1
|
Davidson CED, Prakash R. Stamp-Imprinted Polymer EIS Biosensor for Amyloid-Beta Detection: A Novel Approach Towards Alzheimer's Screening. BIOSENSORS 2025; 15:228. [PMID: 40277542 PMCID: PMC12025068 DOI: 10.3390/bios15040228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/24/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025]
Abstract
Surface-imprinted polymers (SIPs) represent an exciting and cost-effective alternative to antibodies for electrochemical impedance spectroscopy (EIS)-based biosensing. They can be produced using simple printing techniques and have shown high efficacy in detecting large biomolecules and microorganisms. Stamp imprinting, a novel SIP method, creates the target analyte's imprint using a soft lithography mask of the analyte matrix, thereby reducing material complexities and eliminating the need for cross-linking, which makes the process more scalable than the conventional SIPs. In this work, we demonstrate a stamp-imprinted EIS biosensor using a biocompatible polymer, polycaprolactone (PCL), for quantifying amyloid beta-42 (Aβ-42), a small peptide involved in the pathophysiology of Alzheimer's disease. The evaluated SIP-EIS biosensors showed a detection limit close to 10 fg/mL, and a detection range covering the physiologically relevant concentration range of the analyte in blood serum (from 10 fg/mL to 10 μg/mL). The device sensitivity, which is found to be comparable to antibody-based EIS devices, demonstrates the potential of SIP-EIS biosensors as an exciting alternative to conventional antibody-based diagnostic approaches. We also evaluate the viability of analyzing these proteins in complex media, notably in the presence of serum albumin proteins, which cause biofouling and non-specific interactions. The combination of high sensitivity, selectivity, and ease of fabrication makes SIP-EIS biosensors particularly suited for portable and point-of-care applications.
Collapse
Affiliation(s)
| | - Ravi Prakash
- Department of Electronics Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada;
| |
Collapse
|
2
|
Moradi F, Akbari-Adergani B, Azar PA, Givianrad MH. Rapid mimetic micro-contact nano-fluorosensor based on molecularly imprinted polymers for the detection of amygdalin in biological matrices. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1021-1031. [PMID: 39757852 DOI: 10.1039/d4ay01269k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
In this study, a mimetic fluorescence nanosensor based on a molecularly imprinted polymer was designed for the detection of amygdalin (AMG). Its characteristics and functional performance were investigated and recorded using ATR-FTIR, AFM and porosity tests. This designed sensor is considered superior to other reported techniques due to its low material consumption during both manufacturing and operation as well as its low cost and desirable performance characteristics, such as short response time, high stability and an appropriate detection limit. In situ surface imprinting was employed by incorporating methacrylic acid as the functional monomer, 2H-chromen-2-one as the fluorescence monomer, AMG as the template molecule, ethylene glycol dimethacrylate as the crosslinking agent, 2,2'-azobis(isobutyronitrile) as the initiator and a glass slide as the sensor medium. The detection mechanism relied on a reduction in the intensity of the fluorescence signal upon exposure to a solution containing AMG. The optimum monomer-to-crosslinking agent ratio was found to be 1 : 6, with a pH value of 4.5 being the most favorable. Mercury porosity test results showed that over 91% of the pores formed on the surface of the imprinted slides were in the range of 20-66 nm. Linearity analysis was performed by plotting a calibration curve for the nano-fluorosensor within the concentration range of 0.62-40 μg mL-1, yielding a detection limit (LOD) of 0.19 μg mL-1 and a limit of quantification (LOQ) of 0.62 μg mL-1. The response time of the sensor was evaluated over the range of 5-150 seconds in buffer solution, urine and serum matrices, with 75 seconds as the optimal value. In general, the performance characteristics of the designed fluorosensor demonstrated its suitability for the selective detection of AMG in the biological matrices.
Collapse
Affiliation(s)
- Fatemeh Moradi
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Behrouz Akbari-Adergani
- Water Safety Research Center, Food and Drug Administration, Ministry of Health and Medical Education, P. O. Box 1113615911, Tehran, Iran.
| | - Parviz Aberoomand Azar
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
3
|
Ting WT, Ali MY, Mitea V, Wang MJ, Howlader MMR. Polyaniline-based bovine serum albumin imprinted electrochemical sensor for ultra-trace-level detection in clinical and food safety applications. Int J Biol Macromol 2024; 277:134137. [PMID: 39067725 DOI: 10.1016/j.ijbiomac.2024.134137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Monitoring bovine serum albumin (BSA) at ultra-low levels is crucial for clinical and food safety applications, as it plays a significant role in identifying various health conditions and potential risks, necessitating fast, trace-level detection of BSA. This study proposes an approach to address these challenges by employing molecularly imprinted polymer (MIP) to develop an ultra-trace-level and cost-effective BSA sensing platform. The MIP electrochemical sensor was developed using polyaniline (PANI) combined with the protein crosslinker glutaraldehyde (GA) to optimize BSA surface imprinting in the MIP. As a result, the sensor achieves a sensitivity of 1.24 μA/log(pg/mL), with a picomolar detectable limit of 2.3 pg/mL (0.035 pM) and a wide detection range from 20 pg/mL to 200,000 pg/mL (0.303 pM to 3030 pM), making it suitable for clinical and food safety applications. Additionally, the study explores the interaction between an acidic surfactant protein eluent (acetic acid with sodium dodecyl sulfate, AcOH-SDS) and BSA vacant sites, enhancing recognition and re-binding. The PANI-based MIP sensor demonstrates initial feasibility and practicality in commercial milk and real human serum, opening avenues for early disease detection and ensuring food safety in BSA-related immune responses.
Collapse
Affiliation(s)
- Wei-Ting Ting
- Department of Electrical and Computer Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada; Department of Chemical Engineering, National Taiwan University of Science and Technology, No. 43 Keelung Road Section 4, Taipei 106, Taiwan; Taiwan Building Technology Center, National Taiwan University of Science and Technology, No. 43 Keelung Road Section 4, Taipei 106, Taiwan
| | - Md Younus Ali
- Department of Electrical and Computer Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Victor Mitea
- Department of Electrical and Computer Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada; School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Meng-Jiy Wang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, No. 43 Keelung Road Section 4, Taipei 106, Taiwan.
| | - Matiar M R Howlader
- Department of Electrical and Computer Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada; School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
4
|
Narula K, Rajpal S, Bhakta S, Kulanthaivel S, Mishra P. Rationally designed protein A surface molecularly imprinted magnetic nanoparticles for the capture and detection of Staphylococcus aureus. J Mater Chem B 2024; 12:5699-5710. [PMID: 38757517 DOI: 10.1039/d4tb00392f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Staphylococcus aureus (S. aureus), a commensal organism found on the human skin, is commonly associated with nosocomial infections and exhibits virulence mediated by toxins and resistance to antibiotics. The global threat of antibiotic resistance has necessitated antimicrobial stewardship to improve the safe and appropriate use of antimicrobials; hence, there is an urgent demand for the advanced, cost-effective, and rapid detection of specific bacteria. In this regard, we aimed to selectively detect S. aureus using surface molecularly imprinted magnetic nanoparticles templated with a well-known biomarker protein A, specific to S. aureus. Herein, a highly selective surface molecularly imprinted polymeric thin layer was created on ∼250 nm magnetic nanoparticles (MNPs) through the immobilization of protein A to aldehyde functionalized MNPs, followed by monomer polymerization and template washing. This study employs the rational selection of monomers based on their computationally predicted binding affinity to protein A at multiple surface residues. The resulting MIPs from rationally selected monomer combinations demonstrated an imprinting factor as high as ∼5. Selectivity studies revealed MIPs with four-fold higher binding capacity (BC) to protein A than other non-target proteins, such as lysozyme and serum albumin. In addition, it showed significant binding to S. aureus, whereas negligible binding to other non-specific Gram-negative, i.e. Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa), and Gram-positive, i.e. Bacillus subtilis (B. subtilis), bacteria. This MIP was employed for the capture and specific detection of fluorescently labeled S. aureus. Quantitative detection was performed using a conventional plate counting technique in a linear detection range of 101-107 bacterial cells. Remarkably, the MIPs also exhibited approximately 100% cell recovery from milk samples spiked with S. aureus (106 CFU mL-1), underscoring its potential as a robust tool for sensitive and accurate bacterial detection in dairy products. The developed MIP exhibiting high affinity and selective binding to protein A finds its potential applications in the magnetic capture and selective detection of protein A as well as S. aureus infections and contaminations.
Collapse
Affiliation(s)
- Kritika Narula
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India.
| | - Soumya Rajpal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India.
| | - Snehasis Bhakta
- Department of Chemistry, Cooch Behar College, West Bengal, India
| | - Senthilguru Kulanthaivel
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India.
| | - Prashant Mishra
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India.
| |
Collapse
|
5
|
Gorai P, Marques C, Shrivastav AM, Jha R. Precise detection of trace level protein using MIP-MoS 2 nanocomposite functionalized PCF based interferometer. OPTICS EXPRESS 2024; 32:10033-10045. [PMID: 38571224 DOI: 10.1364/oe.517437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/06/2024] [Indexed: 04/05/2024]
Abstract
Fiber optic interferometry combined with recognizing elements has attracted intensive attention for the development of different biosensors due to its superior characteristic features. However, the immobilization of sensing elements alone is not capable of low-concentration detection due to weak interaction with the evanescent field of the sensing transducer. The utilization of different 2D materials with high absorption potential and specific surface area can enhance the intensity of the evanescent field and hence the sensitivity of the sensor. Here, a biosensor has been fabricated using an inline hetero fiber structure of photonic crystal fiber (PCF) and single-mode fiber (SMF) functionalized with a nanocomposite of molybodenum di-sulfide (MoS2) and molecular imprinting polymer (MIP) to detect trace levels of bovine serum albumin (BSA). The sensor showed a wide dynamic detection range with a high sensitivity of 2.34 × 107 pm/µg L-1. It shows working potential over a wide pH range with a subfemtomolar detection limit. The compact size, easy fabrication, stable structure, long detection range, and high sensitivity of this sensor would open a new path for the development of different biosensors for online and remote sensing applications.
Collapse
|
6
|
Biosynthesized rGO@ZnO-based ultrasensitive electrochemical immunosensor for bovine serum albumin detection. J APPL ELECTROCHEM 2023. [DOI: 10.1007/s10800-023-01848-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
7
|
Akçapınar R, Özgür E, Goodarzi V, Uzun L. Surface imprinted upconversion nanoparticles for selective albumin recognition. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
A Critical Review on the Use of Molecular Imprinting for Trace Heavy Metal and Micropollutant Detection. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10080296] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Molecular recognition has been described as the “ultimate” form of sensing and plays a fundamental role in biological processes. There is a move towards biomimetic recognition elements to overcome inherent problems of natural receptors such as limited stability, high-cost, and variation in response. In recent years, several alternatives have emerged which have found their first commercial applications. In this review, we focus on molecularly imprinted polymers (MIPs) since they present an attractive alternative due to recent breakthroughs in polymer science and nanotechnology. For example, innovative solid-phase synthesis methods can produce MIPs with sometimes greater affinities than natural receptors. Although industry and environmental agencies require sensors for continuous monitoring, the regulatory barrier for employing MIP-based sensors is still low for environmental applications. Despite this, there are currently no sensors in this area, which is likely due to low profitability and the need for new legislation to promote the development of MIP-based sensors for pollutant and heavy metal monitoring. The increased demand for point-of-use devices and home testing kits is driving an exponential growth in biosensor production, leading to an expected market value of over GPB 25 billion by 2023. A key requirement of point-of-use devices is portability, since the test must be conducted at “the time and place” to pinpoint sources of contamination in food and/or water samples. Therefore, this review will focus on MIP-based sensors for monitoring pollutants and heavy metals by critically evaluating relevant literature sources from 1993 to 2022.
Collapse
|
9
|
Wang YQ, Wu PC, Lee MJ, Lee W. Photocontrolled capacitive biosensor based on photoresponsive azobenzene-doped liquid crystals for label-free protein assay. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Nasori N, Farahdina U, Zulfa VZ, Firdhaus M, Aziz I, Darsono D, Cao D, Wang Z, Endarko E, Rubiyanto A. A Comparison between Silver Nanosquare Arrays and Silver Thin-Films as a Blood Cancer Prognosis Monitoring Electrode Design Using Optical and Electrochemical Characterization. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3108. [PMID: 34835873 PMCID: PMC8625830 DOI: 10.3390/nano11113108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022]
Abstract
The development of silver (Ag) thin films and the fabrication of Ag nanosquare arrays with the use of an anodic aluminum oxide (AAO) template and leaf extracts were successfully carried out using the DC sputtering and spin coating deposition methods. Ag thin films and Ag nanosquare arrays are developed to monitor cancer prognosis due to the correlation between serum albumin levels and prognostic factors, as well as the binding of serum albumin to the surface of these electrodes. Nanosquare structures were fabricated using AAO templates with varying diameters and a gap distance between adjacent unit cells of 100 nm. The nanosquare array with a diameter of 250 nm and irradiated with electromagnetic waves with a wavelength of around 800 nm possessed the greatest electric field distribution compared to the other variations of diameters and wavelengths. The results of the absorption measurement and simulation showed a greater shift in absorption peak wavelength when carried out using the Ag nanosquare array. The absorption peak wavelengths of the Ag nanosquare array in normal blood and blood with cancer lymphocytes were 700-774 nm and 800-850 nm, respectively. The electrochemical test showed that the sensitivity values of the Ag thin-film electrode deposited using DC sputtering, the Ag thin-film electrode deposited using spin coating, and the Ag nanosquare array in detecting PBS+BSA concentration in the cyclic voltammetry (CV) experiment were 1.308 µA mM-1cm-2, 0.022 µA mM-1cm-2, and 39.917 µA mM-1cm-2, respectively. Meanwhile, the sensitivity values of the Ag thin film and the Ag nanosquare array in detecting the PBS+BSA concentration in the electrochemical impedance spectroscopy (EIS) measurement were 6593.76 Ohm·cm2/mM and 69,000 Ohm·cm2/mM, respectively. Thus, our analysis of the optical and electrochemical characteristics of Ag thin films and Ag nanosquare arrays showed that both can be used as an alternative biomedical technology to monitor the prognosis of blood cancer based on the concentration of serum albumin in blood.
Collapse
Affiliation(s)
- Nasori Nasori
- Laboratory Medical Physics and Biophysics, Department of Physics, Faculty of Sciences and Data Analytic, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia; (U.F.); (V.Z.Z.); (M.F.); (E.E.); (A.R.)
- Occupational and Safety Department, Nahdlatul Ulama University of Surabaya, Surabaya 60237, Indonesia
| | - Ulya Farahdina
- Laboratory Medical Physics and Biophysics, Department of Physics, Faculty of Sciences and Data Analytic, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia; (U.F.); (V.Z.Z.); (M.F.); (E.E.); (A.R.)
| | - Vinda Zakiyatuz Zulfa
- Laboratory Medical Physics and Biophysics, Department of Physics, Faculty of Sciences and Data Analytic, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia; (U.F.); (V.Z.Z.); (M.F.); (E.E.); (A.R.)
| | - Miftakhul Firdhaus
- Laboratory Medical Physics and Biophysics, Department of Physics, Faculty of Sciences and Data Analytic, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia; (U.F.); (V.Z.Z.); (M.F.); (E.E.); (A.R.)
| | - Ihwanul Aziz
- Center for Accelerator Sciences and Technology, Yogykarta 60101, Indonesia; (I.A.); (D.D.)
| | - Darsono Darsono
- Center for Accelerator Sciences and Technology, Yogykarta 60101, Indonesia; (I.A.); (D.D.)
| | - Dawei Cao
- Department of Physics, Faculty of Sciences, University of Jiangsu, Zhenjiang 212013, China;
| | - Zhijie Wang
- Semiconductor Materials Science Key Laboratory, Semiconductors Institute, Chinese Sciences Academy, Beijing 100083, China;
| | - Endarko Endarko
- Laboratory Medical Physics and Biophysics, Department of Physics, Faculty of Sciences and Data Analytic, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia; (U.F.); (V.Z.Z.); (M.F.); (E.E.); (A.R.)
| | - Agus Rubiyanto
- Laboratory Medical Physics and Biophysics, Department of Physics, Faculty of Sciences and Data Analytic, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia; (U.F.); (V.Z.Z.); (M.F.); (E.E.); (A.R.)
| |
Collapse
|
11
|
Mostafa AM, Barton SJ, Wren SP, Barker J. Review on molecularly imprinted polymers with a focus on their application to the analysis of protein biomarkers. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Idil N, Bakhshpour M, Perçin I, Mattiasson B. Whole Cell Recognition of Staphylococcus aureus Using Biomimetic SPR Sensors. BIOSENSORS 2021; 11:140. [PMID: 33947112 PMCID: PMC8145927 DOI: 10.3390/bios11050140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 01/09/2023]
Abstract
Over the past few decades, a significant increase in multi-drug-resistant pathogenic microorganisms has been of great concern and directed the research subject to the challenges that the distribution of resistance genes represent. Globally, high levels of multi-drug resistance represent a significant health threat and there is a growing requirement of rapid, accurate, real-time detection which plays a key role in tracking of measures for the infections caused by these bacterial strains. It is also important to reduce transfer of resistance genes to new organisms. The, World Health Organization has informed that millions of deaths have been reported each year recently. To detect the resistant organisms traditional detection approaches face limitations, therefore, newly developed technologies are needed that are suitable to be used in large-scale applications. In the present study, the aim was to design a surface plasmon resonance (SPR) sensor with micro-contact imprinted sensor chips for the detection of Staphylococcus aureus. Whole cell imprinting was performed by N-methacryloyl-L-histidine methyl ester (MAH) under UV polymerization. Sensing experiments were done within a concentration range of 1.0 × 102-2.0 × 105 CFU/mL. The recognition of S. aureus was accomplished by the involvement of microcontact imprinting and optical sensor technology with a detection limit of 1.5 × 103 CFU/mL. Selectivity of the generated sensor was evaluated through injections of competing bacterial strains. The responses for the different strains were compared to that of S. aureus. Besides, real experiments were performed with milk samples spiked with S. aureus and it was demonstrated that the prepared sensor platform was applicable for real samples.
Collapse
Affiliation(s)
- Neslihan Idil
- Department of Biology, Hacettepe University, 06800 Ankara, Turkey; (N.I.); (I.P.)
| | | | - Işık Perçin
- Department of Biology, Hacettepe University, 06800 Ankara, Turkey; (N.I.); (I.P.)
| | - Bo Mattiasson
- Division of Biotechnology, Lund University, 22100 Lund, Sweden
- Indienz AB, Annebergs Gård, 26873 Billeberga, Sweden
| |
Collapse
|
13
|
Ding Q, Guo Z, Chen W, Yu H, Zhu X, Liu Q, Fu M. Biomass activated carbon-derived imprinted polymer with multi-boronic acid sites for selective capture of glycoprotein. J Colloid Interface Sci 2021; 596:225-232. [PMID: 33848742 DOI: 10.1016/j.jcis.2021.03.151] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/14/2021] [Accepted: 03/26/2021] [Indexed: 12/19/2022]
Abstract
Glycoproteins play crucial roles in many biological events such as protein folding, information transmission, nerve conduction, and molecular recognition. Some glycoproteins serve as disease biomarkers in clinical settings. However, selective detection of glycoprotein often faces great challenges, owing to its low abundance in complex biological samples. In this case, develop a highly sensitive and selective approach for glycoprotein detection is urgently needed. Molecularly imprinted polymers (MIPs) have proved to be an ideal absorbent material in detection and separation science. Herein, a novel biomass activated carbon-derived imprinted polymer (BAC@PEI/PBA/MIPs) was fabricated for selective recognition of glycoprotein. The as-prepared BAC@PEI/PBA/MIPs was synthesized using waste tea derived carbon as matrix, albumin chicken egg (OVA) as template, and dopamine as functional monomer. Branched polyethyleneimine (PEI) was covalently bonded on the BAC surface to increase the number of boronic acid moieties. Benefiting from the self-polymerization of dopamine and multi-boronic acid sites, a great number of recognition sites were presented under mild conditions. The static adsorption experiment showed that the BAC@PEI/PBA/MIPs exhibited a high binding capacity of 196.2 mg/g, rapid adsorption dynamics of 40 min, excellent selectivity and satisfactory reusability for OVA. Furthermore, the practicability of BAC@PEI/PBA/MIPs was verified by isolation of OVA from egg white. The good binding performance and facile preparation process make BAC@PEI/PBA/MIPs attractive for glycoprotein recognition, indicating its potential applications in biomedical research and clinical diagnostics.
Collapse
Affiliation(s)
- Qian Ding
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Zhiyang Guo
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Wei Chen
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.
| | - Hao Yu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Xixi Zhu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Qingyun Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.
| | - Min Fu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.
| |
Collapse
|
14
|
Battaglia F, Baldoneschi V, Meucci V, Intorre L, Minunni M, Scarano S. Detection of canine and equine procalcitonin for sepsis diagnosis in veterinary clinic by the development of novel MIP-based SPR biosensors. Talanta 2021; 230:122347. [PMID: 33934796 DOI: 10.1016/j.talanta.2021.122347] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 01/10/2023]
Abstract
Procalcitonin (PCT) has emerged as a promising biomarker for the rapid identification of sepsis both in human and veterinary medicine. Nevertheless, the only analytical method currently available for the detection of PCT in veterinary species, is represented by immunoassays, useful only for research purposes. In this work, we report the development of two biosensors which utilize molecularly imprinted polymers (MIPs) for the detection of canine and equine PCT. Dopamine (DA) and norepinephrine (NE) were used as monomers for the synthesis of the MIP films on surface plasmon resonance (SPR) gold chips and the imprinting efficiency of canine and equine PCT in terms of binding affinity toward the analyte, selectivity, and sensitivity were compared. After optimization in buffer conditions, PCTs calibration was successfully achieved also in animal plasma, with good specificity and reproducibility. More effective protein binding and imprinting was obtained with polynorepinephrine (PNE) for both PCTs, and the SPR biosensors were able to detect the biomarkers in plasma with a LOD of 15 ng mL-1 and 30 ng mL-1 respectively for equine and canine PCT.
Collapse
Affiliation(s)
- F Battaglia
- Department of Veterinary Science, University of Pisa, 56122, Via Livornese, (PI), Italy
| | - V Baldoneschi
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, (FI), Italy
| | - V Meucci
- Department of Veterinary Science, University of Pisa, 56122, Via Livornese, (PI), Italy.
| | - L Intorre
- Department of Veterinary Science, University of Pisa, 56122, Via Livornese, (PI), Italy
| | - M Minunni
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, (FI), Italy
| | - S Scarano
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, (FI), Italy.
| |
Collapse
|
15
|
Güney S, Arslan T, Yanık S, Güney O. An Electrochemical Sensing Platform Based on Graphene Oxide and Molecularly Imprinted Polymer Modified Electrode for Selective Detection of Amoxicillin. ELECTROANAL 2020. [DOI: 10.1002/elan.202060129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sevgi Güney
- Department of Chemistry Istanbul Technical University 34469, Maslak Istanbul Turkey
| | - Taner Arslan
- Department of Chemistry Istanbul Technical University 34469, Maslak Istanbul Turkey
| | - Serhat Yanık
- Department of Metallurgical and Materials Engineering Marmara University, Kadıkoy Istanbul 34722 Turkey
| | - Orhan Güney
- Department of Chemistry Istanbul Technical University 34469, Maslak Istanbul Turkey
| |
Collapse
|
16
|
Construction of eco-biosensor and its potential application for highly selective, sensitive and fast detection of viscumin. Anal Chim Acta 2020; 1107:213-224. [DOI: 10.1016/j.aca.2020.02.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 11/23/2022]
|
17
|
Latest developments in the detection and separation of bovine serum albumin using molecularly imprinted polymers. Talanta 2020; 207:120317. [DOI: 10.1016/j.talanta.2019.120317] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 12/14/2022]
|
18
|
Güney S. Electrochemical synthesis of molecularly imprinted poly(p-aminobenzene sulphonic acid) on carbon nanodots coated pencil graphite electrode for selective determination of folic acid. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113518] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
19
|
Bergdahl GE, Hedström M, Mattiasson B. Capacitive Saccharide Sensor Based on Immobilized Phenylboronic Acid with Diol Specificity. Appl Biochem Biotechnol 2019; 188:124-137. [PMID: 30370445 PMCID: PMC6509085 DOI: 10.1007/s12010-018-2911-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 10/19/2018] [Indexed: 01/12/2023]
Abstract
A capacitive sensor for saccharide detection is described in this study. The detection is based on selective interaction between diols and aminophenylboronic acid (APBA) immobilized on a gold electrode. Glucose, fructose, and dextran (MW: 40 kDa) were tested with the system over wide concentration ranges (1.0 x 10-8 M - 1.0 x 10-3 M for glucose, 1.0 x 10-8 M - 1.0 x 10-2 M for fructose and 1.0 x 10-10 M - 1.0 x 10-5 M for dextran). The limits of detection (LODs) were 0.8 nM for glucose, 0.6 nM for fructose, and 13 pM for dextran. These data were comparable to the others reported previously. In order to demonstrate glycoprotein detection with the same sensor, human immunoglobulin G (IgG) as well as horseradish peroxidase were used as model analytes. The sensor responded to IgG in the concentration range of 1.0 x 10-13 M - 1.0 x 10-7 M with a LOD value of 16 fM. The performance of the assay of peroxidase was compared to a spectrophotometric assay by determining the enzymatic activity of a captured analyte. The results showed that the method might be useful for label-free, fast, and sensitive detection of saccharides as well as glycoproteins over a wide concentration range.
Collapse
Affiliation(s)
- Gizem Ertürk Bergdahl
- CapSenze Biosystems AB, Scheelevägen 22, 22363 Lund, Sweden
- Department of Biotechnology, Kemicentum, Lund University, Sölvegatan 39A, 22100 Lund, Sweden
- Department of Clinical Sciences, Lund University, Tornavägen 10, 22184 Lund, Sweden
| | - Martin Hedström
- CapSenze Biosystems AB, Scheelevägen 22, 22363 Lund, Sweden
- Department of Biotechnology, Kemicentum, Lund University, Sölvegatan 39A, 22100 Lund, Sweden
| | - Bo Mattiasson
- CapSenze Biosystems AB, Scheelevägen 22, 22363 Lund, Sweden
- Department of Biotechnology, Kemicentum, Lund University, Sölvegatan 39A, 22100 Lund, Sweden
| |
Collapse
|
20
|
Preparation and specific recognition of protein macromolecularly imprinted polyampholyte hydrogel. Talanta 2019; 192:14-23. [DOI: 10.1016/j.talanta.2018.08.084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 07/28/2018] [Accepted: 08/30/2018] [Indexed: 10/28/2022]
|
21
|
Ertürk G, Akhoundian M, Lueg-Althoff K, Shinde S, Yeung SY, Hedström M, Schrader T, Mattiasson B, Sellergren B. Bisphosphonate ligand mediated ultrasensitive capacitive protein sensor: complementary match of supramolecular and dynamic chemistry. NEW J CHEM 2019. [DOI: 10.1039/c8nj05238g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A powerful polymeric protein sensor was constructed by microcontact imprinting taking advantage of the specific interaction between a bisphosphonate binding monomer and lysine/arginine residues on the surface of trypsin.
Collapse
Affiliation(s)
- Gizem Ertürk
- Department of Biomedical Sciences
- Faculty of Health and Society
- Malmö University
- SE-20506 Malmö
- Sweden
| | - Maedeh Akhoundian
- Department of Biomedical Sciences
- Faculty of Health and Society
- Malmö University
- SE-20506 Malmö
- Sweden
| | | | - Sudhirkumar Shinde
- Department of Biomedical Sciences
- Faculty of Health and Society
- Malmö University
- SE-20506 Malmö
- Sweden
| | - Sing Yee Yeung
- Department of Biomedical Sciences
- Faculty of Health and Society
- Malmö University
- SE-20506 Malmö
- Sweden
| | - Martin Hedström
- CapSenze Biosystems AB
- Lund
- Sweden
- Department of Biotechnology
- Lund University
| | - Thomas Schrader
- Department of Chemistry
- University of Duisburg-Essen
- Essen
- Germany
| | - Bo Mattiasson
- CapSenze Biosystems AB
- Lund
- Sweden
- Department of Biotechnology
- Lund University
| | - Börje Sellergren
- Department of Biomedical Sciences
- Faculty of Health and Society
- Malmö University
- SE-20506 Malmö
- Sweden
| |
Collapse
|
22
|
Bioimprinting for multiplex luminescent detection of deoxynivalenol and zearalenone. Talanta 2019; 192:169-174. [DOI: 10.1016/j.talanta.2018.09.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/08/2018] [Accepted: 09/11/2018] [Indexed: 12/30/2022]
|
23
|
Lahcen AA, Amine A. Recent Advances in Electrochemical Sensors Based on Molecularly Imprinted Polymers and Nanomaterials. ELECTROANAL 2018. [DOI: 10.1002/elan.201800623] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Abdellatif Ait Lahcen
- Chemical Analysis & Biosensors Group; Laboratory of Process Engineering & Environment; Faculty of Science and Techniques; Hassan II University of Casablanca B.P. 146.; Mohammedia Morocco
| | - Aziz Amine
- Chemical Analysis & Biosensors Group; Laboratory of Process Engineering & Environment; Faculty of Science and Techniques; Hassan II University of Casablanca B.P. 146.; Mohammedia Morocco
| |
Collapse
|
24
|
Pidenko P, Zhang H, Lenain P, Goryacheva I, De Saeger S, Beloglazova N. Imprinted proteins as a receptor for detection of zearalenone. Anal Chim Acta 2018; 1040:99-104. [DOI: 10.1016/j.aca.2018.07.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/22/2018] [Accepted: 07/26/2018] [Indexed: 02/02/2023]
|
25
|
A novel capacitive sensor based on molecularly imprinted nanoparticles as recognition elements. Biosens Bioelectron 2018; 120:108-114. [DOI: 10.1016/j.bios.2018.07.070] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 01/05/2023]
|
26
|
Dabrowski M, Lach P, Cieplak M, Kutner W. Nanostructured molecularly imprinted polymers for protein chemosensing. Biosens Bioelectron 2018; 102:17-26. [DOI: 10.1016/j.bios.2017.10.045] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/04/2017] [Accepted: 10/21/2017] [Indexed: 02/08/2023]
|
27
|
Ertürk G, Hedström M, Mattiasson B, Ruzgas T, Lood R. Highly sensitive detection and quantification of the secreted bacterial benevolence factor RoxP using a capacitive biosensor: A possible early detection system for oxidative skin diseases. PLoS One 2018; 13:e0193754. [PMID: 29494704 PMCID: PMC5833275 DOI: 10.1371/journal.pone.0193754] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/16/2018] [Indexed: 01/20/2023] Open
Abstract
The impact of the microbiota on our health is rapidly gaining interest. While several bacteria have been associated with disease, and others being indicated as having a probiotic effect, the individual biomolecules behind these alterations are often not known. A major problem in the study of these factors in vivo is their low abundance in complex environments. We recently identified the first secreted bacterial antioxidant protein, RoxP, from the skin commensal Propionibacterium acnes, suggesting its relevance for maintaining the redox homeostasis on the skin. In order to study the effect, and prevalence, of RoxP in vivo, a capacitive biosensor with a recognition surface based on molecular imprinting was used to detect RoxP on skin in vivo. In vitro analyses demonstrated the ability to detect and quantify RoxP in a concentration range of 1 x 10−13 M to 1 x 10−8 M from human skin swabs; with a limit of detection of 2.5 x 10−19 M in buffer systems. Further, the biosensor was highly selective, not responding to any other secreted protein from P. acnes. Thus, it was possible to demonstrate the presence, and quantity, of RoxP on human skin. Therefore, the developed biosensor is a very promising tool for the detection of RoxP from clinical samples, offering a rapid, cost-effective and sensitive means of detecting low-abundant bacterial proteins in vivo in complex milieus.
Collapse
Affiliation(s)
- Gizem Ertürk
- Department of Clinical Sciences Lund, Division of Infection Medicine, Biomedical Center B14, Lund University, Lund, Sweden
| | - Martin Hedström
- Department of Biotechnology, Lund University, Lund, Sweden
- CapSenze Biosystems AB, Lund, Sweden
| | - Bo Mattiasson
- Department of Biotechnology, Lund University, Lund, Sweden
- CapSenze Biosystems AB, Lund, Sweden
| | - Tautgirdas Ruzgas
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, Malmö, Sweden
| | - Rolf Lood
- Department of Clinical Sciences Lund, Division of Infection Medicine, Biomedical Center B14, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
28
|
Ertürk G, Lood R. Ultrasensitive Detection of Biomarkers by Using a Molecular Imprinting Based Capacitive Biosensor. J Vis Exp 2018. [PMID: 29553527 PMCID: PMC5931318 DOI: 10.3791/57208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The ability to detect and quantitate biomolecules in complex solutions has always been highly sought-after within natural science; being used for the detection of biomarkers, contaminants, and other molecules of interest. A commonly used technique for this purpose is the Enzyme-linked Immunosorbent Assay (ELISA), where often one antibody is directed towards a specific target molecule, and a second labeled antibody is used for the detection of the primary antibody, allowing for the absolute quantification of the biomolecule under study. However, the usage of antibodies as recognition elements limits the robustness of the method; as does the need of using labeled molecules. To overcome these limitations, molecular imprinting has been implemented, creating artificial recognition sites complementary to the template molecule, and obsoleting the necessity of using antibodies for initial binding. Further, for even higher sensitivity, the secondary labeled antibody can be replaced by biosensors relying on the capacitance for the quantification of the target molecule. In this protocol, we describe a method to rapidly and label-free detect and quantitate low-abundant biomolecules (proteins and viruses) in complex samples, with a sensitivity that is significantly better than commonly used detection systems such as the ELISA. This is all mediated by molecular imprinting in combination with a capacitance biosensor.
Collapse
Affiliation(s)
- Gizem Ertürk
- Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University
| | - Rolf Lood
- Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University;
| |
Collapse
|
29
|
Sharma PS, Iskierko Z, Noworyta K, Cieplak M, Borowicz P, Lisowski W, D'Souza F, Kutner W. Synthesis and application of a “plastic antibody” in electrochemical microfluidic platform for oxytocin determination. Biosens Bioelectron 2018; 100:251-258. [DOI: 10.1016/j.bios.2017.09.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/13/2017] [Accepted: 09/07/2017] [Indexed: 12/30/2022]
|
30
|
Frasco MF, Truta LAANA, Sales MGF, Moreira FTC. Imprinting Technology in Electrochemical Biomimetic Sensors. SENSORS (BASEL, SWITZERLAND) 2017; 17:E523. [PMID: 28272314 PMCID: PMC5375809 DOI: 10.3390/s17030523] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/21/2017] [Accepted: 03/03/2017] [Indexed: 12/14/2022]
Abstract
Biosensors are a promising tool offering the possibility of low cost and fast analytical screening in point-of-care diagnostics and for on-site detection in the field. Most biosensors in routine use ensure their selectivity/specificity by including natural receptors as biorecognition element. These materials are however too expensive and hard to obtain for every biochemical molecule of interest in environmental and clinical practice. Molecularly imprinted polymers have emerged through time as an alternative to natural antibodies in biosensors. In theory, these materials are stable and robust, presenting much higher capacity to resist to harsher conditions of pH, temperature, pressure or organic solvents. In addition, these synthetic materials are much cheaper than their natural counterparts while offering equivalent affinity and sensitivity in the molecular recognition of the target analyte. Imprinting technology and biosensors have met quite recently, relying mostly on electrochemical detection and enabling a direct reading of different analytes, while promoting significant advances in various fields of use. Thus, this review encompasses such developments and describes a general overview for building promising biomimetic materials as biorecognition elements in electrochemical sensors. It includes different molecular imprinting strategies such as the choice of polymer material, imprinting methodology and assembly on the transduction platform. Their interface with the most recent nanostructured supports acting as standard conductive materials within electrochemical biomimetic sensors is pointed out.
Collapse
Affiliation(s)
- Manuela F Frasco
- BioMark-CINTESIS/ISEP, School of Engineering, Polytechnic Institute of Porto, 4200-072 Porto, Portugal.
| | - Liliana A A N A Truta
- BioMark-CINTESIS/ISEP, School of Engineering, Polytechnic Institute of Porto, 4200-072 Porto, Portugal.
| | - M Goreti F Sales
- BioMark-CINTESIS/ISEP, School of Engineering, Polytechnic Institute of Porto, 4200-072 Porto, Portugal.
| | - Felismina T C Moreira
- BioMark-CINTESIS/ISEP, School of Engineering, Polytechnic Institute of Porto, 4200-072 Porto, Portugal.
| |
Collapse
|
31
|
Capacitive Biosensors and Molecularly Imprinted Electrodes. SENSORS 2017; 17:s17020390. [PMID: 28218689 PMCID: PMC5336051 DOI: 10.3390/s17020390] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/16/2017] [Accepted: 02/08/2017] [Indexed: 01/05/2023]
Abstract
Capacitive biosensors belong to the group of affinity biosensors that operate by registering direct binding between the sensor surface and the target molecule. This type of biosensors measures the changes in dielectric properties and/or thickness of the dielectric layer at the electrolyte/electrode interface. Capacitive biosensors have so far been successfully used for detection of proteins, nucleotides, heavy metals, saccharides, small organic molecules and microbial cells. In recent years, the microcontact imprinting method has been used to create very sensitive and selective biorecognition cavities on surfaces of capacitive electrodes. This chapter summarizes the principle and different applications of capacitive biosensors with an emphasis on microcontact imprinting method with its recent capacitive biosensor applications.
Collapse
|
32
|
Ertürk G, Mattiasson B. Molecular Imprinting Techniques Used for the Preparation of Biosensors. SENSORS 2017; 17:s17020288. [PMID: 28165419 PMCID: PMC5335940 DOI: 10.3390/s17020288] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/10/2017] [Accepted: 01/28/2017] [Indexed: 01/13/2023]
Abstract
Molecular imprinting is the technology of creating artificial recognition sites in polymeric matrices which are complementary to the template in their size, shape and spatial arrangement of the functional groups. Molecularly imprinted polymers (MIPs) and their incorporation with various transducer platforms are among the most promising approaches for detection of several analytes. There are a variety of molecular imprinting techniques used for the preparation of biomimetic sensors including bulk imprinting, surface imprinting (soft lithography, template immobilization, grafting, emulsion polymerization) and epitope imprinting. This chapter presents an overview of all of these techniques with examples from particular publications.
Collapse
Affiliation(s)
| | - Bo Mattiasson
- CapSenze Biosystems AB, Lund SE-22363, Sweden.
- Department of Biotechnology, Lund University, Lund SE-22369, Sweden.
| |
Collapse
|
33
|
Mattiasson B, Ertürk G. Why Using Molecularly Imprinted Polymers in Connection to Biosensors? SENSORS 2017; 17:s17020246. [PMID: 28134817 PMCID: PMC5336002 DOI: 10.3390/s17020246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/19/2017] [Indexed: 01/15/2023]
Affiliation(s)
- Bo Mattiasson
- CapSenze Biosystems AB, Scheelevägen 22, 22363 Lund, Sweden.
- Department of Biotechnology, Lund University, Box 117, 221 00 Lund, Sweden.
| | - Gizem Ertürk
- CapSenze Biosystems AB, Scheelevägen 22, 22363 Lund, Sweden.
- Department of Biotechnology, Lund University, Box 117, 221 00 Lund, Sweden.
| |
Collapse
|
34
|
Ertürk G, Hedström M, Mattiasson B. A sensitive and real-time assay of trypsin by using molecular imprinting-based capacitive biosensor. Biosens Bioelectron 2016; 86:557-565. [DOI: 10.1016/j.bios.2016.07.046] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 12/17/2022]
|
35
|
Kukkar M, Sharma A, Kumar P, Kim KH, Deep A. Application of MoS 2 modified screen-printed electrodes for highly sensitive detection of bovine serum albumin. Anal Chim Acta 2016; 939:101-107. [DOI: 10.1016/j.aca.2016.08.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/12/2016] [Accepted: 08/04/2016] [Indexed: 12/14/2022]
|
36
|
Whole cell based microcontact imprinted capacitive biosensor for the detection of Escherichia coli. Biosens Bioelectron 2016; 87:807-815. [PMID: 27657842 DOI: 10.1016/j.bios.2016.08.096] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/26/2016] [Accepted: 08/28/2016] [Indexed: 01/30/2023]
Abstract
In this study, a label-free, selective and sensitive microcontact imprinted capacitive biosensor was developed for the detection of Escherichia coli. The recognition of E. coli was successfully performed by this sensor prepared with the combination of microcontact imprinting method and capacitive biosensor technology. After preparation of bacterial stamps, microcontact-E. coli imprinted gold electrodes were generated using an amino acid based recognition element, N-methacryloyl-L-histidine methylester (MAH), 2-Hydroxyethyl methacrylate (HEMA) as monomers and ethyleneglycol dimethacrylate (EGDMA) as crosslinker under UV-polymerization. Real-time E. coli detection experiments were carried out within the range of 1.0×102-1.0×107CFU/mL. The unique combination of these two techniques provides selective detection with a detection limit of 70CFU/mL. The designed capacitive sensor has high selectivity and was able to distinguish E. coli when present together with competing bacterial strains which are known to have similar shape. In addition, the prepared sensor has the ability to detect E. coli with a recovery of 81-97% in e.g. river water.
Collapse
|
37
|
Sakamoto M, Shoji A, Sugawara M. Giant unilamellar vesicles containing Rhodamine 6G as a marker for immunoassay of bovine serum albumin and lipocalin-2. Anal Biochem 2016; 505:66-72. [DOI: 10.1016/j.ab.2016.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/08/2016] [Accepted: 04/18/2016] [Indexed: 10/21/2022]
|
38
|
Gutierrez R AV, Hedström M, Mattiasson B. Bioimprinting as a tool for the detection of aflatoxin B1 using a capacitive biosensor. ACTA ACUST UNITED AC 2016; 11:12-17. [PMID: 28352535 PMCID: PMC5042299 DOI: 10.1016/j.btre.2016.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/13/2016] [Accepted: 05/13/2016] [Indexed: 11/28/2022]
Abstract
Bioimprinting of proteins is used for production of selective binding sites for aflatoxin. An inert protein, ovalbumin was used for the bioimpriting. When stabilizing the imprinted molecule by internal cross-linking, it was possible to use the same imprint more than 25 times. A limit of detection of 6 × 10−12 M was observed.
A strategy for the detection of aflatoxin B1 using a capacitive biosensor has been studied. The use of proteins for the generation of sites with high specificity against aflatoxin B1 are produced via bioimprinting. This technique has become a tool for the detection of aflatoxin B1 using a capacitive biosensor. The results demonstrate the ability to generate specific interactions with aflatoxin B1 with a linear relation between signals registered and log concentration of the target aflatoxin in the concentration range of 3.2 × 10−6 to 3.2 × 10−9 M when using ovalbumin as framework for the bioimprinting.
Collapse
Affiliation(s)
- Alvaro V Gutierrez R
- Division of Biotechnology, Lund University, Lund, Sweden; IIFB, FCFB, Universidad Mayor de San Andres, La Paz, Bolivia
| | - Martin Hedström
- Division of Biotechnology, Lund University, Lund, Sweden; CapSenze Biosystems AB, Scheelevägen 22, Lund, Sweden
| | - Bo Mattiasson
- Division of Biotechnology, Lund University, Lund, Sweden; CapSenze Biosystems AB, Scheelevägen 22, Lund, Sweden
| |
Collapse
|
39
|
|
40
|
Poly ionic liquid cryogel of polyethyleneimine: Synthesis, characterization, and testing in absorption studies. J Appl Polym Sci 2016. [DOI: 10.1002/app.43478] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
41
|
Ertürk G, Mattiasson B. From imprinting to microcontact imprinting-A new tool to increase selectivity in analytical devices. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1021:30-44. [PMID: 26739371 DOI: 10.1016/j.jchromb.2015.12.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/14/2015] [Indexed: 12/18/2022]
Abstract
Molecular imprinting technology has been successfully applied to small molecular templates but a slow progress has been made in macromolecular imprinting owing to the challenges in natural properties of macromolecules, especially proteins. In this review, the macromolecular imprinting approaches are discussed with examples from recent publications. A new molecular imprinting strategy, microcontact imprinting is highlighted with its recent applications.
Collapse
Affiliation(s)
- Gizem Ertürk
- Hacettepe University, Department of Biology, Ankara, Turkey
| | - Bo Mattiasson
- Department of Biotechnology, Lund University, Lund, Sweden; CapSenze HB, Medicon Village, Lund, Sweden.
| |
Collapse
|
42
|
Ertürk G, Hedström M, Tümer MA, Denizli A, Mattiasson B. Real-time prostate-specific antigen detection with prostate-specific antigen imprinted capacitive biosensors. Anal Chim Acta 2015; 891:120-9. [DOI: 10.1016/j.aca.2015.07.055] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 07/19/2015] [Accepted: 07/24/2015] [Indexed: 12/18/2022]
|
43
|
MIPs as Tools in Environmental Biotechnology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 150:183-205. [DOI: 10.1007/10_2015_311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
44
|
Sharma PS, Iskierko Z, Pietrzyk-Le A, D'Souza F, Kutner W. Bioinspired intelligent molecularly imprinted polymers for chemosensing: A mini review. Electrochem commun 2015. [DOI: 10.1016/j.elecom.2014.11.019] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|