3
|
Winkler E, Wu D, Gil E, McCoy D, Narsinh K, Sun Z, Mueller K, Ross J, Kim H, Weinsheimer S, Berger M, Nowakowski T, Lim D, Abla A, Cooke D. Endoluminal Biopsy for Molecular Profiling of Human Brain Vascular Malformations. Neurology 2022; 98:e1637-e1647. [PMID: 35145012 PMCID: PMC9052570 DOI: 10.1212/wnl.0000000000200109] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 01/11/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Ras-mitogen-activated protein kinase (MAPK) signaling abnormalities occur in most brain arteriovenous malformations (bAVMs). No means exist to molecularly profile bAVMs without open surgery, limiting precision medicine approaches to treatment. Here, we report use of endoluminal biopsy of the vessel lumen of bAVMs to characterize gene expression and blood flow-mediated transcriptional changes in living patients. METHODS Endoluminal biopsy and computational fluid dynamic modeling (CFD) were performed in adults with unruptured AVMs with cerebral angiography. Each patient underwent surgical resection and cell sampling from a contiguous arterial segment. Fluorescence-assisted cell sorting enriched endothelial cells, which were sequenced on an Illumina HiSeq 4000 sequencer. Gene expression was quantified with RNA sequencing (RNAseq). Differential gene expression, ontology, and correlative analyses were performed. Results were validated with quantitative reverse transcription PCR (RT-qPCR). RESULTS Endoluminal biopsy was successful in 4 patients without complication. Endoluminal biopsy yielded 269.0 ± 79.9 cells per biopsy (control 309.2 ± 86.6 cells, bAVM 228.8 ± 133.4 cells). RNAseq identified 106 differentially expressed genes (DEGs) in bAVMs (false discovery rate ≤0.05). DEGs were enriched for bAVM pathogenic cascades, including Ras-MAPK signaling (p < 0.05), and confirmed with RT-qPCR and a panel predictive of MAPK/extracellular signal-regulated kinase inhibitor response. Compared to patient-matched surgically excised tissues, endoluminal biopsy detected 83.3% of genes, and genome-wide expression strongly correlated (Pearson r = 0.77). Wall shear stress measured by CFD correlated with inflammatory pathway upregulation. Comparison of pre-embolization and postembolization samples confirmed flow-mediated gene expression changes. DISCUSSION Endoluminal biopsy allows molecular profiling of bAVMs in living patients. Gene expression profiles are similar to those of tissues acquired with open surgery and identify potentially targetable Ras-MAPK signaling abnormalities in bAVMs. Integration with CFD allows determination of flow-mediated transcriptomic alterations. Endoluminal biopsy may help facilitate trials of precision medicine approaches to bAVMs in humans.
Collapse
Affiliation(s)
- Ethan Winkler
- From the Department of Neurological Surgery (E.W., D.W., E.G., J.R., M.B., D.L., A.A.), Department of Radiology and Biomedical Imaging (D.M., K.N., Z.S., D.C.), Center for Cerebrovascular Research (H.K., S.W.), Department of Psychiatry (T.N.), Department of Behavioral Sciences (T.N.), and Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research (T.N., D.L.), University of California San Francisco; Siemens Medical Solutions Inc (K.M.), Malvern, PA; and Department of Anatomy (J.R., T.N.), University of California San Francisco, Chan Zuckerberg Biohub
| | - David Wu
- From the Department of Neurological Surgery (E.W., D.W., E.G., J.R., M.B., D.L., A.A.), Department of Radiology and Biomedical Imaging (D.M., K.N., Z.S., D.C.), Center for Cerebrovascular Research (H.K., S.W.), Department of Psychiatry (T.N.), Department of Behavioral Sciences (T.N.), and Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research (T.N., D.L.), University of California San Francisco; Siemens Medical Solutions Inc (K.M.), Malvern, PA; and Department of Anatomy (J.R., T.N.), University of California San Francisco, Chan Zuckerberg Biohub
| | - Eugene Gil
- From the Department of Neurological Surgery (E.W., D.W., E.G., J.R., M.B., D.L., A.A.), Department of Radiology and Biomedical Imaging (D.M., K.N., Z.S., D.C.), Center for Cerebrovascular Research (H.K., S.W.), Department of Psychiatry (T.N.), Department of Behavioral Sciences (T.N.), and Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research (T.N., D.L.), University of California San Francisco; Siemens Medical Solutions Inc (K.M.), Malvern, PA; and Department of Anatomy (J.R., T.N.), University of California San Francisco, Chan Zuckerberg Biohub
| | - David McCoy
- From the Department of Neurological Surgery (E.W., D.W., E.G., J.R., M.B., D.L., A.A.), Department of Radiology and Biomedical Imaging (D.M., K.N., Z.S., D.C.), Center for Cerebrovascular Research (H.K., S.W.), Department of Psychiatry (T.N.), Department of Behavioral Sciences (T.N.), and Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research (T.N., D.L.), University of California San Francisco; Siemens Medical Solutions Inc (K.M.), Malvern, PA; and Department of Anatomy (J.R., T.N.), University of California San Francisco, Chan Zuckerberg Biohub
| | - Kazim Narsinh
- From the Department of Neurological Surgery (E.W., D.W., E.G., J.R., M.B., D.L., A.A.), Department of Radiology and Biomedical Imaging (D.M., K.N., Z.S., D.C.), Center for Cerebrovascular Research (H.K., S.W.), Department of Psychiatry (T.N.), Department of Behavioral Sciences (T.N.), and Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research (T.N., D.L.), University of California San Francisco; Siemens Medical Solutions Inc (K.M.), Malvern, PA; and Department of Anatomy (J.R., T.N.), University of California San Francisco, Chan Zuckerberg Biohub
| | - Zhengda Sun
- From the Department of Neurological Surgery (E.W., D.W., E.G., J.R., M.B., D.L., A.A.), Department of Radiology and Biomedical Imaging (D.M., K.N., Z.S., D.C.), Center for Cerebrovascular Research (H.K., S.W.), Department of Psychiatry (T.N.), Department of Behavioral Sciences (T.N.), and Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research (T.N., D.L.), University of California San Francisco; Siemens Medical Solutions Inc (K.M.), Malvern, PA; and Department of Anatomy (J.R., T.N.), University of California San Francisco, Chan Zuckerberg Biohub
| | - Kerstin Mueller
- From the Department of Neurological Surgery (E.W., D.W., E.G., J.R., M.B., D.L., A.A.), Department of Radiology and Biomedical Imaging (D.M., K.N., Z.S., D.C.), Center for Cerebrovascular Research (H.K., S.W.), Department of Psychiatry (T.N.), Department of Behavioral Sciences (T.N.), and Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research (T.N., D.L.), University of California San Francisco; Siemens Medical Solutions Inc (K.M.), Malvern, PA; and Department of Anatomy (J.R., T.N.), University of California San Francisco, Chan Zuckerberg Biohub
| | - Jayden Ross
- From the Department of Neurological Surgery (E.W., D.W., E.G., J.R., M.B., D.L., A.A.), Department of Radiology and Biomedical Imaging (D.M., K.N., Z.S., D.C.), Center for Cerebrovascular Research (H.K., S.W.), Department of Psychiatry (T.N.), Department of Behavioral Sciences (T.N.), and Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research (T.N., D.L.), University of California San Francisco; Siemens Medical Solutions Inc (K.M.), Malvern, PA; and Department of Anatomy (J.R., T.N.), University of California San Francisco, Chan Zuckerberg Biohub
| | - Helen Kim
- From the Department of Neurological Surgery (E.W., D.W., E.G., J.R., M.B., D.L., A.A.), Department of Radiology and Biomedical Imaging (D.M., K.N., Z.S., D.C.), Center for Cerebrovascular Research (H.K., S.W.), Department of Psychiatry (T.N.), Department of Behavioral Sciences (T.N.), and Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research (T.N., D.L.), University of California San Francisco; Siemens Medical Solutions Inc (K.M.), Malvern, PA; and Department of Anatomy (J.R., T.N.), University of California San Francisco, Chan Zuckerberg Biohub
| | - Shantel Weinsheimer
- From the Department of Neurological Surgery (E.W., D.W., E.G., J.R., M.B., D.L., A.A.), Department of Radiology and Biomedical Imaging (D.M., K.N., Z.S., D.C.), Center for Cerebrovascular Research (H.K., S.W.), Department of Psychiatry (T.N.), Department of Behavioral Sciences (T.N.), and Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research (T.N., D.L.), University of California San Francisco; Siemens Medical Solutions Inc (K.M.), Malvern, PA; and Department of Anatomy (J.R., T.N.), University of California San Francisco, Chan Zuckerberg Biohub
| | - Mitchel Berger
- From the Department of Neurological Surgery (E.W., D.W., E.G., J.R., M.B., D.L., A.A.), Department of Radiology and Biomedical Imaging (D.M., K.N., Z.S., D.C.), Center for Cerebrovascular Research (H.K., S.W.), Department of Psychiatry (T.N.), Department of Behavioral Sciences (T.N.), and Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research (T.N., D.L.), University of California San Francisco; Siemens Medical Solutions Inc (K.M.), Malvern, PA; and Department of Anatomy (J.R., T.N.), University of California San Francisco, Chan Zuckerberg Biohub
| | - Tomasz Nowakowski
- From the Department of Neurological Surgery (E.W., D.W., E.G., J.R., M.B., D.L., A.A.), Department of Radiology and Biomedical Imaging (D.M., K.N., Z.S., D.C.), Center for Cerebrovascular Research (H.K., S.W.), Department of Psychiatry (T.N.), Department of Behavioral Sciences (T.N.), and Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research (T.N., D.L.), University of California San Francisco; Siemens Medical Solutions Inc (K.M.), Malvern, PA; and Department of Anatomy (J.R., T.N.), University of California San Francisco, Chan Zuckerberg Biohub
| | - Daniel Lim
- From the Department of Neurological Surgery (E.W., D.W., E.G., J.R., M.B., D.L., A.A.), Department of Radiology and Biomedical Imaging (D.M., K.N., Z.S., D.C.), Center for Cerebrovascular Research (H.K., S.W.), Department of Psychiatry (T.N.), Department of Behavioral Sciences (T.N.), and Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research (T.N., D.L.), University of California San Francisco; Siemens Medical Solutions Inc (K.M.), Malvern, PA; and Department of Anatomy (J.R., T.N.), University of California San Francisco, Chan Zuckerberg Biohub
| | - Adib Abla
- From the Department of Neurological Surgery (E.W., D.W., E.G., J.R., M.B., D.L., A.A.), Department of Radiology and Biomedical Imaging (D.M., K.N., Z.S., D.C.), Center for Cerebrovascular Research (H.K., S.W.), Department of Psychiatry (T.N.), Department of Behavioral Sciences (T.N.), and Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research (T.N., D.L.), University of California San Francisco; Siemens Medical Solutions Inc (K.M.), Malvern, PA; and Department of Anatomy (J.R., T.N.), University of California San Francisco, Chan Zuckerberg Biohub
| | - Daniel Cooke
- From the Department of Neurological Surgery (E.W., D.W., E.G., J.R., M.B., D.L., A.A.), Department of Radiology and Biomedical Imaging (D.M., K.N., Z.S., D.C.), Center for Cerebrovascular Research (H.K., S.W.), Department of Psychiatry (T.N.), Department of Behavioral Sciences (T.N.), and Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research (T.N., D.L.), University of California San Francisco; Siemens Medical Solutions Inc (K.M.), Malvern, PA; and Department of Anatomy (J.R., T.N.), University of California San Francisco, Chan Zuckerberg Biohub
| |
Collapse
|
4
|
De Leacy R, Ansari SA, Schirmer CM, Cooke DL, Prestigiacomo CJ, Bulsara KR, Hetts SW. Endovascular treatment in the multimodality management of brain arteriovenous malformations: report of the Society of NeuroInterventional Surgery Standards and Guidelines Committee. J Neurointerv Surg 2022; 14:1118-1124. [PMID: 35414599 DOI: 10.1136/neurintsurg-2021-018632] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND The purpose of this review is to summarize the data available for the role of angiography and embolization in the comprehensive multidisciplinary management of brain arteriovenous malformations (AVMs METHODS: We performed a structured literature review for studies examining the indications, efficacy, and outcomes for patients undergoing endovascular therapy in the context of brain AVM management. We graded the quality of the evidence. Recommendations were arrived at through a consensus conference of the authors, then with additional input from the full Society of NeuroInterventional Surgery (SNIS) Standards and Guidelines Committee and the SNIS Board of Directors. RESULTS The multidisciplinary evaluation and treatment of brain AVMs continues to evolve. Recommendations include: (1) Digital subtraction catheter cerebral angiography (DSA)-including 2D, 3D, and reformatted cross-sectional views when appropriate-is recommended in the pre-treatment assessment of cerebral AVMs. (I, B-NR) . (2) It is recommended that endovascular embolization of cerebral arteriovenous malformations be performed in the context of a complete multidisciplinary treatment plan aiming for obliteration of the AVM and cure. (I, B-NR) . (3) Embolization of brain AVMs before surgical resection can be useful to reduce intraoperative blood loss, morbidity, and surgical complexity. (IIa, B-NR) . (4) The role of primary curative embolization of cerebral arteriovenous malformations is uncertain, particularly as compared with microsurgery and radiosurgery with or without adjunctive embolization. Further research is needed, particularly with regard to risk for AVM recurrence. (III equivocal, C-LD) . (5) Targeted embolization of high-risk features of ruptured brain AVMs may be considered to reduce the risk for recurrent hemorrhage. (IIb, C-LD) . (6) Palliative embolization may be useful to treat symptomatic AVMs in which curative therapy is otherwise not possible. (IIb, B-NR) . (7) The role of AVM embolization as an adjunct to radiosurgery is not well-established. Further research is needed. (III equivocal, C-LD) . (8) Imaging follow-up after apparent cure of brain AVMs is recommended to assess for recurrence. Although non-invasive imaging may be used for longitudinal follow-up, DSA remains the gold standard for residual or recurrent AVM detection in patients with concerning imaging and/or clinical findings. (I, C-LD) . (9) Improved national and international reporting of patients of all ages with brain AVMs, their treatments, side effects from treatment, and their long-term outcomes would enhance the ability to perform clinical trials and improve the rigor of research into this rare condition. (I, C-EO) . CONCLUSIONS Although the quality of evidence is lower than for more common conditions subjected to multiple randomized controlled trials, endovascular therapy has an important role in the management of brain AVMs. Prospective studies are needed to strengthen the data supporting these recommendations.
Collapse
Affiliation(s)
- Reade De Leacy
- Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sameer A Ansari
- Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - Daniel L Cooke
- Radiology and Biomedical Imaging, University California San Francisco, San Francisco, California, USA
| | | | - Ketan R Bulsara
- Division of Neurosurgery, University of Connecticut, Farmington, Connecticut, USA
| | - Steven W Hetts
- Radiology and Biomedical Imaging, University California San Francisco, San Francisco, California, USA
| | | |
Collapse
|
5
|
Gao S, Nelson J, Weinsheimer S, Winkler EA, Rutledge C, Abla AA, Gupta N, Shieh JT, Cooke DL, Hetts SW, Tihan T, Hess CP, Ko N, Walcott BP, McCulloch CE, Lawton MT, Su H, Pawlikowska L, Kim H. Somatic mosaicism in the MAPK pathway in sporadic brain arteriovenous malformation and association with phenotype. J Neurosurg 2021; 136:148-155. [PMID: 34214981 DOI: 10.3171/2020.11.jns202031] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/16/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Sporadic brain arteriovenous malformation (BAVM) is a tangled vascular lesion characterized by direct artery-to-vein connections that can cause life-threatening intracerebral hemorrhage (ICH). Recently, somatic mutations in KRAS have been reported in sporadic BAVM, and mutations in other mitogen-activated protein kinase (MAPK) signaling pathway genes have been identified in other vascular malformations. The objectives of this study were to systematically evaluate somatic mutations in MAPK pathway genes in patients with sporadic BAVM lesions and to evaluate the association of somatic mutations with phenotypes of sporadic BAVM severity. METHODS The authors performed whole-exome sequencing on paired lesion and blood DNA samples from 14 patients with sporadic BAVM, and 295 genes in the MAPK signaling pathway were evaluated to identify genes with somatic mutations in multiple patients with BAVM. Digital droplet polymerase chain reaction was used to validate KRAS G12V and G12D mutations and to assay an additional 56 BAVM samples. RESULTS The authors identified a total of 24 candidate BAVM-associated somatic variants in 11 MAPK pathway genes. The previously identified KRAS G12V and G12D mutations were the only recurrent mutations. Overall, somatic KRAS G12V was present in 14.5% of BAVM lesions and G12D was present in 31.9%. The authors did not detect a significant association between the presence or allelic burden of KRAS mutation and three BAVM phenotypes: lesion size (maximum diameter), age at diagnosis, and age at ICH. CONCLUSIONS The authors confirmed the high prevalence of somatic KRAS mutations in sporadic BAVM lesions and identified several candidate somatic variants in other MAPK pathway genes. These somatic variants may contribute to understanding of the etiology of sporadic BAVM and the clinical characteristics of patients with this condition.
Collapse
Affiliation(s)
- Sen Gao
- Departments of1Anesthesia and Perioperative Care.,2Center for Cerebrovascular Research, and
| | - Jeffrey Nelson
- Departments of1Anesthesia and Perioperative Care.,2Center for Cerebrovascular Research, and
| | - Shantel Weinsheimer
- Departments of1Anesthesia and Perioperative Care.,2Center for Cerebrovascular Research, and.,4Institute for Human Genetics, University of California, San Francisco, California
| | | | | | | | | | - Joseph T Shieh
- 4Institute for Human Genetics, University of California, San Francisco, California.,11Pediatrics, and
| | | | | | | | | | | | - Brian P Walcott
- 3Neurological Surgery.,8NorthShore University Health System, Evanston, Illinois; and
| | | | - Michael T Lawton
- 10Department of Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona
| | - Hua Su
- Departments of1Anesthesia and Perioperative Care.,2Center for Cerebrovascular Research, and
| | - Ludmila Pawlikowska
- Departments of1Anesthesia and Perioperative Care.,2Center for Cerebrovascular Research, and.,4Institute for Human Genetics, University of California, San Francisco, California
| | - Helen Kim
- Departments of1Anesthesia and Perioperative Care.,2Center for Cerebrovascular Research, and.,4Institute for Human Genetics, University of California, San Francisco, California
| |
Collapse
|
8
|
Jaff N, Grankvist R, Muhl L, Chireh A, Sandell M, Jonsson S, Arnberg F, Eriksson U, Holmin S. Transcriptomic analysis of the harvested endothelial cells in a swine model of mechanical thrombectomy. Neuroradiology 2018; 60:759-768. [PMID: 29761220 PMCID: PMC5995995 DOI: 10.1007/s00234-018-2033-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/04/2018] [Indexed: 01/03/2023]
Abstract
Purpose In mechanical thrombectomy (MT) for ischemic stroke, endothelial cells (ECs) from intracranial blood vessels adhere to the stent retriever device and can be harvested. However, understanding the molecular biology and the role of the endothelium in different pathological conditions remains insufficient. The purpose of the study was to characterize and analyze the molecular aspect of harvested ECs using cell culture and transcriptomic techniques in an MT swine model relevant to clinical ischemic stroke. Methods In swine, preformed thrombi were injected into the external carotid and subclavian arteries to occlude their branches. MT was performed according to clinical routine. The stent retriever device and thrombus were treated with cell dissociation buffer. The resulting cell suspension was analyzed by immunohistochemistry and was cultured. Cultured cells were analyzed using single-cell RNA sequencing (scRNA-seq) after fluorescence-activated cell sorting (FACS). Results A total number of 37 samples were obtained containing CD31-positive cells. Cell culture was successful in 90% of samples, and the cells expressed multiple typical EC protein markers. Eighty-nine percent of the sorted cells yielded high-quality transcriptomes, and single-cell transcriptomes from cultured cells showed that they expressed typical endothelial gene patterns. Gene expression analysis of ECs from an occluded artery did not show distinctive clustering into subtypes. Conclusion ECs harvested during MT can be cultured and analyzed using single-cell transcriptomic techniques. This analysis can be implemented in clinical practice to study the EC gene expression of comorbidities, such as hypertension, diabetes mellitus, and metabolic syndrome, in patients suffering from acute ischemic stroke.
Collapse
Affiliation(s)
- Nasren Jaff
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 76, Stockholm, Sweden.
| | - Rikard Grankvist
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - Lars Muhl
- Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, Stockholm, Sweden
| | - Arvin Chireh
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - Mikael Sandell
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - Stefan Jonsson
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 76, Stockholm, Sweden
- Department of Materials Science, Royal Institute of Technology, Stockholm, Sweden
| | - Fabian Arnberg
- Department of Neuroradiology, Karolinska University Hospital, Solna, SE-171 76, Stockholm, Sweden
| | - Ulf Eriksson
- Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, Stockholm, Sweden
| | - Staffan Holmin
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 76, Stockholm, Sweden.
- Department of Neuroradiology, Karolinska University Hospital, Solna, SE-171 76, Stockholm, Sweden.
| |
Collapse
|