1
|
Hans R, Sharma SK, Aickelin U. Optimised deep k-nearest neighbour's based diabetic retinopathy diagnosis(ODeep-NN) using retinal images. Health Inf Sci Syst 2024; 12:23. [PMID: 38469456 PMCID: PMC10924814 DOI: 10.1007/s13755-024-00282-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/18/2024] [Indexed: 03/13/2024] Open
Abstract
Diabetes mellitus has been regarded as one of the prime health issues in present days, which can often lead to diabetic retinopathy, a complication of the disease that affects the eyes, causing loss of vision. For precisely detecting the condition's existence, clinicians are required to recognise the presence of lesions in colour fundus images, making it an arduous and time-consuming task. To deal with this problem, a lot of work has been undertaken to develop deep learning-based computer-aided diagnosis systems that assist clinicians in making accurate diagnoses of the diseases in medical images. Contrariwise, the basic operations involved in deep learning models lead to the extraction of a bulky set of features, further taking a long period of training to predict the existence of the disease. For effective execution of these models, feature selection becomes an important task that aids in selecting the most appropriate features, with an aim to increase the classification accuracy. This research presents an optimised deep k-nearest neighbours'-based pipeline model in a bid to amalgamate the feature extraction capability of deep learning models with nature-inspired metaheuristic algorithms, further using k-nearest neighbour algorithm for classification. The proposed model attains an accuracy of 97.67 and 98.05% on two different datasets considered, outperforming Resnet50 and AlexNet deep learning models. Additionally, the experimental results also portray an analysis of five different nature-inspired metaheuristic algorithms, considered for feature selection on the basis of various evaluation parameters.
Collapse
Affiliation(s)
- Rahul Hans
- Department of Computer Science and Engineering, DAV University, Jalandhar, Punjab India
| | - Sanjeev Kumar Sharma
- Department of Computer Science and Applications, DAV University, Jalandhar, Punjab India
| | - Uwe Aickelin
- School of Computing and Information Systems, University of Melbourne, Melbourne, Australia
| |
Collapse
|
2
|
Khanduzi R, Jajarmi A, Ebrahimzadeh A, Shahini M. A novel collocation method with a coronavirus optimization algorithm for the optimal control of COVID-19: A case study of Wuhan, China. Comput Biol Med 2024; 178:108680. [PMID: 38843571 DOI: 10.1016/j.compbiomed.2024.108680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/05/2024] [Accepted: 05/29/2024] [Indexed: 07/24/2024]
Abstract
In this study, we develop a numerical optimization approach to address the challenge of optimal control in the spread of COVID-19. We evaluate the impact of various control strategies aimed at reducing the number of exposed and infectious individuals. Our novel approach employs Legendre wavelets, their derivative operational matrix, and a collocation method to transform the COVID-19 transmission optimal control model into a nonlinear programming (NLP) problem. To solve this problem, we employ a coronavirus optimization algorithm (COVIDOA) to determine the optimal control, state variables, and objective value. We investigate three control plans for this highly contagious disease, focusing on individual protection, rapid detection and treatment, detection with delay in treatment, and environmental viral dispersion as time-based control functions. These strategies are applied within an SEIR-type control model specific to COVID-19 in China, designed to mitigate disease spread. Lastly, we analyze the effects of various parameters within the COVID-19 spread model. Our numerical results highlight the significant impact of strategies that minimize the number of exposed and infectious individuals, particularly those related to rapid detection, detection delay, and environmental viral dispersion, in controlling and preventing the transmission of the COVID-19 virus.
Collapse
Affiliation(s)
- Raheleh Khanduzi
- Department of Mathematics and Statistics, Gonbad Kavous University, P.O. Box, 49717-99151, Gonbad Kavous, Iran.
| | - Amin Jajarmi
- Department of Electrical Engineering, University of Bojnord, P.O. Box, 94531-1339, Bojnord, Iran.
| | - Asiyeh Ebrahimzadeh
- Department of Mathematics Education, Farhangian University, P.O. Box, 14665-889, Tehran, Iran.
| | - Mehdi Shahini
- Department of Mathematics and Statistics, Gonbad Kavous University, P.O. Box, 49717-99151, Gonbad Kavous, Iran.
| |
Collapse
|
3
|
Yadav NK, Saraswat M. A new feature selection approach with binary exponential henry gas solubility optimization and hybrid data transformation methods. MethodsX 2024; 12:102770. [PMID: 39677828 PMCID: PMC11639705 DOI: 10.1016/j.mex.2024.102770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/19/2024] [Indexed: 12/17/2024] Open
Abstract
In the common classification practices, feature selection is an important aspect that highly impacts the computation efficacy of the model, while implementing complex computer vision tasks. The metaheuristic optimization algorithms gain popularity to obtain optimal feature subset. However, the feature selection using metaheuristics suffers from two common stability problems, namely premature convergence and slow convergence rate. Therefore, to handle the stability problems, this paper presents a fused dataset transformation approach by joining weighted Principal Component Analysis and Fast Independent Component Analysis Techniques. The presented method solves the stability issues by first transforming the original dataset, thereafter newly proposed variant of Henry Gas Solubility Optimization is employed for obtaining a new feature's subset. The proposed method has been compared with other metaheuristic approaches across seven benchmark datasets and observed that it selects better features set which improves the accuracy and computational complexity of the model.
Collapse
Affiliation(s)
- Nand Kishor Yadav
- Jaypee Institute of Information Technology Noida, Uttar Pradesh, India
| | - Mukesh Saraswat
- Jaypee Institute of Information Technology Noida, Uttar Pradesh, India
| |
Collapse
|
4
|
Alammar Z, Alzubaidi L, Zhang J, Li Y, Lafta W, Gu Y. Deep Transfer Learning with Enhanced Feature Fusion for Detection of Abnormalities in X-ray Images. Cancers (Basel) 2023; 15:4007. [PMID: 37568821 PMCID: PMC10417687 DOI: 10.3390/cancers15154007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/29/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023] Open
Abstract
Medical image classification poses significant challenges in real-world scenarios. One major obstacle is the scarcity of labelled training data, which hampers the performance of image-classification algorithms and generalisation. Gathering sufficient labelled data is often difficult and time-consuming in the medical domain, but deep learning (DL) has shown remarkable performance, although it typically requires a large amount of labelled data to achieve optimal results. Transfer learning (TL) has played a pivotal role in reducing the time, cost, and need for a large number of labelled images. This paper presents a novel TL approach that aims to overcome the limitations and disadvantages of TL that are characteristic of an ImageNet dataset, which belongs to a different domain. Our proposed TL approach involves training DL models on numerous medical images that are similar to the target dataset. These models were then fine-tuned using a small set of annotated medical images to leverage the knowledge gained from the pre-training phase. We specifically focused on medical X-ray imaging scenarios that involve the humerus and wrist from the musculoskeletal radiographs (MURA) dataset. Both of these tasks face significant challenges regarding accurate classification. The models trained with the proposed TL were used to extract features and were subsequently fused to train several machine learning (ML) classifiers. We combined these diverse features to represent various relevant characteristics in a comprehensive way. Through extensive evaluation, our proposed TL and feature-fusion approach using ML classifiers achieved remarkable results. For the classification of the humerus, we achieved an accuracy of 87.85%, an F1-score of 87.63%, and a Cohen's Kappa coefficient of 75.69%. For wrist classification, our approach achieved an accuracy of 85.58%, an F1-score of 82.70%, and a Cohen's Kappa coefficient of 70.46%. The results demonstrated that the models trained using our proposed TL approach outperformed those trained with ImageNet TL. We employed visualisation techniques to further validate these findings, including a gradient-based class activation heat map (Grad-CAM) and locally interpretable model-independent explanations (LIME). These visualisation tools provided additional evidence to support the superior accuracy of models trained with our proposed TL approach compared to those trained with ImageNet TL. Furthermore, our proposed TL approach exhibited greater robustness in various experiments compared to ImageNet TL. Importantly, the proposed TL approach and the feature-fusion technique are not limited to specific tasks. They can be applied to various medical image applications, thus extending their utility and potential impact. To demonstrate the concept of reusability, a computed tomography (CT) case was adopted. The results obtained from the proposed method showed improvements.
Collapse
Affiliation(s)
- Zaenab Alammar
- School of Computer Science, Queensland University of Technology, Brisbane, QLD 4000, Australia; (J.Z.); (Y.L.)
- Centre for Data Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Laith Alzubaidi
- Centre for Data Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia;
- ARC Industrial Transformation Training Centre-Joint Biomechanics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Jinglan Zhang
- School of Computer Science, Queensland University of Technology, Brisbane, QLD 4000, Australia; (J.Z.); (Y.L.)
- Centre for Data Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Yuefeng Li
- School of Computer Science, Queensland University of Technology, Brisbane, QLD 4000, Australia; (J.Z.); (Y.L.)
| | | | - Yuantong Gu
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia;
- ARC Industrial Transformation Training Centre-Joint Biomechanics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
5
|
Rabie AH, Mohamed AM, Abo-Elsoud MA, Saleh AI. A new Covid-19 diagnosis strategy using a modified KNN classifier. Neural Comput Appl 2023; 35:1-25. [PMID: 37362572 PMCID: PMC10153048 DOI: 10.1007/s00521-023-08588-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/05/2023] [Indexed: 06/28/2023]
Abstract
Covid-19 is a very dangerous disease as a result of the rapid and unprecedented spread of any previous disease. It is truly a crisis that threatens the world since its first appearance in December 2019 until our time. Due to the lack of a vaccine that has proved sufficiently effective so far, the rapid and more accurate diagnosis of this disease is extremely necessary to enable the medical staff to identify infected cases and isolate them from the rest to prevent further loss of life. In this paper, Covid-19 diagnostic strategy (CDS) as a new classification strategy that consists of two basic phases: Feature selection phase (FSP) and diagnosis phase (DP) has been introduced. During the first phase called FSP, the best set of features in laboratory test findings for Covid-19 patients will be selected using enhanced gray wolf optimization (EGWO). EGWO combines both types of selection techniques called wrapper and filter. Accordingly, EGWO includes two stages called filter stage (FS) and wrapper stage (WS). While FS uses many different filter methods, WS uses a wrapper method called binary gray wolf optimization (BGWO). The second phase called DP aims to give fast and more accurate diagnosis using a hybrid diagnosis methodology (HDM) based on the selected features from FSP. In fact, the HDM consists of two phases called weighting patient phase (WP2) and diagnostic patient phase (DP2). WP2 aims to calculate the belonging degree of each patient in the testing dataset to class category using naïve Bayes (NB) as a weight method. On the other hand, K-nearest neighbor (KNN) will be used in DP2 based on the weights of patients in the testing dataset as a new training dataset to give rapid and more accurate detection. The suggested CDS outperforms other strategies according to accuracy, precision, recall (or sensitivity) and F-measure calculations that are equal to 99%, 88%, 90% and 91%, respectively, as showed in experimental results.
Collapse
Affiliation(s)
- Asmaa H. Rabie
- Computers and Control Department Faculty of Engineering, Mansoura University, Mansoura, Egypt
| | - Alaa M. Mohamed
- Delta Higher Institute for Engineering and Technology, Talkha, Mansoura, Egypt
| | - M. A. Abo-Elsoud
- Electronics and Communication Department Faculty of Engineering, Mansoura University, Mansoura, Egypt
| | - Ahmed I. Saleh
- Computers and Control Department Faculty of Engineering, Mansoura University, Mansoura, Egypt
| |
Collapse
|
6
|
Azizi M, Baghalzadeh Shishehgarkhaneh M, Basiri M, Moehler RC. Squid Game Optimizer (SGO): a novel metaheuristic algorithm. Sci Rep 2023; 13:5373. [PMID: 37005455 PMCID: PMC10066950 DOI: 10.1038/s41598-023-32465-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/28/2023] [Indexed: 04/04/2023] Open
Abstract
In this paper, Squid Game Optimizer (SGO) is proposed as a novel metaheuristic algorithm inspired by the primary rules of a traditional Korean game. Squid game is a multiplayer game with two primary objectives: attackers aim to complete their goal while teams try to eliminate each other, and it is usually played on large, open fields with no set guidelines for size and dimensions. The playfield for this game is often shaped like a squid and, according to historical context, appears to be around half the size of a standard basketball court. The mathematical model of this algorithm is developed based on a population of solution candidates with a random initialization process in the first stage. The solution candidates are divided into two groups of offensive and defensive players while the offensive player goes among the defensive players to start a fight which is modeled through a random movement toward the defensive players. By considering the winning states of the players of both sides which is calculated based on the objective function, the position updating process is conducted and the new position vectors are produced. To evaluate the effectiveness of the proposed SGO algorithm, 25 unconstrained mathematical test functions with 100 dimensions are used, alongside six other commonly used metaheuristics for comparison. 100 independent optimization runs are conducted for both SGO and the other algorithms with a pre-determined stopping condition to ensure statistical significance of the results. Statistical metrics such as mean, standard deviation, and mean of required objective function evaluations are calculated. To provide a more comprehensive analysis, four prominent statistical tests including the Kolmogorov-Smirnov, Mann-Whitney, and Kruskal-Wallis tests are used. Meanwhile, the ability of the suggested SGOA is assessed through the cutting-edge real-world problems on the newest CEC like CEC 2020, while the SGO demonstrate outstanding performance in dealing with these complex optimization problems. The overall assessment of the SGO indicates that the proposed algorithm can provide competitive and remarkable outcomes in both benchmark and real-world problems.
Collapse
Affiliation(s)
- Mahdi Azizi
- Department of Civil Engineering, University of Tabriz, Tabriz, Iran.
- Department of Civil Engineering, Near East University, Nicosia, Cyprus.
| | | | - Mahla Basiri
- Department of Civil Engineering, University of Tabriz, Tabriz, Iran
- Department of Civil Engineering, Near East University, Nicosia, Cyprus
| | - Robert C Moehler
- Department of Civil Engineering, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
7
|
Tenali N, Babu GRM. A Systematic Literature Review and Future Perspectives for Handling Big Data Analytics in COVID-19 Diagnosis. NEW GENERATION COMPUTING 2023; 41:243-280. [PMID: 37229177 PMCID: PMC10019802 DOI: 10.1007/s00354-023-00211-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/23/2023] [Indexed: 05/27/2023]
Abstract
In today's digital world, information is growing along with the expansion of Internet usage worldwide. As a consequence, bulk of data is generated constantly which is known to be "Big Data". One of the most evolving technologies in twenty-first century is Big Data analytics, it is promising field for extracting knowledge from very large datasets and enhancing benefits while lowering costs. Due to the enormous success of big data analytics, the healthcare sector is increasingly shifting toward adopting these approaches to diagnose diseases. Due to the recent boom in medical big data and the development of computational methods, researchers and practitioners have gained the ability to mine and visualize medical big data on a larger scale. Thus, with the aid of integration of big data analytics in healthcare sectors, precise medical data analysis is now feasible with early sickness detection, health status monitoring, patient treatment, and community services is now achievable. With all these improvements, a deadly disease COVID is considered in this comprehensive review with the intention of offering remedies utilizing big data analytics. The use of big data applications is vital to managing pandemic conditions, such as predicting outbreaks of COVID-19 and identifying cases and patterns of spread of COVID-19. Research is still being done on leveraging big data analytics to forecast COVID-19. But precise and early identification of COVID disease is still lacking due to the volume of medical records like dissimilar medical imaging modalities. Meanwhile, Digital imaging has now become essential to COVID diagnosis, but the main challenge is the storage of massive volumes of data. Taking these limitations into account, a comprehensive analysis is presented in the systematic literature review (SLR) to provide a deeper understanding of big data in the field of COVID-19.
Collapse
Affiliation(s)
- Nagamani Tenali
- Department of CSE, Dr.Y.S. Rajasekhar Reddy University College of Engineering & Technology, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, India
| | - Gatram Rama Mohan Babu
- Computer Science and Engineering (AI&ML), RVR & JC College of Engineering, Chowdavaram, Guntur, India
| |
Collapse
|
8
|
Hamad QS, Samma H, Suandi SA. Feature selection of pre-trained shallow CNN using the QLESCA optimizer: COVID-19 detection as a case study. APPL INTELL 2023; 53:1-23. [PMID: 36777882 PMCID: PMC9900578 DOI: 10.1007/s10489-022-04446-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2022] [Indexed: 02/08/2023]
Abstract
According to the World Health Organization, millions of infections and a lot of deaths have been recorded worldwide since the emergence of the coronavirus disease (COVID-19). Since 2020, a lot of computer science researchers have used convolutional neural networks (CNNs) to develop interesting frameworks to detect this disease. However, poor feature extraction from the chest X-ray images and the high computational cost of the available models introduce difficulties for an accurate and fast COVID-19 detection framework. Moreover, poor feature extraction has caused the issue of 'the curse of dimensionality', which will negatively affect the performance of the model. Feature selection is typically considered as a preprocessing mechanism to find an optimal subset of features from a given set of all features in the data mining process. Thus, the major purpose of this study is to offer an accurate and efficient approach for extracting COVID-19 features from chest X-rays that is also less computationally expensive than earlier approaches. To achieve the specified goal, we design a mechanism for feature extraction based on shallow conventional neural network (SCNN) and used an effective method for selecting features by utilizing the newly developed optimization algorithm, Q-Learning Embedded Sine Cosine Algorithm (QLESCA). Support vector machines (SVMs) are used as a classifier. Five publicly available chest X-ray image datasets, consisting of 4848 COVID-19 images and 8669 non-COVID-19 images, are used to train and evaluate the proposed model. The performance of the QLESCA is evaluated against nine recent optimization algorithms. The proposed method is able to achieve the highest accuracy of 97.8086% while reducing the number of features from 100 to 38. Experiments prove that the accuracy of the model improves with the usage of the QLESCA as the dimensionality reduction technique by selecting relevant features. Graphical abstract
Collapse
Affiliation(s)
- Qusay Shihab Hamad
- Intelligent Biometric Group, School of Electrical and Electronic Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
- University of Information Technology and Communications (UOITC), Baghdad, Iraq
| | - Hussein Samma
- SDAIA-KFUPM Joint Research Center for Artificial Intelligence (JRC-AI), King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Shahrel Azmin Suandi
- Intelligent Biometric Group, School of Electrical and Electronic Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
| |
Collapse
|
9
|
Kiran Pandiri DN, Murugan R, Goel T, Sharma N, Singh AK, Sen S, Baruah T. POT-Net: solanum tuberosum (Potato) leaves diseases classification using an optimized deep convolutional neural network. THE IMAGING SCIENCE JOURNAL 2023. [DOI: 10.1080/13682199.2023.2169988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- D. N. Kiran Pandiri
- Department of Electronics and Communication Engineering, National Institute of Technology Silchar, Assam, India
| | - R. Murugan
- Department of Electronics and Communication Engineering, National Institute of Technology Silchar, Assam, India
| | - Tripti Goel
- Department of Electronics and Communication Engineering, National Institute of Technology Silchar, Assam, India
| | - Nishant Sharma
- Department of Electronics and Communication Engineering, National Institute of Technology Silchar, Assam, India
| | - Aditya Kumar Singh
- Department of Electronics and Communication Engineering, National Institute of Technology Silchar, Assam, India
| | - Soumya Sen
- Department of Electronics and Communication Engineering, National Institute of Technology Silchar, Assam, India
| | - Tonmoy Baruah
- Department of Electronics and Communication Engineering, National Institute of Technology Silchar, Assam, India
| |
Collapse
|
10
|
Hasan MM, Islam MU, Sadeq MJ, Fung WK, Uddin J. Review on the Evaluation and Development of Artificial Intelligence for COVID-19 Containment. SENSORS (BASEL, SWITZERLAND) 2023; 23:527. [PMID: 36617124 PMCID: PMC9824505 DOI: 10.3390/s23010527] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Artificial intelligence has significantly enhanced the research paradigm and spectrum with a substantiated promise of continuous applicability in the real world domain. Artificial intelligence, the driving force of the current technological revolution, has been used in many frontiers, including education, security, gaming, finance, robotics, autonomous systems, entertainment, and most importantly the healthcare sector. With the rise of the COVID-19 pandemic, several prediction and detection methods using artificial intelligence have been employed to understand, forecast, handle, and curtail the ensuing threats. In this study, the most recent related publications, methodologies and medical reports were investigated with the purpose of studying artificial intelligence's role in the pandemic. This study presents a comprehensive review of artificial intelligence with specific attention to machine learning, deep learning, image processing, object detection, image segmentation, and few-shot learning studies that were utilized in several tasks related to COVID-19. In particular, genetic analysis, medical image analysis, clinical data analysis, sound analysis, biomedical data classification, socio-demographic data analysis, anomaly detection, health monitoring, personal protective equipment (PPE) observation, social control, and COVID-19 patients' mortality risk approaches were used in this study to forecast the threatening factors of COVID-19. This study demonstrates that artificial-intelligence-based algorithms integrated into Internet of Things wearable devices were quite effective and efficient in COVID-19 detection and forecasting insights which were actionable through wide usage. The results produced by the study prove that artificial intelligence is a promising arena of research that can be applied for disease prognosis, disease forecasting, drug discovery, and to the development of the healthcare sector on a global scale. We prove that artificial intelligence indeed played a significantly important role in helping to fight against COVID-19, and the insightful knowledge provided here could be extremely beneficial for practitioners and research experts in the healthcare domain to implement the artificial-intelligence-based systems in curbing the next pandemic or healthcare disaster.
Collapse
Affiliation(s)
- Md. Mahadi Hasan
- Department of Computer Science and Engineering, Asian University of Bangladesh, Ashulia 1349, Bangladesh
| | - Muhammad Usama Islam
- School of Computing and Informatics, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - Muhammad Jafar Sadeq
- Department of Computer Science and Engineering, Asian University of Bangladesh, Ashulia 1349, Bangladesh
| | - Wai-Keung Fung
- Department of Applied Computing and Engineering, Cardiff School of Technologies, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
| | - Jasim Uddin
- Department of Applied Computing and Engineering, Cardiff School of Technologies, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
| |
Collapse
|
11
|
Hariri M, Avşar E. COVID-19 and pneumonia diagnosis from chest X-ray images using convolutional neural networks. NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS 2023; 12:17. [PMID: 36938379 PMCID: PMC10010229 DOI: 10.1007/s13721-023-00413-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/15/2023] [Accepted: 02/25/2023] [Indexed: 03/21/2023]
Abstract
X-ray is a useful imaging modality widely utilized for diagnosing COVID-19 virus that infected a high number of people all around the world. The manual examination of these X-ray images may cause problems especially when there is lack of medical staff. Usage of deep learning models is known to be helpful for automated diagnosis of COVID-19 from the X-ray images. However, the widely used convolutional neural network architectures typically have many layers causing them to be computationally expensive. To address these problems, this study aims to design a lightweight differential diagnosis model based on convolutional neural networks. The proposed model is designed to classify the X-ray images belonging to one of the four classes that are Healthy, COVID-19, viral pneumonia, and bacterial pneumonia. To evaluate the model performance, accuracy, precision, recall, and F1-Score were calculated. The performance of the proposed model was compared with those obtained by applying transfer learning to the widely used convolutional neural network models. The results showed that the proposed model with low number of computational layers outperforms the pre-trained benchmark models, achieving an accuracy value of 89.89% while the best pre-trained model (Efficient-Net B2) achieved accuracy of 85.7%. In conclusion, the proposed lightweight model achieved the best overall result in classifying lung diseases allowing it to be used on devices with limited computational power. On the other hand, all the models showed a poor precision on viral pneumonia class and confusion in distinguishing it from bacterial pneumonia class, thus a decrease in the overall accuracy.
Collapse
Affiliation(s)
- Muhab Hariri
- grid.98622.370000 0001 2271 3229Electrical and Electronics Engineering Department, Çukurova University, 01330 Adana, Turkey
| | - Ercan Avşar
- grid.5170.30000 0001 2181 8870National Institute of Aquatic Resources, Technical University Denmark, 9850 Hirtshals, Denmark
- grid.21200.310000 0001 2183 9022Computer Engineering Department, Dokuz Eylül University, 35390 İzmir, Turkey
| |
Collapse
|
12
|
Hybrid intelligent model for classifying chest X-ray images of COVID-19 patients using genetic algorithm and neutrosophic logic. Soft comput 2023; 27:3427-3442. [PMID: 34421342 PMCID: PMC8371596 DOI: 10.1007/s00500-021-06103-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2021] [Indexed: 12/23/2022]
Abstract
The highly spreading virus, COVID-19, created a huge need for an accurate and speedy diagnosis method. The famous RT-PCR test is costly and not available for many suspected cases. This article proposes a neurotrophic model to diagnose COVID-19 patients based on their chest X-ray images. The proposed model has five main phases. First, the speeded up robust features (SURF) method is applied to each X-ray image to extract robust invariant features. Second, three sampling algorithms are applied to treat imbalanced dataset. Third, the neutrosophic rule-based classification system is proposed to generate a set of rules based on the three neutrosophic values < T; I; F>, the degrees of truth, indeterminacy falsity. Fourth, a genetic algorithm is applied to select the optimal neutrosophic rules to improve the classification performance. Fifth, in this phase, the classification-based neutrosophic logic is proposed. The testing rule matrix is constructed with no class label, and the goal of this phase is to determine the class label for each testing rule using intersection percentage between testing and training rules. The proposed model is referred to as GNRCS. It is compared with six state-of-the-art classifiers such as multilayer perceptron (MLP), support vector machines (SVM), linear discriminant analysis (LDA), decision tree (DT), naive Bayes (NB), and random forest classifiers (RFC) with quality measures of accuracy, precision, sensitivity, specificity, and F1-score. The results show that the proposed model is powerful for COVID-19 recognition with high specificity and high sensitivity and less computational complexity. Therefore, the proposed GNRCS model could be used for real-time automatic early recognition of COVID-19.
Collapse
|
13
|
Sun J, Liu Q, Wang Y, Wang L, Song X, Zhao X. Five-year prognosis model of esophageal cancer based on genetic algorithm improved deep neural network. Ing Rech Biomed 2023. [DOI: 10.1016/j.irbm.2022.100748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
14
|
Su H, Shou Y, Fu Y, Zhao D, Heidari AA, Han Z, Wu P, Chen H, Chen Y. A new machine learning model for predicting severity prognosis in patients with pulmonary embolism: Study protocol from Wenzhou, China. Front Neuroinform 2022; 16:1052868. [PMID: 36590908 PMCID: PMC9802582 DOI: 10.3389/fninf.2022.1052868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Pulmonary embolism (PE) is a common thrombotic disease and potentially deadly cardiovascular disorder. The ratio of clinical misdiagnosis and missed diagnosis of PE is very large because patients with PE are asymptomatic or non-specific. METHODS Using the clinical data from the First Affiliated Hospital of Wenzhou Medical University (Wenzhou, China), we proposed a swarm intelligence algorithm-based kernel extreme learning machine model (SSACS-KELM) to recognize and discriminate the severity of the PE by patient's basic information and serum biomarkers. First, an enhanced method (SSACS) is presented by combining the salp swarm algorithm (SSA) with the cuckoo search (CS). Then, the SSACS algorithm is introduced into the KELM classifier to propose the SSACS-KELM model to improve the accuracy and stability of the traditional classifier. RESULTS In the experiments, the benchmark optimization performance of SSACS is confirmed by comparing SSACS with five original classical methods and five high-performance improved algorithms through benchmark function experiments. Then, the overall adaptability and accuracy of the SSACS-KELM model are tested using eight public data sets. Further, to highlight the superiority of SSACS-KELM on PE datasets, this paper conducts comparison experiments with other classical classifiers, swarm intelligence algorithms, and feature selection approaches. DISCUSSION The experimental results show that high D-dimer concentration, hypoalbuminemia, and other indicators are important for the diagnosis of PE. The classification results showed that the accuracy of the prediction model was 99.33%. It is expected to be a new and accurate method to distinguish the severity of PE.
Collapse
Affiliation(s)
- Hang Su
- College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin, China
| | - Yeqi Shou
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yujie Fu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dong Zhao
- College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin, China
| | - Ali Asghar Heidari
- School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Zhengyuan Han
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peiliang Wu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huiling Chen
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, Zhejiang, China
| | - Yanfan Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
15
|
Preliminary Stages for COVID-19 Detection Using Image Processing. Diagnostics (Basel) 2022; 12:diagnostics12123171. [PMID: 36553177 PMCID: PMC9777505 DOI: 10.3390/diagnostics12123171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
COVID-19 was first discovered in December 2019 in Wuhan. There have been reports of thousands of illnesses and hundreds of deaths in almost every region of the world. Medical images, when combined with cutting-edge technology such as artificial intelligence, have the potential to improve the efficiency of the public health system and deliver faster and more reliable findings in the detection of COVID-19. The process of developing the COVID-19 diagnostic system begins with image accusation and proceeds via preprocessing, feature extraction, and classification. According to literature review, several attempts to develop taxonomies for COVID-19 detection using image processing methods have been introduced. However, most of these adhere to a standard category that exclusively considers classification methods. Therefore, in this study a new taxonomy for the early stages of COVID-19 detection is proposed. It attempts to offer a full grasp of image processing in COVID-19 while considering all phases required prior to classification. The survey concludes with a discussion of outstanding concerns and future directions.
Collapse
|
16
|
Xie Z, Pan J, Li S, Ren J, Qian S, Ye Y, Bao W. Musical Emotions Recognition Using Entropy Features and Channel Optimization Based on EEG. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1735. [PMID: 36554139 PMCID: PMC9777832 DOI: 10.3390/e24121735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
The dynamic of music is an important factor to arouse emotional experience, but current research mainly uses short-term artificial stimulus materials, which cannot effectively awaken complex emotions and reflect their dynamic brain response. In this paper, we used three long-term stimulus materials with many dynamic emotions inside: the "Waltz No. 2" containing pleasure and excitement, the "No. 14 Couplets" containing excitement, briskness, and nervousness, and the first movement of "Symphony No. 5 in C minor" containing passion, relaxation, cheerfulness, and nervousness. Approximate entropy (ApEn) and sample entropy (SampEn) were applied to extract the non-linear features of electroencephalogram (EEG) signals under long-term dynamic stimulation, and the K-Nearest Neighbor (KNN) method was used to recognize emotions. Further, a supervised feature vector dimensionality reduction method was proposed. Firstly, the optimal channel set for each subject was obtained by using a particle swarm optimization (PSO) algorithm, and then the number of times to select each channel in the optimal channel set of all subjects was counted. If the number was greater than or equal to the threshold, it was a common channel suitable for all subjects. The recognition results based on the optimal channel set demonstrated that each accuracy of two categories of emotions based on "Waltz No. 2" and three categories of emotions based on "No. 14 Couplets" was generally above 80%, respectively, and the recognition accuracy of four categories based on the first movement of "Symphony No. 5 in C minor" was about 70%. The recognition accuracy based on the common channel set was about 10% lower than that based on the optimal channel set, but not much different from that based on the whole channel set. This result suggested that the common channel could basically reflect the universal features of the whole subjects while realizing feature dimension reduction. The common channels were mainly distributed in the frontal lobe, central region, parietal lobe, occipital lobe, and temporal lobe. The channel number distributed in the frontal lobe was greater than the ones in other regions, indicating that the frontal lobe was the main emotional response region. Brain region topographic map based on the common channel set showed that there were differences in entropy intensity between different brain regions of the same emotion and the same brain region of different emotions. The number of times to select each channel in the optimal channel set of all 30 subjects showed that the principal component channels representing five brain regions were Fp1/F3 in the frontal lobe, CP5 in the central region, Pz in the parietal lobe, O2 in the occipital lobe, and T8 in the temporal lobe, respectively.
Collapse
Affiliation(s)
- Zun Xie
- Department of Arts and Design, Anhui University of Technology, Ma’anshan 243002, China
| | - Jianwei Pan
- Department of Arts and Design, Anhui University of Technology, Ma’anshan 243002, China
| | - Songjie Li
- Department of Management Science and Engineering, Anhui University of Technology, Ma’anshan 243002, China
| | - Jing Ren
- Department of Management Science and Engineering, Anhui University of Technology, Ma’anshan 243002, China
| | - Shao Qian
- Department of Management Science and Engineering, Anhui University of Technology, Ma’anshan 243002, China
| | - Ye Ye
- Department of Mechanical Engineering, Anhui University of Technology, Ma’anshan 243002, China
| | - Wei Bao
- Department of Management Science and Engineering, Anhui University of Technology, Ma’anshan 243002, China
| |
Collapse
|
17
|
Dey S, Bhattacharya R, Malakar S, Schwenker F, Sarkar R. CovidConvLSTM: A fuzzy ensemble model for COVID-19 detection from chest X-rays. EXPERT SYSTEMS WITH APPLICATIONS 2022; 206:117812. [PMID: 35754941 PMCID: PMC9212804 DOI: 10.1016/j.eswa.2022.117812] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 05/17/2023]
Abstract
The rapid outbreak of COVID-19 has affected the lives and livelihoods of a large part of the society. Hence, to confine the rapid spread of this virus, early detection of COVID-19 is extremely important. One of the most common ways of detecting COVID-19 is by using chest X-ray images. In the literature, it is found that most of the research activities applied convolutional neural network (CNN) models where the features generated by the last convolutional layer were directly passed to the classification models. In this paper, convolutional long short-term memory (ConvLSTM) layer is used in order to encode the spatial dependency among the feature maps obtained from the last convolutional layer of the CNN and to improve the image representational capability of the model. Additionally, the squeeze-and-excitation (SE) block, a spatial attention mechanism, is used to allocate weights to important local features. These two mechanisms are employed on three popular CNN models - VGG19, InceptionV3, and MobileNet to improve their classification strength. Finally, the Sugeno fuzzy integral based ensemble method is used on these classifiers' outputs to enhance the detection accuracy further. For experiments, three chest X-ray datasets, which are very prevalent for COVID-19 detection, are considered. For all the three datasets, it is found that the results obtained by the proposed method are comparable to state-of-the-art methods. The code, along with the pre-trained models, can be found at https://github.com/colabpro123/CovidConvLSTM.
Collapse
Affiliation(s)
- Subhrajit Dey
- Department of Electrical Engineering, Jadavpur University, Kolkata, India
| | - Rajdeep Bhattacharya
- Department of Computer Science and Engineering, Jadavpur University, Kolkata, India
| | - Samir Malakar
- Department of Computer Science, Asutosh College, Kolkata, India
| | | | - Ram Sarkar
- Department of Computer Science and Engineering, Jadavpur University, Kolkata, India
| |
Collapse
|
18
|
Ubale Kiru M, Belaton B, Chew X, Almotairi KH, Hussein AM, Aminu M. Comparative analysis of some selected generative adversarial network models for image augmentation: a case study of COVID-19 x-ray and CT images. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2022. [DOI: 10.3233/jifs-220017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
One of the fastest-growing fields in today’s world is data analytics. Data analytics paved the way for a significant number of research and development in various fields including medicine and vaccine development, DNA analysis, artificial intelligence and many more. Data plays a very important role in providing the required results and helps in making critical decisions and predictions. However, ethical and legislative restrictions sometimes make it difficult for scientists to acquire data. For example, during the COVID-19 pandemic, data was very limited due to privacy and regulatory issues. To address data unavailability, data scientists usually leverage machine learning algorithms such as Generative Adversarial Networks (GAN) to augment data from existing samples. Today, there are over 450 algorithms that are designed to re-generate or augment data in case of unavailability of the data. With many algorithms in the market, it is practically impossible to predict which algorithm best fits the problem in question, unless many algorithms are tested. In this study, we select the most common types of GAN algorithms available for image augmentation to generate samples capable of representing a whole data distribution. To test the selected models, we used two unique datasets, namely COVID-19 CT images and COVID-19 X-Ray images. Five different GAN algorithms, namely CGAN, DCGAN, f-GAN, WGAN, and CycleGAN, were selected and applied to the samples to see how each algorithm reacts to the samples. To evaluate their performances, Visual Turing Test (VTT) and Fréchet Inception Distance (FID) were used. The VTT result shows that a human expert can accurately distinguish between different samples that were produced. Hence, CycleGAN scored 80% in CT image dataset and 77% in X-Ray image dataset. In contrast, the FID result revealed that CycleGAN had a high convergence and therefore generated high quality and clearer images on both datasets compared to CGAN, DCGAN, f-GAN, and WGAN. This study concluded that the CycleGAN model is the best when it comes to image augmentation due to its friendliness and high convergence.
Collapse
Affiliation(s)
- Muhammad Ubale Kiru
- School of Computer Science, Universiti Sains Malaysia, Gelugor, Penang, Malaysia
| | - Bahari Belaton
- School of Computer Science, Universiti Sains Malaysia, Gelugor, Penang, Malaysia
| | - Xinying Chew
- School of Computer Science, Universiti Sains Malaysia, Gelugor, Penang, Malaysia
| | - Khaled H. Almotairi
- Computer Engineering Department, Computer and Information System College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmad MohdAziz Hussein
- Deanship of E-Learning and Distance Education, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Maryam Aminu
- Faculty of Life Science, Ahmadu Bello University, Zaria-Nigeria
| |
Collapse
|
19
|
Fast COVID-19 Detection from Chest X-Ray Images Using DCT Compression. APPLIED COMPUTATIONAL INTELLIGENCE AND SOFT COMPUTING 2022. [DOI: 10.1155/2022/2656818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Novel coronavirus (COVID-19) is a new strain of coronavirus, first identified in a cluster with pneumonia symptoms caused by SARS-CoV-2 virus. It is fast spreading all over the world. Most infected people will develop mild to moderate illness and recover without hospitalization. Currently, real-time quantitative reverse transcription-PCR (rqRT-PCR) is popular for coronavirus detection due to its high specificity, simple quantitative analysis, and higher sensitivity than conventional RT-PCR. Antigen tests are also commonly used. It is very essential for the automatic detection of COVID-19 from publicly available resources. Chest X-ray (CXR) images are used for the classification of COVID-19, normal, and viral pneumonia cases. The CXR images are divided into sub-blocks for finding out the discrete cosine transform (DCT) for every sub-block in this proposed method. In order to produce a compressed version for each CXR image, the DCT energy compaction capability is used. For each image, hardly few spectral DCT components are included as features. The dimension of the final feature vectors is reduced by scanning the compressed images using average pooling windows. In the 3-set classification, a multilayer artificial neural network is used. It is essential to triage non-COVID-19 patients with pneumonia to give out hospital resources efficiently. Higher size feature vectors are used for designing binary classification for COVID-19 and pneumonia. The proposed method achieved an average accuracy of 95% and 94% for the 3-set classification and binary classification, respectively. The proposed method achieves better accuracy than that of the recent state-of-the-art techniques. Also, the time required for the implementation is less.
Collapse
|
20
|
Diagnosis of Oral Squamous Cell Carcinoma Using Deep Neural Networks and Binary Particle Swarm Optimization on Histopathological Images: An AIoMT Approach. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:6364102. [PMID: 36210968 PMCID: PMC9546660 DOI: 10.1155/2022/6364102] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/04/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022]
Abstract
Overall prediction of oral cavity squamous cell carcinoma (OCSCC) remains inadequate, as more than half of patients with oral cavity cancer are detected at later stages. It is generally accepted that the differential diagnosis of OCSCC is usually difficult and requires expertise and experience. Diagnosis from biopsy tissue is a complex process, and it is slow, costly, and prone to human error. To overcome these problems, a computer-aided diagnosis (CAD) approach was proposed in this work. A dataset comprising two categories, normal epithelium of the oral cavity (NEOR) and squamous cell carcinoma of the oral cavity (OSCC), was used. Feature extraction was performed from this dataset using four deep learning (DL) models (VGG16, AlexNet, ResNet50, and Inception V3) to realize artificial intelligence of medial things (AIoMT). Binary Particle Swarm Optimization (BPSO) was used to select the best features. The effects of Reinhard stain normalization on performance were also investigated. After the best features were extracted and selected, they were classified using the XGBoost. The best classification accuracy of 96.3% was obtained when using Inception V3 with BPSO. This approach significantly contributes to improving the diagnostic efficiency of OCSCC patients using histopathological images while reducing diagnostic costs.
Collapse
|
21
|
Multistrategy Improved Sparrow Search Algorithm Optimized Deep Neural Network for Esophageal Cancer. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:1036913. [PMID: 36203733 PMCID: PMC9532078 DOI: 10.1155/2022/1036913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 01/09/2023]
Abstract
Deep neural network is a complex pattern recognition network system. It is widely favored by scholars for its strong nonlinear fitting ability. However, training deep neural network models on small datasets typically realizes worse performance than shallow neural network. In this study, a strategy to improve the sparrow search algorithm based on the iterative map, iterative perturbation, and Gaussian mutation is developed. This optimized strategy improved the sparrow search algorithm validated by fourteen benchmark functions, and the algorithm has the best search accuracy and the fastest convergence speed. An algorithm based on the iterative map, iterative perturbation, and Gaussian mutation improved sparrow search algorithm is designed to optimize deep neural networks. The modified sparrow algorithm is exploited to search for the optimal connection weights of deep neural network. This algorithm is implemented for the esophageal cancer dataset along with the other six algorithms. The proposed model is able to achieve 0.92 under all the eight scoring criteria, which is better than the performance of the other six algorithms. Therefore, an optimized deep neural network based on an improved sparrow search algorithm with iterative map, iterative perturbation, and Gaussian mutation is an effective approach to predict the survival rate of esophageal cancer.
Collapse
|
22
|
Muzoğlu N, Halefoğlu AM, Avci MO, Kaya Karaaslan M, Yarman BSB. Detection of COVID-19 and its pulmonary stage using Bayesian hyperparameter optimization and deep feature selection methods. EXPERT SYSTEMS 2022; 40:e13141. [PMID: 36245832 PMCID: PMC9537791 DOI: 10.1111/exsy.13141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/25/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Since the first case of COVID-19 was reported in December 2019, many studies have been carried out on artificial intelligence for the rapid diagnosis of the disease to support health services. Therefore, in this study, we present a powerful approach to detect COVID-19 and COVID-19 findings from computed tomography images using pre-trained models using two different datasets. COVID-19, influenza A (H1N1) pneumonia, bacterial pneumonia and healthy lung image classes were used in the first dataset. Consolidation, crazy-paving pattern, ground-glass opacity, ground-glass opacity and consolidation, ground-glass opacity and nodule classes were used in the second dataset. The study consists of four steps. In the first two steps, distinctive features were extracted from the final layers of the pre-trained ShuffleNet, GoogLeNet and MobileNetV2 models trained with the datasets. In the next steps, the most relevant features were selected from the models using the Sine-Cosine optimization algorithm. Then, the hyperparameters of the Support Vector Machines were optimized with the Bayesian optimization algorithm and used to reclassify the feature subset that achieved the highest accuracy in the third step. The overall accuracy obtained for the first and second datasets is 99.46% and 99.82%, respectively. Finally, the performance of the results visualized with Occlusion Sensitivity Maps was compared with Gradient-weighted class activation mapping. The approach proposed in this paper outperformed other methods in detecting COVID-19 from multiclass viral pneumonia. Moreover, detecting the stages of COVID-19 in the lungs was an innovative and successful approach.
Collapse
Affiliation(s)
- Nedim Muzoğlu
- Department of Biomedical Engineering, Faculty of EngineeringIstanbul University‐CerrahpasaIstanbulTurkey
| | - Ahmet Mesrur Halefoğlu
- Department of RadiologySisli Hamidiye Etfal Training and Research Hospital, Health Sciences UniversityIstanbulTurkey
| | - Muhammed Onur Avci
- Department of Biomedical Engineering, Faculty of EngineeringIstanbul University‐CerrahpasaIstanbulTurkey
| | - Melike Kaya Karaaslan
- Department of Biomedical SciencesFaculty of Engineering, Kocaeli UniversityKocaeliTurkey
| | - Bekir Sıddık Binboğa Yarman
- Department of Electrical‐Electronics Engineering, Faculty of EngineeringIstanbul University‐CerrahpasaIstanbulTurkey
| |
Collapse
|
23
|
Akinola OO, Ezugwu AE, Agushaka JO, Zitar RA, Abualigah L. Multiclass feature selection with metaheuristic optimization algorithms: a review. Neural Comput Appl 2022; 34:19751-19790. [PMID: 36060097 PMCID: PMC9424068 DOI: 10.1007/s00521-022-07705-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 08/02/2022] [Indexed: 11/24/2022]
Abstract
Selecting relevant feature subsets is vital in machine learning, and multiclass feature selection is harder to perform since most classifications are binary. The feature selection problem aims at reducing the feature set dimension while maintaining the performance model accuracy. Datasets can be classified using various methods. Nevertheless, metaheuristic algorithms attract substantial attention to solving different problems in optimization. For this reason, this paper presents a systematic survey of literature for solving multiclass feature selection problems utilizing metaheuristic algorithms that can assist classifiers selects optima or near optima features faster and more accurately. Metaheuristic algorithms have also been presented in four primary behavior-based categories, i.e., evolutionary-based, swarm-intelligence-based, physics-based, and human-based, even though some literature works presented more categorization. Further, lists of metaheuristic algorithms were introduced in the categories mentioned. In finding the solution to issues related to multiclass feature selection, only articles on metaheuristic algorithms used for multiclass feature selection problems from the year 2000 to 2022 were reviewed about their different categories and detailed descriptions. We considered some application areas for some of the metaheuristic algorithms applied for multiclass feature selection with their variations. Popular multiclass classifiers for feature selection were also examined. Moreover, we also presented the challenges of metaheuristic algorithms for feature selection, and we identified gaps for further research studies.
Collapse
Affiliation(s)
- Olatunji O. Akinola
- School of Mathematics, Statistics, and Computer Science, University of KwaZulu-Natal, King Edward Avenue, Pietermaritzburg Campus, Pietermaritzburg, 3201 KwaZulu-Natal South Africa
| | - Absalom E. Ezugwu
- School of Mathematics, Statistics, and Computer Science, University of KwaZulu-Natal, King Edward Avenue, Pietermaritzburg Campus, Pietermaritzburg, 3201 KwaZulu-Natal South Africa
| | - Jeffrey O. Agushaka
- School of Mathematics, Statistics, and Computer Science, University of KwaZulu-Natal, King Edward Avenue, Pietermaritzburg Campus, Pietermaritzburg, 3201 KwaZulu-Natal South Africa
| | - Raed Abu Zitar
- Sorbonne Center of Artificial Intelligence, Sorbonne University-Abu Dhabi, 38044 Abu Dhabi, United Arab Emirates
| | - Laith Abualigah
- Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman, 19328 Jordan
- Faculty of Inforsmation Technology, Middle East University, Amman, 11831 Jordan
| |
Collapse
|
24
|
DAFLNet: Dual Asymmetric Feature Learning Network for COVID-19 Disease Diagnosis in X-Rays. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3836498. [PMID: 35983526 PMCID: PMC9381197 DOI: 10.1155/2022/3836498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 11/26/2022]
Abstract
COVID-19 has become the largest public health event worldwide since its outbreak, and early detection is a prerequisite for effective treatment. Chest X-ray images have become an important basis for screening and monitoring the disease, and deep learning has shown great potential for this task. Many studies have proposed deep learning methods for automated diagnosis of COVID-19. Although these methods have achieved excellent performance in terms of detection, most have been evaluated using limited datasets and typically use a single deep learning network to extract features. To this end, the dual asymmetric feature learning network (DAFLNet) is proposed, which is divided into two modules, DAFFM and WDFM. DAFFM mainly comprises the backbone networks EfficientNetV2 and DenseNet for feature fusion. WDFM is mainly for weighted decision-level fusion and features a new pretrained network selection algorithm (PNSA) for determination of the optimal weights. Experiments on a large dataset were conducted using two schemes, DAFLNet-1 and DAFLNet-2, and both schemes outperformed eight state-of-the-art classification techniques in terms of classification performance. DAFLNet-1 achieved an average accuracy of up to 98.56% for the triple classification of COVID-19, pneumonia, and healthy images.
Collapse
|
25
|
Sharma A, Singh K, Koundal D. A novel fusion based convolutional neural network approach for classification of COVID-19 from chest X-ray images. Biomed Signal Process Control 2022; 77:103778. [PMID: 35530169 PMCID: PMC9057938 DOI: 10.1016/j.bspc.2022.103778] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/09/2022] [Accepted: 04/27/2022] [Indexed: 01/31/2023]
Abstract
Coronavirus disease is a viral infection caused by a novel coronavirus (CoV) which was first identified in the city of Wuhan, China somewhere in the early December 2019. It affects the human respiratory system by causing respiratory infections with symptoms (mild to severe) like fever, cough, and weakness but can further lead to other serious diseases and has resulted in millions of deaths until now. Therefore, an accurate diagnosis for such types of diseases is highly needful for the current healthcare system. In this paper, a state of the art deep learning method is described. We propose COVDC-Net, a Deep Convolutional Network-based classification method which is capable of identifying SARS-CoV-2 infected amongst healthy and/or pneumonia patients from their chest X-ray images. The proposed method uses two modified pre-trained models (on ImageNet) namely MobileNetV2 and VGG16 without their classifier layers and fuses the two models using the Confidence fusion method to achieve better classification accuracy on the two currently publicly available datasets. It is observed through exhaustive experiments that the proposed method achieved an overall classification accuracy of 96.48% for 3-class (COVID-19, Normal and Pneumonia) classification tasks. For 4-class classification (COVID-19, Normal, Pneumonia Viral, and Pneumonia Bacterial) COVDC-Net method delivered 90.22% accuracy. The experimental results demonstrate that the proposed COVDC-Net method has shown better overall classification accuracy as compared to the existing deep learning methods proposed for the same task in the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Anubhav Sharma
- Computer Science and Engineering Department, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Karamjeet Singh
- Computer Science and Engineering Department, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Deepika Koundal
- Department of Virtualization, School of Computer Science, University of Petroleum & Energy Studies, Dehradun, Uttrakhand, India
| |
Collapse
|
26
|
EGFAFS: A Novel Feature Selection Algorithm Based on Explosion Gravitation Field Algorithm. ENTROPY 2022; 24:e24070873. [PMID: 35885095 PMCID: PMC9322764 DOI: 10.3390/e24070873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023]
Abstract
Feature selection (FS) is a vital step in data mining and machine learning, especially for analyzing the data in high-dimensional feature space. Gene expression data usually consist of a few samples characterized by high-dimensional feature space. As a result, they are not suitable to be processed by simple methods, such as the filter-based method. In this study, we propose a novel feature selection algorithm based on the Explosion Gravitation Field Algorithm, called EGFAFS. To reduce the dimensions of the feature space to acceptable dimensions, we constructed a recommended feature pool by a series of Random Forests based on the Gini index. Furthermore, by paying more attention to the features in the recommended feature pool, we can find the best subset more efficiently. To verify the performance of EGFAFS for FS, we tested EGFAFS on eight gene expression datasets compared with four heuristic-based FS methods (GA, PSO, SA, and DE) and four other FS methods (Boruta, HSICLasso, DNN-FS, and EGSG). The results show that EGFAFS has better performance for FS on gene expression data in terms of evaluation metrics, having more than the other eight FS algorithms. The genes selected by EGFAGS play an essential role in the differential co-expression network and some biological functions further demonstrate the success of EGFAFS for solving FS problems on gene expression data.
Collapse
|
27
|
GÜRCAN ÖF, ATICI U, BEYCA ÖF. A Hybrid Deep Learning-Metaheuristic Model for Diagnosis of Diabetic Retinopathy. GAZI UNIVERSITY JOURNAL OF SCIENCE 2022. [DOI: 10.35378/gujs.919572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
International Diabetes Federation (IDF) reports that diabetes is one of the rapidly growing illnesses. About 463 million adults between 20-79 years have diabetes. There are also millions of undiagnosed patients. It is estimated that there will be about 578 million diabetics by 2030 [1]. Diabetes reasons different eye diseases. Diabetic retinopathy (DR) is one of them and is also one of the most common vision loss or blindness worldwide. DR progresses slowly and has few indicators in the early stages. It makes the diagnosis of DR a problematic task. Automated systems promise to support the diagnosis of DR. Many deep learning-based models have been developed for DR classification. This study aims to support ophthalmologists in the diagnosis process and increase the diagnosis performance of DR through a hybrid model. A publicly available Messidor-2 dataset was used in this study, comprised of retinal images. In the proposed model, first, images were pre-processed and a deep learning model, namely, InceptionV3 was used in feature extraction where a transfer learning approach is applied. Next, the number of features in obtained feature vectors was decreased with feature selection by Simulated Annealing (SA). Lastly, the best representation features were used in XGBoost model. The XGBoost algorithm gives an accuracy of 92.26% in a binary classification task. This study shows that a pre-trained ConvNet with a metaheuristic algorithm for feature selection gives a satisfactory result in the diagnosis of DR.
Collapse
Affiliation(s)
| | | | - Ömer Faruk BEYCA
- İstanbul Technical University, Department of Industrial Engineering
| |
Collapse
|
28
|
Riaz M, Bashir M, Younas I. Metaheuristics based COVID-19 detection using medical images: A review. Comput Biol Med 2022; 144:105344. [PMID: 35294913 PMCID: PMC8907145 DOI: 10.1016/j.compbiomed.2022.105344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 01/02/2023]
Abstract
Many countries in the world have been facing the rapid spread of COVID-19 since February 2020. There is a dire need for efficient and cheap automated diagnosis systems that can reduce the pressure on healthcare systems. Extensive research is being done on the use of image classification for the detection of COVID-19 through X-ray and CT-scan images of patients. Deep learning has been the most popular technique for image classification during the last decade. However, the performance of deep learning-based methods heavily depends on the architecture of the deep neural network. Over the last few years, metaheuristics have gained popularity for optimizing the architecture of deep neural networks. Metaheuristics have been widely used to solve different complex non-linear optimization problems due to their flexibility, simplicity, and problem independence. This paper aims to study the different image classification techniques for chest images, including the applications of metaheuristics for optimization and feature selection of deep learning and machine learning models. The motivation of this study is to focus on applications of different types of metaheuristics for COVID-19 detection and to shed some light on future challenges in COVID-19 detection from medical images. The aim is to inspire researchers to focus their research on overlooked aspects of COVID-19 detection.
Collapse
Affiliation(s)
- Mamoona Riaz
- FAST School of Computing, National University of Computer and Emerging Sciences, Lahore, Pakistan
| | - Maryam Bashir
- FAST School of Computing, National University of Computer and Emerging Sciences, Lahore, Pakistan.
| | - Irfan Younas
- FAST School of Computing, National University of Computer and Emerging Sciences, Lahore, Pakistan
| |
Collapse
|
29
|
Artificial neural network scheme to solve the nonlinear influenza disease model. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103594] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Anand S, Sharma V, Pourush R, Jaiswal S. A comprehensive survey on the biomedical signal processing methods for the detection of COVID-19. Ann Med Surg (Lond) 2022; 76:103519. [PMID: 35401978 PMCID: PMC8975609 DOI: 10.1016/j.amsu.2022.103519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/09/2022] [Accepted: 03/26/2022] [Indexed: 12/16/2022] Open
Abstract
The novel coronavirus, renamed SARS-CoV-2 and most commonly referred to as COVID-19, has infected nearly 44.83 million people in 224 countries and has been designated SARS-CoV-2. In this study, we used 'web of Science', 'Scopus' and 'goggle scholar' with the keywords of "SARS-CoV-2 detection" or "coronavirus 2019 detection" or "COVID 2019 detection" or "COVID 19 detection" "corona virus techniques for detection of COVID-19", "audio techniques for detection of COVID-19", "speech techniques for detection of COVID-19", for period of 2019-2021. Some COVID-19 instances have an impact on speech production, which suggests that researchers should look for signs of disease detection in speech utilising audio and speech recognition signals from humans to better understand the condition. It is presented in this review that an overview of human audio signals is presented using an AI (Artificial Intelligence) model to diagnose, spread awareness, and monitor COVID-19, employing bio and non-obtrusive signals that communicated human speech and non-speech audio information is presented. Development of accurate and rapid screening techniques that permit testing at a reasonable cost is critical in the current COVID-19 pandemic crisis, according to the World Health Organization. In this context, certain existing investigations have shown potential in the detection of COVID 19 diagnostic signals from relevant auditory noises, which is a promising development. According to authors, it is not a single "perfect" COVID-19 test that is required, but rather a combination of rapid and affordable tests, non-clinic pre-screening tools, and tools from a variety of supply chains and technologies that will allow us to safely return to our normal lives while we await the completion of the hassle free COVID-19 vaccination process for all ages. This review was able to gather information on biomedical signal processing in the detection of speech, coughing sounds, and breathing signals for the purpose of diagnosing and screening the COVID-19 virus.
Collapse
Affiliation(s)
- Satyajit Anand
- Electronics and Communication Engineering, Mody University of Science and Technology, India
| | - Vikrant Sharma
- Mechanical Engineering, Mody University of Science and Technology, India
| | - Rajeev Pourush
- Electronics and Communication Engineering, Mody University of Science and Technology, India
| | - Sandeep Jaiswal
- Biomedical Engineering, Mody University of Science and Technology, India
| |
Collapse
|
31
|
Shoaib MR, Emara HM, Elwekeil M, El-Shafai W, Taha TE, El-Fishawy AS, El-Rabaie ESM, El-Samie FEA. Hybrid classification structures for automatic COVID-19 detection. JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING 2022; 13:4477-4492. [PMID: 35280854 PMCID: PMC8898749 DOI: 10.1007/s12652-021-03686-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
This paper explores the issue of COVID-19 detection from X-ray images. X-ray images, in general, suffer from low quality and low resolution. That is why the detection of different diseases from X-ray images requires sophisticated algorithms. First of all, machine learning (ML) is adopted on the features extracted manually from the X-ray images. Twelve classifiers are compared for this task. Simulation results reveal the superiority of Gaussian process (GP) and random forest (RF) classifiers. To extend the feasibility of this study, we have modified the feature extraction strategy to give deep features. Four pre-trained models, namely ResNet50, ResNet101, Inception-v3 and InceptionResnet-v2 are adopted in this study. Simulation results prove that InceptionResnet-v2 and ResNet101 with GP classifier achieve the best performance. Moreover, transfer learning (TL) is also introduced in this paper to enhance the COVID-19 detection process. The selected classification hierarchy is also compared with a convolutional neural network (CNN) model built from scratch to prove its quality of classification. Simulation results prove that deep features and TL methods provide the best performance that reached 100% for accuracy.
Collapse
Affiliation(s)
- Mohamed R. Shoaib
- Department of Electronics and Electrical Communications Engineering, Faculty of Electronic Engineering, Menoufia University, Menouf, 32952 Egypt
| | - Heba M. Emara
- Department of Electronics and Electrical Communications Engineering, Faculty of Electronic Engineering, Menoufia University, Menouf, 32952 Egypt
| | - Mohamed Elwekeil
- Department of Electronics and Electrical Communications Engineering, Faculty of Electronic Engineering, Menoufia University, Menouf, 32952 Egypt
- Department of Electrical and Information Engineering, University of Cassino and Southern Lazio, Cassino, Italy
| | - Walid El-Shafai
- Department of Electronics and Electrical Communications Engineering, Faculty of Electronic Engineering, Menoufia University, Menouf, 32952 Egypt
- Security Engineering Lab, Computer Science Department, Prince Sultan University, Riyadh, 11586 Saudi Arabia
| | - Taha E. Taha
- Department of Electronics and Electrical Communications Engineering, Faculty of Electronic Engineering, Menoufia University, Menouf, 32952 Egypt
| | - Adel S. El-Fishawy
- Department of Electronics and Electrical Communications Engineering, Faculty of Electronic Engineering, Menoufia University, Menouf, 32952 Egypt
| | - El-Sayed M. El-Rabaie
- Department of Electronics and Electrical Communications Engineering, Faculty of Electronic Engineering, Menoufia University, Menouf, 32952 Egypt
| | - Fathi E. Abd El-Samie
- Department of Electronics and Electrical Communications Engineering, Faculty of Electronic Engineering, Menoufia University, Menouf, 32952 Egypt
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
32
|
Aslan MF, Sabanci K, Durdu A, Unlersen MF. COVID-19 diagnosis using state-of-the-art CNN architecture features and Bayesian Optimization. Comput Biol Med 2022; 142:105244. [PMID: 35077936 PMCID: PMC8770389 DOI: 10.1016/j.compbiomed.2022.105244] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 12/16/2022]
Abstract
The coronavirus outbreak 2019, called COVID-19, which originated in Wuhan, negatively affected the lives of millions of people and many people died from this infection. To prevent the spread of the disease, which is still in effect, various restriction decisions have been taken all over the world. In addition, the number of COVID-19 tests has been increased to quarantine infected people. However, due to the problems encountered in the supply of RT-PCR tests and the ease of obtaining Computed Tomography and X-ray images, imaging-based methods have become very popular in the diagnosis of COVID-19. Therefore, studies using these images to classify COVID-19 have increased. This paper presents a classification method for computed tomography chest images in the COVID-19 Radiography Database using features extracted by popular Convolutional Neural Networks (CNN) models (AlexNet, ResNet18, ResNet50, Inceptionv3, Densenet201, Inceptionresnetv2, MobileNetv2, GoogleNet). The determination of hyperparameters of Machine Learning (ML) algorithms by Bayesian optimization, and ANN-based image segmentation are the two main contributions in this study. First of all, lung segmentation is performed automatically from the raw image with Artificial Neural Networks (ANNs). To ensure data diversity, data augmentation is applied to the COVID-19 classes, which are fewer than the other two classes. Then these images are applied as input to five different CNN models. The features extracted from each CNN model are given as input to four different ML algorithms, namely Support Vector Machine (SVM), k-Nearest Neighbors (k-NN), Naive Bayes (NB), and Decision Tree (DT) for classification. To achieve the most successful classification accuracy, the hyperparameters of each ML algorithm are determined using Bayesian optimization. With the classification made using these hyperparameters, the highest success is obtained as 96.29% with the DenseNet201 model and SVM algorithm. The Sensitivity, Precision, Specificity, MCC, and F1-Score metric values for this structure are 0.9642, 0.9642, 0.9812, 0.9641 and 0.9453, respectively. These results showed that ML methods with the most optimum hyperparameters can produce successful results.
Collapse
Affiliation(s)
- Muhammet Fatih Aslan
- Electrical and Electronics Engineering, Karamanoglu Mehmetbey University, Karaman, Turkey
| | - Kadir Sabanci
- Electrical and Electronics Engineering, Karamanoglu Mehmetbey University, Karaman, Turkey.
| | - Akif Durdu
- Electrical and Electronics Engineering, Konya Technical University, Konya, Turkey
| | | |
Collapse
|
33
|
Deep multi-view feature learning for detecting COVID-19 based on chest X-ray images. Biomed Signal Process Control 2022; 75:103595. [PMID: 35222680 PMCID: PMC8864146 DOI: 10.1016/j.bspc.2022.103595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/04/2022] [Accepted: 02/20/2022] [Indexed: 12/14/2022]
Abstract
Aim COVID-19 is a pandemic infectious disease which has influenced the life and health of many communities since December 2019. Due to the rapid worldwide spread of this highly contagious disease, making its early detection with high accuracy important for breaking the chain of transition. X-ray images of COVID-19 patients, reveal specific abnormalities associated with this disease. Methods In this study, a multi-view feature learning method for detecting COVID-19 based on chest X-ray images is presented. This method provides a framework for exploiting the multiple types of deep features, which is able to preserve both the correlative and the complementary information, and achieve accurate detection at the classification phase. Deep features are extracted using pre-trained deep CNN models of AlexNet, GoogleNet, ResNet50, SqueezeNet, and VGG19. The learned feature representation of X-ray images are then classified using ELM. Results The experiments show that our method achieves accuracy scores of 100%, 99.82%, and 99.82% in detecting three classes of COVID-19, normal, and pneumonia, respectively. The sensitivities of three classes are 100%, 100%, and 99.45%, respectively. The specificities of three classes are 100%, 99.73%, and 100%, respectively. The precision values of three classes are 100%, 99.45%, and 100%, respectively. The F-scores of three classes are 100%, 99.73%, and 99.72%, respectively. The overall accuracy score of our method is 99.82%. Conclusions The results demonstrate the effectiveness of our method in detecting COVID-19 cases and can therefore assist experts in early diagnosis based on X-ray images.
Collapse
|
34
|
Hu J, Han Z, Heidari AA, Shou Y, Ye H, Wang L, Huang X, Chen H, Chen Y, Wu P. Detection of COVID-19 severity using blood gas analysis parameters and Harris hawks optimized extreme learning machine. Comput Biol Med 2022; 142:105166. [PMID: 35077935 PMCID: PMC8701842 DOI: 10.1016/j.compbiomed.2021.105166] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 01/08/2023]
Abstract
Coronavirus disease-2019 (COVID-19) has made the world more cautious about widespread viruses, and a tragic pandemic that was caused by a novel coronavirus has harmed human beings in recent years. The new coronavirus pneumonia outbreak is spreading rapidly worldwide. We collect arterial blood samples from 51 patients with a COVID-19 diagnosis. Blood gas analysis is performed using a Siemens RAPID Point 500 blood gas analyzer. To accurately determine the factors that play a decisive role in the early recognition and discrimination of COVID-19 severity, a prediction framework that is based on an improved binary Harris hawk optimization (HHO) algorithm in combination with a kernel extreme learning machine is proposed in this paper. This method uses specular reflection learning to improve the original HHO algorithm and is referred to as HHOSRL. The experimental results show that the selected indicators, such as age, partial pressure of oxygen, oxygen saturation, sodium ion concentration, and lactic acid, are essential for the early accurate assessment of COVID-19 severity by the proposed feature selection method. The simulation results show that the established methodlogy can achieve promising performance. We believe that our proposed model provides an effective strategy for accurate early assessment of COVID-19 and distinguishing disease severity. The codes of HHO will be updated in https://aliasgharheidari.com/HHO.html.
Collapse
Affiliation(s)
- Jiao Hu
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China.
| | - Zhengyuan Han
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China.
| | - Ali Asghar Heidari
- School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Yeqi Shou
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China.
| | - Hua Ye
- Department of Pulmonary and Critical Care Medicine, Affiliated Yueqing Hospital, Wenzhou Medical University, Yueqing, 325600, China.
| | - Liangxing Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China.
| | - Xiaoying Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China.
| | - Huiling Chen
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China.
| | - Yanfan Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China.
| | - Peiliang Wu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China.
| |
Collapse
|
35
|
Canayaz M, Şehribanoğlu S, Özdağ R, Demir M. COVID-19 diagnosis on CT images with Bayes optimization-based deep neural networks and machine learning algorithms. Neural Comput Appl 2022; 34:5349-5365. [PMID: 35250180 PMCID: PMC8884105 DOI: 10.1007/s00521-022-07052-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 02/01/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Murat Canayaz
- Department of Computer Engineering, Van Yuzuncu Yil University, 65100 Van, Turkey
| | - Sanem Şehribanoğlu
- Department of Econometrics, Van Yuzuncu Yil University, 65100 Van, Turkey
| | - Recep Özdağ
- Department of Computer Engineering, Van Yuzuncu Yil University, 65100 Van, Turkey
| | - Murat Demir
- Department of Software Engineering, Mus Alpaslan University, 49100 Mus, Turkey
| |
Collapse
|
36
|
Awassa L, Jdey I, Dhahri H, Hcini G, Mahmood A, Othman E, Haneef M. Study of Different Deep Learning Methods for Coronavirus (COVID-19) Pandemic: Taxonomy, Survey and Insights. SENSORS (BASEL, SWITZERLAND) 2022; 22:1890. [PMID: 35271037 PMCID: PMC8915023 DOI: 10.3390/s22051890] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/12/2022] [Accepted: 02/21/2022] [Indexed: 12/15/2022]
Abstract
COVID-19 has evolved into one of the most severe and acute illnesses. The number of deaths continues to climb despite the development of vaccines and new strains of the virus have appeared. The early and precise recognition of COVID-19 are key in viably treating patients and containing the pandemic on the whole. Deep learning technology has been shown to be a significant tool in diagnosing COVID-19 and in assisting radiologists to detect anomalies and numerous diseases during this epidemic. This research seeks to provide an overview of novel deep learning-based applications for medical imaging modalities, computer tomography (CT) and chest X-rays (CXR), for the detection and classification COVID-19. First, we give an overview of the taxonomy of medical imaging and present a summary of types of deep learning (DL) methods. Then, utilizing deep learning techniques, we present an overview of systems created for COVID-19 detection and classification. We also give a rundown of the most well-known databases used to train these networks. Finally, we explore the challenges of using deep learning algorithms to detect COVID-19, as well as future research prospects in this field.
Collapse
Affiliation(s)
- Lamia Awassa
- Faculty of Sciences and Technology of Sidi Bouzid, University of Kairouan, Kairouan 3100, Tunisia; (L.A.); (I.J.); (G.H.)
| | - Imen Jdey
- Faculty of Sciences and Technology of Sidi Bouzid, University of Kairouan, Kairouan 3100, Tunisia; (L.A.); (I.J.); (G.H.)
| | - Habib Dhahri
- Faculty of Sciences and Technology of Sidi Bouzid, University of Kairouan, Kairouan 3100, Tunisia; (L.A.); (I.J.); (G.H.)
- Department of Information Science, College of Applied Computer Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.); (E.O.)
| | - Ghazala Hcini
- Faculty of Sciences and Technology of Sidi Bouzid, University of Kairouan, Kairouan 3100, Tunisia; (L.A.); (I.J.); (G.H.)
| | - Awais Mahmood
- Department of Information Science, College of Applied Computer Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.); (E.O.)
| | - Esam Othman
- Department of Information Science, College of Applied Computer Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.); (E.O.)
| | - Muhammad Haneef
- Department of Electrical Engineering, Foundation University Islamabad, Islamabad 44000, Pakistan;
| |
Collapse
|
37
|
Vineth Ligi S, Kundu SS, Kumar R, Narayanamoorthi R, Lai KW, Dhanalakshmi S. Radiological Analysis of COVID-19 Using Computational Intelligence: A Broad Gauge Study. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:5998042. [PMID: 35251572 PMCID: PMC8890832 DOI: 10.1155/2022/5998042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/13/2021] [Accepted: 01/07/2022] [Indexed: 12/20/2022]
Abstract
Pulmonary medical image analysis using image processing and deep learning approaches has made remarkable achievements in the diagnosis, prognosis, and severity check of lung diseases. The epidemic of COVID-19 brought out by the novel coronavirus has triggered a critical need for artificial intelligence assistance in diagnosing and controlling the disease to reduce its effects on people and global economies. This study aimed at identifying the various COVID-19 medical imaging analysis models proposed by different researchers and featured their merits and demerits. It gives a detailed discussion on the existing COVID-19 detection methodologies (diagnosis, prognosis, and severity/risk detection) and the challenges encountered for the same. It also highlights the various preprocessing and post-processing methods involved to enhance the detection mechanism. This work also tries to bring out the different unexplored research areas that are available for medical image analysis and how the vast research done for COVID-19 can advance the field. Despite deep learning methods presenting high levels of efficiency, some limitations have been briefly described in the study. Hence, this review can help understand the utilization and pros and cons of deep learning in analyzing medical images.
Collapse
Affiliation(s)
- S. Vineth Ligi
- Department of Electronics and Communication Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu, Chennai, TN, India
| | - Soumya Snigdha Kundu
- Department of Computer Science Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu, Chennai, TN, India
| | - R. Kumar
- Department of Electronics and Communication Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu, Chennai, TN, India
| | - R. Narayanamoorthi
- Department of Electrical and Electronics Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu, Chennai, TN, India
| | - Khin Wee Lai
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Samiappan Dhanalakshmi
- Department of Electronics and Communication Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu, Chennai, TN, India
| |
Collapse
|
38
|
Ben Atitallah S, Driss M, Boulila W, Ben Ghézala H. Randomly initialized convolutional neural network for the recognition of COVID-19 using X-ray images. INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY 2022; 32:55-73. [PMID: 34898852 PMCID: PMC8653328 DOI: 10.1002/ima.22654] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 08/28/2021] [Accepted: 09/05/2021] [Indexed: 06/14/2023]
Abstract
By the start of 2020, the novel coronavirus (COVID-19) had been declared a worldwide pandemic, and because of its infectiousness and severity, several strands of research have focused on combatting its ongoing spread. One potential solution to detecting COVID-19 rapidly and effectively is by analyzing chest X-ray images using Deep Learning (DL) models. Convolutional Neural Networks (CNNs) have been presented as particularly efficient techniques for early diagnosis, but most still include limitations. In this study, we propose a novel randomly initialized CNN (RND-CNN) architecture for the recognition of COVID-19. This network consists of a set of differently-sized hidden layers all created from scratch. The performance of this RND-CNN is evaluated using two public datasets: the COVIDx and the enhanced COVID-19 datasets. Each of these datasets consists of medical images (X-rays) in one of three different classes: chests with COVID-19, with pneumonia, or in a normal state. The proposed RND-CNN model yields encouraging results for its accuracy in detecting COVID-19 results, achieving 94% accuracy for the COVIDx dataset and 99% accuracy on the enhanced COVID-19 dataset.
Collapse
Affiliation(s)
| | - Maha Driss
- RIADI LaboratoryUniversity of ManoubaTunisia
- Security Engineering LabPrince Sultan UniversitySaudi Arabia
| | - Wadii Boulila
- RIADI LaboratoryUniversity of ManoubaTunisia
- Robotics and Internet‐of‐Things LabPrince Sultan UniversitySaudi Arabia
| | | |
Collapse
|
39
|
Application of intelligence-based computational techniques for classification and early differential diagnosis of COVID-19 disease. DATA SCIENCE AND MANAGEMENT 2021. [PMCID: PMC8654459 DOI: 10.1016/j.dsm.2021.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Clinical methods are used for diagnosing COVID-19 infected patients, but reports posit that, several people who were initially tested positive of COVID-19, and who had some underlying diseases, turned out having negative results after further tests. Therefore, the performance of clinical methods is not always guaranteed. Moreover, chest X-ray image data of COVID-19 infected patients are mostly used in the computational models for COVID-19 diagnosis, while the use of common symptoms, such as fever, cough, fatigue, muscle aches, headache, etc. in computational models is not yet reported. In this study, we employed seven classification algorithms to empirically test and verify their efficacy when applied to diagnose COVID-19 using the aforementioned symptoms. We experimented with Logistic Regression (LR), Support Vector Machine (SVM), Naïve Byes (NB), Decision Tree (DT), Multilayer Perceptron (MLP), Fuzzy Cognitive Map (FCM) and Deep Neural Network (DNN) algorithms. The techniques were subjected to random undersampling and oversampling. Our results showed that with class imbalance, MLP and DNN outperform others. However, without class imbalance, MLP, FCM and DNN outperform others with the use of random undersampling, but DNN has the best performance by utilizing random oversampling. This study identified MLP, FCM and DNN as better classifiers over LR, NB, DT and SVM, so that healthcare software system developers can adopt them to develop intelligence-based expert systems which both medical personnel and patients can use for differential diagnosis of COVID-19 based on the aforementioned symptoms. However, the test of performance must not be limited to the traditional performance metrics.
Collapse
|
40
|
Boosting COVID-19 Image Classification Using MobileNetV3 and Aquila Optimizer Algorithm. ENTROPY 2021; 23:e23111383. [PMID: 34828081 PMCID: PMC8624090 DOI: 10.3390/e23111383] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/23/2022]
Abstract
Currently, the world is still facing a COVID-19 (coronavirus disease 2019) classified as a highly infectious disease due to its rapid spreading. The shortage of X-ray machines may lead to critical situations and delay the diagnosis results, increasing the number of deaths. Therefore, the exploitation of deep learning (DL) and optimization algorithms can be advantageous in early diagnosis and COVID-19 detection. In this paper, we propose a framework for COVID-19 images classification using hybridization of DL and swarm-based algorithms. The MobileNetV3 is used as a backbone feature extraction to learn and extract relevant image representations as a DL model. As a swarm-based algorithm, the Aquila Optimizer (Aqu) is used as a feature selector to reduce the dimensionality of the image representations and improve the classification accuracy using only the most essential selected features. To validate the proposed framework, two datasets with X-ray and CT COVID-19 images are used. The obtained results from the experiments show a good performance of the proposed framework in terms of classification accuracy and dimensionality reduction during the feature extraction and selection phases. The Aqu feature selection algorithm achieves accuracy better than other methods in terms of performance metrics.
Collapse
|
41
|
Rank-driven salp swarm algorithm with orthogonal opposition-based learning for global optimization. APPL INTELL 2021; 52:7922-7964. [PMID: 34764621 PMCID: PMC8516494 DOI: 10.1007/s10489-021-02776-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2021] [Indexed: 12/04/2022]
Abstract
Salp swarm algorithm (SSA) is a relatively new and straightforward swarm-based meta-heuristic optimization algorithm, which is inspired by the flocking behavior of salps when foraging and navigating in oceans. Although SSA is very competitive, it suffers from some limitations including unbalanced exploration and exploitation operation, slow convergence. Therefore, this study presents an improved version of SSA, called OOSSA, to enhance the comprehensive performance of the basic method. In preference, a new opposition-based learning strategy based on optical lens imaging principle is proposed, and combined with the orthogonal experimental design, an orthogonal lens opposition-based learning technique is designed to help the population jump out of a local optimum. Next, the scheme of adaptively adjusting the number of leaders is embraced to boost the global exploration capability and improve the convergence speed. Also, a dynamic learning strategy is applied to the canonical methodology to improve the exploitation capability. To confirm the efficacy of the proposed OOSSA, this paper uses 26 standard mathematical optimization functions with various features to test the method. Alongside, the performance of the proposed methodology is validated by Wilcoxon signed-rank and Friedman statistical tests. Additionally, three well-known engineering optimization problems and unknown parameters extraction issue of photovoltaic model are applied to check the ability of the OOSA algorithm to obtain solutions to intractable real-world problems. The experimental results reveal that the developed OOSSA is significantly superior to the standard SSA, currently popular SSA-based algorithms, and other state-of-the-artmeta-heuristic algorithms for solving numerical optimization, real-world engineering optimization, and photovoltaic model parameter extraction problems. Finally, an OOSSA-based path planning approach is developed for creating the shortest obstacle-free route for autonomous mobile robots. Our introduced method is compared with several successful swarm-based metaheuristic techniques in five maps, and the comparative results indicate that the suggested approach can generate the shortest collision-free trajectory as compared to other peers.
Collapse
|
42
|
Canayaz M. C+EffxNet: A novel hybrid approach for COVID-19 diagnosis on CT images based on CBAM and EfficientNet. CHAOS, SOLITONS, AND FRACTALS 2021; 151:111310. [PMID: 34376926 PMCID: PMC8339545 DOI: 10.1016/j.chaos.2021.111310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/14/2021] [Accepted: 07/28/2021] [Indexed: 05/03/2023]
Abstract
COVID-19, one of the biggest diseases of our age, continues to spread rapidly around the world. Studies continue rapidly for the diagnosis and treatment of this disease. It is of great importance that individuals who are infected with this virus be isolated from the rest of the society so that the disease does not spread further. In addition to the tests performed in the detection process of the patients, X-ray and computed tomography are also used. In this study, a new hybrid model that can diagnose COVID-19 from computed tomography images created using EfficientNet, one of the current deep learning models, with a model consisting of attention blocks is proposed. In the first step of this new model, channel attention, spatial attention, and residual blocks are used to extract the most important features from the images. The extracted features are combined in accordance with the hyper-column technique. The combined features are given as input to the EfficientNet models in the second step of the model. The deep features obtained from this proposed hybrid model were classified with the Support Vector Machine classifier after feature selection. Principal Components Analysis was used for feature selection. The approach can accurately predict COVID-19 with a 99% accuracy rate. The first four versions of EfficientNet are used in the approach. In addition, Bayesian optimization was used in the hyper parameter estimation of the Support Vector Machine classifier. Comparative performance analysis of the approach with other approaches in the field is given.
Collapse
Affiliation(s)
- Murat Canayaz
- Department of Computer Engineering,Van Yuzuncu Yil University,65100,Van,Turkey
| |
Collapse
|
43
|
Taresh MM, Zhu N, Ali TAA, Alghaili M, Hameed AS, Mutar ML. KL-MOB: automated COVID-19 recognition using a novel approach based on image enhancement and a modified MobileNet CNN. PeerJ Comput Sci 2021; 7:e694. [PMID: 34616885 PMCID: PMC8459788 DOI: 10.7717/peerj-cs.694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
The emergence of the novel coronavirus pneumonia (COVID-19) pandemic at the end of 2019 led to worldwide chaos. However, the world breathed a sigh of relief when a few countries announced the development of a vaccine and gradually began to distribute it. Nevertheless, the emergence of another wave of this pandemic returned us to the starting point. At present, early detection of infected people is the paramount concern of both specialists and health researchers. This paper proposes a method to detect infected patients through chest x-ray images by using the large dataset available online for COVID-19 (COVIDx), which consists of 2128 X-ray images of COVID-19 cases, 8,066 normal cases, and 5,575 cases of pneumonia. A hybrid algorithm is applied to improve image quality before undertaking neural network training. This algorithm combines two different noise-reduction filters in the image, followed by a contrast enhancement algorithm. To detect COVID-19, we propose a novel convolution neural network (CNN) architecture called KL-MOB (COVID-19 detection network based on the MobileNet structure). The performance of KL-MOB is boosted by adding the Kullback-Leibler (KL) divergence loss function when trained from scratch. The KL divergence loss function is adopted for content-based image retrieval and fine-grained classification to improve the quality of image representation. The results are impressive: the overall benchmark accuracy, sensitivity, specificity, and precision are 98.7%, 98.32%, 98.82% and 98.37%, respectively. These promising results should help other researchers develop innovative methods to aid specialists. The tremendous potential of the method proposed herein can also be used to detect COVID-19 quickly and safely in patients throughout the world.
Collapse
Affiliation(s)
| | - Ningbo Zhu
- College of Information Science and Engineering, Hunan University, Changsha, Hunan, China
| | - Talal Ahmed Ali Ali
- College of Information Science and Engineering, Hunan University, Changsha, Hunan, China
| | - Mohammed Alghaili
- College of Information Science and Engineering, Hunan University, Changsha, Hunan, China
| | - Asaad Shakir Hameed
- Department of Mathematics, General Directorate of Thi-Qar Education, Ministry of Education, Thi-Qar, Iraq
| | - Modhi Lafta Mutar
- Department of Mathematics, General Directorate of Thi-Qar Education, Ministry of Education, Thi-Qar, Iraq
| |
Collapse
|
44
|
Rehouma R, Buchert M, Chen YP. Machine learning for medical imaging-based COVID-19 detection and diagnosis. INT J INTELL SYST 2021; 36:5085-5115. [PMID: 38607786 PMCID: PMC8242401 DOI: 10.1002/int.22504] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/15/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022]
Abstract
The novel coronavirus disease 2019 (COVID-19) is considered to be a significant health challenge worldwide because of its rapid human-to-human transmission, leading to a rise in the number of infected people and deaths. The detection of COVID-19 at the earliest stage is therefore of paramount importance for controlling the pandemic spread and reducing the mortality rate. The real-time reverse transcription-polymerase chain reaction, the primary method of diagnosis for coronavirus infection, has a relatively high false negative rate while detecting early stage disease. Meanwhile, the manifestations of COVID-19, as seen through medical imaging methods such as computed tomography (CT), radiograph (X-ray), and ultrasound imaging, show individual characteristics that differ from those of healthy cases or other types of pneumonia. Machine learning (ML) applications for COVID-19 diagnosis, detection, and the assessment of disease severity based on medical imaging have gained considerable attention. Herein, we review the recent progress of ML in COVID-19 detection with a particular focus on ML models using CT and X-ray images published in high-ranking journals, including a discussion of the predominant features of medical imaging in patients with COVID-19. Deep Learning algorithms, particularly convolutional neural networks, have been utilized widely for image segmentation and classification to identify patients with COVID-19 and many ML modules have achieved remarkable predictive results using datasets with limited sample sizes.
Collapse
Affiliation(s)
- Rokaya Rehouma
- School of Cancer MedicineLa Trobe UniversityMelbourneVictoriaAustralia
| | - Michael Buchert
- School of Cancer MedicineLa Trobe UniversityMelbourneVictoriaAustralia
- Tumour Microenvironment and Cancer Signaling GroupOlivia Newton‐John Cancer Research InstituteMelbourneVictoriaAustralia
| | - Yi‐Ping Phoebe Chen
- Department of Computer Science and Information TechnologyLa Trobe UniversityMelbourneVictoriaAustralia
| |
Collapse
|
45
|
Tang Z, Hu H, Xu C, Zhao K. Exploring an Efficient Remote Biomedical Signal Monitoring Framework for Personal Health in the COVID-19 Pandemic. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:9037. [PMID: 34501625 PMCID: PMC8430740 DOI: 10.3390/ijerph18179037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/06/2021] [Accepted: 08/26/2021] [Indexed: 12/22/2022]
Abstract
Nowadays people are mostly focused on their work while ignoring their health which in turn is creating a drastic effect on their health in the long run. Remote health monitoring through telemedicine can help people discover potential health threats in time. In the COVID-19 pandemic, remote health monitoring can help obtain and analyze biomedical signals including human body temperature without direct body contact. This technique is of great significance to achieve safe and efficient health monitoring in the COVID-19 pandemic. Existing remote biomedical signal monitoring methods cannot effectively analyze the time series data. This paper designs a remote biomedical signal monitoring framework combining the Internet of Things (IoT), 5G communication and artificial intelligence techniques. In the constructed framework, IoT devices are used to collect biomedical signals at the perception layer. Subsequently, the biomedical signals are transmitted through the 5G network to the cloud server where the GRU-AE deep learning model is deployed. It is noteworthy that the proposed GRU-AE model can analyze multi-dimensional biomedical signals in time series. Finally, this paper conducts a 24-week monitoring experiment for 2000 subjects of different ages to obtain real data. Compared with the traditional biomedical signal monitoring method based on the AutoEncoder model, the GRU-AE model has better performance. The research has an important role in promoting the development of biomedical signal monitoring techniques, which can be effectively applied to some kinds of remote health monitoring scenario.
Collapse
Affiliation(s)
- Zhongyun Tang
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310014, China; (Z.T.); (H.H.)
- School of Information and Electronic Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Haiyang Hu
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310014, China; (Z.T.); (H.H.)
| | - Chonghuan Xu
- School of Business Administration, Zhejiang Gongshang University, Hangzhou 310018, China
- Modern Business Research Center, Zhejiang Gongshang University, Hangzhou 310018, China
- Zheshang Research Institute, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Kaidi Zhao
- School of Information Science and Technology, Fudan University, Shanghai 200433, China;
| |
Collapse
|
46
|
Piotrowski AP, Piotrowska AE. Differential evolution and particle swarm optimization against COVID-19. Artif Intell Rev 2021; 55:2149-2219. [PMID: 34426713 PMCID: PMC8374127 DOI: 10.1007/s10462-021-10052-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2021] [Indexed: 11/29/2022]
Abstract
COVID-19 disease, which highly affected global life in 2020, led to a rapid scientific response. Versatile optimization methods found their application in scientific studies related to COVID-19 pandemic. Differential Evolution (DE) and Particle Swarm Optimization (PSO) are two metaheuristics that for over two decades have been widely researched and used in various fields of science. In this paper a survey of DE and PSO applications for problems related with COVID-19 pandemic that were rapidly published in 2020 is presented from two different points of view: 1. practitioners seeking the appropriate method to solve particular problem, 2. experts in metaheuristics that are interested in methodological details, inter comparisons between different methods, and the ways for improvement. The effectiveness and popularity of DE and PSO is analyzed in the context of other metaheuristics used against COVID-19. It is found that in COVID-19 related studies: 1. DE and PSO are most frequently used for calibration of epidemiological models and image-based classification of patients or symptoms, but applications are versatile, even interconnecting the pandemic and humanities; 2. reporting on DE or PSO methodological details is often scarce, and the choices made are not necessarily appropriate for the particular algorithm or problem; 3. mainly the basic variants of DE and PSO that were proposed in the late XX century are applied, and research performed in recent two decades is rather ignored; 4. the number of citations and the availability of codes in various programming languages seems to be the main factors for choosing metaheuristics that are finally used.
Collapse
Affiliation(s)
- Adam P. Piotrowski
- Institute of Geophysics, Polish Academy of Sciences, Ks. Janusza 64, 01-452 Warsaw, Poland
| | - Agnieszka E. Piotrowska
- Faculty of Polish Studies, University of Warsaw, Krakowskie Przedmiescie 26/28, 00-927 Warsaw, Poland
| |
Collapse
|
47
|
Shazia A, Xuan TZ, Chuah JH, Usman J, Qian P, Lai KW. A comparative study of multiple neural network for detection of COVID-19 on chest X-ray. EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING 2021; 2021:50. [PMID: 34335736 PMCID: PMC8314263 DOI: 10.1186/s13634-021-00755-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/23/2021] [Indexed: 05/26/2023]
Abstract
Coronavirus disease of 2019 or COVID-19 is a rapidly spreading viral infection that has affected millions all over the world. With its rapid spread and increasing numbers, it is becoming overwhelming for the healthcare workers to rapidly diagnose the condition and contain it from spreading. Hence it has become a necessity to automate the diagnostic procedure. This will improve the work efficiency as well as keep the healthcare workers safe from getting exposed to the virus. Medical image analysis is one of the rising research areas that can tackle this issue with higher accuracy. This paper conducts a comparative study of the use of the recent deep learning models (VGG16, VGG19, DenseNet121, Inception-ResNet-V2, InceptionV3, Resnet50, and Xception) to deal with the detection and classification of coronavirus pneumonia from pneumonia cases. This study uses 7165 chest X-ray images of COVID-19 (1536) and pneumonia (5629) patients. Confusion metrics and performance metrics were used to analyze each model. Results show DenseNet121 (99.48% of accuracy) showed better performance when compared with the other models in this study.
Collapse
Affiliation(s)
- Anis Shazia
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Tan Zi Xuan
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Joon Huang Chuah
- Department of Electrical Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Juliana Usman
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Pengjiang Qian
- School of Artificial Intelligence and Computer Science, Jiangnan University, 1800 Lihu Avenue, Jiangsu 214122 Wuxi, People’s Republic of China
| | - Khin Wee Lai
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
48
|
Sharma N, Mangla M, Mohanty SN, Gupta D, Tiwari P, Shorfuzzaman M, Rawashdeh M. A smart ontology-based IoT framework for remote patient monitoring. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102717] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
49
|
Imani M. Automatic diagnosis of coronavirus (COVID-19) using shape and texture characteristics extracted from X-Ray and CT-Scan images. Biomed Signal Process Control 2021; 68:102602. [PMID: 33824681 PMCID: PMC8017558 DOI: 10.1016/j.bspc.2021.102602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 02/28/2021] [Accepted: 03/26/2021] [Indexed: 12/24/2022]
Abstract
Automatic diagnosis of coronavirus (COVID-19) is studied in this research. Deep learning methods especially convolutional neural networks (CNNs) have shown great success in COVID-19 diagnosis in recent works. But they are efficient when the depth of network is high enough. However, the use of a deep network requires a sufficiently large training set, which is not available in practice. From the other hand, the use of a shallow CNN may not provide superior results because it is not able to rich feature extraction due to lacking enough convolutional layers. To deal with this difficulty, the contextual features reduced by convolutional filters (CFRCF) is proposed in this work. CFRCF extracts shape and textural features as contextual feature maps from the chest X-ray radiographs and abdominal computed tomography (CT) images. Morphological operators, Gabor filter banks and attribute filters are used for contextual feature extraction. Then, two convolutional filters are applied to the contextual feature cube to extract the nonlinear sub-features and hidden relationships among the contextual features. Finally, a fully connected layer is used to produce a reduced feature vector which is fed to a classifier. Support vector machine and random forest are used as classifier. The experimental results show the superior performance of the proposed method from the recognition accuracy and running time point of view using limited training samples. More than 76% and 94% overall classification accuracy is obtained by the proposed method in CT scan and X-ray images datasets, respectively.
Collapse
Affiliation(s)
- Maryam Imani
- Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
50
|
Nagarajan G, Dhinesh Babu LD. A hybrid feature selection model based on improved squirrel search algorithm and rank aggregation using fuzzy techniques for biomedical data classification. ACTA ACUST UNITED AC 2021; 10:39. [PMID: 34094808 PMCID: PMC8170065 DOI: 10.1007/s13721-021-00313-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 11/29/2022]
Abstract
Feature selection has gained its importance due to the voluminous nature of the data. Owing to the computational complexity of wrapper approaches, the poor performance of filtering techniques, and the classifier dependency of embedded approaches, hybrid approaches are more commonly used in feature selection. Hybrid approaches use filtering metrics to reduce the computational complexity of wrapper algorithms and are proved to yield better feature subset. Though filtering metrics select the features based on their significance, most of them are unstable and biased towards the metric used. Moreover, the choice of filtering metrics depends largely on the distribution of data and data types. Biomedical datasets contain features with different distribution and types adding to the complexity in the choice of filtering metric. We address this problem by proposing a stable filtering method based on rank aggregation in hybrid feature selection model with Improved Squirrel search algorithm for biomedical datasets. Our proposed model is compared with other well-known and state-of-the-art methods and the results prove that our model exhibited superior performance in terms of classification accuracy and computational time. The robustness of our proposed model is proved by conducting experiments on nine biomedical datasets and with three different classifiers.
Collapse
Affiliation(s)
- Gayathri Nagarajan
- School of Information Technology and Engineering, VIT university, Vellore, India
| | - L. D. Dhinesh Babu
- School of Information Technology and Engineering, VIT university, Vellore, India
| |
Collapse
|