-related potentials before and after treatment were collected. RESULTS Overall, 146 patients with cognitive impairment were enrolled, including 71 patients who underwent conventional therapy (standard treatment group) and 75 patients who underwent conventional therapy and MNS operation (active MNS group). Before treatment, there were no differences between the standard treatment and active MNS groups in terms of age, sex, etiology, duration of symptoms before therapy, hospital stay, whether they had undergone surgery, MMSE score, ADL score, and amplitude and latency of the P300 event-related potentials (P > 0.05). After treatment, we observed significant improvements in the MMSE score, ADL score, amplitude of P300, and decreased latency of P300 event-related potentials in both groups compared with before treatment (P < 0.05). In addition, we observed that the active MNS group showed higher MMSE and ADL scores, higher amplitude of P300 event-related potentials, and lower latency of P300 event-related potentials than the standard treatment group after treatment (P < 0.05). Furthermore, no side effects were associated with MNS operation. CONCLUSIONS These preliminary data provide early evidence that MNS may be a positive effect and safe method for promoting the recovery of cognitive ability in patients with cognitive impairment.
Collapse
Affiliation(s)
- Yifan Zhou
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Haihua Yang
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Mengyu You
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Zhen Feng
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiaoyang Dong
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
38
|
Tan G, Adams J, Donovan K, Demarest P, Willie JT, Brunner P, Gorlewicz JL, Leuthardt EC. Does Vibrotactile Stimulation of the Auricular Vagus Nerve Enhance Working Memory? A Behavioral and Physiological Investigation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.24.586365. [PMID: 38585960 PMCID: PMC10996508 DOI: 10.1101/2024.03.24.586365] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Background Working memory is essential to a wide range of cognitive functions and activities. Transcutaneous auricular VNS (taVNS) is a promising method to improve working memory performance. However, the feasibility and scalability of electrical stimulation are constrained by several limitations, such as auricular discomfort and inconsistent electrical contact. Objective We aimed to develop a novel and practical method, vibrotactile taVNS, to improve working memory. Further, we investigated its effects on arousal, measured by skin conductance and pupil diameter. Method This study included 20 healthy participants. Behavioral response, skin conductance, and eye tracking data were concurrently recorded while the participants performed N-back tasks under three conditions: vibrotactile taVNS delivered to the cymba concha, earlobe (sham control), and no stimulation (baseline control). Results In 4-back tasks, which demand maximal working memory capacity, active vibrotactile taVNS significantly improved the performance metric d ' compared to the baseline but not to the sham. Moreover, we found that the reduction rate of d ' with increasing task difficulty was significantly smaller during vibrotactile taVNS sessions than in both baseline and sham conditions. Arousal, measured as skin conductance and pupil diameter, declined over the course of the tasks. Vibrotactile taVNS rescued this arousal decline, leading to arousal levels corresponding to optimal working memory levels. Moreover, pupil diameter and skin conductance level were higher during high-cognitive-load tasks when vibrotactile taVNS was delivered to the concha compared to baseline and sham. Conclusion Our findings suggest that vibrotactile taVNS modulates the arousal pathway and could be a potential intervention for enhancing working memory. Highlights Vibrotactile stimulation of the auricular vagus nerve increases general arousal.Vibrotactile stimulation of the auricular vagus nerve mitigates arousal decreases as subjects continuously perform working memory tasks.6 Hz Vibrotactile auricular vagus nerve stimulation is a potential intervention for enhancing working memory performance.
Collapse
|
39
|
Jia J, Guo J, Yao L, Zhang D. Editorial: Novel technologies targeting the rehabilitation of neurological disorders. Front Neurosci 2024; 18:1367286. [PMID: 38595971 PMCID: PMC11002261 DOI: 10.3389/fnins.2024.1367286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Affiliation(s)
- Jie Jia
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Jingchun Guo
- State Key Laboratory of Medical Neurobiology, MOE Frontier Center for Brain Science, Department of Translational Neuroscience of Shanghai Jing'an District Centre Hospital, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Lin Yao
- College of Computer Science, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Dingguo Zhang
- Department of Electronic and Electrical Engineering, University of Bath, Bath, United Kingdom
| |
Collapse
|
40
|
Tan G, Adams J, Donovan K, Demarest P, Willie JT, Brunner P, Gorlewicz JL, Leuthardt EC. Does vibrotactile stimulation of the auricular vagus nerve enhance working memory? A behavioral and physiological investigation. Brain Stimul 2024; 17:460-468. [PMID: 38593972 PMCID: PMC11268363 DOI: 10.1016/j.brs.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Working memory is essential to a wide range of cognitive functions and activities. Transcutaneous auricular vagus nerve stimulation (taVNS) is a promising method to improve working memory performance. However, the feasibility and scalability of electrical stimulation are constrained by several limitations, such as auricular discomfort and inconsistent electrical contact. OBJECTIVE We aimed to develop a novel and practical method, vibrotactile taVNS, to improve working memory. Further, we investigated its effects on arousal, measured by skin conductance and pupil diameter. METHOD This study included 20 healthy participants. Behavioral response, skin conductance, and eye tracking data were concurrently recorded while the participants performed N-back tasks under three conditions: vibrotactile taVNS delivered to the cymba concha, earlobe (sham control), and no stimulation (baseline control). RESULTS In 4-back tasks, which demand maximal working memory capacity, active vibrotactile taVNS significantly improved the performance metric d' compared to the baseline but not to the sham. Moreover, we found that the reduction rate of d' with increasing task difficulty was significantly smaller during vibrotactile taVNS sessions than in both baseline and sham conditions. Arousal, measured as skin conductance and pupil diameter, declined over the course of the tasks. Vibrotactile taVNS rescued this arousal decline, leading to arousal levels corresponding to optimal working memory levels. Moreover, pupil diameter and skin conductance level were higher during high-cognitive-load tasks when vibrotactile taVNS was delivered to the concha compared to baseline and sham. CONCLUSION Our findings suggest that vibrotactile taVNS modulates the arousal pathway and could be a potential intervention for enhancing working memory.
Collapse
Affiliation(s)
- Gansheng Tan
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University in St. Louis, MO, USA; Division of Neurotechnology, Washington University School of Medicine, St. Louis, MO, USA
| | - Josh Adams
- Department of Aerospace and Mechanical Engineering, Saint Louis University, MO, USA
| | - Kara Donovan
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University in St. Louis, MO, USA; Division of Neurotechnology, Washington University School of Medicine, St. Louis, MO, USA
| | - Phillip Demarest
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University in St. Louis, MO, USA; Division of Neurotechnology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jon T Willie
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University in St. Louis, MO, USA; Department of Neuroscience, Washington University in St. Louis, MO, USA; Division of Neurotechnology, Washington University School of Medicine, St. Louis, MO, USA
| | - Peter Brunner
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University in St. Louis, MO, USA; Division of Neurotechnology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jenna L Gorlewicz
- Department of Aerospace and Mechanical Engineering, Saint Louis University, MO, USA
| | - Eric C Leuthardt
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University in St. Louis, MO, USA; Department of Neuroscience, Washington University in St. Louis, MO, USA; Division of Neurotechnology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
41
|
Yan L, Li H, Qian Y, Zhang J, Cong S, Zhang X, Wu L, Wang Y, Wang M, Yu T. Transcutaneous vagus nerve stimulation: a new strategy for Alzheimer's disease intervention through the brain-gut-microbiota axis? Front Aging Neurosci 2024; 16:1334887. [PMID: 38476661 PMCID: PMC10927744 DOI: 10.3389/fnagi.2024.1334887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
Transcutaneous vagus nerve stimulation (tVNS) is an emerging non-invasive technique designed to stimulate branches of the vagus nerve distributed over the body surface. Studies suggest a correlation between the brain-gut-microbiota (BGM) axis and the pathogenesis of Alzheimer's disease (AD). The BGM axis represents a complex bidirectional communication system, with the vagus nerve being a crucial component. Therefore, non-invasive electrical stimulation of the vagus nerve might have the potential to modify-most of the time probably in a non-physiological way-the signal transmission within the BGM axis, potentially influencing the progression or symptoms of AD. This review explores the interaction between percutaneous vagus nerve stimulation and the BGM axis, emphasizing its potential effects on AD. It examines various aspects, such as specific brain regions, gut microbiota composition, maintenance of intestinal environmental homeostasis, inflammatory responses, brain plasticity, and hypothalamic-pituitary-adrenal (HPA) axis regulation. The review suggests that tVNS could serve as an effective strategy to modulate the BGM axis and potentially intervene in the progression or treatment of Alzheimer's disease in the future.
Collapse
Affiliation(s)
- Long Yan
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
- Graduate Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hong Li
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
- Graduate Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yulin Qian
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| | - Junfeng Zhang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
- Graduate Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shan Cong
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
- Graduate Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xuemin Zhang
- Graduate Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Linna Wu
- Graduate Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Wang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| | - Meng Wang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| | - Tao Yu
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
42
|
Santucci NR, Beigarten AJ, Khalid F, El-Chammas KI, Graham K, Sahay R, Fei L, Rich K, Mellon M. Percutaneous Electrical Nerve Field Stimulation in Children and Adolescents With Functional Dyspepsia-Integrating a Behavioral Intervention. Neuromodulation 2024; 27:372-381. [PMID: 37589640 PMCID: PMC10869640 DOI: 10.1016/j.neurom.2023.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/25/2023] [Accepted: 07/05/2023] [Indexed: 08/18/2023]
Abstract
OBJECTIVES Functional dyspepsia (FD) includes postprandial distress and epigastric pain syndrome. Percutaneous electrical nerve field stimulation (PENFS) in addition to behavioral interventions (BI) has shown benefits in children with functional abdominal pain but not specifically in FD. We aimed to assess the efficacy of PENFS for treating FD and compare the outcomes with those who received the combination of PENFS + BI. MATERIALS AND METHODS Charts of patients with FD who completed four weeks of PENFS were evaluated. A subset of patients received concurrent BI. Demographic data, medical history, and symptoms were documented. Outcomes at different time points included subjective symptom responses and validated questionnaires collected clinically (Abdominal Pain Index [API], Nausea Severity Scale [NSS], Functional Disability Inventory [FDI], Pittsburgh Sleep Quality Index [PSQI], Children's Somatic Symptoms Inventory [CSSI], Patient-Reported Outcomes Measurement Information Systems [PROMIS] Pediatric Anxiety and Depression scales). RESULT Of 84 patients, 61% received PENFS + BI, and 39% received PENFS alone. In the entire cohort, API (p < 0.0001), NSS (p = 0.001), FDI (p = 0.001), CSSI (p < 0.0001), PSQI (p = 0.01), PROMIS anxiety (p = 0.02), and depression (p = 0.01) scores improved from baseline to three weeks and at three months. Subjective responses showed nausea improvement (p = 0.01) and a trend for improvement in abdominal pain (p = 0.07) at week three. Abdominal pain subjectively improved at week three and three months (p = 0.003 and 0.02, respectively), nausea at week three and three months (p = 0.01 and 0.04, respectively), and a trend for improvement in sleep disturbances at week three and three months (p = 0.08 and p = 0.07, respectively) in the PENFS + BI group vs PENFS alone. CONCLUSION Abdominal pain, nausea, functioning, somatization, sleep disturbances, anxiety, and depression improved at three weeks and three months after PENFS in pediatric FD. Subjective pain and nausea improvement were greater in the PENFS + BI group than in the group with PENFS alone, suggesting an additive effect of psychologic therapy.
Collapse
Affiliation(s)
- Neha R Santucci
- Gastroenterology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Pediatrics, University of Cincinnati, Cincinnati, OH, USA.
| | - Alan J Beigarten
- Gastroenterology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Fatima Khalid
- Gastroenterology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Khalil I El-Chammas
- Gastroenterology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Kahleb Graham
- Gastroenterology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Rashmi Sahay
- Biostatistics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Lin Fei
- Biostatistics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kristin Rich
- Pediatrics, University of Cincinnati, Cincinnati, OH, USA; Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Michael Mellon
- Pediatrics, University of Cincinnati, Cincinnati, OH, USA; Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
43
|
Kang K, Shi K, Liu J, Li N, Wu J, Zhao X. Autonomic dysfunction and treatment strategies in intracerebral hemorrhage. CNS Neurosci Ther 2024; 30:e14544. [PMID: 38372446 PMCID: PMC10875714 DOI: 10.1111/cns.14544] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/15/2023] [Accepted: 11/17/2023] [Indexed: 02/20/2024] Open
Abstract
AIMS Autonomic dysfunction with central autonomic network (CAN) damage occurs frequently after intracerebral hemorrhage (ICH) and contributes to a series of adverse outcomes. This review aims to provide insight and convenience for future clinical practice and research on autonomic dysfunction in ICH patients. DISCUSSION We summarize the autonomic dysfunction in ICH from the aspects of potential mechanisms, clinical significance, assessment, and treatment strategies. The CAN structures mainly include insular cortex, anterior cingulate cortex, amygdala, hypothalamus, nucleus of the solitary tract, ventrolateral medulla, dorsal motor nucleus of the vagus, nucleus ambiguus, parabrachial nucleus, and periaqueductal gray. Autonomic dysfunction after ICH is closely associated with neurological functional outcomes, cardiac complications, blood pressure fluctuation, immunosuppression and infection, thermoregulatory dysfunction, hyperglycemia, digestive dysfunction, and urogenital disturbances. Heart rate variability, baroreflex sensitivity, skin sympathetic nerve activity, sympathetic skin response, and plasma catecholamine concentration can be used to assess the autonomic functional activities after ICH. Risk stratification of patients according to autonomic functional activities, and development of intervention approaches based on the restoration of sympathetic-parasympathetic balance, would potentially improve clinical outcomes in ICH patients. CONCLUSION The review systematically summarizes the evidence of autonomic dysfunction and its association with clinical outcomes in ICH patients, proposing that targeting autonomic dysfunction could be potentially investigated to improve the clinical outcomes.
Collapse
Affiliation(s)
- Kaijiang Kang
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
| | - Kaibin Shi
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
| | - Jiexin Liu
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
| | - Na Li
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
| | - Jianwei Wu
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
| | - Xingquan Zhao
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
- Research Unit of Artificial Intelligence in Cerebrovascular DiseaseChinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
44
|
Wang MX, Wumiti A, Zhang YW, Gao XS, Huang Z, Zhang MF, Peng ZY, Oku Y, Tang ZM. Transcutaneous cervical vagus nerve stimulation improved motor cortex excitability in healthy adults: a randomized, single-blind, self-crossover design study. Front Neurosci 2023; 17:1234033. [PMID: 37854293 PMCID: PMC10579560 DOI: 10.3389/fnins.2023.1234033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
Purpose To investigate the effect of transcutaneous cervical vagus nerve stimulation (tcVNS) on motor cortex excitability in healthy adults. Method Twenty eight healthy subjects were assigned to receive real and sham tcVNS for 30 min. The interval between the real and sham conditions was more than 24 h, and the sequence was random. The central and peripheral motor-evoked potential (MEP) of the right first dorsal interosseous (FDI) muscle was measured by transcranial magnetic stimulation (TMS) before and after stimulation. MEP latency, MEP amplitude and rest motor threshold (rMT) were analyzed before and after stimulation. Results MEP amplitude, MEP latency and rMT had significant interaction effect between time points and conditions (p < 0.05). After real stimulation, the MEP amplitude was significantly increased (p < 0.001). MEP latency (p < 0.001) and rMT (p = 0.006) was decreased than that of baseline. The MEP amplitude on real condition was higher than that of sham stimulation after stimulation (p = 0.027). The latency after the real stimulation was significantly shorter than that after sham stimulation (p = 0.005). No significantly difference was found in rMT after stimulation between real and sham conditions (p > 0.05). Conclusion tcVNS could improve motor cortex excitability in healthy adults.
Collapse
Affiliation(s)
- Meng-Xin Wang
- Department of Rehabilitation Medicine, Yuedong Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Meizhou, China
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Aihaiti Wumiti
- Department of Rehabilitation Medicine, Yuedong Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Meizhou, China
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yao-Wen Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xue-Sheng Gao
- Rehabilitation Medicine Department, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Zi Huang
- Department of Rehabilitation Medicine, Yuedong Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Meizhou, China
| | - Meng-Fei Zhang
- Department of Rehabilitation Medicine, Yuedong Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Meizhou, China
| | - Zhi-Yong Peng
- Department of Rehabilitation Medicine, Yuedong Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Meizhou, China
| | - Yoshitaka Oku
- Department of Physiology, Hyogo Medical University, Hyogo, Japan
| | - Zhi-Ming Tang
- Department of Rehabilitation Medicine, Yuedong Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Meizhou, China
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
45
|
Black B, Hunter S, Cottrell H, Dar R, Takahashi N, Ferguson BJ, Valter Y, Porges E, Datta A, Beversdorf DQ. Remotely supervised at-home delivery of taVNS for autism spectrum disorder: feasibility and initial efficacy. Front Psychiatry 2023; 14:1238328. [PMID: 37840787 PMCID: PMC10568329 DOI: 10.3389/fpsyt.2023.1238328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
Background Transcutaneous auricular vagus nerve stimulation (taVNS) has potential clinical application for autism spectrum disorder (ASD). At-home sessions are necessary to allow delivery of repeated sessions, and remove burden on patients for daily visits, and reduce costs of clinic delivery. Our objective was to validate a protocol for remote supervised administration for home delivery of taVNS using specially designed equipment and platform. Methods An open-label design was followed involving administration by caretakers to 12 patients with ASD (ages:7-16). Daily 1-h sessions over 2 weeks were administered under remote supervision. The primary outcome was feasibility, which was assessed by completion rate, stimulation tolerability, and confirmation of programmed stimulation delivery. The secondary measures were initial efficacy assessed by Childhood Anxiety Sensitivity Index-Revised (CASI-R), Parent Rated Anxiety Scale for Youth with ASD (PRAS-ASD), and Clinician Global Impression (CGI) scales. Sleep measures were also tracked using Cleveland Adolescent Sleep Questionnaire (CASQ). Results Across 132 sessions, we obtained an 88.5% completion rate. A total of 22 expected adverse events were reported with headache being the most common followed by transient pain, itchiness, and stinging at the electrode site. One subject dropped out of the study unrelated to the stimulation or the study. Average scores of anxiety (CASI-R, PRAS-ASD, and CGI) and sleepiness (CASQ) were all improved at the 2 week time point. While not powered to determine efficacy, benefits were suggested in this open label pilot. Conclusion Remotely supervised, proxy-administered, at-home delivery of taVNS is feasible in patients with ASD. Initial efficacy supports pursuing larger scale trials.
Collapse
Affiliation(s)
- Benjamin Black
- Department of Pediatrics, Thompson Center for Autism and Neurodevelopment, University of Missouri, Columbia, MO, United States
| | - Samantha Hunter
- Department of Pediatrics, Thompson Center for Autism and Neurodevelopment, University of Missouri, Columbia, MO, United States
| | - Hannah Cottrell
- Department of Pediatrics, Thompson Center for Autism and Neurodevelopment, University of Missouri, Columbia, MO, United States
| | - Roee Dar
- School of Medicine, University of Missouri, Columbia, MO, United States
| | - Nicole Takahashi
- Department of Pediatrics, Thompson Center for Autism and Neurodevelopment, University of Missouri, Columbia, MO, United States
| | - Bradley J. Ferguson
- Department of Neurology, Thompson Center for Autism and Neurodevelopment, University of Missouri, Columbia, MO, United States
| | - Yishai Valter
- Research and Development, Soterix Medical, Woodbridge, NJ, United States
| | - Eric Porges
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Brain Rehabilitation Research Center, Malcom Randall VAMC, Gainesville, FL, United States
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Abhishek Datta
- Research and Development, Soterix Medical, Woodbridge, NJ, United States
- Department of Biomedical Engineering, City College of New York, New York, NY, United States
| | - David Q. Beversdorf
- Department of Radiology, Neurology, and Psychological Sciences, and the Thompson Center for Autism and Neurodevelopment, University of Missouri-Columbia, Columbia, MO, United States
| |
Collapse
|
46
|
Dolphin H, Dyer AH, Dukelow T, Finucane C, Commins S, Kennelly SP. Safety and feasibility of transcutaneous vagus nerve stimulation in mild cognitive impairment: VINCI-AD study protocol. BMC Neurol 2023; 23:289. [PMID: 37532979 PMCID: PMC10394887 DOI: 10.1186/s12883-023-03320-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Over 55 million adults are living with dementia globally, which is projected to reach 157 million by 2050. Mild cognitive impairment (MCI), a syndrome of memory impairment with intact activities of daily living, may precede dementia by several years. Around 5-15% of individuals with MCI convert to dementia annually. Novel treatments which delay progression of MCI to dementia are urgently needed. Transcutaneous vagal nerve stimulation (tVNS) is a non-invasive neuromodulation technique that targets the vagus nerve. Importantly, tVNS has been shown to improve cognition in healthy volunteers, but has not been extensively examined as a potential therapeutic approach in MCI. VINCI-AD will examine the safety and feasibility of tVNS in older adults with MCI. DESIGN VINCI-AD is an investigator-led, single-site, single-blind, sham-controlled crossover pilot study which aims to assess the safety and feasibility of tVNS in 40 participants with amnestic MCI. All participants will attend for three consecutive study visits during which they will be randomised to receive no stimulation (baseline), active tVNS stimulation (stimulation at cymba conchae of left ear) or sham tVNS stimulation (at earlobe). Safety will be primarily assessed by ascertainment of adverse events. Further safety assessment will examine the impact of acute tVNS on subjective (orthostatic symptoms), peripheral (finometry-based blood pressure) and central (assessed via Near Infrared Spectroscopy [NIRS]) haemodynamic responses to active stand. Feasibility will be determined using a custom-designed occupational assessment of device usability. Exploratory secondary analysis in VINCI-AD will examine the potential impact of acute tVNS on associative memory, spatial memory and inhibitory control to inform sample size estimates for future trials of tVNS in older adults with MCI. DISCUSSION VINCI-AD will report on the safety (adverse events/haemodynamic responses to active stand) and feasibility of tVNS as a potential therapeutic option in MCI. Detailed reporting of study eligibility and completion rates will be reported. Exploratory analysis will examine the potential cognitive benefits of acute tVNS on cognitive function in MCI to report potential effect sizes that may inform future clinical trials in this cohort. TRIAL REGISTRATION https://clinicaltrials.gov/ct2/show/NCT05514756 . Trial Registration Number NCT05514756 (24th August 2022 for this protocol, version 1.0.).
Collapse
Affiliation(s)
- Helena Dolphin
- Department of Medical Gerontology, Trinity College, Dublin 2, Dublin, Ireland.
- Institute of Memory and Cognition, Tallaght University Hospital, Dublin 24, Tallaght, Ireland.
- Age-Related Healthcare Department, Tallaght University Hospital, Tallaght, Ireland.
| | - Adam H Dyer
- Department of Medical Gerontology, Trinity College, Dublin 2, Dublin, Ireland
- Institute of Memory and Cognition, Tallaght University Hospital, Dublin 24, Tallaght, Ireland
| | - Tim Dukelow
- Department of Geriatric Medicine, Cork University Hospital, Cork, Ireland
| | - Ciaran Finucane
- Department of Medical Gerontology, Trinity College, Dublin 2, Dublin, Ireland
- Department of Medical Physics, St James's Hospital, Dublin, Ireland
| | - Sean Commins
- Department of Psychology, Maynooth University, Maynooth, Ireland
| | - Sean P Kennelly
- Department of Medical Gerontology, Trinity College, Dublin 2, Dublin, Ireland
- Institute of Memory and Cognition, Tallaght University Hospital, Dublin 24, Tallaght, Ireland
| |
Collapse
|
47
|
Trifilio E, Shortell D, Olshan S, O’Neal A, Coyne J, Lamb D, Porges E, Williamson J. Impact of transcutaneous vagus nerve stimulation on healthy cognitive and brain aging. Front Neurosci 2023; 17:1184051. [PMID: 37575296 PMCID: PMC10416636 DOI: 10.3389/fnins.2023.1184051] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/02/2023] [Indexed: 08/15/2023] Open
Abstract
Evidence for clinically meaningful benefits of transcutaneous vagus nerve stimulation (VNS) has been rapidly accumulating over the past 15 years. This relatively novel non-invasive brain stimulation technique has been applied to a wide range of neuropsychiatric disorders including schizophrenia, obsessive compulsive disorder, panic disorder, post-traumatic stress disorder, bipolar disorder, and Alzheimer's disease. More recently, non-invasive forms of VNS have allowed for investigations within healthy aging populations. These results offer insight into protocol considerations specific to older adults and how to translate those results into effective clinical trials and, ultimately, effective clinical care. In this review, we characterize the possible mechanisms by which non-invasive VNS may promote healthy aging (e.g., neurotransmitter effects, inflammation regulation, functional connectivity changes), special considerations for applying non-invasive VNS in an older adult population (e.g., vagus nerve changes with age), and how non-invasive VNS may be used in conjunction with existing behavioral interventions (e.g., cognitive behavioral therapy, cognitive training) to promote healthy emotional and cognitive aging.
Collapse
Affiliation(s)
- Erin Trifilio
- Center for OCD and Anxiety Related Disorders, Department of Psychiatry, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, United States
- Brain Rehabilitation and Research Center, Malcom Randall VAMC, Gainesville, FL, United States
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Destin Shortell
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Sarah Olshan
- Brain Rehabilitation and Research Center, Malcom Randall VAMC, Gainesville, FL, United States
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Alexandria O’Neal
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Jozee Coyne
- Center for OCD and Anxiety Related Disorders, Department of Psychiatry, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, United States
- Brain Rehabilitation and Research Center, Malcom Randall VAMC, Gainesville, FL, United States
| | - Damon Lamb
- Center for OCD and Anxiety Related Disorders, Department of Psychiatry, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, United States
- Brain Rehabilitation and Research Center, Malcom Randall VAMC, Gainesville, FL, United States
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Eric Porges
- Brain Rehabilitation and Research Center, Malcom Randall VAMC, Gainesville, FL, United States
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - John Williamson
- Center for OCD and Anxiety Related Disorders, Department of Psychiatry, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, United States
- Brain Rehabilitation and Research Center, Malcom Randall VAMC, Gainesville, FL, United States
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
48
|
Naparstek S, Yeh AK, Mills-Finnerty C. Transcutaneous Vagus Nerve Stimulation (tVNS) applications in cognitive aging: a review and commentary. Front Aging Neurosci 2023; 15:1145207. [PMID: 37496757 PMCID: PMC10366452 DOI: 10.3389/fnagi.2023.1145207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 06/12/2023] [Indexed: 07/28/2023] Open
Abstract
Differentiating healthy from pathological aging trajectories is extremely timely, as the global population faces an inversion where older adults will soon outnumber younger 5:1. Many cognitive functions (e.g., memory, executive functions, and processing speed) decline with age, a process that can begin as early as midlife, and which predicts subsequent diagnosis with dementia. Although dementia is a devastating and costly diagnosis, there remains limited evidence for medications, therapies, and devices that improve cognition or attenuate the transition into dementia. There is an urgent need to intervene early in neurodegenerative processes leading to dementia (e.g., depression and mild cognitive impairment). In this targeted review and commentary, we highlight transcutaneous Vagus Nerve Stimulation (tVNS) as a neurostimulation method with unique opportunities for applications in diseases of aging, reviewing recent literature, feasibility of use with remote data collection methods/telehealth, as well as limitations and conflicts in the literature. In particular, small sample sizes, uneven age distributions of participants, lack of standardized protocols, and oversampling of non-representative groups (e.g., older adults with no comorbid diagnoses) limit our understanding of the potential of this method. We offer recommendations for how to improve representativeness, statistical power, and generalizability of tVNS research by integrating remote data collection techniques.
Collapse
Affiliation(s)
- Sharon Naparstek
- Department of Psychology, Bar-Ilan University, Ramat Gan, Israel
| | - Ashley K. Yeh
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Colleen Mills-Finnerty
- VA Palo Alto Health Care System, Palo Alto, CA, United States
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, United States
| |
Collapse
|
49
|
Zhao B, Bi Y, Chen Y, Zhang J, Zhang S, Zhang D, Rong P. Altered functional connectivity of the thalamus in patients with insomnia disorder after transcutaneous auricular vagus nerve stimulation therapy. Front Neurol 2023; 14:1164869. [PMID: 37483453 PMCID: PMC10357469 DOI: 10.3389/fneur.2023.1164869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023] Open
Abstract
The pathogenesis of insomnia is related to the dysfunction of the thalamus. Transcutaneous auricular vagus nerve stimulation (taVNS) has proved to be effective in treating insomnia. However, whether taVNS alleviates insomnia through modulating thalamus-related functional connectivity remains unclear. To elucidate the instant modulating effects of taVNS on the resting state functional connectivity (RSFC) of the thalamus, 20 patients with insomnia disorder were recruited to receive taVNS treatment and their resting state functional magnetic resonance imaging (fMRI) data were collected immediately before and after stimulation. The fMRI data were compared with 20 age- and gender-matched healthy subjects who received no stimulation and had RSFC fMRI data collected once. RSFC analyses of the thalamus were performed in both groups. In addition to assessing the group differences between ID patients and healthy controls regarding the RSFC of the thalamus, we examined the taVNS-induced changes of RSFC of the thalamus in ID patients. Before taVNS treatment, the ID patients showed increased RSFC of the thalamus with the right insula and inferior frontal gyrus than healthy controls. After taVNS treatment, the RSFC between the thalamus and the right angular gyrus, left anterior cingulate gyrus, and precuneus were significantly decreased in patients. This study provides insights into the instant brain effects involving the thalamus-related functional connectivity of taVNS performed on insomnia disorder patients.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Acupuncture, College of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yanzhi Bi
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yong Chen
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, China
| | - Jinling Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuai Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dongshu Zhang
- Department of Acupuncture, College of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Peijing Rong
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
50
|
Tan C, Qiao M, Ma Y, Luo Y, Fang J, Yang Y. The efficacy and safety of transcutaneous auricular vagus nerve stimulation in the treatment of depressive disorder: A systematic review and meta-analysis of randomized controlled trials. J Affect Disord 2023:S0165-0327(23)00685-7. [PMID: 37230264 DOI: 10.1016/j.jad.2023.05.048] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Transcutaneous auricular vagus nerve stimulation (taVNS) is used for treating depression but the efficacy and safety have not been well assessed. This study was conducted to evaluate the efficacy and safety of taVNS in depression. METHODS The retrieval databases included English databases of PubMed, Web of Science, Embase, the Cochrane Library and PsycINFO, and Chinese databases of CNKI, Wanfang, VIP and Sino Med, and the retrieval period was from their inception to November 10, 2022. The clinical trial registers (ClinicalTrials.gov and Chinese Clinical Trial Registry) were also searched. Standardized mean difference and the risk ratio were used as the effect indicator and the effect size was represented by the 95 % confidence interval. Revised Cochrane risk-of-bias tool for randomized trials and the Grades of Recommendation, Assessment, Development and Evaluation system were used to assess the risk of bias and quality of evidence respectively. RESULTS Totally, 12 studies of 838 participants were included. taVNS could significantly improve depression and reduce Hamilton Depression Scale scores. Low to very low evidence showed that taVNS had higher response rates than sham-taVMS and comparable response rates compared to antidepressants (ATD) and that taVNS combined with ATD had comparable efficacy to ATD with fewer side effects. LIMITATIONS The number of studies in subgroups was small and the evidence quality was low to very low. CONCLUSIONS taVNS is an effective and safe method for alleviating depression scores and had a comparable response rate to ATD.
Collapse
Affiliation(s)
- Chaoren Tan
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Science, 100700 Beijing, China
| | - Meng Qiao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, 100700 Beijing, China
| | - Yue Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 100053 Beijing, China
| | - Yi Luo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 100053 Beijing, China
| | - Jiliang Fang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 100053 Beijing, China
| | - Yongsheng Yang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Science, 100700 Beijing, China.
| |
Collapse
|