1
|
Bai X, Yu Q, Sun J, Xie Y, Yuan Y. Photoheterotrophic extracellular reduction of ferrihydrite activates diverse intracellular metabolic pathways in Rhodopseudomonas palustris for enhanced antibiotic degradation. WATER RESEARCH 2025; 273:123088. [PMID: 39787749 DOI: 10.1016/j.watres.2025.123088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/29/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Anoxygenic photosynthetic bacteria (APB) have been frequently detected as a photoautotrophic Fe-carbon cycling drivers in photic and anoxic environment. However, the potential capacity of these bacteria for photoheterotrophic extracellular reduction of iron-containing minerals and their impact on the transformation of organic pollutants remain currently unknown. This study investigated the capacity of R. palustris, a purple non-sulfur anoxygenic photosynthetic bacterium, to reduce ferrihydrite (Fh) and its correlation with sulfamethazine (SDZ) degradation were firstly investigated. The results revealed that R. palustris could undergo photoheterotrophic extracellular reduction of Fh to form goethite through direct contact, facilitating the formation of conductive bands and enter the interior of cells with a maximum Fe(II)/Fe(T) ratio of up to 39 % within 8 days which led to 13 % increase in assimilation rate of acetate carbon and 53.2 % increase in SDZ degradation rates, as compared with those by R. palustris alone. Moreover, the intermediates generated during the degradation of SDZ by R. palustris-Fh exhibited relatively lower developmental toxicity compared with the original SDZ molecule. The extracellular reduction of Fh significantly up-regulated the expression of genes related to photosynthetic metabolic enzymes, extracellular electron transporters, and extracellular degrading enzymes in R. palustris. This enhancement promoted the photoheterotrophic metabolism and extracellular secretion of photosensitive active compounds in R. palustris, thereby enhancing both the biodegradation and photosensitive degradation of SDZ.
Collapse
Affiliation(s)
- Xiaoyan Bai
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qian Yu
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jian Sun
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Yulei Xie
- School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yong Yuan
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Ángeles R, Carvalho J, Hernández-Martínez I, Morales-Ibarría M, Fradinho JC, Reis MAM, Lebrero R. Harnessing nature's palette: Exploring photosynthetic pigments for sustainable biotechnology. N Biotechnol 2025; 85:84-102. [PMID: 39788285 DOI: 10.1016/j.nbt.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/27/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
Photosynthetic microorganisms such as cyanobacteria, microalgae, and anoxygenic phototrophic bacteria (APB) have emerged as sustainable and economic biotechnology platforms due to their ability to transform energy from light into chemicals through photosynthesis. The light is absorbed by photosynthetic pigment-protein antenna complexes which are composed of pigments such as bacteriochlorophylls (BChl) and carotenoids in APB, and chlorophylls (Chl), phycobiliproteins (PBP), and carotenoids in cyanobacteria and microalgae. These photosynthetic pigments are essential in the physiology of photosynthetic microorganisms and offer significant health benefits due to their potent antioxidant activity, with properties that include anticancer, antiaging, antiproliferative, anti-inflammatory, and neuroprotective effects. This review first provides an overview of current advances in photosynthetic pigment synthesis and the latest strategies to increase pigment content in cyanobacteria, microalgae, and APB. It then delves into the pigment production process, covering biosynthetic pathways, critical environmental parameters, and extraction methods. Finally, the potential marketability of photosynthetic pigments together with current limitations are discussed.
Collapse
Affiliation(s)
- Roxana Ángeles
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n, Valladolid 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, Valladolid 47011, Spain; Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal.
| | - João Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal
| | - Ingrid Hernández-Martínez
- Doctorate in Natural Sciences and Engineering, Metropolitan Autonomous University-Cuajimalpa, Av. Vasco de Quiroga 4871, Santa Fe Cuajimalpa, Mexico 05348, Mexico
| | - Marcia Morales-Ibarría
- Department of Processes and Technology. Metropolitan Autonomous University-Cuajimalpa, Av. Vasco de Quiroga 4871, Santa Fe Cuajimalpa, Mexico 05348, Mexico
| | - Joana C Fradinho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal
| | - Maria A M Reis
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal
| | - Raquel Lebrero
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n, Valladolid 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, Valladolid 47011, Spain.
| |
Collapse
|
3
|
Gogde K, Kirar S, Pujari AK, Mohne D, Yadav AK, Bhaumik J. Near-IR nanolignin sensitizers based on pyrene-conjugated chlorin and bacteriochlorin for ROS generation, DNA intercalation and bioimaging. J Mater Chem B 2024; 13:288-304. [PMID: 39535256 DOI: 10.1039/d4tb01627k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Near-infrared (NIR) fluorescent agents are extensively used for biomedical imaging due to their ability for deep tissue penetration. Tetrapyrrole-based photosensitizers are promising candidates in this regard. Further, the extended conjugation of such macromolecules with chromophores can enhance their fluorescence efficiency and DNA intercalation ability. Herein, pyrene-conjugated NIR photosensitizers, such as chlorin (PyChl) and bacteriochlorin (PyBac), were synthesized from the corresponding pyrene-porphyrin (PyP). The correlation between the theoretical and experimental optical properties (absorption and fluorescence spectroscopy results) was determined using the DFT/TD-DFT computational approach. Next, studies on the photophysical properties, reactive oxygen species (ROS) production, and DNA binding were conducted on these macrocycles to study the effect of pyrene conjugation on the pyrrolic ring. Furthermore, each photosensitizer was loaded into lignin nanoparticles (LNPs) using the solvent-antisolvent method to accomplish fluorescence-guided imaging. The developed near-IR chlorin- and bacteriochlorin-doped lignin nanocarriers (PyChl-LNCs and PyBac-LNCs) exhibited significant in vitro singlet oxygen generation upon red LED light exposure. Moreover, these macrocycle-loaded nanolignin sensitizers showed good fluorescence-guided bioimaging with fungal cells (Candida albicans). Further, the nanoprobes exhibited pH-dependent release profiles for biological applications. These nanolignin sensitizers demonstrated promising potential to be utilized in near-IR image-guided photodynamic therapy.
Collapse
Affiliation(s)
- Kunal Gogde
- Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S. A. S. Nagar 140306, Punjab, India.
- University Institute of Pharmaceutical Sciences, Panjab University, Sector 14, Chandigarh 160306, India
| | - Seema Kirar
- Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S. A. S. Nagar 140306, Punjab, India.
| | - Anil Kumar Pujari
- Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S. A. S. Nagar 140306, Punjab, India.
- Indian Institute of Sciences Education and Research (IISER), Sector 81 (Knowledge City), S. A. S. Nagar 140306, Punjab, India
| | - Devesh Mohne
- Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S. A. S. Nagar 140306, Punjab, India.
- Indian Institute of Sciences Education and Research (IISER), Sector 81 (Knowledge City), S. A. S. Nagar 140306, Punjab, India
| | - Ashok Kumar Yadav
- University Institute of Pharmaceutical Sciences, Panjab University, Sector 14, Chandigarh 160306, India
| | - Jayeeta Bhaumik
- Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S. A. S. Nagar 140306, Punjab, India.
| |
Collapse
|
4
|
Díaz-Rullo Edreira S, Vasiliadou IA, Prado A, Espada JJ, Wattiez R, Leroy B, Martínez F, Puyol D. Elucidating metabolic tuning of mixed purple phototrophic bacteria biofilms in photoheterotrophic conditions through microbial photo-electrosynthesis. Commun Biol 2024; 7:1526. [PMID: 39557963 PMCID: PMC11574181 DOI: 10.1038/s42003-024-07188-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 10/31/2024] [Indexed: 11/20/2024] Open
Abstract
Reducing greenhouse gas emissions is critical for humanity nowadays, but it can be beneficial by developing engineered systems that valorize CO2 into commodities, thus mimicking nature's wisdom. Purple phototrophic bacteria (PPB) naturally accept CO2 into their metabolism as a primary redox sink system in photo-heterotrophy. Dedicated use of this feature for developing sustainable processes (e.g., through negative-emissions photo-bioelectrosynthesis) requires a deep knowledge of the inherent metabolic mechanisms. This work provides evidence of tuning the PPB metabolic mechanisms upon redox stressing through negative polarization (-0.4 and -0.8 V vs. Ag/AgCl) in photo-bioelectrochemical devices. A mixed PPB-culture upregulates its ability to capture CO2 from organics oxidation through the Calvin-Besson-Bassam cycle and anaplerotic pathways, and the redox imbalance is promoted to polyhydroxyalkanoates production. The ecological relationship of PPB with mutualist bacteria stabilizes the system and opens the door for future development of photo-bioelectrochemical devices focused on CO up-cycling.
Collapse
Affiliation(s)
- Sara Díaz-Rullo Edreira
- Department of Chemical and Environmental Engineering, High School of Experimental Sciences and Technology, University Rey Juan Carlos, Madrid, Spain
| | - Ioanna A Vasiliadou
- Department of Environmental Engineering, Democritus University of Thrace, Xanthi, Greece
| | - Amanda Prado
- Department of Automation, Electric Engineering and Electronic Technology, Polytechnic University of Cartagena, Cartagena, Spain
| | - Juan José Espada
- Department of Chemical and Environmental Engineering, High School of Experimental Sciences and Technology, University Rey Juan Carlos, Madrid, Spain
| | - Ruddy Wattiez
- Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Baptiste Leroy
- Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Fernando Martínez
- Department of Chemical and Environmental Engineering, High School of Experimental Sciences and Technology, University Rey Juan Carlos, Madrid, Spain
| | - Daniel Puyol
- Department of Chemical and Environmental Engineering, High School of Experimental Sciences and Technology, University Rey Juan Carlos, Madrid, Spain.
| |
Collapse
|
5
|
Boadella J, Butturini A, Doménech-Pascual A, Freixinos Z, Perujo N, Urmeneta J, Vidal A, Romaní AM. Microbial Life in Playa-Lake Sediments: Adapted Structure, Plastic Function to Extreme Water Activity Variations. MICROBIAL ECOLOGY 2024; 87:137. [PMID: 39520558 PMCID: PMC11550290 DOI: 10.1007/s00248-024-02454-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Saline shallow lakes in arid and semi-arid regions frequently undergo drying episodes, leading to significant variations in salinity and water availability. Research on the impacts of salinity and drought on the structure and function of biofilms in hypersaline shallow lakes is limited. This study aimed to understand the potential changes of biofilms in playa-lake sediments during the drying process. Sediments were sampled at different depths (surface, subsurface) and hydrological periods (wet, retraction, and dry), which included a decrease in water activity (aw, the availability of water for microbial use) from 0.99 to 0.72. aw reduction caused a greater effect on functional variables compared to structural variables, indicating the high resistance of the studied biofilms to changes in salinity and water availability. Respiration and hydrolytic extracellular enzyme activities exhibited higher values under high aw, while phenol oxidase activity and prokaryote biomass increased at lower aw. This shift occurred at both depths but was more pronounced at the surface, possibly due to the more extreme conditions (up to 0.7 aw). The increased levels of extracellular polymeric substances and carotenoids developed at low aw may help protect microorganisms in high salinity and drought environments. However, these harsh conditions may interfere with the activity of hydrolytic enzymes and their producers, while promoting the growth of resistant prokaryotes and their capacity to obtain C and N sources from recalcitrant compounds. The resilience of biofilms in hypersaline lakes under extreme conditions is given by their resistant biochemichal structure and the adaptability of their microbial functioning.
Collapse
Affiliation(s)
- Judit Boadella
- GRECO, Institute of Aquatic Ecology, University of Girona, Av. Mª Aurèlia Capmany, 69, 17003, Girona, Spain.
| | - Andrea Butturini
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - Anna Doménech-Pascual
- GRECO, Institute of Aquatic Ecology, University of Girona, Av. Mª Aurèlia Capmany, 69, 17003, Girona, Spain
| | - Zeus Freixinos
- Department of Ecology and Hydrology, Faculty of Biology, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Núria Perujo
- Department of River Ecology, Helmholtz Centre for Environmental Research - UFZ, Brückstraße 3a, 39114, Magdeburg, Germany
| | - Jordi Urmeneta
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, 08028, Barcelona, Catalonia, Spain
- Biodiversity Research Institute, University of Barcelona, Diagonal 643, 08028, Barcelona, Catalonia, Spain
| | - Ariadna Vidal
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, 08028, Barcelona, Catalonia, Spain
| | - Anna M Romaní
- GRECO, Institute of Aquatic Ecology, University of Girona, Av. Mª Aurèlia Capmany, 69, 17003, Girona, Spain
| |
Collapse
|
6
|
Huo L, Ma A, Liu H, Wang X, Song C. Diversity and ecological assembly process of aerobic anoxygenic phototrophic bacteria in a low irradiation area, Three Gorges Reservoir. J Environ Sci (China) 2024; 143:116-125. [PMID: 38644009 DOI: 10.1016/j.jes.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 04/23/2024]
Abstract
Aerobic anoxygenic phototrophic bacteria (AAPB) are significant bacterial groups in aquatic ecosystems, known for their rapid growth and photoheterotrophic characteristics. However, the distribution and ecological assembly process of AAPB in low irradiation freshwater basins remain unclear, warranting further investigation. In this study, we present the diversity, abundance, spatial variations, ecological process, and community interaction of AAPB in sediment of Three Gorges Reservoir (TGR) under low irradiation. Our findings demonstrate the dominant genera of AAPB community that exist in the TGR area also are appeared in different waters, with some regional preference. Moreover, the concentration of pufM gene, an indicator for AAPB, maintains a consistently high numerical level ranging from (2.21 ± 0.44) × 104 to (9.98 ± 0.30) × 107 gene copies/g. Although solar irradiation is suggested as the major factor affecting AAPB, it remains unclear whether and how AAPB differ between regions due to varying solar irradiation levels. Our results show spatial differences between total bacteria and AAPB communities, with significant differences observed only in AAPB. Geographical and environmental factor contributed less than 10% to the spatial difference of community, with sediment type and environmental factors being the key factors influencing microbial community structure. The stochastic process plays a dominant role in the aggregation and replacement of AAPB communities, among which the most contribution is dispersal limitation. For AAPB network, Yoonia and Gemmobacter are the hubs for modules. Those results valuable insights into the AAPB communities in TGR with low irradiation.
Collapse
Affiliation(s)
- Lixin Huo
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, College of Resources and Environment, Chongqing 400714, China; Key Laboratory of Reservoir Aquatic Environment, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anran Ma
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, College of Resources and Environment, Chongqing 400714, China; Key Laboratory of Reservoir Aquatic Environment, Chinese Academy of Sciences, Chongqing 400714, China
| | - Hong Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, College of Resources and Environment, Chongqing 400714, China; Key Laboratory of Reservoir Aquatic Environment, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xingzu Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, College of Resources and Environment, Chongqing 400714, China; Key Laboratory of Reservoir Aquatic Environment, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Cheng Song
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Key Laboratory of Reservoir Aquatic Environment, Chinese Academy of Sciences, Chongqing 400714, China
| |
Collapse
|
7
|
Géron A, Werner J, Wattiez R, Matallana-Surget S. Towards the discovery of novel molecular clocks in Prokaryotes. Crit Rev Microbiol 2024; 50:491-503. [PMID: 37330701 DOI: 10.1080/1040841x.2023.2220789] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/17/2023] [Accepted: 02/15/2023] [Indexed: 06/19/2023]
Abstract
Diel cycle is of enormous biological importance as it imposes daily oscillation in environmental conditions, which temporally structures most ecosystems. Organisms developed biological time-keeping mechanisms - circadian clocks - that provide a significant fitness advantage over competitors by optimising the synchronisation of their biological activities. While circadian clocks are ubiquitous in Eukaryotes, they are so far only characterised in Cyanobacteria within Prokaryotes. However, growing evidence suggests that circadian clocks are widespread in the bacterial and archaeal domains. As Prokaryotes are at the heart of crucial environmental processes and are essential to human health, unravelling their time-keeping systems provides numerous applications in medical research, environmental sciences, and biotechnology. In this review, we elaborate on how novel circadian clocks in Prokaryotes offer research and development perspectives. We compare and contrast the different circadian systems in Cyanobacteria and discuss about their evolution and taxonomic distribution. We necessarily provide an updated phylogenetic analysis of bacterial and archaeal species that harbour homologs of the main cyanobacterial clock components. Finally, we elaborate on new potential clock-controlled microorganisms that represent opportunities of ecological and industrial relevance in prokaryotic groups such as anoxygenic photosynthetic bacteria, methanogenic archaea, methanotrophs or sulphate-reducing bacteria.
Collapse
Affiliation(s)
- Augustin Géron
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, UK
- Proteomic and Microbiology Department, University of Mons, Mons, Belgium
| | - Johannes Werner
- High Performance and Cloud Computing Group, Zentrum für Datenverarbeitung (ZDV), University of Tübingen, Tübingen, Germany
| | - Ruddy Wattiez
- Proteomic and Microbiology Department, University of Mons, Mons, Belgium
| | - Sabine Matallana-Surget
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| |
Collapse
|
8
|
Freches A, Fradinho JC. The biotechnological potential of the Chloroflexota phylum. Appl Environ Microbiol 2024; 90:e0175623. [PMID: 38709098 PMCID: PMC11218635 DOI: 10.1128/aem.01756-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024] Open
Abstract
In the next decades, the increasing material and energetic demand to support population growth and higher standards of living will amplify the current pressures on ecosystems and will call for greater investments in infrastructures and modern technologies. A valid approach to overcome such future challenges is the employment of sustainable bio-based technologies that explore the metabolic richness of microorganisms. Collectively, the metabolic capabilities of Chloroflexota, spanning aerobic and anaerobic conditions, thermophilic adaptability, anoxygenic photosynthesis, and utilization of toxic compounds as electron acceptors, underscore the phylum's resilience and ecological significance. These diverse metabolic strategies, driven by the interplay between temperature, oxygen availability, and energy metabolism, exemplify the complex adaptations that enabled Chloroflexota to colonize a wide range of ecological niches. In demonstrating the metabolic richness of the Chloroflexota phylum, specific members exemplify the diverse capabilities of these microorganisms: Chloroflexus aurantiacus showcases adaptability through its thermophilic and phototrophic growth, whereas members of the Anaerolineae class are known for their role in the degradation of complex organic compounds, contributing significantly to the carbon cycle in anaerobic environments, highlighting the phylum's potential for biotechnological exploitation in varying environmental conditions. In this context, the metabolic diversity of Chloroflexota must be considered a promising asset for a large range of applications. Currently, this bacterial phylum is organized into eight classes possessing different metabolic strategies to survive and thrive in a wide variety of extreme environments. This review correlates the ecological role of Chloroflexota in such environments with the potential application of their metabolisms in biotechnological approaches.
Collapse
Affiliation(s)
- André Freches
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
- Department of Chemistry, UCIBIO - Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Joana Costa Fradinho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
- Department of Chemistry, UCIBIO - Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| |
Collapse
|
9
|
Jirasansawat K, Chiemchaisri W, Chiemchaisri C. Enhancement of sulfide removal and sulfur recovery in piggery wastewater via lighting-anaerobic digestion with bioaugmentation of phototrophic green sulfur bacteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13414-13425. [PMID: 38244164 DOI: 10.1007/s11356-024-31920-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024]
Abstract
Anaerobic pig wastewater treatment commonly generates high sulfide concentrations in the treated wastewater. This study aims to apply phototrophic green sulfur bacteria (PGB) to promote sulfide removal in lighting-anaerobic digestion (lighting-AD) treating pig wastewater. Initially, batch AD tests of pig wastewater with/without PGB addition were carried out under dark (D) and light (L) conditions. The results showed that the lighting-AD with PGB gave a higher growth rate of PGB (0.056 h-1) and the highest COD/sulfide removals as compared to the dark-AD with PGB and lighting-AD solely. More experiments under various light intensities were performed in order to find an optimal intensity for PGB growth concurrently with metagenomic changes concerning treatment performance. It appeared that sulfide removal rates had increased as increasing light intensity up to 473 lx by giving the highest rate of 12.5 mg L-1 d-1 with the highest sulfur element content in the biomass. Contrastingly, many PGB species disappeared at 1350 lx exposure subsequently sharply decreasing the rate of sulfide removal. In sum, the application of low light intensities of 400-500 lx with bioaugmented PGB could promote PGB growth and activity in sulfide removal in pig wastewater in the lighting of the AD process.
Collapse
Affiliation(s)
- Kridsana Jirasansawat
- Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, 50 Ngam Wong Wan Rd., Chatuchak, Bangkok, 10900, Thailand
| | - Wilai Chiemchaisri
- Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, 50 Ngam Wong Wan Rd., Chatuchak, Bangkok, 10900, Thailand.
| | - Chart Chiemchaisri
- Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, 50 Ngam Wong Wan Rd., Chatuchak, Bangkok, 10900, Thailand
| |
Collapse
|
10
|
Strieth D, Kollmen J, Stiefelmaier J, Mehring A, Ulber R. Co-cultures from Plants and Cyanobacteria: A New Way for Production Systems in Agriculture and Bioprocess Engineering. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 188:83-117. [PMID: 38286901 DOI: 10.1007/10_2023_247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Due to the global increase in the world population, it is not possible to ensure a sufficient food supply without additional nitrogen input into the soil. About 30-50% of agricultural yields are due to the use of chemical fertilizers in modern times. However, overfertilization threatens biodiversity, such as nitrogen-loving, fast-growing species overgrow others. The production of artificial fertilizers produces nitrogen oxides, which act as greenhouse gases. In addition, overfertilization of fields also releases ammonia, which damages surface waters through acidification and eutrophication. Diazotrophic cyanobacteria, which usually form a natural, stable biofilm, can fix nitrogen from the atmosphere and release it into the environment. Thus, they could provide an alternative to artificial fertilizers. In addition to this, biofilms stabilize soils and thus protect against soil erosion and desiccation. This chapter deals with the potential of cyanobacteria as the use of natural fertilizer is described. Possible partners such as plants and callus cells and the advantages of artificial co-cultivation will be discussed later. In addition, different cultivation systems for studying artificial co-cultures will be presented. Finally, the potential of artificial co-cultures in the agar industry will be discussed.
Collapse
Affiliation(s)
- D Strieth
- Bioprocess Engineering (BioVT), Department of Mechanical and Process Engineering, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany.
| | - J Kollmen
- Bioprocess Engineering (BioVT), Department of Mechanical and Process Engineering, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
| | - J Stiefelmaier
- Bioprocess Engineering (BioVT), Department of Mechanical and Process Engineering, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
| | - A Mehring
- Bioprocess Engineering (BioVT), Department of Mechanical and Process Engineering, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
| | - R Ulber
- Bioprocess Engineering (BioVT), Department of Mechanical and Process Engineering, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
| |
Collapse
|
11
|
K R, S VK, Saravanan P, Rajeshkannan R, Rajasimman M, Kamyab H, Vasseghian Y. Exploring the diverse applications of Carbohydrate macromolecules in food, pharmaceutical, and environmental technologies. ENVIRONMENTAL RESEARCH 2024; 240:117521. [PMID: 37890825 DOI: 10.1016/j.envres.2023.117521] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/26/2023] [Accepted: 10/25/2023] [Indexed: 10/29/2023]
Abstract
Carbohydrates are a class of macromolecules that has significant potential across several domains, including the organisation of genetic material, provision of structural support, and facilitation of defence mechanisms against invasion. Their molecular diversity enables a vast array of essential functions, such as energy storage, immunological signalling, and the modification of food texture and consistency. Due to their rheological characteristics, solubility, sweetness, hygroscopicity, ability to prevent crystallization, flavour encapsulation, and coating capabilities, carbohydrates are useful in food products. Carbohydrates hold potential for the future of therapeutic development due to their important role in sustained drug release, drug targeting, immune antigens, and adjuvants. Bio-based packaging provides an emerging phase of materials that offer biodegradability and biocompatibility, serving as a substitute for traditional non-biodegradable polymers used as coatings on paper. Blending polyhydroxyalkanoates (PHA) with carbohydrate biopolymers, such as starch, cellulose, polylactic acid, etc., reduces the undesirable qualities of PHA, such as crystallinity and brittleness, and enhances the PHA's properties in addition to minimizing manufacturing costs. Carbohydrate-based biopolymeric nanoparticles are a viable and cost-effective way to boost agricultural yields, which is crucial for the increasing global population. The use of biopolymeric nanoparticles derived from carbohydrates is a potential and economically viable approach to enhance the quality and quantity of agricultural harvests, which is of utmost importance given the developing global population. The carbohydrate biopolymers may play in plant protection against pathogenic fungi by inhibiting spore germination and mycelial growth, may act as effective elicitors inducing the plant immune system to cope with pathogens. Furthermore, they can be utilised as carriers in controlled-release formulations of agrochemicals or other active ingredients, offering an alternative approach to conventional fungicides. It is expected that this review provides an extensive summary of the application of carbohydrates in the realms of food, pharmaceuticals, and environment.
Collapse
Affiliation(s)
- Ramaprabha K
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Venkat Kumar S
- Department of Petrochemical Technology, University College of Engineering, BIT Campus, Anna University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| | - Panchamoorthy Saravanan
- Department of Petrochemical Technology, University College of Engineering, BIT Campus, Anna University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - R Rajeshkannan
- Department of Chemical Engineering, Annamalai University, Annamalainagar, 608002, Tamil Nadu, India
| | - M Rajasimman
- Department of Chemical Engineering, Annamalai University, Annamalainagar, 608002, Tamil Nadu, India
| | - Hesam Kamyab
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India; Process Systems Engineering Centre (PROSPECT), Faculty of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Mechanical Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India.
| |
Collapse
|
12
|
Shaikh S, Rashid N, Onwusogh U, McKay G, Mackey H. Effect of nutrients deficiency on biofilm formation and single cell protein production with a purple non-sulphur bacteria enriched culture. Biofilm 2023; 5:100098. [PMID: 36588982 PMCID: PMC9794892 DOI: 10.1016/j.bioflm.2022.100098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/27/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022] Open
Abstract
Purple non-sulphur bacteria (PNSB) are of interest for biorefinery applications to create biomolecules, but their production cost is expensive due to substrate and biomass separation costs. This research has utilized fuel synthesis wastewater (FSW) as a low-cost carbon-rich substrate to produce single-cell protein (SCP) and examines PNSB biofilm formation using this substrate to achieve a more efficient biomass-liquid separation. In this study, PNSB were grown in Ca, Mg, S, P, and N-deficient media using green shade as biofilm support material. Among these nutrient conditions, only N-deficient and control (nutrient-sufficient) conditions showed biofilm formation. Although total biomass growth of the control was 1.5 times that of the N-deficient condition and highest overall, the total biofilm-biomass in the N-deficient condition was 2.5 times greater than the control, comprising 49% of total biomass produced. Total protein content was similar between these four biomass samples, ranging from 35.0 ± 0.2% to 37.2 ± 0.0%. The highest protein content of 44.7 ± 1.3% occurred in the Mg-deficient condition (suspended biomass only) but suffered from a low growth rate. Overall, nutrient sufficient conditions are optimal for overall protein productivity and dominated by suspended growth, but where fixed growth systems are desired for cost-effective harvesting, N-deficient conditions provide an effective means to maximize biofilm production without sacrificing protein content.
Collapse
Affiliation(s)
- S. Shaikh
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - N. Rashid
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - U. Onwusogh
- Qatar Shell Research and Technology Centre, Tech 1, Qatar Science and Technology Park, Doha, Qatar
| | - G. McKay
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - H.R. Mackey
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Department of Civil and Natural Resources Engineering, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| |
Collapse
|
13
|
Fernández-Juárez V, Hallstrøm S, Pacherres CO, Wang J, Coll-Garcia G, Kühl M, Riemann L. Biofilm formation and cell plasticity drive diazotrophy in an anoxygenic phototrophic bacterium. Appl Environ Microbiol 2023; 89:e0102723. [PMID: 37882569 PMCID: PMC10686084 DOI: 10.1128/aem.01027-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/14/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE The contribution of non-cyanobacterial diazotrophs (NCDs) to total N2 fixation in the marine water column is unknown, but their importance is likely constrained by the limited availability of dissolved organic matter and low O2 conditions. Light could support N2 fixation and growth by NCDs, yet no examples from bacterioplankton exist. In this study, we show that the phototrophic NCD, Rhodopseudomonas sp. BAL398, which is a member of the diazotrophic community in the surface waters of the Baltic Sea, can utilize light. Our study highlights the significance of biofilm formation for utilizing light and fixing N2 under oxic conditions and the role of cell plasticity in regulating these processes. Our findings have implications for the general understanding of the ecology and importance of NCDs in marine waters.
Collapse
Affiliation(s)
- Víctor Fernández-Juárez
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Søren Hallstrøm
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Cesar O. Pacherres
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jiaqi Wang
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Guillem Coll-Garcia
- Microbiology, Biology Department, University of the Balearic Islands, Palma de Mallorca, Spain
- Environmental Microbiology Group, Mediterranean Institute for Advanced Studies (CSIC-UIB), Esporles, Spain
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lasse Riemann
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Gaur V, Bera S. Microbial canthaxanthin: an orange-red keto carotenoid with potential pharmaceutical applications. BIOTECHNOLOGIA 2023; 104:315-328. [PMID: 37850112 PMCID: PMC10578118 DOI: 10.5114/bta.2023.130733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/21/2023] [Accepted: 06/07/2023] [Indexed: 10/19/2023] Open
Abstract
Canthaxanthin is an orange-red keto-carotenoid that occurs naturally and is also manufactured by synthetic methods for regular applications. In nature, canthaxanthin mainly exists in microbes such as different bacterial species, fungi, and algae, as well as in animals such as crustaceans, certain fishes, and birds. However, the amount of canthaxanthin produced in these organisms varies significantly. Additionally, the compound can be generated from genetically modified organisms using genetic engineering techniques Canthaxanthin finds extensive application as an additive in animal feed, in the pharmaceutical industry, as a coloring agent for various food products, and in cosmetics. It has powerful antioxidant properties and plays a role in lipid metabolism, neuroprotection, and immunomodulation. This article gives an extensive insight into the structure and methods of synthesis of canthaxanthin along with its various newly discovered sources identified so far. The significant applications of canthaxanthin, particularly its role in pharmaceuticals, are critically evaluated. Furthermore, the article discusses future aspects and challenges associated with canthaxanthin production and regulation.
Collapse
Affiliation(s)
- Vinita Gaur
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India
| | - Surojit Bera
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India
| |
Collapse
|
15
|
Chacon-Aparicio S, Villamil JA, Martinez F, Melero JA, Molina R, Puyol D. Achieving Discharge Limits in Single-Stage Domestic Wastewater Treatment by Combining Urban Waste Sources and Phototrophic Mixed Cultures. Microorganisms 2023; 11:2324. [PMID: 37764168 PMCID: PMC10536668 DOI: 10.3390/microorganisms11092324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
This work shows the potential of a new way of co-treatment of domestic wastewater (DWW) and a liquid stream coming from the thermal hydrolysis of the organic fraction of municipal solid waste (OFMSW) mediated by a mixed culture of purple phototrophic bacteria (PPB) capable of assimilating carbon and nutrients from the medium. The biological system is an open single-step process operated under microaerophilic conditions at an oxidative reduction potential (ORP) < 0 mV with a photoperiod of 12/24 h and fed during the light stage only so the results can be extrapolated to outdoor open pond operations by monitoring the ORP. The effluent mostly complies with the discharge values of the Spanish legislation in COD and p-values (<125 mg/L; <2 mg/L), respectively, and punctually on values in N (<15 mg/L). Applying an HRT of 3 d and a ratio of 100:7 (COD:N), the presence of PPB in the mixed culture surpassed 50% of 16S rRNA gene copies, removing 78% of COD, 53% of N, and 66% of P. Furthermore, by increasing the HRT to 5 d, removal efficiencies of 83% of COD, 65% of N, and 91% of P were achieved. In addition, the reactors were further operated in a membrane bioreactor, thus separating the HRT from the SRT to increase the specific loading rate. Very satisfactory removal efficiencies were achieved by applying an HRT and SRT of 2.3 and 3 d, respectively: 84% of COD, 49% of N, and 93% of P despite the low presence of PPB due to more oxidative conditions, which step-by-step re-colonized the mixed culture until reaching >20% of 16S rRNA gene copies after 49 d of operation. These results open the door to scaling up the process in open photobioreactors capable of treating urban wastewater and municipal solid waste in a single stage and under microaerophilic conditions by controlling the ORP of the system.
Collapse
Affiliation(s)
| | | | | | | | | | - Daniel Puyol
- Chemical and Environmental Engineering Group, University Rey Juan Carlos, 28933 Madrid, Spain; (S.C.-A.); (F.M.); (J.A.M.); (R.M.)
| |
Collapse
|
16
|
Das S, Raj R, Das S, Ghangrekar MM. Evaluating application of photosynthetic microbial fuel cell to exhibit efficient carbon sequestration with concomitant value-added product recovery from wastewater: A review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:98995-99012. [PMID: 35661302 DOI: 10.1007/s11356-022-21184-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
The emission of CO2 from industrial (24%) and different anthropogenic activities, like transportation (27%), electricity production (25%), and agriculture (11%), can lead to global warming, which in the long term can trigger substantial climate changes. In this regard, CO2 sequestration and wastewater treatment in tandem with bioenergy production through photosynthetic microbial fuel cell (PMFC) is an economical and sustainable intervention to address the problem of global warming and elevating energy demands. Therefore, this review focuses on the application of different PMFC as a bio-refinery approach to produce biofuels and power generation accompanied with the holistic treatment of wastewater. Moreover, CO2 bio-fixation and electron transfer mechanism of different photosynthetic microbiota, and factors affecting the performance of PMFC with technical feasibility and drawbacks are also elucidated in this review. Also, low-cost approaches such as utilization of bio-membrane like coconut shell, microbial growth enhancement by extracellular cell signalling mechanisms, and exploitation of genetically engineered strain towards the commercialization of PMFC are highlighted. Thus, the present review intends to guide the budding researchers in developing more cost-effective and sustainable PMFCs, which could lead towards the commercialization of this inventive technology.
Collapse
Affiliation(s)
- Swati Das
- PK Sinha Centre for Bioenergy & Renewables, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Rishabh Raj
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Sovik Das
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Makarand M Ghangrekar
- PK Sinha Centre for Bioenergy & Renewables, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
17
|
Dhar K, Venkateswarlu K, Megharaj M. Anoxygenic phototrophic purple non-sulfur bacteria: tool for bioremediation of hazardous environmental pollutants. World J Microbiol Biotechnol 2023; 39:283. [PMID: 37594588 PMCID: PMC10439078 DOI: 10.1007/s11274-023-03729-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/11/2023] [Indexed: 08/19/2023]
Abstract
The extraordinary metabolic flexibility of anoxygenic phototrophic purple non-sulfur bacteria (PNSB) has been exploited in the development of various biotechnological applications, such as wastewater treatment, biohydrogen production, improvement of soil fertility and plant growth, and recovery of high-value compounds. These versatile microorganisms can also be employed for the efficient bioremediation of hazardous inorganic and organic pollutants from contaminated environments. Certain members of PNSB, especially strains of Rhodobacter sphaeroides and Rhodopseudomonas palustris, exhibit efficient remediation of several toxic and carcinogenic heavy metals and metalloids, such as arsenic, cadmium, chromium, and lead. PNSB are also known to utilize diverse biomass-derived lignocellulosic organic compounds and xenobiotics. Although biodegradation of some substituted aromatic compounds by PNSB has been established, available information on the involvement of PNSB in the biodegradation of toxic organic pollutants is limited. In this review, we present advancements in the field of PNSB-based bioremediation of heavy metals and organic pollutants. Furthermore, we highlight that the potential role of PNSB as a promising bioremediation tool remains largely unexplored. Thus, this review emphasizes the necessity of investing extensive research efforts in the development of PNSB-based bioremediation technology.
Collapse
Affiliation(s)
- Kartik Dhar
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
- Department of Microbiology, Faculty of Biological Sciences, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, Andhra Pradesh, 515003, India
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia.
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
18
|
Colette M, Guentas L, Patrona LD, Ansquer D, Callac N. Dynamic of active microbial diversity in rhizosphere sediments of halophytes used for bioremediation of earthen shrimp ponds. ENVIRONMENTAL MICROBIOME 2023; 18:58. [PMID: 37438848 DOI: 10.1186/s40793-023-00512-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 07/02/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND In New-Caledonia, at the end of each shrimp production cycle, earthen ponds are drained and dried to enhance microbial decomposition of nutrient-rich waste trapped in the sediment during the rearing. However, excessive ponds drying may not be suitable for the decomposition activities of microorganisms. Halophytes, salt tolerant plants, naturally grow at vicinity of shrimp ponds; due to their specificity, we explored whether halophytes cultivation during the pond drying period may be suitable for pond bioremediation. In addition, plants are closely associated with microorganisms, which may play a significant role in organic matter decomposition and therefore in bioremediation. Thus, in this study we aimed to determine the impact of 3 halophyte species (Suaeda australis, Sarcocornia quinqueflora and Atriplex jubata) on active sediment microbial communities and their implications on organic matter degradation. RESULTS Drying significantly decreased the microbial diversity index compared to those of wet sediment or sediment with halophytes. Microbial profiles varied significantly over time and according to the experimental conditions (wet, dry sediment or sediment with halophyte species). Halophytes species seemed to promote putative microbial metabolism activities in the sediment. Taxa related to nitrogen removal, carbon mineralisation, sulphur reduction and sulphide oxidation were significant biomarkers in sediment harbouring halophytes and may be relevant for bioremediation. Whereas microbial communities of dry sediment were marked by soil limited-moisture taxa with no identification of microbial metabolic functions. Nitrogen reduction in sediments was evidenced in wet sediment and in sediments with halophytes cultures, along with putative microbial denitrification activities. The greatest nitrogen reduction was observed in halophytes culture. CONCLUSION The efficiency of sediment bioremediation by halophytes appears to be the result of both rhizosphere microbial communities and plant nutrition. Their cultures during the pond drying period may be used as aquaculture diversification by being a sustainable system.
Collapse
Affiliation(s)
- Marie Colette
- French Institute for Research in the Science of the Sea (IFREMER), Research Institute for Development (IRD), University of New Caledonia, University of Reunion, CNRS, UMR 9220 ENTROPIE, Noumea, New Caledonia.
- Institute of Exact and Applied Sciences (ISEA), EA 7484, University of New Caledonia, Noumea, 98851, New Caledonia.
| | - Linda Guentas
- Institute of Exact and Applied Sciences (ISEA), EA 7484, University of New Caledonia, Noumea, 98851, New Caledonia
| | - Luc Della Patrona
- French Institute for Research in the Science of the Sea (IFREMER), Research Institute for Development (IRD), University of New Caledonia, University of Reunion, CNRS, UMR 9220 ENTROPIE, Noumea, New Caledonia
| | - Dominique Ansquer
- French Institute for Research in the Science of the Sea (IFREMER), Research Institute for Development (IRD), University of New Caledonia, University of Reunion, CNRS, UMR 9220 ENTROPIE, Noumea, New Caledonia
| | - Nolwenn Callac
- French Institute for Research in the Science of the Sea (IFREMER), Research Institute for Development (IRD), University of New Caledonia, University of Reunion, CNRS, UMR 9220 ENTROPIE, Noumea, New Caledonia
| |
Collapse
|
19
|
Iwai R, Uchida S, Yamaguchi S, Nagata D, Koga A, Hayashi S, Yamamoto S, Miyasaka H. Effects of LPS from Rhodobacter sphaeroides, a Purple Non-Sulfur Bacterium (PNSB), on the Gene Expression of Rice Root. Microorganisms 2023; 11:1676. [PMID: 37512850 PMCID: PMC10383378 DOI: 10.3390/microorganisms11071676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
The effects of lipopolysaccharide (LPS) from Rhodobacter sphaeroides, a purple non-sulfur bacterium (PNSB), on the gene expression of the root of rice (Oryza sativa) were investigated by next generation sequencing (NGS) RNA-seq analysis. The rice seeds were germinated on agar plates containing 10 pg/mL of LPS from Rhodobacter sphaeroides NBRC 12203 (type culture). Three days after germination, RNA samples were extracted from the roots and analyzed by RNA-seq. The effects of dead (killed) PNSB cells of R. sphaeroides NBRC 12203T at the concentration of 101 cfu/mL (ca. 50 pg cell dry weight/mL) were also examined. Clean reads of NGS were mapped to rice genome (number of transcript ID: 44785), and differentially expressed genes were analyzed by DEGs. As a result of DEG analysis, 300 and 128 genes, and 86 and 8 genes were significantly up- and down-regulated by LPS and dead cells of PNSB, respectively. The plot of logFC (fold change) values of the up-regulated genes of LPS and PNSB dead cells showed a significant positive relationship (r2 = 0.6333, p < 0.0001), indicating that most of the effects of dead cell were attributed to those of LPS. Many genes related to tolerance against biotic (fungal and bacterial pathogens) and abiotic (cold, drought, and high salinity) stresses were up-regulated, and the most strikingly up-regulated genes were those involved in the jasmonate signaling pathway, and the genes of chalcone synthase isozymes, indicating that PNSB induced defense response against biotic and abiotic stresses via the jasmonate signaling pathway, despite the non-pathogenicity of PNSB.
Collapse
Affiliation(s)
- Ranko Iwai
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| | - Shunta Uchida
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| | - Sayaka Yamaguchi
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| | - Daiki Nagata
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| | - Aoi Koga
- Ciamo Co., Ltd., G-2F Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| | - Shuhei Hayashi
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| | - Shinjiro Yamamoto
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| | - Hitoshi Miyasaka
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| |
Collapse
|
20
|
Mapelli-Brahm P, Gómez-Villegas P, Gonda ML, León-Vaz A, León R, Mildenberger J, Rebours C, Saravia V, Vero S, Vila E, Meléndez-Martínez AJ. Microalgae, Seaweeds and Aquatic Bacteria, Archaea, and Yeasts: Sources of Carotenoids with Potential Antioxidant and Anti-Inflammatory Health-Promoting Actions in the Sustainability Era. Mar Drugs 2023; 21:340. [PMID: 37367666 DOI: 10.3390/md21060340] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023] Open
Abstract
Carotenoids are a large group of health-promoting compounds used in many industrial sectors, such as foods, feeds, pharmaceuticals, cosmetics, nutraceuticals, and colorants. Considering the global population growth and environmental challenges, it is essential to find new sustainable sources of carotenoids beyond those obtained from agriculture. This review focuses on the potential use of marine archaea, bacteria, algae, and yeast as biological factories of carotenoids. A wide variety of carotenoids, including novel ones, were identified in these organisms. The role of carotenoids in marine organisms and their potential health-promoting actions have also been discussed. Marine organisms have a great capacity to synthesize a wide variety of carotenoids, which can be obtained in a renewable manner without depleting natural resources. Thus, it is concluded that they represent a key sustainable source of carotenoids that could help Europe achieve its Green Deal and Recovery Plan. Additionally, the lack of standards, clinical studies, and toxicity analysis reduces the use of marine organisms as sources of traditional and novel carotenoids. Therefore, further research on the processing of marine organisms, the biosynthetic pathways, extraction procedures, and examination of their content is needed to increase carotenoid productivity, document their safety, and decrease costs for their industrial implementation.
Collapse
Affiliation(s)
- Paula Mapelli-Brahm
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Patricia Gómez-Villegas
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence and REMSMA, University of Huelva, 21071 Huelva, Spain
| | - Mariana Lourdes Gonda
- Área Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Gral Flores 2124, Montevideo 11800, Uruguay
| | - Antonio León-Vaz
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence and REMSMA, University of Huelva, 21071 Huelva, Spain
| | - Rosa León
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence and REMSMA, University of Huelva, 21071 Huelva, Spain
| | | | | | - Verónica Saravia
- Departamento de Bioingeniería, Facultad de Ingeniería, Instituto de Ingeniería Química, Universidad de la República, Montevideo 11300, Uruguay
| | - Silvana Vero
- Área Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Gral Flores 2124, Montevideo 11800, Uruguay
| | - Eugenia Vila
- Departamento de Bioingeniería, Facultad de Ingeniería, Instituto de Ingeniería Química, Universidad de la República, Montevideo 11300, Uruguay
| | | |
Collapse
|
21
|
Miyasaka H, Koga A, Maki TA. Recent progress in the use of purple non-sulfur bacteria as probiotics in aquaculture. World J Microbiol Biotechnol 2023; 39:145. [PMID: 37014486 DOI: 10.1007/s11274-023-03592-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023]
Abstract
The use of probiotics in aquaculture is widely recognized as an ecological and cost-effective approach to raising healthy, pathogen-tolerant aquatic animals, including fish and shrimp. In particular for shrimp, probiotics are viewed as a promising countermeasure to the recent severe damage to the shrimp industry by bacterial and viral pathogens. Purple non-sulfur bacteria (PNSB) are Gram-negative, non-pathogenic bacteria with wide application potential in agriculture, wastewater treatment, and bioenergy/biomaterials production. In aquaculture, lactic bacteria and Bacillus are the major probiotic bacteria used, but PNSB, like Rhodopseudomonas and Rhodobacter, are also used. In this review, we summarize the previous work on the use of PNSB in aquaculture, overview the previous studies on the stimulation of innate immunity of shrimp by various probiotic microorganisms, and also share our results in the probiotic performance of Rhodovulum sulfidophilum KKMI01, a marine PNSB, which showed a superior effect in promotion of growth and stimulation of immunity in shrimp at a quite low concentration of 1 × 103 cfu (colony forming unit)/ml in rearing water.
Collapse
Affiliation(s)
- Hitoshi Miyasaka
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto, 860-0082, Japan.
- Ciamo Co. Ltd., G-2F Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto, 860-0082, Japan.
- Matsumoto Institute of Microorganisms Co. Ltd, 2904 Niimura, Matsumoto, Nagano, 390-1241, Japan.
| | - Aoi Koga
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto, 860-0082, Japan
- Ciamo Co. Ltd., G-2F Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto, 860-0082, Japan
- Matsumoto Institute of Microorganisms Co. Ltd, 2904 Niimura, Matsumoto, Nagano, 390-1241, Japan
| | - Taka-Aki Maki
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto, 860-0082, Japan
- Ciamo Co. Ltd., G-2F Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto, 860-0082, Japan
- Matsumoto Institute of Microorganisms Co. Ltd, 2904 Niimura, Matsumoto, Nagano, 390-1241, Japan
| |
Collapse
|
22
|
Miyasaka H. Special Issue “Biotechnological Application of Photosynthetic Bacteria”. Microorganisms 2023; 11:microorganisms11030619. [PMID: 36985193 PMCID: PMC10058890 DOI: 10.3390/microorganisms11030619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
This Special Issue aims to contribute to the current knowledge in the field and promote the practical application of photosynthetic bacteria (PSB) biotechnology [...]
Collapse
Affiliation(s)
- Hitoshi Miyasaka
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| |
Collapse
|
23
|
Battistuzzi M, Cocola L, Claudi R, Pozzer AC, Segalla A, Simionato D, Morosinotto T, Poletto L, La Rocca N. Oxygenic photosynthetic responses of cyanobacteria exposed under an M-dwarf starlight simulator: Implications for exoplanet's habitability. FRONTIERS IN PLANT SCIENCE 2023; 14:1070359. [PMID: 36824196 PMCID: PMC9941696 DOI: 10.3389/fpls.2023.1070359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION The search for life on distant exoplanets is expected to rely on atmospheric biosignatures detection, such as oxygen of biological origin. However, it is not demonstrated how much oxygenic photosynthesis, which on Earth depends on visible light, could work under spectral conditions simulating exoplanets orbiting the Habitable Zone of M-dwarf stars, which have low light emission in the visible and high light emission in the far-red/near-infrared. By utilizing cyanobacteria, the first organisms to evolve oxygenic photosynthesis on our planet, and a starlight simulator capable of accurately reproducing the emission spectrum of an M-dwarf in the range 350-900 nm, we could answer this question. METHODS We performed experiments with the cyanobacterium Chlorogloeopsis fritschii PCC6912, capable of Far-Red Light Photoacclimation (FaRLiP), which allows the strain to harvest far-red in addition to visible light for photosynthesis, and Synechocystis sp. PCC6803, a species unable to perform this photoacclimation, comparing their responses when exposed to three simulated light spectra: M-dwarf, solar and far-red. We analysed growth and photosynthetic acclimation features in terms of pigment composition and photosystems organization. Finally, we determined the oxygen production of the strains directly exposed to the different spectra. RESULTS Both cyanobacteria were shown to grow and photosynthesize similarly under M-dwarf and solar light conditions: Synechocystis sp. by utilizing the few photons in the visible, C. fritschii by harvesting both visible and far-red light, activating the FaRLiP response. DISCUSSION Our results experimentally show that an M-dwarf light spectrum could support a biological oxygen production similar to that in solar light at the tested light intensities, suggesting the possibility to discover such atmospheric biosignatures on those exoplanets if other boundary conditions are met.
Collapse
Affiliation(s)
- Mariano Battistuzzi
- Department of Biology, University of Padua, Padua, Italy
- Center for Space Studies and Activities (CISAS), University of Padua, Padua, Italy
| | - Lorenzo Cocola
- National Council of Research of Italy, Institute for Photonics and Nanotechnologies (CNR-IFN), Padua, Italy
| | - Riccardo Claudi
- National Institute for Astrophysics, Astronomical Observatory of Padua (INAF-OAPD), Padua, Italy
| | - Anna Caterina Pozzer
- Department of Biology, University of Padua, Padua, Italy
- National Institute for Astrophysics, Astronomical Observatory of Padua (INAF-OAPD), Padua, Italy
| | - Anna Segalla
- Department of Biology, University of Padua, Padua, Italy
| | | | - Tomas Morosinotto
- Department of Biology, University of Padua, Padua, Italy
- Center for Space Studies and Activities (CISAS), University of Padua, Padua, Italy
| | - Luca Poletto
- National Council of Research of Italy, Institute for Photonics and Nanotechnologies (CNR-IFN), Padua, Italy
| | - Nicoletta La Rocca
- Department of Biology, University of Padua, Padua, Italy
- Center for Space Studies and Activities (CISAS), University of Padua, Padua, Italy
| |
Collapse
|
24
|
Phylogenomic analysis of a metagenome-assembled genome indicates a new taxon of an anoxygenic phototroph bacterium in the family Chromatiaceae and the proposal of “Candidatus Thioaporhodococcus” gen. nov. Arch Microbiol 2022; 204:688. [DOI: 10.1007/s00203-022-03298-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/28/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
|
25
|
George DM, Ramadoss R, Mackey HR, Vincent AS. Comparative computational study to augment UbiA prenyltransferases inherent in purple photosynthetic bacteria cultured from mangrove microbial mats in Qatar for coenzyme Q 10 biosynthesis. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 36:e00775. [PMID: 36404947 PMCID: PMC9672418 DOI: 10.1016/j.btre.2022.e00775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/31/2022] [Accepted: 11/11/2022] [Indexed: 11/15/2022]
Abstract
Coenzyme Q10 (CoQ10) is a powerful antioxidant with a myriad of applications in healthcare and cosmetic industries. The most effective route of CoQ10 production is microbial biosynthesis. In this study, four CoQ10 biosynthesizing purple photosynthetic bacteria: Rhodobacter blasticus, Rhodovulum adriaticum, Afifella pfennigii and Rhodovulum marinum, were identified using 16S rRNA sequencing of enriched microbial mat samples obtained from Purple Island mangroves (Qatar). The membrane bound enzyme 4-hydroxybenzoate octaprenyltransferase (UbiA) is pivotal for bacterial biosynthesis of CoQ10. The identified bacteria could be inducted as efficient industrial bio-synthesizers of CoQ10 by engineering their UbiA enzymes. Therefore, the mutation sites and substitution residues for potential functional enhancement were determined by comparative computational study. Two mutation sites were identified within the two conserved Asp-rich motifs, and the effect of proposed mutations in substrate binding affinity of the UbiA enzymes was assessed using multiple ligand simultaneous docking (MLSD) studies, as a groundwork for experimental studies.
Collapse
Affiliation(s)
- Drishya M. George
- College of Health and Life Sciences, Hamad bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Ramya Ramadoss
- Biological Sciences, Carnegie Mellon University Qatar, Doha, Qatar
| | - Hamish R. Mackey
- College of Health and Life Sciences, Hamad bin Khalifa University, Qatar Foundation, Doha, Qatar
- Division of Sustainable Development, College of Science and Engineering, Hamad bin Khalifa University, Qatar Foundation, Doha, Qatar
| | | |
Collapse
|
26
|
Iwai R, Uchida S, Yamaguchi S, Sonoda F, Tsunoda K, Nagata H, Nagata D, Koga A, Goto M, Maki TA, Hayashi S, Yamamoto S, Miyasaka H. Effects of Seed Bio-Priming by Purple Non-Sulfur Bacteria (PNSB) on the Root Development of Rice. Microorganisms 2022; 10:2197. [PMID: 36363789 PMCID: PMC9698004 DOI: 10.3390/microorganisms10112197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 07/30/2023] Open
Abstract
The effects of seed bio-priming (seed soaking) with purple non-sulfur bacteria (PNSB) on the grain productivity and root development of rice were examined by a field study and laboratory experiments, respectively. Two PNSB strains, Rhodopseudomonas sp. Tsuru2 and Rhodobacter sp. Tsuru3, isolated from the paddy field of the study site were used for seed bio-priming. For seed bio-priming in the field study, the rice seeds were soaked for 1 day in water containing a 1 × 105 colony forming unit (cfu)/mL of PNSB cells, and the rice grain productivities at the harvest time were 420, 462 and 504 kg/are for the control, strain Tsuru2-primed, and strain Tsuru3-primed seeds, respectively. The effects of seed priming on the root development were examined with cell pot cultivation experiments for 2 weeks. The total root length, root surface area, number of tips and forks were evaluated with WinRhizo, an image analysis system, and strains Tsuru2- and Tsuru3-primed seeds showed better root development than the control seeds. The effects of seed priming with the dead (killed) PNSB cells were also examined, and the seed priming with the dead cells was also effective, indicating that the effects were attributed to some cellular components. We expected the lipopolysaccharide (LPS) of PNSB as the effective component of PNSB and found that seed priming with LPS of Rhodobacter sphaeroides NBRC 12203 (type culture) at the concentrations of 5 ng/mL and 50 ng/mL enhanced the root development.
Collapse
Affiliation(s)
- Ranko Iwai
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| | - Shunta Uchida
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| | - Sayaka Yamaguchi
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| | - Fumika Sonoda
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| | - Kana Tsunoda
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| | - Hiroto Nagata
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| | - Daiki Nagata
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| | - Aoi Koga
- Ciamo Co., Ltd., Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| | - Midori Goto
- Ciamo Co., Ltd., Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| | - Taka-aki Maki
- Matsumoto Institute of Microorganisms Co., Ltd., 2904 Niimura, Matsumoto, Nagano 390-1241, Japan
| | - Shuhei Hayashi
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| | - Shinjiro Yamamoto
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| | - Hitoshi Miyasaka
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| |
Collapse
|
27
|
Annie Modestra J, Matsakas L, Rova U, Christakopoulos P. Prospects and trends in bioelectrochemical systems: Transitioning from CO 2 towards a low-carbon circular bioeconomy. BIORESOURCE TECHNOLOGY 2022; 364:128040. [PMID: 36182019 DOI: 10.1016/j.biortech.2022.128040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Resource scarcity and climate change are the most quested topics in view of environmental sustainability. CO2 sequestration through bioelectrochemical systems is an attractive option for fostering bioeconomy development upon several value-added products generation. This review details the state-of-the-art of bioelectrochemical systems for resource recovery from CO2 along with various biocatalysts capable of utilizing CO2. Two bioprocesses (photo-electrosynthesis and chemolithoelectrosynthesis) were discussed projecting their potential for biobased economy development from CO2. Significance of adopting circular strategies for efficient resource recycling, intensifying product value, integrations/interlinking of multiple process chains for the development of circular bioeconomy were discussed. Existing constrains as well as outlook for near establishment of circular bioeconomy from CO2 is presented by weighing fore-sighted plans with current actions. Need for developing CO2-based circular bioeconomy via innovative business models by analyzing social, technical, environmental and product related aspects are also discussed providing a roadmap of gaps to pursue for attaining practicality.
Collapse
Affiliation(s)
- J Annie Modestra
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 971‑87, Luleå, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 971‑87, Luleå, Sweden.
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 971‑87, Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 971‑87, Luleå, Sweden
| |
Collapse
|
28
|
Villa F, Wu YL, Zerboni A, Cappitelli F. In Living Color: Pigment-Based Microbial Ecology At the Mineral-Air Interface. Bioscience 2022; 72:1156-1175. [PMID: 36451971 PMCID: PMC9699719 DOI: 10.1093/biosci/biac091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Pigment-based color is one of the most important phenotypic traits of biofilms at the mineral-air interface (subaerial biofilms, SABs), because it reflects the physiology of the microbial community. Because color is the hallmark of all SABs, we argue that pigment-based color could convey the mechanisms that drive microbial adaptation and coexistence across different terrestrial environments and link phenotypic traits to community fitness and ecological dynamics. Within this framework, we present the most relevant microbial pigments at the mineral-air interface and discuss some of the evolutionary landscapes that necessitate pigments as adaptive strategies for resource allocation and survivability. We report several pigment features that reflect SAB communities' structure and function, as well as pigment ecology in the context of microbial life-history strategies and coexistence theory. Finally, we conclude the study of pigment-based ecology by presenting its potential application and some of the key challenges in the research.
Collapse
|
29
|
Functional and Seasonal Changes in the Structure of Microbiome Inhabiting Bottom Sediments of a Pond Intended for Ecological King Carp Farming. BIOLOGY 2022; 11:biology11060913. [PMID: 35741434 PMCID: PMC9220171 DOI: 10.3390/biology11060913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Bottom sediments are usually classified as extreme habitats for microorganisms. They are defined as matter deposited on the bottom of water bodies through the sedimentation process. The quality of sediments is extremely important for the good environmental status of water, because they are an integral part of the surface water environment. Microorganisms living in sediments are involved in biogeochemical transformations and play a fundamental role in maintaining water purity, decomposition of organic matter, and primary production. As a rule, studies on bottom sediments focus on monitoring their chemistry and pollution, while little is known about the structure of bacterial communities inhabiting this extreme environment. In this study, Next-Generation Sequencing (NGS) was combined with the Community-Level Physiological Profiling (CLPP) technique to obtain a holistic picture of bacterial biodiversity in the bottom sediments from Cardinal Pond intended for ecological king carp farming. It was evident that the bottom sediments of the studied pond were characterized by a rich microbiota composition, whose structure and activity depended on the season, and the most extensive modifications of the biodiversity and functionality of microorganisms were noted in summer. Abstract The main goal of the study was to determine changes in the bacterial structure in bottom sediments occurring over the seasons of the year and to estimate microbial metabolic activity. Bottom sediments were collected four times in the year (spring, summer, autumn, and winter) from 10 different measurement points in Cardinal Pond (Ślesin, NW Poland). The Next-Generation Sequencing (MiSeq Illumina) and Community-Level Physiological Profiling techniques were used for identification of the bacterial diversity structure and bacterial metabolic and functional activities over the four seasons. It was evident that Proteobacteria, Acidobacteria, and Bacteroidetes were the dominant phyla, while representatives of Betaproteobacteria, Gammaproteobacteria, and Deltaproteobacteria predominated at the class level in the bottom sediments. An impact of the season on biodiversity and metabolic activity was revealed with the emphasis that the environmental conditions in summer modified the studied parameters most strongly. Carboxylic and acetic acids and carbohydrates were metabolized most frequently, whereas aerobic respiration I with the use of cytochrome C was the main pathway used by the microbiome of the studied bottom sediments.
Collapse
|
30
|
Community Vertical Composition of the Laguna Negra Hypersaline Microbial Mat, Puna Region (Argentinean Andes). BIOLOGY 2022; 11:biology11060831. [PMID: 35741352 PMCID: PMC9220024 DOI: 10.3390/biology11060831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022]
Abstract
The Altiplano-Puna region is a high-altitude plateau in South America characterized by extreme conditions, including the highest UV incidence on Earth. The Laguna Negra is a hypersaline lake located in the Catamarca Province, northwestern Argentina, where stromatolites and other microbialites are found, and where life is mostly restricted to microbial mats. In this study, a particular microbial mat that covers the shore of the lake was explored, to unravel its layer-by-layer vertical structure in response to the environmental stressors therein. Microbial community composition was assessed by high-throughput 16S rRNA gene sequencing and pigment content analyses, complemented with microscopy tools to characterize its spatial arrangement within the mat. The top layer of the mat has a remarkable UV-tolerance feature, characterized by the presence of Deinococcus-Thermus and deinoxanthin, which might reflect a shielding strategy to cope with high UV radiation. Chloroflexi and Deltaproteobacteria were abundant in the second and third underlying layers, respectively. The bottom layer harbors copious Halanaerobiaeota. Subspherical aggregates composed of calcite, extracellular polymeric substances, abundant diatoms, and other microorganisms were observed all along the mat as the main structural component. This detailed study provides insights into the strategies of microbial communities to thrive under high UV radiation and hypersalinity in high-altitude lakes in the Altiplano-Puna region.
Collapse
|
31
|
Liu J, Xiao L, Xie Y, Guan F, Cai J. The stability of carotenoids from a marine photosynthetic bacterium
Ectothiorhodospira shaposhnikovii
P2. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Jie Liu
- College of Chemical Engineering and Materials Science Tianjin University of Science & Technology Key Laboratory of Brine Chemical Engineering and Resource Eco‐utilization Tianjin Tianjin China
| | - Likun Xiao
- College of Chemical Engineering and Materials Science Tianjin University of Science & Technology Key Laboratory of Brine Chemical Engineering and Resource Eco‐utilization Tianjin Tianjin China
| | - Yujie Xie
- College of Chemical Engineering and Materials Science Tianjin University of Science & Technology Key Laboratory of Brine Chemical Engineering and Resource Eco‐utilization Tianjin Tianjin China
| | - Fachun Guan
- Jilin Academy of Agricultural Sciences Changchun China
| | - Jinling Cai
- College of Chemical Engineering and Materials Science Tianjin University of Science & Technology Key Laboratory of Brine Chemical Engineering and Resource Eco‐utilization Tianjin Tianjin China
| |
Collapse
|
32
|
Koga A, Yamasaki T, Hayashi S, Yamamoto S, Miyasaka H. Isolation of purple nonsulfur bacteria from the digestive tract of ayu (Plecoglossus altivelis). Biosci Biotechnol Biochem 2022; 86:407-412. [PMID: 35020785 DOI: 10.1093/bbb/zbac001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/04/2022] [Indexed: 11/14/2022]
Abstract
Purple nonsulfur bacteria (PNSB) reportedly have probiotic effects in fish, but whether they are indigenous in the digestive tract of fish is a question that requires answering. We attempted to isolate PNSB from the digestive tract of ayu (Plecoglossus altivelis) from the Kuma River (Kumamoto, Japan) and successfully isolated 12 PNSB strains. All the isolated PNSB belonged to the genus Rhodopseudomonas. Five Rhodopseudomonas strains were also isolated from the soil samples collected along the Kuma River. The phylogenetic tree based on the partial sequence of pufLM gene indicated that the PNSB from ayu and soil were similar. The effects of NaCl concentration in growth medium on growth were also compared between the PNSB from ayu and soil. The PNSB from ayu showed a better growth performance at a higher NaCl concentration, suggesting that the intestinal tract of ayu, a euryhaline fish, might provide suitable environment for halophilic microorganisms.
Collapse
Affiliation(s)
- Aoi Koga
- Department of Applied Life Science, Sojo University, Nishi-ku, Kumamoto, Kumamoto, Japan
| | - Takumi Yamasaki
- Department of Applied Life Science, Sojo University, Nishi-ku, Kumamoto, Kumamoto, Japan
| | - Shuhei Hayashi
- Department of Applied Life Science, Sojo University, Nishi-ku, Kumamoto, Kumamoto, Japan
| | - Shinjiro Yamamoto
- Department of Applied Life Science, Sojo University, Nishi-ku, Kumamoto, Kumamoto, Japan
| | - Hitoshi Miyasaka
- Department of Applied Life Science, Sojo University, Nishi-ku, Kumamoto, Kumamoto, Japan
| |
Collapse
|
33
|
García JL, Galán B. Integrating greenhouse gas capture and C1 biotechnology: a key challenge for circular economy. Microb Biotechnol 2021; 15:228-239. [PMID: 34905295 PMCID: PMC8719819 DOI: 10.1111/1751-7915.13991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/02/2022] Open
Affiliation(s)
- José L García
- Environmental Biotechnology Laboratory, Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas (CIB-MS, CSIC), Madrid, Spain
| | - Beatriz Galán
- Environmental Biotechnology Laboratory, Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas (CIB-MS, CSIC), Madrid, Spain
| |
Collapse
|
34
|
Osmanoglu Ö, Khaled AlSeiari M, AlKhoori HA, Shams S, Bencurova E, Dandekar T, Naseem M. Topological Analysis of the Carbon-Concentrating CETCH Cycle and a Photorespiratory Bypass Reveals Boosted CO 2-Sequestration by Plants. Front Bioeng Biotechnol 2021; 9:708417. [PMID: 34790651 PMCID: PMC8591258 DOI: 10.3389/fbioe.2021.708417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/25/2021] [Indexed: 01/11/2023] Open
Abstract
Synthetically designed alternative photorespiratory pathways increase the biomass of tobacco and rice plants. Likewise, some in planta-tested synthetic carbon-concentrating cycles (CCCs) hold promise to increase plant biomass while diminishing atmospheric carbon dioxide burden. Taking these individual contributions into account, we hypothesize that the integration of bypasses and CCCs will further increase plant productivity. To test this in silico, we reconstructed a metabolic model by integrating photorespiration and photosynthesis with the synthetically designed alternative pathway 3 (AP3) enzymes and transporters. We calculated fluxes of the native plant system and those of AP3 combined with the inhibition of the glycolate/glycerate transporter by using the YANAsquare package. The activity values corresponding to each enzyme in photosynthesis, photorespiration, and for synthetically designed alternative pathways were estimated. Next, we modeled the effect of the crotonyl-CoA/ethylmalonyl-CoA/hydroxybutyryl-CoA cycle (CETCH), which is a set of natural and synthetically designed enzymes that fix CO₂ manifold more than the native Calvin-Benson-Bassham (CBB) cycle. We compared estimated fluxes across various pathways in the native model and under an introduced CETCH cycle. Moreover, we combined CETCH and AP3-w/plgg1RNAi, and calculated the fluxes. We anticipate higher carbon dioxide-harvesting potential in plants with an AP3 bypass and CETCH-AP3 combination. We discuss the in vivo implementation of these strategies for the improvement of C3 plants and in natural high carbon harvesters.
Collapse
Affiliation(s)
- Özge Osmanoglu
- Department of Bioinformatics, Functional Genomics and Systems Biology Group, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Mariam Khaled AlSeiari
- College of Natural and Health Sciences, Department of Life and Environmental Sciences, Zayed University, Abu Dhabi, UAE
| | - Hasa Abduljaleel AlKhoori
- College of Natural and Health Sciences, Department of Life and Environmental Sciences, Zayed University, Abu Dhabi, UAE
| | - Shabana Shams
- Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Elena Bencurova
- Department of Bioinformatics, Functional Genomics and Systems Biology Group, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Functional Genomics and Systems Biology Group, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Muhammad Naseem
- Department of Bioinformatics, Functional Genomics and Systems Biology Group, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
- College of Natural and Health Sciences, Department of Life and Environmental Sciences, Zayed University, Abu Dhabi, UAE
| |
Collapse
|