1
|
Gangemi A, Impellizzeri F, Fabio RA, Suriano R, D'Arrigo A, Rifici C, Porcari B, Quartarone A, De Luca R, Calabrò RS. Cognitive and neurophysiological effects of bilateral tDCS neuromodulation in patients with minimally conscious state. Sci Rep 2025; 15:14389. [PMID: 40274956 PMCID: PMC12022346 DOI: 10.1038/s41598-025-99591-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025] Open
Abstract
The minimally conscious state (MCS) is a clinical condition characterized by severely reduced but present awareness of self and the environment. Transcranial direct current stimulation (tDCS) has shown promising potential. The aim of this quasi-randomised control study was to investigate the effects of bilateral of tDCS applied to the right and left dorsolateral prefrontal cortex (DLPFC) on neurophysiological and cognitive outcomes in 28 patients with MCS. Participants were quasi-randomly assigned to one of two groups: experimental group with tDCS over both DLPFC, and a control group, which received sham tDCS. Neurophysiological assessments included event-related potentials (ERPs) analysis (N200 and P300) and EEG beta band study. Clinical outcomes were measured using ad hoc psychometric battery, including Coma Recovery Scale-Revised (CRS-R), Levels of Cognitive Functioning Scale (LCFS), and Functional Independence Measure (FIM). The findings revealed a significant improvement in ERP latencies and increased beta band rhythms in the experimental group, indicating enhanced neural responsiveness to cognitive stimuli. Additionally, significant improvements were observed in clinical measures of awareness and functional capacity. These findings suggest that tDCS may represent a promising therapeutic option for enhancing both neurophysiological responses and cognitive functioning in patients with MCS.
Collapse
Affiliation(s)
| | | | - Rosa Angela Fabio
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences, University of Messina, 98100, Messina, Italy
| | - Rossella Suriano
- Department of Cognitive, Psychological and Pedagogical Sciences and Cultural Studies, University of Messina, 98100, Messina, Italy
| | | | - Carmela Rifici
- IRCCS Centro Neurolesi Bonino Pulejo, 98124, Messina, Italy
| | - Bruno Porcari
- IRCCS Centro Neurolesi Bonino Pulejo, 98124, Messina, Italy
| | | | | | | |
Collapse
|
2
|
Liu Y, Zhang Q, Zhang H, Xiang Y, Wang H. Research hotspots and frontiers of neuromodulation technology in the last decade: a visualization analysis based on the Web of Science database. Front Hum Neurosci 2025; 19:1574721. [PMID: 40292332 PMCID: PMC12021822 DOI: 10.3389/fnhum.2025.1574721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Background Since the 1990s, neuromodulation technology has experienced rapid advancements, providing new therapeutic approaches for clinical rehabilitation in neurological disorders. The objective of this study is to utilize CiteSpace and VOSviewer to investigate the current research status, key topics, and future trends in the field of neuromodulation technology over the past decade. Methods Relevant literature in the field of neuromodulation technology published in Web of Science database from January 1, 2014 to June 18, 2024 were retrieved, and imported into CiteSpace and VOSviewer for visualization. VOSviewer was used for counties, institutions, authors and keywords analyses. CiteSpace was used for presentation visualization analysis of co-cited references, keywords clusters and bursts. Results This study encompasses a total of 1,348 relevant publications, with the number of publications showing an increasing trend year by year. The most significant growth was observed between 2020 and 2021. The United States, China and the United Kingdom are the three leading countries with high output in this regard. The top three institutions in terms of the publication volume are Harvard Medical School, the University of Toronto and Stanford University. Keyword co-occurrence and cluster analysis identified that deep brain stimulation, transcranial magnetic stimulation, transcranial direct current stimulation, and focused ultrasound stimulation are the most widely used central nerve stimulation techniques in neuromodulation. The treatment of intractable chronic pain also emerged as a key focus within neuromodulation techniques. The recent keywords bursts included terms such as recovery, movement, nucleus, modeling and plasticity, suggesting that the future research trend will be centered on these areas. Conclusion In conclusion, neuromodulation technology is garnering increasing attention from researchers and is currently widely used in brain diseases. Future research is expected to delve deeper, particularly into exploring deep brain structure stimulation targets and restoring motor function based on neuroplasticity theory.
Collapse
Affiliation(s)
- Yanpei Liu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, China
| | - Qian Zhang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, China
| | - Haoran Zhang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, China
| | - Yun Xiang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, China
- Bao’an District Konghai Hospital, Shenzhen, Guangdong, China
| | - Hui Wang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Roy S, Fan Y, Mosayebi-Samani M, Claus M, Yavari F, Kleinsorge T, Nitsche MA. Modulating prefrontal cortex activity to alleviate stress-induced working memory deficits: A transcranial direct current (tDCS) study. Int J Clin Health Psychol 2025; 25:100569. [PMID: 40292419 PMCID: PMC12033912 DOI: 10.1016/j.ijchp.2025.100569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 04/12/2025] [Indexed: 04/30/2025] Open
Abstract
This study explores the impact of stress on working memory (WM) performance, and the potential mitigating effects of transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (dlPFC) and ventromedial prefrontal cortex (vmPFC). The study had a mixed, randomized, single-blind, sham-controlled design, with stress induction as within-subject and stimulation condition as between-subject factors. We assessed stress-induced WM deficits using aversive video clips to induce stress and a verbal n-back task to assess WM performance. We analyzed physiological (cortisol and heart rate), behavioral, and electroencephalographic (EEG) changes due to stress before, during, and after WM task performance and their modulation by tDCS. Stress impaired WM performance in the sham stimulation condition for the 3-back load, but not for 2-back or 4-back loads in the WM task and was associated with elevated physiological stress markers. tDCS over the vmPFC led to better WM task performance while stimulation over the dlPFC did not. Active tDCS with both dlPFC and vmPFC stimulation blunted cortisol release in stress conditions compared to sham. The EEG analysis revealed potential mechanisms explaining the behavioral effects of vmPFC stimulation. vmPFC stimulation led to a decreased P200 event-related potential (ERP) component compared to the sham stimulation condition and resulted in higher task-related alpha desynchronization, indicating reduced distractions and better focus during task performance. This study thus shows that the vmPFC might be a potential target for mitigating the effects of stress on WM performance and contributes to the development of targeted interventions for stress-related cognitive impairments.
Collapse
Affiliation(s)
- Sumit Roy
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- International Graduate School of Neuroscience (IGSN), Ruhr University Bochum, Bochum, Germany
| | - Yan Fan
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Mohsen Mosayebi-Samani
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Maren Claus
- Department of Immunology, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Fatemeh Yavari
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Thomas Kleinsorge
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Michael A. Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- International Graduate School of Neuroscience (IGSN), Ruhr University Bochum, Bochum, Germany
- German Centre for Mental Health (DZPG), Bochum
- Bielefeld University, University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy, Germany
| |
Collapse
|
4
|
Dai T, Liu M, Bao D, Manor B, Zhou J. Transcranial direct current stimulation alleviates the pain severity in people suffering from knee osteoarthritis: a systematic review and meta-analysis. Pain Rep 2025; 10:e1215. [PMID: 39664709 PMCID: PMC11630987 DOI: 10.1097/pr9.0000000000001215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/02/2024] [Accepted: 09/16/2024] [Indexed: 12/13/2024] Open
Abstract
Considerable research has shown the benefits of transcranial direct current stimulation (tDCS) for the alleviation of pain associated with knee osteoarthritis (KOA). Still, a large variance in study protocols and observations across publications exists. We here thus completed a systematic review and meta-analysis to comprehensively and quantitatively characterize the effects of tDCS on KOA-related pain. A search strategy based on the Population, Intervention, Comparison, Outcome, and Study design (PICOS) principle was used to obtain the publications in 7 databases. Studies exploring the effects of tDCS on KOA-related pain were screened, and eligible studies were included. Ten studies of 518 participants using Visual Analogue Scale or Numeric Rating Scale to assess pain were included in the systematic review, and 9 of them were included in meta-analysis. The quality of these studies was good. Compared to control, tDCS induced significant short-term improvements in KOA-related pain with medium heterogeneity (standardized mean difference [SMD] = -0.91, 95% confidence interval [-1.24, -0.58], P < 0.001, I2 = 61%). Subgroup analyses showed that both home-based (SMD = -1.32, 95% CI [-1.65, -0.99], P < 0.001, I 2 = 0%) and laboratory-based intervention (SMD = -0.66, 95% CI [-0.99, -0.33], P < 0.001, I 2 = 40%) with at least 5 sessions per week (SMD = -1.02, 95% CI [-1.41, -0.64], P < 0.001, I 2 = 65%) and/or with a total number of at least 10 sessions (SMD = -1.12, 95% CI [-1.51, -0.74], P < 0.001, I 2 = 59%) can induce maximum benefits for the alleviation of KOA-related pain. The results here showed that tDCS is of great promise to alleviate KOA-related pain. Still, future studies with more rigorous design are needed to confirm the observations from this work, which can ultimately help the determination of appropriate intervention protocol that can maximize such benefits.
Collapse
Affiliation(s)
- Tian Dai
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
- National Sports Training Center, Beijing, China
| | - Meng Liu
- Sports Coaching College, Beijing Sport University, Beijing, China
- School of Physical Education, University of Jinan, Shandong, China
| | - Dapeng Bao
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
- Medical examination center, Peking University, Third Hospital, Beijing, China
| | - Brad Manor
- Hebrew SeniorLife Hinda and Arthur Marcus Institute for Aging Research, Harvard Medical School, Boston, MA, USA
| | - Junhong Zhou
- Hebrew SeniorLife Hinda and Arthur Marcus Institute for Aging Research, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Chmiel J, Stępień-Słodkowska M. Efficacy of Transcranial Direct Current Stimulation (tDCS) on Neuropsychiatric Symptoms in Multiple Sclerosis (MS)-A Review and Insight into Possible Mechanisms of Action. J Clin Med 2024; 13:7793. [PMID: 39768715 PMCID: PMC11728448 DOI: 10.3390/jcm13247793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Introduction: Neuropsychiatric symptoms such as depression and anxiety are a significant burden on patients with multiple sclerosis (MS). Their pathophysiology is complex and yet to be fully understood. There is an urgent need for non-invasive treatments that directly target the brain and help patients with MS. One such possible treatment is transcranial direct current stimulation (tDCS), a popular and effective non-invasive brain stimulation technique. Methods: This mechanistic review explores the efficacy of tDCS in treating depression and anxiety in MS while focusing on the underlying mechanisms of action. Understanding these mechanisms is crucial, as neuropsychiatric symptoms in MS arise from complex neuroinflammatory and neurodegenerative processes. This review offers insights that may direct more focused and efficient therapeutic approaches by investigating the ways in which tDCS affects inflammation, brain plasticity, and neural connections. Searches were conducted using the PubMed/Medline, ResearchGate, Cochrane, and Google Scholar databases. Results: The literature search yielded 11 studies to be included in this review, with a total of 175 patients participating in the included studies. In most studies, tDCS did not significantly reduce depression or anxiety scores as the studied patients did not have elevated scores indicating depression and anxiety. In the few studies where the patients had scores indicating mild/moderate dysfunction, tDCS was more effective. The risk of bias in the included studies was assessed as moderate. Despite the null or near-null results, tDCS may still prove to be an effective treatment option for depression and anxiety in MS, because tDCS produces a neurobiological effect on the brain and nervous system. To facilitate further work, several possible mechanisms of action of tDCS have been reported, such as the modulation of the frontal-midline theta, reductions in neuroinflammation, the modulation of the HPA axis, and cerebral blood flow regulation. Conclusions: Although tDCS did not overall demonstrate positive effects in reducing depression and anxiety in the studied MS patients, the role of tDCS in this area should not be underestimated. Evidence from other studies indicates the effectiveness of tDCS in reducing depression and anxiety, but the studies included in this review did not include patients with sufficient depression or anxiety. Future studies are needed to confirm the effectiveness of tDCS in neuropsychiatric dysfunctions in MS.
Collapse
Affiliation(s)
- James Chmiel
- Faculty of Physical Culture and Health, Institute of Physical Culture Sciences, University of Szczecin, Al. Piastów 40B blok 6, 71-065 Szczecin, Poland
- Doctoral School of the University of Szczecin, University of Szczecin, Mickiewicza 16, 70-384 Szczecin, Poland
| | - Marta Stępień-Słodkowska
- Faculty of Physical Culture and Health, Institute of Physical Culture Sciences, University of Szczecin, Al. Piastów 40B blok 6, 71-065 Szczecin, Poland
| |
Collapse
|
6
|
Chen Y, Ou Z, Hao N, Zhang H, Zhang E, Zhou D, Wu X. Transcranial direct current stimulation in the management of epilepsy: a meta-analysis and systematic review. Front Neurol 2024; 15:1462364. [PMID: 39588230 PMCID: PMC11586187 DOI: 10.3389/fneur.2024.1462364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/14/2024] [Indexed: 11/27/2024] Open
Abstract
Background Transcranial direct current stimulation (tDCS) has recently become a novel and non-invasive treatment option for refractory epilepsy. Previous systematic reviews have suggested that tDCS may be effective in treating epilepsy, this study presents the first meta-analysis on its effectiveness. Methods We searched PubMed, Embase, Cochrane Library, and Web of Science for relevant randomized controlled trials (RCTs) from database inception to May 2024. The Cochrane risk of bias tool RoB2.0 was used to assess the risk of bias. Primary outcomes included changes in seizure frequency from baseline and the proportion of patients with a ≥50% reduction in seizure frequency. Results Of the 608 studies initially identified, 14 were finally included. The pooled results from the random-effects model indicated that tDCS significantly reduced seizure frequency (WMD 0.41, 95% CI 0.24, 0.59). Further subgroup analysis revealed that tDCS significantly reduced seizure frequency in temporal lobe epilepsy, and seizure frequency was more alleviated in studies that had treatment sessions of fewer than 5 times, and followed up within 2 months' post-treatment. Only four studies provided data on patients with a ≥50% reduction in seizure frequency, showing no significant difference (RR 2.96, 95% CI 0.85, 10.32). In the systematic review, three studies analyzed cognitive function changes after tDCS treatment, but none reported significant improvements. The most common side effect during tDCS treatment was transient tingling, and no patients required additional life-support measures due to side effects. Conclusion The current meta-analysis on available trials indicates that tDCS can effectively reduce seizure frequency in the short term and is well-tolerated. However, its impact on cognitive improvement in epilepsy patients requires further investigation. Systematic review registration https://inplasy.com/inplasy-2024-6-0033/, identifier INPLASY202460033.
Collapse
Affiliation(s)
| | | | | | | | | | - Dong Zhou
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xintong Wu
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Ai Y, Yin M, Zhang L, Hu H, Zheng H, Feng W, Ku Y, Hu X. Effects of different types of high-definition transcranial electrical stimulation on visual working memory and contralateral delayed activity. J Neuroeng Rehabil 2024; 21:201. [PMID: 39516946 PMCID: PMC11545573 DOI: 10.1186/s12984-024-01498-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND AND PURPOSE Working memory is critical for individuals and has been found to be improved by electrical stimulation of the left dorsolateral prefrontal cortex (DLPFC). However, the effects of different types of transcranial electrical stimulation on working memory are controversial, and the underlying mechanism remains uncertain. In this study, high-definition transcranial direct current stimulation (HD-tDCS) and high-definition transcranial random noise stimulation (HD-tRNS) were applied to the DLPFC to observe the different effects on visual working memory (VWM). The aim was to explore the causal relationship between the electrical activity of the DLPFC and the posterior parietal cortex (PPC) electrical activity and the contralateral delayed activity (CDA). METHODS Thirty-three healthy subjects received HD-tDCS, HD-tRNS and sham stimulation in a random order. Stimulation was applied to the left DLPFC for 20 min. The subjects underwent a color change-detection task as our VWM task and an auditory digit span test (DST) immediately after stimulation. Event-related potential (ERP) data were collected during the VWM task. RESULTS The results revealed significant differences between the different types of HD-tES. There was a remarkable increase in VWM capacity following HD-tDCS compared with both HD-tRNS (pa = 0.038) and sham stimulation (pa = 0.038). Additionally, the CDA from the PPC differed after stimulation of the DLPFC. Both HD-tDCS and HD-tRNS expanded the maximum CDA amplitude from set size of 4 to 6, whereas after sham stimulation, the maximum CDA was maintained at a set size of 4. Compared with the sham condition, only HD-tDCS induced a noteworthy increase in CDA amplitude (pa = 0.012). Notably, a significant correlation emerged between the mean CDA amplitude and VWM capacity (p < 0.001, r = - 0.402). CONCLUSION These findings underscore the ability of HD-tDCS to target the DLPFC to augment working memory capacity while concurrently amplifying CDA amplitudes in the PPC through the frontoparietal network. Trial registration ChiCTR2300074898.
Collapse
Affiliation(s)
- Yinan Ai
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong, China
| | - Mingyu Yin
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong, China
| | - Liying Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong, China
| | - Haojie Hu
- Department of Psychology, College of Arts and Sciences, New York University, New York, NY, 10003, USA
| | - Haiqing Zheng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong, China
| | - Wuwei Feng
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Yixuan Ku
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Center for Brain and Mental Well-being, Department of Psychology, Sun Yat-sen University, Guangzhou, China.
- Peng Cheng Laboratory, Shenzhen, China.
| | - Xiquan Hu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
Schmidt N, Menéndez-Granda M, Münger R, Hatzipanayioti A, Kliegel M, Orth M, Peter J. Practice improves older adults' attentional control and prospective memory more than HD-tDCS: a randomized controlled trial. Sci Rep 2024; 14:22985. [PMID: 39362923 PMCID: PMC11449935 DOI: 10.1038/s41598-024-74029-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024] Open
Abstract
Frontal and parietal brain regions are involved in attentional control and prospective memory. It is debated, however, whether increased or decreased activity in those regions is beneficial for older adults' task performance. We therefore aimed to systematically modulate activity in those regions using high-definition transcranial direct current stimulation. We included n = 106 healthy adults (60-75 years old, 58% female) in a randomized, double-blind, and sham-controlled study. We evaluated task performance twice in the laboratory and at home and additionally assessed heart rates. Participants received cathodal, anodal, or sham stimulation of the left or right inferior frontal lobe, or the right superior parietal lobe (1 mA for 20 min). Performance improved at visit two in laboratory tasks but declined in at-home tasks. Stimulation did not modulate performance change in laboratory tasks but prevented decline in at home-tasks. Heart rates increased at visit two but only when right inferior frontal lobe activity was inhibited. Repeating a task seems more beneficial than stimulation for laboratory tasks. This might be different for at-home tasks. Inhibiting right frontal brain function increases heart rates, possibly due to a modulation of the frontal-vagal brain-heart axis.
Collapse
Affiliation(s)
- Nadine Schmidt
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Marta Menéndez-Granda
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Ronya Münger
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Adamantini Hatzipanayioti
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Matthias Kliegel
- Cognitive Aging Lab (CAL), Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
- Centre for the Interdisciplinary Study of Gerontology and Vulnerability, University of Geneva, Geneva, Switzerland
- Swiss Centre of Expertise in Life Course Research, LIVES Centre, Lausanne and Geneva, Switzerland
| | - Michael Orth
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Parkinson's and Movement Disorders Centre, Department of Neurology, Bern University Hospital, Bern, Switzerland
| | - Jessica Peter
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
| |
Collapse
|
9
|
Kipping M, Mai-Lippold SA, Herbert BM, Desdentado L, Kammer T, Pollatos O. Insights into interoceptive and emotional processing: Lessons from studies on insular HD-tDCS. Psychophysiology 2024; 61:e14639. [PMID: 38946148 DOI: 10.1111/psyp.14639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/03/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
Interoception, the processing of internal bodily signals, is proposed as the fundamental mechanism underlying emotional experiences. Interoceptive and emotional processing appear distorted in psychiatric disorders. However, our understanding of the neural structures involved in both processes remains limited. To explore the feasibility of enhancing interoception and emotion, we conducted two studies using high-definition transcranial direct current stimulation (HD-tDCS) applied to the right anterior insula. In study one, we compared the effects of anodal HD-tDCS and sham tDCS on interoceptive abilities (sensibility, confidence, accuracy, emotional evaluation) in 52 healthy subjects. Study two additionally included physical activation through ergometer cycling at the beginning of HD-tDCS and examined changes in interoceptive and emotional processing in 39 healthy adults. In both studies, HD-tDCS was applied in a single-blind cross-over online design with two separate sessions. Study one yielded no significant effects of HD-tDCS on interoceptive dimensions. In study two, significant improvements in interoceptive sensibility and confidence were observed over time with physical preactivation, while no differential effects were found between sham and insula stimulation. The expected enhancement of interoceptive and emotional processing following insula stimulation was not observed. We conclude that HD-tDCS targeting the insula does not consistently increase interoceptive or emotional variables. The observed increase in interoceptive sensibility may be attributed to the activation of the interoceptive network through physical activity or training effects. Future research on HD-tDCS involving interoceptive network structures could benefit from protocols targeting larger regions within the network, rather than focusing solely on insula stimulation.
Collapse
Affiliation(s)
- Miriam Kipping
- Clinical and Health Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Sandra A Mai-Lippold
- Clinical and Health Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Beate M Herbert
- Biological Psychology and Experimental Psychopathology, Charlotte-Fresenius-University, Munich, Germany
- Department Psychology, Clinical Psychology and Psychotherapy, University of Tuebingen, Tuebingen, Germany
| | - Lorena Desdentado
- Polibienestar Research Institute, University of Valencia, Valencia, Spain
- CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Thomas Kammer
- Section for Neurostimulation, Department of Psychiatry, Ulm University, Ulm, Germany
| | - Olga Pollatos
- Clinical and Health Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| |
Collapse
|
10
|
Prillinger K, Amador de Lara G, Klöbl M, Lanzenberger R, Plener PL, Poustka L, Konicar L, Radev ST. Multisession tDCS combined with intrastimulation training improves emotion recognition in adolescents with autism spectrum disorder. Neurotherapeutics 2024; 21:e00460. [PMID: 39393982 PMCID: PMC11585900 DOI: 10.1016/j.neurot.2024.e00460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/13/2024] Open
Abstract
Previous studies indicate that transcranial direct current stimulation (tDCS) is a promising emerging treatment option for autism spectrum disorder (ASD) and its efficacy could be augmented using concurrent training. However, no intrastimulation social cognition training for ASD has been developed so far. The objective of this two-armed, double-blind, randomized, sham-controlled clinical trial is to investigate the effects of tDCS combined with a newly developed intrastimulation social cognition training on adolescents with ASD. Twenty-two male adolescents with ASD were randomly assigned to receive 10 sessions of either anodal or sham tDCS at F3/right supraorbital region together with online intrastimulation training comprising basic and complex emotion recognition tasks. Using baseline magnetic resonance imaging data, individual electric field distributions were simulated, and brain activation patterns of the training tasks were analyzed. Additionally, questionnaires were administered at baseline and following the intervention. Compared to sham tDCS, anodal tDCS significantly improved dynamic emotion recognition over the course of the sessions. This task also showed the highest activations in face processing regions. Moreover, the improvement was associated with electric field density at the medial prefrontal cortex and social awareness in exploratory analyses. Both groups showed high tolerability and acceptability of tDCS, and significant improvement in overall ASD symptoms. Taken together, multisession tDCS improved dynamic emotion recognition in adolescents with ASD using a task that activates brain regions associated with the social brain network. The variability in the electric field might diminish tDCS effects and future studies should investigate individualized approaches.
Collapse
Affiliation(s)
- Karin Prillinger
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, 1090 Vienna, Austria; Comprehensive Center for Pediatrics (CCP), Medical University of Vienna, 1090 Vienna, Austria; Comprehensive Center for Clinical Neuroscience and Mental Health (C3NMH), Medical University of Vienna, 1090 Vienna, Austria.
| | - Gabriel Amador de Lara
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, 1090 Vienna, Austria; Comprehensive Center for Pediatrics (CCP), Medical University of Vienna, 1090 Vienna, Austria; Comprehensive Center for Clinical Neuroscience and Mental Health (C3NMH), Medical University of Vienna, 1090 Vienna, Austria
| | - Manfred Klöbl
- Comprehensive Center for Clinical Neuroscience and Mental Health (C3NMH), Medical University of Vienna, 1090 Vienna, Austria; Department of Psychiatry and Psychotherapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Rupert Lanzenberger
- Comprehensive Center for Clinical Neuroscience and Mental Health (C3NMH), Medical University of Vienna, 1090 Vienna, Austria; Department of Psychiatry and Psychotherapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Paul L Plener
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, 1090 Vienna, Austria; Comprehensive Center for Pediatrics (CCP), Medical University of Vienna, 1090 Vienna, Austria; Comprehensive Center for Clinical Neuroscience and Mental Health (C3NMH), Medical University of Vienna, 1090 Vienna, Austria; Department of Child and Adolescent Psychiatry and Psychotherapy, University of Ulm, 89073 Ulm, Germany
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry, University Hospital Heidelberg, 69115 Heidelberg, Germany
| | - Lilian Konicar
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, 1090 Vienna, Austria; Comprehensive Center for Pediatrics (CCP), Medical University of Vienna, 1090 Vienna, Austria; Comprehensive Center for Clinical Neuroscience and Mental Health (C3NMH), Medical University of Vienna, 1090 Vienna, Austria
| | - Stefan T Radev
- Cognitive Science Department, Rensselaer Polytechnic Institute, 12180 Troy, New York, USA; Center for Modeling, Simulation and Imaging in Medicine (CEMSIM), Rensselaer Polytechnic Institute, 12180 Troy, New York, USA
| |
Collapse
|
11
|
Lv Y, Wu S, Nitsche MA, Yue T, Zschorlich VR, Qi F. A meta-analysis of the effects of transcranial direct current stimulation combined with cognitive training on working memory in healthy older adults. Front Aging Neurosci 2024; 16:1454755. [PMID: 39376507 PMCID: PMC11456488 DOI: 10.3389/fnagi.2024.1454755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/12/2024] [Indexed: 10/09/2024] Open
Abstract
Background Working memory (WM) loss, which can lead to a loss of independence, and declines in the quality of life of older adults, is becoming an increasingly prominent issue affecting the ageing population. Transcranial direct current stimulation (tDCS), a non-invasive brain stimulation technique, is emerging as a potential alternative to pharmacological treatments that shows promise for enhancing WM capacity and May enhance the effects of cognitive training (CT) interventions. Objective The purpose of this meta-analysis was to explore how different tDCS protocols in combination with CT enhanced WM in healthy older adults. Methods Randomized controlled trials (RCTs) exploring the effects of tDCS combined with CT on WM in healthy older adults were retrieved from the Web of Science, PubMed, Embase, Scopus and the Cochrane Library databases. The search time period ranged from database inception to January 15, 2024. Methodological quality of the trials was assessed using the risk-of-bias criteria for RCTs from the Cochrane Collaboration Network, and RevMan 5.3 (Cochrane, London, United Kingdom) was used for the meta-analysis of the final literature outcomes. Results Six RCTs with a total of 323 participants were ultimately included. The results of the meta-analysis show that tDCS combined with CT statistically significantly improves WM performance compared to the control sham stimulation group in healthy older adults [standard mean difference (SMD) = 0.35, 95% CI: 0.11-0.59, I 2 = 0%, Z = 2.86, p = 0.004]. The first subgroup analysis indicated that, when the stimulus intensity was 2 mA, a statistically significant improvement in WM performance in healthy older adults was achieved (SMD = 0.39, 95% CI: 0.08-0.70, I 2 = 6%, Z = 2.46, p = 0.01). The second subgroup analysis showed that long-term intervention (≥ 10 sessions) with tDCS combined with CT statistically significantly improved WM compared to the control group in healthy older adults (SMD = 0.72, 95% CI: 0.22-1.21, I 2 = 0%, Z = 2.85, p = 0.004). Conclusion tDCS combined with CT statistically significantly improves WM in healthy older adults. For the stimulus parameters, long-term interventions (≥ 10 sessions) with a stimulation intensity of 2 mA are the most effective.
Collapse
Affiliation(s)
- Yanxin Lv
- Sports, Exercise, and Brain Sciences Laboratory, Sports Coaching College, Beijing Sport University, Beijing, China
| | - Shuo Wu
- Faculty of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Michael A. Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- University Clinic of Psychiatry and Psychotherapy, Protestant Hospital of Bethel Foundation, University Hospital OWL, Bielefeld University, Bielefeld, Germany
- German Center for Mental Health (DZPG), Bochum, Germany
| | - Tian Yue
- Sports, Exercise, and Brain Sciences Laboratory, Sports Coaching College, Beijing Sport University, Beijing, China
| | - Volker R. Zschorlich
- Faculty of Philosophy, Institute of Sports Science, University of Rostock, Rostock, Germany
- Faculty of Interdisciplinary Research, Department of Ageing of Individuals and Society, University of Rostock, Rostock, Germany
- Department of Sport Science, University of Oldenburg, Oldenburg, Germany
| | - Fengxue Qi
- Sports, Exercise, and Brain Sciences Laboratory, Sports Coaching College, Beijing Sport University, Beijing, China
| |
Collapse
|
12
|
Chuderski A, Chinta SR. Transcranial alternating current stimulation barely enhances working memory in healthy adults: A meta-analysis. Brain Res 2024; 1839:149022. [PMID: 38801916 DOI: 10.1016/j.brainres.2024.149022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Working memory (WM) is a pivotal neural mechanism for cognitive function and ability. Transcranial alternating current stimulation (tACS) was used to improve WM by entraining key brain rhythms. We submitted to meta-analysis 143 effects of tACS on WM performance, found in 42 reports published between 2014 and 2023, encompassing a total of 1386 healthy adults stimulated. The overall effect size of 134 interventions intended to improve WM equaled Hedges' g = 0.076 [0.039, 0.113]. However, after correcting for a significant publication bias this effect size dropped to zero. By contrast, 9 interventions distorting the brain synchronization using antiphase tACS reliably decreased WM performance, with Hedges' g = -0.266, [-0.458, -0.074]. Individuating the targeted frequency band was the only reliable moderator. The disparity between our null outcome and moderately positive tACS effects estimated by previous meta-analyses resulted from our inclusion of the most recent studies mostly reporting negligible effects. Our results suggest that current tACS protocols barely enhance WM in healthy adults. More research is needed to develop effective methods for WM stimulation.
Collapse
|
13
|
Edgcumbe DR, Rivolta D, Nitsche MA, Thoma V. Single session and repeated anodal transcranial direct current stimulation over the right dorsolateral prefrontal cortex increases reflective thinking but not working memory updating performance. Heliyon 2024; 10:e36078. [PMID: 39253169 PMCID: PMC11382065 DOI: 10.1016/j.heliyon.2024.e36078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/11/2024] Open
Abstract
Background Anodal transcranial direct current stimulation (tDCS) over the right dorsolateral prefrontal cortex (DLPFC) has shown to have effects on different domains of cognition yet there is a gap in the literature regarding effects on reflective thinking performance. Objective The current study investigated if single session and repeated anodal tDCS over the right DLPFC induces effects on judgment and decision-making performance and whether these are linked to working memory (updating) performance or cognitive inhibition. Methods Participants received anodal tDCS over the right DLPFC once (plus sham tDCS in a second session) or twice (24 h apart). In the third group participants received a single session of sham stimulation only. Cognitive characteristic measures were administered pre-stimulation (thinking disposition, impulsivity, cognitive ability). Experimental tasks included two versions of the Cognitive Reflection Test (numeric vs verbal-CRT), a set of incongruent base-rate vignettes, and two working memory tests (Sternberg task and n-back task). Forty-eight participants (mean age = 26.08 ± 0.54 years; 27 females) were recruited. Results Single sessions of tDCS were associated with an increase in reflective thinking performance compared to the sham conditions, with stimulation improving scores on incongruent base rate tasks as well as marginally improving numeric CRT scores (compared to sham), but not thinking tasks without a numeric component (verbal-CRT). Repeated anodal stimulation only improved numeric CRT scores. tDCS did not increase working memory (updating) performance. These findings could not be explained by a practice effect or a priori differences in cognitive characteristics or impulsivity across the experimental groups. Conclusion The current results demonstrate the involvement of the right DLPFC in reflective thinking performance which cannot be explained by working memory (updating) performance or general cognitive characteristics of participants.
Collapse
Affiliation(s)
- Daniel R Edgcumbe
- School of Psychology, University of East London, London, United Kingdom
- School of Psychological, Social and Behavioural Sciences, Faculty of Health and Life Sciences, Coventry University, United Kingdom
| | - Davide Rivolta
- Department of Education, Psychology and Communications, University of Bari Aldo, Bari, Italy
| | - Michael A Nitsche
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Department of Psychology and Neuroscience, Dortmund, Germany
- University Clinic of Psychiatry and Psychotherapy and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Protestant Hospital of Bethel Foundation, University Hospital OWL, Bielefeld University, 33615, Bielefeld, Germany
| | - Volker Thoma
- School of Psychology, University of East London, London, United Kingdom
| |
Collapse
|
14
|
Otstavnov N, Nieto-Doval C, Galli G, Feurra M. Frontoparietal Brain Network Plays a Crucial Role in Working Memory Capacity during Complex Cognitive Task. eNeuro 2024; 11:ENEURO.0394-23.2024. [PMID: 39029954 PMCID: PMC11315429 DOI: 10.1523/eneuro.0394-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 07/21/2024] Open
Abstract
Recent neurophysiological studies provide inconsistent results of frontoparietal network (FPN) stimulation for altering working memory (WM) capacity. This study aimed to boost WM capacity by manipulating the activity of the FPN via dual-site high-definition transcranial direct current stimulation. Forty-eight participants were randomly assigned to three stimulation groups, receiving either simultaneous anodal stimulation of the frontal and parietal areas (double stimulation), or stimulation of the frontal area only (single stimulation), or the placebo stimulation (sham) to frontal and parietal areas. After the stimulation, we used an operation span task to test memory accuracy, mathematical accuracy, time of calculation and memorizing, and recall response time across the three groups. The results revealed an enhancement of memory accuracy and a reduction of time of calculation in the double stimulation group compared with that in others. In addition, recall response time was significantly decreased in the double and single stimulation groups compared with that in sham. No differences in mathematical accuracy were observed. Our results confirm the pivotal role of the FPN in WM and suggest its functional dissociation, with the frontal component more implicated in the retrieval stage and the parietal component in the processing and retention stages.
Collapse
Affiliation(s)
- Nikita Otstavnov
- Centre for Cognition and Decision making, Institute for Cognitive Neuroscience, Higher School of Economics University, Moscow 101000, Russia
| | - Carlos Nieto-Doval
- Centre for Cognition and Decision making, Institute for Cognitive Neuroscience, Higher School of Economics University, Moscow 101000, Russia
| | - Giulia Galli
- Department of Psychology, Kingston University, London KT1 2EE, United Kingdom
| | - Matteo Feurra
- Centre for Cognition and Decision making, Institute for Cognitive Neuroscience, Higher School of Economics University, Moscow 101000, Russia
| |
Collapse
|
15
|
Duffy MJ, Feltman KA, Kelley AM, Mackie R. Limitations associated with transcranial direct current stimulation for enhancement: considerations of performance tradeoffs in active-duty Soldiers. Front Hum Neurosci 2024; 18:1444450. [PMID: 39132676 PMCID: PMC11310018 DOI: 10.3389/fnhum.2024.1444450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/03/2024] [Indexed: 08/13/2024] Open
Abstract
Introduction Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation method, popular due to its low cost, ease-of-application, and portability. As such, it has gained traction in examining its potential for cognitive enhancement in a diverse range of populations, including active-duty military. However, current literature presents mixed results regarding its efficacy and limited evaluations of possible undesirable side-effects (such as degradation to cognitive processes). Methods To further examine its potential for enhancing cognition, a double-blind, randomized, sham-controlled, within-subjects design, was used to evaluate both online active-anodal and -cathodal on several cognitive tasks administered. Potential undesirable side effects related to mood, sleepiness, and cognitive performance, were also assessed. Active tDCS was applied for 30 min, using 2 mA, to the left dorsolateral prefrontal cortex with an extracephalic reference placed on the contralateral arm of 27 (14 males) active-duty Soldiers. Results We report mixed results. Specifically, we found improvements in sustained attention (active-anodal) for males in reaction time (p = 0.024, ηp 2 = 0.16) and for sensitivity index in females (p = 0.013, ηp 2 = 0.18). In addition, we found faster reaction time (p = 0.034, ηp 2 = 0.15) and increased accuracy (p = 0.029, ηp 2 = 0.16) associated with executive function (active-anodal and -cathodal), and worsened working memory performance (active-cathodal; p = 0.008, ηp 2 = 0.18). Additionally, we found increased risk-taking with active-anodal (p = 0.001, ηp 2 = 0.33). Discussion tDCS may hold promise as a method for cognitive enhancement, as evidenced by our findings related to sustained attention and executive function. However, we caution that further study is required to better understand additional parameters and limitations that may explain results, as our study only focused on anode vs. cathode stimulation. Risk-taking was examined secondary to our main interests which warrants further experimental investigation isolating potential tradeoffs that may be associated with tDCS simulation.
Collapse
Affiliation(s)
- Michelle J. Duffy
- U.S. Army Aeromedical Research Laboratory, Fort Novosel, AL, United States
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Kathryn A. Feltman
- U.S. Army Aeromedical Research Laboratory, Fort Novosel, AL, United States
| | - Amanda M. Kelley
- U.S. Army Aeromedical Research Laboratory, Fort Novosel, AL, United States
| | - Ryan Mackie
- U.S. Army Aeromedical Research Laboratory, Fort Novosel, AL, United States
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| |
Collapse
|
16
|
Imperio CM, Chua EF. Lack of effects of online HD-tDCS over the left or right DLPFC in an associative memory and metamemory monitoring task. PLoS One 2024; 19:e0300779. [PMID: 38848375 PMCID: PMC11161112 DOI: 10.1371/journal.pone.0300779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 02/20/2024] [Indexed: 06/09/2024] Open
Abstract
Neuroimaging studies have shown that activity in the prefrontal cortex correlates with two critical aspects of normal memory functioning: retrieval of episodic memories and subjective "feelings-of-knowing" about our memory. Brain stimulation can be used to test the causal role of the prefrontal cortex in these processes, and whether the role differs for the left versus right prefrontal cortex. We compared the effects of online High-Definition transcranial Direct Current Stimulation (HD-tDCS) over the left or right dorsolateral prefrontal cortex (DLPFC) compared to sham during a proverb-name associative memory and feeling-of-knowing task. There were no significant effects of HD-tDCS on either associative recognition or feeling-of-knowing performance, with Bayesian analyses showing moderate support for the null hypotheses. Despite past work showing effects of HD-tDCS on other memory and feeling-of-knowing tasks, and neuroimaging showing effects with similar tasks, these findings add to the literature of non-significant effects with tDCS. This work highlights the need to better understand factors that determine the effectiveness of tDCS, especially if tDCS is to have a successful future as a clinical intervention.
Collapse
Affiliation(s)
- Casey M Imperio
- The Graduate Center of the City University of New York, New York, New York, United States of America
| | - Elizabeth F Chua
- The Graduate Center of the City University of New York, New York, New York, United States of America
- Brooklyn College of the City University of New York, New York, New York, United States of America
| |
Collapse
|
17
|
Gebodh N, Miskovic V, Laszlo S, Datta A, Bikson M. Frontal HD-tACS enhances behavioral and EEG biomarkers of vigilance in continuous attention task. Brain Stimul 2024; 17:683-686. [PMID: 38797371 DOI: 10.1016/j.brs.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/25/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024] Open
Affiliation(s)
- Nigel Gebodh
- The Department of Biomedical Engineering, The City College of New York, The City University of New York, 85 St. Nicholas Terrace, Center for Discovery and Innovation (CDI), Rm 3.121, New York, NY, 10031, USA; Soterix Medical Inc., New York, USA.
| | - Vladimir Miskovic
- Google X Development LLC, The Moonshot Factory, Mountain View, CA, USA
| | - Sarah Laszlo
- Google X Development LLC, The Moonshot Factory, Mountain View, CA, USA
| | | | - Marom Bikson
- The Department of Biomedical Engineering, The City College of New York, The City University of New York, 85 St. Nicholas Terrace, Center for Discovery and Innovation (CDI), Rm 3.121, New York, NY, 10031, USA
| |
Collapse
|
18
|
Fromm AE, Grittner U, Brodt S, Flöel A, Antonenko D. No Object-Location Memory Improvement through Focal Transcranial Direct Current Stimulation over the Right Temporoparietal Cortex. Life (Basel) 2024; 14:539. [PMID: 38792561 PMCID: PMC11122124 DOI: 10.3390/life14050539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024] Open
Abstract
Remembering objects and their associated location (object-location memory; OLM), is a fundamental cognitive function, mediated by cortical and subcortical brain regions. Previously, the combination of OLM training and transcranial direct current stimulation (tDCS) suggested beneficial effects, but the evidence remains heterogeneous. Here, we applied focal tDCS over the right temporoparietal cortex in 52 participants during a two-day OLM training, with anodal tDCS (2 mA, 20 min) or sham (40 s) on the first day. The focal stimulation did not enhance OLM performance on either training day (stimulation effect: -0.09, 95%CI: [-0.19; 0.02], p = 0.08). Higher electric field magnitudes in the target region were not associated with individual performance benefits. Participants with content-related learning strategies showed slightly superior performance compared to participants with position-related strategies. Additionally, training gains were associated with individual verbal learning skills. Consequently, the lack of behavioral benefits through focal tDCS might be due to the involvement of different cognitive processes and brain regions, reflected by participant's learning strategies. Future studies should evaluate whether other brain regions or memory-relevant networks may be involved in the modulation of object-location associations, investigating other target regions, and further exploring individualized stimulation parameters.
Collapse
Affiliation(s)
- Anna Elisabeth Fromm
- Department of Neurology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Ulrike Grittner
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
- Institute of Biometry and Clinical Epidemiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Svenja Brodt
- Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| | - Agnes Flöel
- Department of Neurology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
- German Centre for Neurodegenerative Diseases (DZNE) Standort Greifswald, 17489 Greifswald, Germany
| | - Daria Antonenko
- Department of Neurology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| |
Collapse
|
19
|
Di Rosa E, Masina F, Pastorino A, Galletti E, Gambarota F, Altoè G, Edelstyn N, Mapelli D. Mood moderates the effects of prefrontal tDCS on executive functions: A meta-analysis testing the affective state-dependency hypothesis. J Affect Disord 2024; 351:920-930. [PMID: 38341155 DOI: 10.1016/j.jad.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND In recent decades, numerous studies have investigated the effects of transcranial direct current stimulation (tDCS) on cognitive functioning. However, results of these studies frequently display inconsistency and pose challenges regarding replicability. The present work aimed at testing the hypothesis of mood as potential moderator of prefrontal tDCS effects on executive functions (EF). This hypothesis refers to the relationship between mood and EF, as well as to the association of mood with the dorsolateral prefrontal cortex (dlPFC) activity. METHODS We conducted a meta-analysis of 11 articles where the dlPFC was stimulated with anodal tDCS, EF were measured, and mood was assessed prior to the stimulation. We then conducted a meta-regression to examine whether mood moderated the tDCS effects on EF. RESULTS While no significant effect of tDCS on EF emerged from the meta-analysis, the meta-regression indicated that mood plays a significant role as moderator, with greater tDCS effects on EF in individuals with higher depressive symptoms. LIMITATIONS The limited number of studies included, the heterogeneous samples considered, and the limited generalizability to other non-invasive brain stimulation techniques and affective states. CONCLUSIONS Findings suggest that evaluating mood prior to stimulation could increase the sensitivity and specificity of tDCS application, and provide the first meta-analytic evidence in favor of the affective state-dependency hypothesis.
Collapse
Affiliation(s)
- Elisa Di Rosa
- Department of General Psychology, University of Padova, Italy.
| | | | | | | | - Filippo Gambarota
- Department of Developmental and Social Psychology - University of Padova, Italy
| | - Gianmarco Altoè
- Department of Developmental and Social Psychology - University of Padova, Italy
| | | | - Daniela Mapelli
- Department of General Psychology, University of Padova, Italy
| |
Collapse
|
20
|
Cai B, Tang J, Sang H, Zhang Z, Wang A. Differential effects of high-definition transcranial direct current stimulation (HD-tDCS) on attentional guidance by working memory in males with substance use disorder according to memory modality. Brain Cogn 2024; 177:106149. [PMID: 38579372 DOI: 10.1016/j.bandc.2024.106149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
Information stored in working memory can guide perception selection, and this process is modulated by cognitive control. Although previous studies have demonstrated that neurostimulation over the left dorsolateral prefrontal cortex (lDLPFC) contributes to restore cognitive control among individuals with substance use disorder (SUD), there remains an open question about the potential stimulation effects on memory-driven attention. To address this issue, the present study adopted a combined working memory/attention paradigm while employing high-definition transcranial direct current stimulation (HD-tDCS) to stimulate the lDLPFC. Observers were asked to maintain visual or audiovisual information in memory while executing a search task, while the validity of the memory contents for the subsequent search task could be either invalid or neutral. The results showed a faint memory-driven attentional suppression effect in sham stimulation only under the audiovisual condition. Moreover, anodal HD-tDCS facilitated attentional suppression effect in both the strength and temporal dynamics under the visual-only condition, whereas the effect was impaired or unchanged under the audiovisual condition. Surprisingly, cathodal HD-tDCS selectively improved temporal dynamics of the attentional suppression effect under the audiovisual condition. The present study revealed the differential enhancement of HD-tDCS on cognitive control over visual and audiovisual memory-driven attention among individuals with SUD.
Collapse
Affiliation(s)
- Biye Cai
- Department of Psychology, Research Center for Psychology and Behavioral Sciences, Soochow University, Suzhou, China; School of Physical Education and Sports Science, Soochow University, Suzhou, China
| | - Junjie Tang
- Taihu Compulsory Isolated Detoxification Center in Jiangsu Province, Suzhou, China
| | - Hanbin Sang
- Key Laboratory of Child Cognition & Behavior Development of Hainan Province, Haikou, China; School of Teacher Education, Qiongtai Normal University, Haikou, China.
| | - Zonghao Zhang
- School of Physical Education and Sports Science, Soochow University, Suzhou, China.
| | - Aijun Wang
- Department of Psychology, Research Center for Psychology and Behavioral Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
21
|
Chen R, Huang L, Wang R, Fei J, Wang H, Wang J. Advances in Non-Invasive Neuromodulation Techniques for Improving Cognitive Function: A Review. Brain Sci 2024; 14:354. [PMID: 38672006 PMCID: PMC11048722 DOI: 10.3390/brainsci14040354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Non-invasive neuromodulation techniques are widely utilized to study and improve cognitive function, with the aim of modulating different cognitive processes. For workers performing high-intensity mental and physical tasks, extreme fatigue may not only affect their working efficiency but may also lead to cognitive decline or cognitive impairment, which, in turn, poses a serious threat to their physical health. The use of non-invasive neuromodulation techniques has important research value for improving and enhancing cognitive function. In this paper, we review the research status, existing problems, and future prospects of transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS), transcranial magnetic stimulation (TMS), and transcutaneous acupoint stimulation (TAS), which are the most studied physical methods in non-invasive neuromodulation techniques to improve and enhance cognition. The findings presented in this paper will be of great reference value for the in-depth study of non-invasive neuromodulation techniques in the field of cognition.
Collapse
Affiliation(s)
- Ruijuan Chen
- School of Life Sciences, Tiangong University, Tianjin 300387, China; (R.C.); (H.W.)
| | - Lengjie Huang
- School of Electronics & Information Engineering, Tiangong University, Tianjin 300387, China; (L.H.); (R.W.); (J.F.)
| | - Rui Wang
- School of Electronics & Information Engineering, Tiangong University, Tianjin 300387, China; (L.H.); (R.W.); (J.F.)
| | - Jieying Fei
- School of Electronics & Information Engineering, Tiangong University, Tianjin 300387, China; (L.H.); (R.W.); (J.F.)
| | - Huiquan Wang
- School of Life Sciences, Tiangong University, Tianjin 300387, China; (R.C.); (H.W.)
| | - Jinhai Wang
- School of Life Sciences, Tiangong University, Tianjin 300387, China; (R.C.); (H.W.)
| |
Collapse
|
22
|
Wang Y, Liu W, Wang Y, Ouyang G, Guo Y. Long-term HD-tDCS modulates dynamic changes of brain activity on patients with disorders of consciousness: A resting-state EEG study. Comput Biol Med 2024; 170:108084. [PMID: 38295471 DOI: 10.1016/j.compbiomed.2024.108084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/10/2024] [Accepted: 01/27/2024] [Indexed: 02/02/2024]
Abstract
OBJECTIVE High-definition transcranial direct current stimulation (HD-tDCS) has been an effective neurostimulation method in the treatment of disorders of consciousness (DOC). However, the effects and mechanism of HD-tDCS are still unclear. METHODS This study recruited 8 DOC patients and applied 20-min sessions of 2 mA HD-tDCS (central anode electrode at Pz) for 14 consecutive days. We record DOC patients' EEG data and Coma Recovery Scale-Revised (CRS-R) values at four time point: baseline (T0), after 1 day's and 7,14 days' parietal HD-tDCS treatment (T1, T2, T3). Power spectral density (PSD), relative power (RP), spectral entropy and spectral exponent were calculated to evaluate the EEG dynamic changes of DOC patients during long-term parietal HD-tDCS. At last, we calculated the correlation between changes of EEG features and changes of CRS-R values. RESULT After 1 day's parietal HD-tDCS, DOC patients' CRS-R value had not changed (8.25 ± 1.91). HD-tDCS improved DOC patients' CRS-R value at T2 (9.75 ± 1.91, p < 0.05) and at T3 (11.38 ± 2.77, p < 0.05), compared with that at T0 (8.25 ± 1.91). As the treatment time increased, the EEG PSD decayed more slowly. Specifically, the delta frequency band RP decreased, while the alpha, beta, and gamma frequency bands RP increased. EEG oscillation characteristics changed but not significant at T1 (p > 0.05), and showed significant changes at T2 and T3 (p < 0.05). The spectral entropy continuously increased and the spectral exponent continuously decreased from T0 to T3. Specifically, the spectral entropy and spectral exponent of the parietal and occipital regions were significantly higher at T2 and T3 than that at T0 (p < 0.05). In addition, The changes in EEG features of the parietal and occipital lobes were correlated with changes in CRS-R value, especially between T2 and T0. CONCLUSION Long-term parietal HD-tDCS can improve the consciousness level and brain activity in DOC patients. Resting-state EEG can evaluate the dynamic changes of brain activity in DOC patients during HD-tDCS. EEG oscillation and non-oscillatory activity might be used to explain the mechanism of HD-tDCS on DOC patients.
Collapse
Affiliation(s)
- Yong Wang
- Zhuhai UM Science & Technology Research Institute, Zhuhai, China
| | - Wanqing Liu
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingying Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing, Normal University, Beijing, China
| | - Gaoxiang Ouyang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing, Normal University, Beijing, China.
| | - Yongkun Guo
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Brain Science and Brain Computer Interface Technology, Zhengzhou, China.
| |
Collapse
|
23
|
Robledo Castro C, Rodríguez Rodríguez LH, Ossa Castillo LF. Effect of COGNI-MACHINE computational thinking training on executive functions in children aged 9 to 11: Protocol of a cluster randomized controlled trial. MethodsX 2023; 11:102329. [PMID: 37662998 PMCID: PMC10470278 DOI: 10.1016/j.mex.2023.102329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023] Open
Abstract
We designed a controlled trial protocol that seeks to contribute to cognitive science by studying the effect of thought training on children's executive functions. The study design is a cluster randomized controlled trial, with intra-subject and inter-subject evaluation, with two parallel groups: an experimental group and a TAU control group. With three measures, pre-test, post-test, and follow-up after three months. The participants will be children aged 9 to 11. The allocation will be randomized by groups and not individually. The sample will be a minimum of 44 participants. The primary measures will be neuropsychological tests to assess executive functions. Secondary measures will be a computational thinking test, neuropsychological tests to assess metacognition and attention, and an acceptability scale. The experimental group will participate in the COGNI-MACHINE computational thinking training designed by the first author. The training frequency will be twice a week in 60 min sessions for 12 weeks. The TAU control group will receive computer science classes as usual during the same time as the experimental group. The evaluators taking the measurements will be blinded to the assignment. The investigators in charge of the intervention will be blinded to the results of the evaluations.
Collapse
Affiliation(s)
- Carolina Robledo Castro
- Universidad del Tolima, Street 42 #1-02, Ibagué 730006299, Colombia
- Universidad Autónoma de Manizales, Old Railway Station, Manizales 170001, Colombia
| | | | - Luis Fernando Ossa Castillo
- Universidad Autónoma de Manizales, Old Railway Station, Manizales 170001, Colombia
- Universidad de Caldas, Street 65 #26-10, Manizales 170002, Colombia
- Universidad Nacional de Colombia Sede Manizales, La Nubia Campus, Manizales 170001, Colombia
| |
Collapse
|
24
|
Imperio CM, Chua EF. HD-tDCS over the left DLPFC increases cued recall and subjective question familiarity rather than other aspects of memory and metamemory. Brain Res 2023; 1819:148538. [PMID: 37595661 PMCID: PMC10548440 DOI: 10.1016/j.brainres.2023.148538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
When retrieving information from memory there is an interplay between memory and metamemory processes, and the prefrontal cortex has been implicated in both memory and metamemory. Previous work shown that High Definition transcranial Direct Current Stimulation (HD-tDCS) over the dorsolateral prefrontal cortex (DLPFC) can lead to improvements in memory and metamemory monitoring, but findings are mixed. Our original design targeted metamemory, but because the prefrontal cortex plays a role in both memory and metamemory, we tested for effects of HD-tDCS on multiple memory tasks (e.g., recall, cued recall, and recognition) and multiple aspects of metamemory (e.g., once-knew-it ratings, feeling-of-knowing ratings, metamemory accuracy, and metamemory control). There were HD-tDCS-related improvements in cued recall performance, but not other memory tasks. For metamemory, there were HD-tDCS-related increases in subjective once-knew-it ratings, but not other aspects of metamemory. These results highlight the need to consider the effects of HD-tDCS on memory and metamemory at different timepoints during retrieval, as well as specific conditions that show benefits from HD-tDCS.
Collapse
Affiliation(s)
- Casey M Imperio
- The Graduate Center of the City University of New York, Department of Psychology, 365 5th Ave., New York, NY 10016, USA; Brooklyn College of the City University of New York, Department of Psychology, 2900 Bedford Ave., Brooklyn, NY 11210, USA.
| | - Elizabeth F Chua
- The Graduate Center of the City University of New York, Department of Psychology, 365 5th Ave., New York, NY 10016, USA; Brooklyn College of the City University of New York, Department of Psychology, 2900 Bedford Ave., Brooklyn, NY 11210, USA.
| |
Collapse
|
25
|
Müller D, Habel U, Brodkin ES, Clemens B, Weidler C. HD-tDCS induced changes in resting-state functional connectivity: Insights from EF modeling. Brain Stimul 2023; 16:1722-1732. [PMID: 38008154 DOI: 10.1016/j.brs.2023.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023] Open
Abstract
BACKGROUND High-definition transcranial direct current stimulation (HD-tDCS) holds promise for therapeutic use in psychiatric disorders. One obstacle for the implementation into clinical practice is response variability. One way to tackle this obstacle is the use of Individualized head models. OBJECTIVE This study investigated the variability of HD-tDCS induced electric fields (EFs) and its impact on resting-state functional connectivity (rsFC) during different time windows. METHODS In this randomized, double-blind, and sham controlled study, seventy healthy males underwent 20 min of 1.5 mA HD-tDCS on the right inferior frontal gyrus (rIFG) while undergoing resting-state functional magnetic resonance imaging (rs-fMRI). Individual head models and EF simulations were created from anatomical images. The effects of HD-tDCS on rsFC were assessed using a seed-to-voxel analysis. A subgroup analysis explored the relationship between EF magnitude and rsFC during different stimulation time windows. RESULTS Results highlighted significant variability in HD-tDCS-induced EFs. Compared to the sham group, the active group showed increased rsFC between the rIFG and the left prefrontal cortex, during and after stimulation. During active stimulation, EF magnitude correlated positively with rsFC between the rIFG and the left hippocampus initially, and negatively during the subsequent period. CONCLUSION This study indicated an HD-tDCS induced increase of rsFC between left and right prefrontal areas. Furthermore, an interaction between the magnitude and the duration of HD-tDCS on rsFC was observed. Due to the high EF variability that was apparent, these findings highlight the need for individualized HD-tDCS protocols and the creation of head models to optimize effects and reduce response heterogeneity.
Collapse
Affiliation(s)
- Dario Müller
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany; JARA-BRAIN Institute Brain Structure-Function Relationships, Research Center Jülich and RWTH Aachen, Germany; Institute of Neuroscience and Medicine 10, Research Center Jülich, 52438, Jülich, Germany
| | - Edward S Brodkin
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, 3535 Market Street, Suite 3080, Philadelphia, PA, 19104-3309, USA
| | - Benjamin Clemens
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Carmen Weidler
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| |
Collapse
|
26
|
Imperio CM, Chua EF. Differential effects of remotely supervised transcranial direct current stimulation on recognition memory depending on task order. Front Hum Neurosci 2023; 17:1239126. [PMID: 37635805 PMCID: PMC10450219 DOI: 10.3389/fnhum.2023.1239126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Background Prior work has shown positive effects of High Definition transcranial direct current stimulation (HD-tDCS) over the dorsolateral prefrontal cortex (DLPFC) on semantic memory performance and metamemory monitoring accuracy. However, HD-tDCS requires setup by a trained researcher, which is not always feasible. Few studies have used remotely supervised (rs) tDCS in healthy populations, and remote supervision has strong practical benefits. Objective/hypothesis The goal of the current study was to test if previously shown effects of HD-tDCS over the left DLPFC on semantic memory performance and metamemory monitoring accuracy extended to conventional rs-tDCS, which is less focal than HD-tDCS, and to episodic memory and metamemory tasks. Materials and methods A total of 36 healthy participants completed 6 weeks of rs-tDCS sessions, with either active left or right anodal DLPFC stimulation, or sham. Participants completed semantic and episodic memory and metamemory tasks, which each lasted for three consecutive sessions, and session order was counterbalanced across participants. Results Overall, there were no main effects of rs-tDCS on metamemory monitoring accuracy or memory performance for either the semantic or the episodic tasks. However, there were effects of rs-tDCS that depended on the order of completing the episodic and semantic task sessions. When participants completed the semantic task sessions after the episodic task sessions, semantic recognition was greater in the left anodal DLPFC condition. In a parallel effect, when participants completed the episodic task sessions after the semantic task sessions, episodic recognition was greater in the right anodal DLPFC condition. Conclusion Prior experience with tDCS is a factor for effects of rs-tDCS on cognition. Additionally, the current experiment provides evidence for the feasibility of fully remotely supervised tDCS in healthy participants.
Collapse
Affiliation(s)
- Casey M. Imperio
- Department of Psychology, Brooklyn College, Brooklyn, NY, United States
- Department of Psychology, The Graduate Center of the City University of New York, New York, NY, United States
| | - Elizabeth F. Chua
- Department of Psychology, Brooklyn College, Brooklyn, NY, United States
- Department of Psychology, The Graduate Center of the City University of New York, New York, NY, United States
| |
Collapse
|
27
|
Rauh J, Müller ASM, Nolte G, Haaf M, Mußmann M, Steinmann S, Mulert C, Leicht G. Comparison of transcranial brain stimulation approaches: prefrontal theta alternating current stimulation enhances working memory performance. Front Psychiatry 2023; 14:1140361. [PMID: 37457770 PMCID: PMC10348840 DOI: 10.3389/fpsyt.2023.1140361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction One of the most important cognitive functions in our everyday life is the working memory (WM). In several neuropsychiatric diseases such as ADHD or schizophrenia WM deficits can be observed, making it an attractive target for non-invasive brain stimulation methods like transcranial electrical stimulation (tES). However, the literature shows rather heterogeneous results of tES effects on WM performance. fMRI meta-analyses have identified a WM network including frontoparietal brain areas such as the dorsolateral prefrontal cortex (DLPFC) and the posterior parietal cortex (PPC). Neurophysiological studies revealed oscillatory activity in the theta band frequency range to be of crucial functional relevance for WM processes. Based on this, transcranial alternating current stimulation (tACS) in the theta frequency range targeting DLPFC and PPC in a spatially optimized way might further improve effects of tES on WM performance. Methods Sixteen healthy subjects were stimulated with varying stimulation settings on four different days in a counterbalanced within-subject design. These setups included the application of (1) tACS with a frequency of 5 Hz (theta frequency range) over the left DLPFC and (2) the right superior parietal cortex, (3) transcranial direct current stimulation (tDCS) of the DLPFC and (4) a sham stimulation condition during the online performance of a visual delayed-match-to-sample task with varying working memory load. We introduce a procedure to calculate an optimal tES model revealing optimized high-density setups for the present study for 3 cathodes and 1 anode and stimulation currents of 1.5 mA. Results A significant interaction effect of stimulation type and load condition on working memory capacity was found. This was reflected by a significant improvement of WM performance in the high load condition during tACS over the left DLPFC compared with sham stimulation, which was not the case for our parietal tACS or tDCS setup. Discussion Working memory performance can be improved with optimized high-definition tACS with a frequency of 5 Hz over the left DLPFC. The conception of different mechanisms underlying transcranial electrical stimulation with alternating and direct currents is supported by these results. Patients suffering from working memory impairments due to neuropsychiatric diseases might potentially benefit from this brain stimulation approach.
Collapse
Affiliation(s)
- Jonas Rauh
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne S. M. Müller
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Nolte
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Moritz Haaf
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marius Mußmann
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Saskia Steinmann
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Mulert
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center of Psychiatry, Justus-Liebig University, Giessen, Germany
| | - Gregor Leicht
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|