1
|
Metwally RA, El-Sersy NA, Sikaily AE, Sabry SA, Ghozlan HA. Vitamin K (Menaquinone) from marine Kocuria sp. RAM1: optimization, characterization and potential in vitro biological activities. Microb Cell Fact 2025; 24:132. [PMID: 40483419 PMCID: PMC12145650 DOI: 10.1186/s12934-025-02751-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Accepted: 05/20/2025] [Indexed: 06/11/2025] Open
Abstract
BACKGROUND Menaquinone (MK), which is also known as vitamin K2, is a kind of lipoquinone that, unlike humans, is biosynthesized in bacteria through a series of steps as a necessary component of their respiratory chain for electron transport among various components of the bacterial cell membrane. MKs are receiving increasing attention as they play several essential biological roles in humans. RESULTS In this study, MK was obtained from Kocuria sp. RAM1, characterized using UV absorbance, and validated using nuclear magnetic resonance spectroscopy (NMR) and liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS). The chemical characterization revealed a total of six MK analogues that were identified and confirmed as MK-1, MK-3, MK-5 (H2), MK-7 (H6), MK-8 (H2), and MK-9. Subsequent to the execution of a significant optimization model, a total KMs of 394.69 µg/ml was obtained, with the MK-1 analog being the dominant one. The antibacterial, anti-inflammatory, antioxidant, anticancer, antidiabetic, and wound-healing activities of MKs were evaluated in vitro. As a result, we discovered that MKs have promising findings on the tested in vitro activities. CONCLUSIONS Our study was made to evaluate MKs obtained from the Red Sea Kocuria sp. RAM1 to emphasize their significant role in different biological applications. Therefore, from a therapeutic and medicinal perspective, the extracted MKs are interesting for additional in vivo studies.
Collapse
Affiliation(s)
- Rasha A Metwally
- Marine Microbiology Lab, National Institute of Oceanography and Fisheries, NIOF, Alexandria, Egypt.
| | - Nermeen A El-Sersy
- Marine Microbiology Lab, National Institute of Oceanography and Fisheries, NIOF, Alexandria, Egypt
| | - Amany El Sikaily
- Marine Pollution Lab, National Institute of Oceanography and Fisheries, NIOF, Alexandria, Egypt
| | - Soraya A Sabry
- Botany & Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Hanan A Ghozlan
- Botany & Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
2
|
Aboul-Ella H, Mosallam T, Samir O, Ali A, Qasim A, Mahmoud HE, Samir A. Emergence of Rhodotorula mucilaginosa among pet animals: a possible public health risk on the move. BMC Microbiol 2025; 25:273. [PMID: 40329162 PMCID: PMC12056995 DOI: 10.1186/s12866-025-03894-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/14/2025] [Indexed: 05/08/2025] Open
Abstract
Rhodotorulae are environmentally ubiquitous yeasts that were originally considered non-pathogenic. However, over the last fifty years, Rhodotorula mucilaginosa (R. mucilaginosa) has established itself as an emerging opportunistic pathogen incriminated in several systemic and localized infections in humans and animals. Most of the rhodotorulosis cases were linked directly or indirectly to an immunocompromising event in the affected cases. Nevertheless, recently, a few non-immunocompromised cases were reported. In the current study, performed throughout the period from April/2023 to April/2024, 450 samples were collected from pet animals and investigated for the existence and coexistence of Rhodotorula spp. in different clinically diagnosed infectious cases. 173 (38.5%) samples showed positive direct microscopic slides of different sizes of Gram-positive budding yeast cells, 21 (4.7%). Rhodotorula isolates mixed with other yeasts and/or bacterial pathogens were recovered from nasal passages and ear canal swabs collected from dogs and cats suffering from nasal affection and otitis externa. Laboratory investigations were based on sample collection, microscopic examination, primary isolation and identification, biochemical and post-culturing characterization, antifungal susceptibility testing, VITEK 2 Compact Identification System, DNA extraction, PCR amplification, sequencing, and phylogenetic analysis. Moreover, antifungal susceptibility testing based on the standard broth microdilution test was applied to the recovered Rhodotorula isolates. In conclusion, the present findings spotlighted a prospective insight into the role of the emergence of R. mucilaginosa among pet animals and its possible public health concerns. Clinical trial number: Not Applicable.
Collapse
Affiliation(s)
- Hassan Aboul-Ella
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Tarek Mosallam
- Animal Reproduction Research Institute, Haram, Giza, Egypt
| | - Ojena Samir
- LeptoVet Laboratory for Veterinary Diagnostic Services, Garden City, Cairo, Egypt
| | - Aisha Ali
- LeptoVet Laboratory for Veterinary Diagnostic Services, Garden City, Cairo, Egypt
| | - Arwa Qasim
- LeptoVet Laboratory for Veterinary Diagnostic Services, Garden City, Cairo, Egypt
| | - Hossam Eldin Mahmoud
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ahmed Samir
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
3
|
de Lima JGO, Veríssimo NVP, de Azevedo Lima C, Picheli FP, de Paula AV, Santos-Ebinuma VDC. Improvement of torularhodin production by Rhodotorula glutinis through the stimulation of physicochemical stress and application of the bioproduct as an additive in the food industry. Bioprocess Biosyst Eng 2025; 48:543-563. [PMID: 40021520 DOI: 10.1007/s00449-024-03126-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 12/30/2024] [Indexed: 03/03/2025]
Abstract
Carotenoids are pigments responsible for the red-orange colorations in valuable food products, and they can be produced via biotechnological means through microorganisms. Beyond their role as natural colorants, some carotenoids offer significant health benefits due to their antioxidant properties, making them valuable nutritional additives in the food industry. However, obtaining these compounds from natural sources with high quantity and purity poses challenges which reduces its market share when produced through a biotechnological route. This study proposes utilizing nutritional and physical stress to enhance carotenoid production, specifically torularhodin, using the yeast Rhodotorula glutinis CCT-2186. A Design of Experiments approach identified malt extract as the most suitable nitrogen source for maximizing carotenoid production. Furthermore, introducing a surfactant (Tween 80) in the culture medium, and extending the cultivation time to 96 h, led to an increase in torularhodin production, reaching a notable 2.097 mg/mL (377,68% more when compared to the initial condition) under the best condition [(%w/v): dextrose (1), KH2PO4 (0.052), MgSO4.7H2O (0.052) and NH4NO3 (0.4), malt extract with a pH of 5.0/ 96 h/30 °C]. Lastly, to demonstrate the viability of utilizing the carotenoid extract as a food colorant, it was applied in edible gelatin. These findings highlight the critical role of nutritional, physical, and mechanical stresses in optimizing torularhodin production, particularly the conversion of γ-carotene to torularhodin by R. glutinis.
Collapse
Affiliation(s)
- Júlio Gabriel Oliveira de Lima
- School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, São Paulo State University (UNESP), Câmpus de Araraquara Rodovia Araraquara Jaú, Km 01 - s/n - Campos Ville, Araraquara, SP, CEP 14800-903, Brazil
| | - Nathalia Vieira Porphirio Veríssimo
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Pharmaceutical Sciences, São Paulo University (USP), Ribeirão Preto, Brazil
| | - Caio de Azevedo Lima
- School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, São Paulo State University (UNESP), Câmpus de Araraquara Rodovia Araraquara Jaú, Km 01 - s/n - Campos Ville, Araraquara, SP, CEP 14800-903, Brazil
| | - Flávio Pereira Picheli
- School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, São Paulo State University (UNESP), Câmpus de Araraquara Rodovia Araraquara Jaú, Km 01 - s/n - Campos Ville, Araraquara, SP, CEP 14800-903, Brazil
| | - Ariela Veloso de Paula
- School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, São Paulo State University (UNESP), Câmpus de Araraquara Rodovia Araraquara Jaú, Km 01 - s/n - Campos Ville, Araraquara, SP, CEP 14800-903, Brazil
| | - Valéria de Carvalho Santos-Ebinuma
- School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, São Paulo State University (UNESP), Câmpus de Araraquara Rodovia Araraquara Jaú, Km 01 - s/n - Campos Ville, Araraquara, SP, CEP 14800-903, Brazil.
| |
Collapse
|
4
|
Arruda GL, Raymundo MTFR, Cruz-Santos MM, Shibukawa VP, Jofre FM, Prado CA, da Silva SS, Mussatto SI, Santos JC. Lignocellulosic materials valorization in second generation biorefineries: an opportunity to produce fungal biopigments. Crit Rev Biotechnol 2025; 45:393-412. [PMID: 38817002 DOI: 10.1080/07388551.2024.2349581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/29/2024] [Accepted: 03/13/2024] [Indexed: 06/01/2024]
Abstract
Second generation biorefineries play an important role in the production of renewable energy and fuels, utilizing forest and agro-industrial residues and by-products as raw materials. The integration of novel bioproducts, such as: xylitol, β-carotene, xylooligosaccharides, and biopigments into the biorefinery's portfolio can offer economic benefits in the valorization of lignocellulosic materials, particularly cellulosic and hemicellulosic fractions. Fungal biopigments, known for their additional antioxidant and antimicrobial properties, are appealing to consumers and can have applications in various industrial sectors, including food and pharmaceuticals. The use of lignocellulosic materials as carbon and nutrient sources for the growth medium helps to reduce production costs, increasing the competitiveness of fungal biopigments in the market. In addition, the implementation of biopigment production in biorefineries allows the utilization of underutilized fractions, such as hemicellulose, for value-added bioproducts. This study deals with the potential of fungal biopigments production in second generation biorefineries in order to diversify the produced biomolecules together with energy generation. A comprehensive and critical review of the recent literature on this topic has been conducted, covering the major possible raw materials, general aspects of second generation biorefineries, the fungal biopigments and their potential for incorporation into biorefineries.
Collapse
Affiliation(s)
- Gabriel L Arruda
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, Brazil
| | | | - Mónica M Cruz-Santos
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, Brazil
| | - Vinícius P Shibukawa
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, Brazil
| | - Fanny M Jofre
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, Brazil
| | - Carina A Prado
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, Brazil
| | - Silvio S da Silva
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, Brazil
| | - Solange I Mussatto
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Júlio C Santos
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, Brazil
| |
Collapse
|
5
|
Mihalyi S, Milani I, Romano D, Donzella S, Sumetzberger-Hasinger M, Quartinello F, Guebitz GM. Upcycling of Enzymatically Recovered Amino Acids from Textile Waste Blends: Approaches for Production of Valuable Second-Generation Bioproducts. ACS SUSTAINABLE RESOURCE MANAGEMENT 2025; 2:157-165. [PMID: 39877198 PMCID: PMC11770743 DOI: 10.1021/acssusresmgt.4c00404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/28/2024] [Accepted: 12/23/2024] [Indexed: 01/31/2025]
Abstract
Tremendous quantities of textile waste generated and primarily landfilled annually represent a huge risk of contaminating the environment, together with loss of valuable resources. Especially, blended fabrics further pose a challenge for recycling and valorization strategies, while enzymatic hydrolysis offers a highly specific and environmentally friendly solution. In this study, we demonstrate that proteases specifically hydrolyze the wool components in blends with polyester, allowing recovery of pure polyester fibers as well as amino acids and peptides as platform molecules for further valorization. Recovered amino acids and peptides were successfully used as a nitrogen source for cultivation of Chlorella vulgaris and Rhodotorula mucilaginosa for the production of valuable biomolecules including pigments and lipids. Here, 11.3 mg/gCDW chlorophyll and 47% lipid content were obtained from algal biomass, while 1.1 mg/gCDW carotenoids and 35% lipids content were reached from the yeast grown on wool hydrolysate as the sole nitrogen source. These could be applied as natural dyes for textile applications or as biofuels to replace toxic synthetic compounds and fossil resources, respectively. The presented concept demonstrates feasibility of enzymatic recovery and microbial valorization of components of blended textile waste to support the development toward a circular bioeconomy.
Collapse
Affiliation(s)
- Sophia Mihalyi
- Department
of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, BOKU University, Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria
| | - Irene Milani
- Department
of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, BOKU University, Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria
| | - Diego Romano
- Department
of Food, Environmental, Nutritional Sciences (DeFENS), Università degli Studi di Milano, via Celoria 2, 20133 Milan, Italy
| | - Silvia Donzella
- Department
of Food, Environmental, Nutritional Sciences (DeFENS), Università degli Studi di Milano, via Celoria 2, 20133 Milan, Italy
| | - Marion Sumetzberger-Hasinger
- Department
of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, BOKU University, Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria
| | - Felice Quartinello
- Department
of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, BOKU University, Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria
- acib
GmbH, Konrad-Lorenz-Strasse
20, 3430 Tulln an
de rDonau, Austria
| | - Georg M. Guebitz
- Department
of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, BOKU University, Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria
| |
Collapse
|
6
|
Guo S, Li Y, Zhu B, Zhang Q, Yang Z, Jia Y, Zhou Q, Zhang Z, Li D. Introducing CCD1 into isolated Rhodotorula strain enhances flavor production and improves cigar fermentation. Front Bioeng Biotechnol 2024; 12:1510075. [PMID: 39691208 PMCID: PMC11650503 DOI: 10.3389/fbioe.2024.1510075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/22/2024] [Indexed: 12/19/2024] Open
Abstract
Introduction The fermentation process plays an important role in enhancing the quality of cigar tobacco leaves. Through fermentation, microbial metabolism can degrade aromatic precursors and macromolecules, which increases the content of aroma compounds and reduces irritancy of tobacco leaves. Methods To further enhance the fermentation effect of cigar tobacco leaves, a Rhodotorula strain (Rh3), capable of producing carotenoids and improving fermentation quality, was isolated from cigar tobacco leaves. Subsequent genetic engineering techniques introduced the carotenoid cleavage dioxygenase 1 (CCD1) gene into the isolated Rh3. Results The modified Rh3 exhibits a significant increase in carotenoid degradation products compared with the original Rh3 in culture medium (from 0.29 μg/mg to 15 μg/mg). Subsequent cigar tobacco leaf fermentation experiments revealed that the modified Rh3 produced 65.9% more carotenoid degradation products compared to the control group, outperforming the original strain, which achieved a 41.4% increase. Furthermore, the modified strain preserves its ability to improve the intrinsic chemical composition of cigar tobacco leaves. Discussion We show here that modified Rh3 can increase the content of carotenoid degradation products, thereby enhancing the fermentation effect of cigar tobacco leaves. This study presents a beneficial exploration to improve the quality of cigar tobacco leaves for future use and offers a promising strategy for producing flavor compounds from discarded tobacco leaves.
Collapse
Affiliation(s)
- Sida Guo
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, Sichuan, China
- Industry Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, China Tobacco Sichuan Industrial Co., Ltd., Shifang, Sichuan, China
| | - Yasen Li
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, Sichuan, China
- Industry Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, China Tobacco Sichuan Industrial Co., Ltd., Shifang, Sichuan, China
| | - Beibei Zhu
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, Sichuan, China
| | - Qianying Zhang
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, Sichuan, China
| | - Zhen Yang
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, Sichuan, China
- Industry Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, China Tobacco Sichuan Industrial Co., Ltd., Shifang, Sichuan, China
| | - Yun Jia
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, Sichuan, China
| | - Quanwei Zhou
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, Sichuan, China
- Industry Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, China Tobacco Sichuan Industrial Co., Ltd., Shifang, Sichuan, China
| | - Zhengcheng Zhang
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, Sichuan, China
- Industry Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, China Tobacco Sichuan Industrial Co., Ltd., Shifang, Sichuan, China
| | - Dongliang Li
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, Sichuan, China
| |
Collapse
|
7
|
Striganavičiūtė G, Vaitiekūnaitė D, Šilanskienė M, Sirgedaitė‐Šėžienė V. Rooting for Success: The Role of Microorganisms in Promoting Growth and Resilience in Black Alder Seedlings. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70060. [PMID: 39641388 PMCID: PMC11621971 DOI: 10.1111/1758-2229.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/06/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) pose a global environmental risk, impacting human health. Enhancing phytoremediation with microbial-plant interactions could help mitigate these pollutants. However, tree responses to PAHs are unclear, necessitating controlled studies before field experiments. This study examined how PAH-degrading microbes affect black alder (Alnus glutinosa L.) seedlings grown hydroponically, hypothesizing that specific microbes improve growth and stress tolerance. Two half-sib families (41-65-7 K, 13-99-1 K) were inoculated with Rhodotorula sphaerocarpa (R.s.), Pseudomonas putida (P.p.), and Sphingobium yanoikuyae (S.y.). Results showed family-dependent and microbe-specific effects, with family 41-65-7 K showing enhanced shoot growth (threefold increase by R.s.) and higher carotenoid levels. Antioxidant enzyme activities varied: R.s. elevated superoxide dismutase activity by 4.8-fold in 13-99-1 K, while catalase activity increased but decreased in 41-65-7 K. Principal component analysis revealed distinct phytochemical clustering based on microbial treatment, highlighting genotype-specific modulations. Each microorganism had unique plant growth-promoting traits, with P.p. producing the most phytohormone and S.y. fixing nitrogen. These findings support targeted microbial inoculation for effective remediation of PAH-contaminated environments.
Collapse
Affiliation(s)
- Greta Striganavičiūtė
- Laboratory of Forest Plant BiotechnologyInstitute of Forestry, Lithuanian Research Centre for Agriculture and ForestryKaunasLithuania
| | - Dorotėja Vaitiekūnaitė
- Laboratory of Forest Plant BiotechnologyInstitute of Forestry, Lithuanian Research Centre for Agriculture and ForestryKaunasLithuania
| | - Milana Šilanskienė
- Laboratory of Forest Plant BiotechnologyInstitute of Forestry, Lithuanian Research Centre for Agriculture and ForestryKaunasLithuania
| | - Vaida Sirgedaitė‐Šėžienė
- Laboratory of Forest Plant BiotechnologyInstitute of Forestry, Lithuanian Research Centre for Agriculture and ForestryKaunasLithuania
| |
Collapse
|
8
|
Ambrico A, Larocca V, Trupo M, Martino M, Magarelli RA, Spagnoletta A, Balducchi R. A New Method for Selective Extraction of Torularhodin from Red Yeast Using CO 2-SFE Technique. Appl Biochem Biotechnol 2024; 196:6473-6491. [PMID: 38386146 PMCID: PMC11604813 DOI: 10.1007/s12010-024-04884-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
Torularhodin is a dark pink colored carotenoid belonging to the xanthophylls group that can be biologically synthesized by red yeasts, especially by Rhodotorula and Sporobolomyces genera. The growing interest in this molecule is due to its biological activities such as antioxidant, anticholesterolemic, anti-inflammatory, antimicrobial, and anticancer. To satisfy potential commercial markets, numerous methods have been proposed to develop a cost-effective and environmentally friendly downstream process for the purification of torularhodin. However, obtaining high purity products without resorting to the use of toxic solvents, which can leave residues in the final preparations, remains a major challenge. In this context, the present study aimed to develop a new efficient method for the isolation of torularhodin from the red yeast Rhodotorula strain ELP2022 by applying the extraction technique with supercritical CO2 (CO2-SFE) in two sequential steps. In particular, in the first step, the dried lysed biomass of yeast was subjected to the action of CO2 in supercritical conditions (CO2SC) as sole solvent for extraction of apolar carotenoids. In the second step, the residual biomass was subjected to the action of CO2SC using ethanol as a polar co-solvent for the extraction of torularhodin. Both steps were carried out at different operating parameters of temperature (40 and 60 °C) and pressure (from 300 to 500 bar) with a constant CO2 flow of 6 L min-1. Regardless of the operating conditions used, this method allowed to obtain an orange-colored oily extract and a red-colored extract after the first and second step, respectively. In all trials, torularhodin represented no less than 95.2% ± 0.70 of the total carotenoids in the red extracts obtained from the second step. In particular, the best results were obtained by performing both steps at 40 °C and 300 bar, and the maximum percentage of torularhodin achieved was 97.9% ± 0.88. Since there are no data on the selective recovery of torularhodin from red yeast using the SFE technique, this study may be a good starting point to optimize and support the development of industrial production of torularhodin by microbial synthesis. This new method can significantly reduce the environmental impact of torularhodin recovery and can be considered an innovation for which an Italian patent application has been filed. In a circular bioeconomy approach, this method will be validated up to a pilot scale, culturing the strain Rhodotorula spp. ELP2022 on low-cost media derived from agri-food wastes.
Collapse
Affiliation(s)
- Alfredo Ambrico
- Department for Sustainability, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Trisaia Research Center, 75026, Rotondella, Italy
| | - Vincenzo Larocca
- Department for Sustainability, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Trisaia Research Center, 75026, Rotondella, Italy
| | - Mario Trupo
- Department for Sustainability, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Trisaia Research Center, 75026, Rotondella, Italy.
| | - Maria Martino
- Department for Sustainability, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Trisaia Research Center, 75026, Rotondella, Italy
| | - Rosaria Alessandra Magarelli
- Department for Sustainability, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Trisaia Research Center, 75026, Rotondella, Italy
| | - Anna Spagnoletta
- Department for Sustainability, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Trisaia Research Center, 75026, Rotondella, Italy
| | - Roberto Balducchi
- Department for Sustainability, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Trisaia Research Center, 75026, Rotondella, Italy
| |
Collapse
|
9
|
Awadeen NA, Eltarahony M, Zaki S, Yousef A, El-Assar S, El-Shall H. Fungal carbonatogenesis process mediates zinc and chromium removal via statistically optimized carbonic anhydrase enzyme. Microb Cell Fact 2024; 23:236. [PMID: 39192338 DOI: 10.1186/s12934-024-02499-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
INTRODUCTION With rapid elevation in population, urbanization and industrialization, the environment is exposed to uncontrolled discharge of effluents filled with broad-spectrum toxicity, persistence and long-distance transmission anthropogenic compounds, among them heavy metals. That put our ecosystem on the verge or at a stake of drastic ecological deterioration, which eventually adversely influence on public health. Therefore, this study employed marine fungal strain Rhodotorula sp. MZ312369 for Zn2+ and Cr6+ remediation using the promising calcium carbonate (CaCO3) bioprecipitation technique, for the first time. RESULTS Initially, Plackett-Burman design followed by central composite design were applied to optimize carbonic anhydrase enzyme (CA), which succeeded in enhancing its activity to 154 U/mL with 1.8-fold increase comparing to the basal conditions. The potentiality of our biofactory in remediating Zn2+ (50 ppm) and Cr6+ (400 ppm) was monitored through dynamic study of several parameters including microbial count, CA activity, CaCO3 weight, pH fluctuation, changing the soluble concentrations of Ca2+ along with Zn2+ and Cr6+. The results revealed that 9.23 × 107 ± 2.1 × 106 CFU/mL and 10.88 × 107 ± 2.5 × 106 CFU/mL of cells exhibited their maximum CA activity by 124.84 ± 1.24 and 140 ± 2.5 U/mL at 132 h for Zn2+ and Cr6+, respectively. Simultaneously, with pH increase to 9.5 ± 0.2, a complete removal for both metals was observed at 168 h; Ca2+ removal percentages recorded 78.99% and 85.06% for Zn2+ and Cr6+ remediating experiments, respectively. Further, the identity, elemental composition, functional structure and morphology of bioremediated precipitates were also examined via mineralogical analysis. EDX pattern showed the typical signals of C, O and Ca accompanying with Zn2+ and Cr6+ peaks. SEM micrographs depicted spindle, spherical and cubic shape bioliths with size range of 1.3 ± 0.5-23.7 ± 3.1 µm. Meanwhile, XRD difractigrams unveiled the prevalence of vaterite phase in remediated samples. Besides, FTIR profiles emphasized the presence of vaterite spectral peaks along with metals wavenumbers. CONCLUSION CA enzyme mediated Zn2+ and Cr6+ immobilization and encapsulation inside potent vaterite trap through microbial biomineralization process, which deemed as surrogate ecofriendly solution to mitigate heavy metals toxicity and restrict their mobility in soil and wastewater.
Collapse
Affiliation(s)
- Naira A Awadeen
- Microbiology Department, Faculty of Dentistry, Pharos University, Alexandria, Egypt
| | - Marwa Eltarahony
- Evironmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt.
| | - Sahar Zaki
- Evironmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt.
| | - Amany Yousef
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Samy El-Assar
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Hadeel El-Shall
- Evironmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt
| |
Collapse
|
10
|
Kot AM, Sęk W, Kieliszek M, Błażejak S, Pobiega K, Brzezińska R. Diversity of Red Yeasts in Various Regions and Environments of Poland and Biotechnological Potential of the Isolated Strains. Appl Biochem Biotechnol 2024; 196:3274-3316. [PMID: 37646889 PMCID: PMC11166788 DOI: 10.1007/s12010-023-04705-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
Due to the growing demand for natural carotenoids, researchers have been searching for strains that are capable of efficient synthesis of these compounds. This study tested 114 red yeast strains collected from various natural environments and food specimens in Poland. The strains were isolated by their ability to produce red or yellow pigments in rich nutrient media. According to potential industrial significance of the carotenoids, both their total production and share of individual carotenoids (β-carotene, γ-carotene, torulene, and torularhodin) were analyzed. The total content of carotenoid pigments in the yeast dry matter ranged from 13.88 to 406.50 µg/g, and the percentages of individual carotenoids highly varied among the strains. Most of the yeast isolates synthesized torulene at the highest amount. Among the studied strains, isolates with a total carotenoid content in biomass greater than 200 µg/g and those containing more than 60% torularhodin were selected for identification (48 strains). The identified strains belonged to six genera: Rhodotorula, Sporidiobolus, Sporobolomyces, Buckleyzyma, Cystofilobasidium, and Erythrobasidium. The largest number of isolates belonged to Rhodotorula babjevae (18), Rhodotorula mucilaginosa (7), Sporidiobolus pararoseus (4), and Rhodotorula glutinis (4).
Collapse
Affiliation(s)
- Anna M Kot
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776, Warsaw, Poland.
| | - Wioletta Sęk
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Stanisław Błażejak
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Katarzyna Pobiega
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Rita Brzezińska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776, Warsaw, Poland
| |
Collapse
|
11
|
Ochoa-Viñals N, Alonso-Estrada D, Faife-Pérez E, Chen Z, Michelena-Alvarez G, Martínez-Hernández JL, García-Cruz A, Ilina A. β-Carotene production from sugarcane molasses by a newly isolated Rhodotorula toruloides L/24-26-1. Arch Microbiol 2024; 206:245. [PMID: 38702537 DOI: 10.1007/s00203-024-03973-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
Production of carotenoids by yeast fermentation is an advantaged technology due to its easy scaling and safety. Nevertheless, carotenoid production needs an economic culture medium and other efficient yeast stains. The study aims to isolate and identify a yeast strain capable of producing carotenoids using a cost-effective substrate. A new strain was identified as Rhodotorula toruloides L/24-26-1, which can produce carotenoids at different pretreated and unpretreated sugarcane molasses concentrations (40 and 80 g/L). The highest biomass concentration (18.6 ± 0.6 g/L) was reached in the culture using 80 g/L of hydrolyzed molasses. On the other hand, the carotenoid accumulation reached the maximum value using pretreated molasses at 40 g/L (715.4 ± 15.1 µg/g d.w). In this case, the β-carotene was 1.5 times higher than that on the control medium. The yeast growth in molasses was not correlated with carotenoid production. The most outstanding production of The DPPH, ABTS, and FRAP tests demonstrated the antioxidant activity of the obtained carotenogenic extracts. This research demonstrated the R. toruloides L/24-26-1 strain biotechnological potential for carotenoid compounds. The yeast produces carotenoids with antioxidant activity in an inexpensive medium, such as sulfuric acid pretreated and unpretreated molasses.
Collapse
Affiliation(s)
- Nayra Ochoa-Viñals
- Nanobioscience Group, Chemical Science School of the Autonomous University of Coahuila, Blvd. V. Carranza E Ing. José Cárdenas V., Col. República, Saltillo, CP, 25280, Coahuila, México
| | - Dania Alonso-Estrada
- Nanobioscience Group, Chemical Science School of the Autonomous University of Coahuila, Blvd. V. Carranza E Ing. José Cárdenas V., Col. República, Saltillo, CP, 25280, Coahuila, México
| | - Evelyn Faife-Pérez
- Cuban Institute for Research On Sugarcane Derivatives (ICIDCA), Vía Blanca 804 and Carretera Central, 11000, Havana, CP, Cuba
| | - Zhen Chen
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Georgina Michelena-Alvarez
- Cuban Institute for Research On Sugarcane Derivatives (ICIDCA), Vía Blanca 804 and Carretera Central, 11000, Havana, CP, Cuba
| | - José Luis Martínez-Hernández
- Nanobioscience Group, Chemical Science School of the Autonomous University of Coahuila, Blvd. V. Carranza E Ing. José Cárdenas V., Col. República, Saltillo, CP, 25280, Coahuila, México
| | - Ariel García-Cruz
- Department of Engineering, National Technological Institute of Mexico/TI of Ciudad Valles, Ciudad Valles, SL, 79010, México
| | - Anna Ilina
- Nanobioscience Group, Chemical Science School of the Autonomous University of Coahuila, Blvd. V. Carranza E Ing. José Cárdenas V., Col. República, Saltillo, CP, 25280, Coahuila, México.
| |
Collapse
|
12
|
Nimsi KA, Manjusha K, Farzana MN. Diversity, distribution, and bioprospecting potentials of carotenogenic yeast from mangrove ecosystem. Arch Microbiol 2024; 206:189. [PMID: 38519760 DOI: 10.1007/s00203-024-03879-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 03/25/2024]
Abstract
Microbial production of carotenoids has gained significant interest for its cost-effectiveness and sustainable nature. This study focuses on 47 red-pigmented yeasts isolated from sediments and plant parts of 13 species of mangrove trees. The relative abundance and distribution of these yeasts varied with plant species and plant parts. The highest number of red yeasts was associated with the mangrove plant Avicennia officinalis (32%). Notably, the leaves harbored the highest percentage (45%) of carotenogenic yeasts, and definite compartmentalization of these yeast species was noticed in mangrove plant parts. All the isolates were molecularly identified and they belonged to the genera of Rhodotorula, Rhodosporidiobolus, and Cryptococcus. The diversity of the pigmented yeasts isolated from A. officinalis was found to be the greatest. Among these strains, Rhodotorula mucilaginosa PV 8 was identified as the most potent producer of carotenoid pigment. Under optimized conditions of physical parameters - 28 °C, pH 5, and 15% salinity led to biomass production of 9.2 ± 0.12 g/L DCW and a pigment yield of 194.78 µg/g. The pigment produced by PV 8 was identified as β-carotene by thin layer chromatography (TLC) and Fourier transform infrared spectroscopy (FT-IR). This β-carotene demonstrated strong antioxidant activity. Moreover, the carotenoid displayed promising antibacterial activity against multidrug-resistant organisms, including Aeromonas sp. and Vibrio sp. In vitro studies revealed the probiotic traits of PV 8. The cytotoxicity of R. mucilaginosa PV 8 was assessed in the invertebrate model Artemia salina and the survival rate showed that it was non-toxic. Furthermore, the β-carotene from PV 8 demonstrated the ability to transfer its vibrant color to various food products, maintaining color stability even under varied conditions. This research underscores the potential of R. mucilaginosa PV 8, as a versatile and valuable resource for the production of carotenoids.
Collapse
Affiliation(s)
- K A Nimsi
- Department of Marine Biosciences, Faculty of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, Kerala, 682506, India
| | - K Manjusha
- Department of Marine Biosciences, Faculty of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, Kerala, 682506, India.
| | - M N Farzana
- Department of Marine Biosciences, Faculty of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, Kerala, 682506, India
| |
Collapse
|
13
|
Sriphuttha C, Boontawan P, Boonyanan P, Ketudat-Cairns M, Boontawan A. Simultaneous Lipid and Carotenoid Production via Rhodotorula paludigena CM33 Using Crude Glycerol as the Main Substrate: Pilot-Scale Experiments. Int J Mol Sci 2023; 24:17192. [PMID: 38139021 PMCID: PMC10743220 DOI: 10.3390/ijms242417192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 12/24/2023] Open
Abstract
Rhodotorula paludigena CM33 is an oleaginous yeast that has been demonstrated to accumulate substantial quantities of intracellular lipids and carotenoids. In this study, crude glycerol, a by-product of biodiesel production, was used as a carbon source to enhance the accumulation of lipids and carotenoids in the cells. The culture conditions were first optimized using response surface methodology, which revealed that the carotenoid concentration and lipid content improved when the concentration of crude glycerol was 40 g/L. Different fermentation conditions were also investigated: batch, repeated-batch, and fed-batch conditions in a 500 L fermenter. For fed-batch fermentation, the maximum concentrations of biomass, lipids, and carotenoids obtained were 46.32 g/L, 37.65%, and 713.80 mg/L, respectively. A chemical-free carotenoid extraction method was also optimized using high-pressure homogenization and a microfluidizer device. The carotenoids were found to be mostly beta-carotene, which was confirmed by HPLC (high pressure liquid chromatography), LC-MS (liquid chromatography-mass spectrometry), and NMR (nuclear magnetic resonance). The results of this study indicate that crude glycerol can be used as a substrate to produce carotenoids, resulting in enhanced value of this biodiesel by-product.
Collapse
Affiliation(s)
- Cheeranan Sriphuttha
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand; (C.S.); (P.B.); (M.K.-C.)
| | - Pailin Boontawan
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand; (C.S.); (P.B.); (M.K.-C.)
| | - Pasama Boonyanan
- The Center for Scientific and Technological Equipment, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand;
| | - Mariena Ketudat-Cairns
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand; (C.S.); (P.B.); (M.K.-C.)
| | - Apichat Boontawan
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand; (C.S.); (P.B.); (M.K.-C.)
- Center of Excellent in Agricultural Product Innovation, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
14
|
Mapelli-Brahm P, Gómez-Villegas P, Gonda ML, León-Vaz A, León R, Mildenberger J, Rebours C, Saravia V, Vero S, Vila E, Meléndez-Martínez AJ. Microalgae, Seaweeds and Aquatic Bacteria, Archaea, and Yeasts: Sources of Carotenoids with Potential Antioxidant and Anti-Inflammatory Health-Promoting Actions in the Sustainability Era. Mar Drugs 2023; 21:340. [PMID: 37367666 DOI: 10.3390/md21060340] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023] Open
Abstract
Carotenoids are a large group of health-promoting compounds used in many industrial sectors, such as foods, feeds, pharmaceuticals, cosmetics, nutraceuticals, and colorants. Considering the global population growth and environmental challenges, it is essential to find new sustainable sources of carotenoids beyond those obtained from agriculture. This review focuses on the potential use of marine archaea, bacteria, algae, and yeast as biological factories of carotenoids. A wide variety of carotenoids, including novel ones, were identified in these organisms. The role of carotenoids in marine organisms and their potential health-promoting actions have also been discussed. Marine organisms have a great capacity to synthesize a wide variety of carotenoids, which can be obtained in a renewable manner without depleting natural resources. Thus, it is concluded that they represent a key sustainable source of carotenoids that could help Europe achieve its Green Deal and Recovery Plan. Additionally, the lack of standards, clinical studies, and toxicity analysis reduces the use of marine organisms as sources of traditional and novel carotenoids. Therefore, further research on the processing of marine organisms, the biosynthetic pathways, extraction procedures, and examination of their content is needed to increase carotenoid productivity, document their safety, and decrease costs for their industrial implementation.
Collapse
Affiliation(s)
- Paula Mapelli-Brahm
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Patricia Gómez-Villegas
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence and REMSMA, University of Huelva, 21071 Huelva, Spain
| | - Mariana Lourdes Gonda
- Área Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Gral Flores 2124, Montevideo 11800, Uruguay
| | - Antonio León-Vaz
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence and REMSMA, University of Huelva, 21071 Huelva, Spain
| | - Rosa León
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence and REMSMA, University of Huelva, 21071 Huelva, Spain
| | | | | | - Verónica Saravia
- Departamento de Bioingeniería, Facultad de Ingeniería, Instituto de Ingeniería Química, Universidad de la República, Montevideo 11300, Uruguay
| | - Silvana Vero
- Área Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Gral Flores 2124, Montevideo 11800, Uruguay
| | - Eugenia Vila
- Departamento de Bioingeniería, Facultad de Ingeniería, Instituto de Ingeniería Química, Universidad de la República, Montevideo 11300, Uruguay
| | | |
Collapse
|
15
|
Yeast Carotenoids: Cost-Effective Fermentation Strategies for Health Care Applications. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Carotenoid production from oleaginous red yeast has been considered as a safe alternative to chemically synthesized carotenoids commonly used in the food industry, since plant-based carotenoids are expensive and an irregular source for obtaining pigments. This is a summative review on the factors affecting carotenoid production, cost-effective production strategies using various inexpensive feedstock, metabolic engineering, and strain improvisation. The review specially highlights the various potential applications of carotenoids as anti-microbial, anti-viral, antioxidant, anti-cancerous, anti-malarial agents, etc. The importance of such natural and easily available resources for prevention, evasion, or cure of emerging diseases and their plausible nutraceutical effect demands exhaustive research in this area.
Collapse
|
16
|
Xue SJ, Li XC, Huang X, Liu J, Li Y, Zhang XT, Zhang JY. Diversity investigation of cultivable yeasts associated with honeycombs and identification of a novel Rhodotorula toruloides strain with the robust concomitant production of lipid and carotenoid. BIORESOURCE TECHNOLOGY 2023; 370:128573. [PMID: 36603754 DOI: 10.1016/j.biortech.2022.128573] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Oleaginous yeasts-derived microbial lipids provide a promising alternative feedstock for the biodiesel industry. However, hyperosmotic stress caused by high sugar concentration during fermentation significantly prevents high cell density and productivity. Isolation of new robust osmophilic oleaginous species from specific environment possibly resolves this issue to some extent. In this study, the cultivable yeast composition of honeycombs was investigated. Totally, 11 species of honeycomb-associated cultivable yeast were identified and characterized. Among them, an osmophilic yeast strain, designated as Rhodotorula toruloides C23 was featured with excellent lipogenic and carotenogenic capacity and remarkable cell growth using glucose, xylose or glycerol as feedstock, with simultaneous production of 24.41 g/L of lipids and 15.50 mg/L of carotenoids from 120 g/L glucose in 6.7-L fermentation. Comparative transcriptomic analysis showed that C23 had evolved a dedicated molecular regulation mechanism to maintain their high simultaneous accumulation of intracellular lipids and carotenoids and cell growth under high sugar concentration.
Collapse
Affiliation(s)
- Si-Jia Xue
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Xiao-Chen Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Xiao Huang
- Qingdao Animal Husbandry and Veterinary Institute, Qingdao, Shandong Province 266000, China
| | - Jie Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Yao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Xin-Tong Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Jin-Yong Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
17
|
Tang J, Lin B, Jiang W, Li Q, Zhu L, Zhang G, Chen Q, Yang Q, Yang S, Chen S. Screening of β -damascenone-producing strains in light-flavor Baijiu and its production optimization via response surface methodology. Front Microbiol 2022; 13:1067671. [PMID: 36523831 PMCID: PMC9745179 DOI: 10.3389/fmicb.2022.1067671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/14/2022] [Indexed: 08/27/2024] Open
Abstract
As a C13-norisoprenoid aroma substance, β-damascenone is a highly important aromatic compound and an active constituent. The purpose of this study was to investigate the change law of β-damascenone during the light-flavor Baijiu brewing process, and screen the indigenous microbial strains that produce this compound and optimize fermentation parameters for improving β-damascenone production using a statistical approach. In this project, Wickerhamomyces anomalus YWB-1 exhibited the highest producing activity of β-damascenone. Fermentation conditions were optimized for β-damascenone production using a one-factor-at-a-time (OFAT) approach. A Plackett-Burman design was subsequently adopted to assess the effects of initial pH, incubation temperature, inoculum size, fermentation period, and original Brix degree. Analysis of variance (ANOVA) showed that the correlation coefficient (R 2) of the executive model was 0.9795, and this value was significant (p < 0.05). Three significant variables were optimized at three different coded levels using a Box-Behnken design (BBD) of response surface methodology (RSM). Here, 7.25 μg/L β-damascenone was obtained under the following optimum conditions: initial pH of 3.31, original Brix degree of 10.53%, and fermentation period of 52.13 h. The yield was increased 3.02-fold compared with that obtained under unoptimized conditions. This information is conducive to the control of flavor production by regulating variable parameters in Baijiu fermentation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Shenxi Chen
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine and Health Food, Jing Brand Co., Ltd., Daye, China
| |
Collapse
|
18
|
Li Z, Li C, Cheng P, Yu G. Rhodotorula mucilaginosa-alternative sources of natural carotenoids, lipids, and enzymes for industrial use. Heliyon 2022. [PMID: 36419653 DOI: 10.1016/j.heliyon.2022.e1150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Biotechnologically useful yeast strains have been receiving important attention worldwide for the demand of a wide range of industries. Rhodotorula mucilaginosa is recognized as a biotechnologically important yeast that has gained great interest as a promising platform strain, owing to the diverse substrate appetites, robust stress resistance, and other gratifying features. Due to its attractive properties, R. mucilaginosa has been regarded as an excellent candidate for the biorefinery of carotenoids, lipids, enzymes, and other functional bioproducts by utilizing low-cost agricultural waste materials as substrates. These compounds have aroused great interest as the potential alternative sources of health-promoting food products, substrates for so-called third-generation biodiesel, and dyes or functional ingredients for cosmetics. Furthermore, the use of R. mucilaginosa has rapidly increased as a result of advancements in fermentation for enhanced production of these valuable bioactive compounds. This review focuses on R. mucilaginosa in these advancements and summarizes its potential prospects as alternative sources of natural bioproducts.
Collapse
Affiliation(s)
- Zhiheng Li
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Chunji Li
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Ping Cheng
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Guohui Yu
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
19
|
Metwally RA, El-Sersy NA, El Sikaily A, Sabry SA, Ghozlan HA. Optimization and multiple in vitro activity potentials of carotenoids from marine Kocuria sp. RAM1. Sci Rep 2022; 12:18203. [PMID: 36307503 PMCID: PMC9616409 DOI: 10.1038/s41598-022-22897-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/20/2022] [Indexed: 12/31/2022] Open
Abstract
Marine pigmented bacteria are a promising natural source of carotenoids. Kocuria sp. RAM1 was isolated from the Red Sea Bohadschia graeffei collected from Marsa Alam, Egypt, and used for carotenoids production. The extracted carotenoids were purified by thin-layer chromatography (TLC). The characteristic UV absorbance of the three purified fractions gave us an inkling of what the purified pigments were. The chemical structures were confirmed by nuclear magnetic resonance spectroscopy (NMR) and LC-ESI-QTOF-MS/MS. The three different red pigments were identified as two C50-carotenoids, namely bisanhydrobacterioruberin and trisanhydrobacterioruberin, in addition to 3,4,3',4'-Tetrahydrospirilloxanthin (C42-carotenoids). Kocuria sp. RAM1 carotenoids were investigated for multiple activities, including antimicrobial, anti-inflammatory, antioxidant, anti-HSV-1, anticancer, antidiabetic and wound healing. These new observations suggest that Kocuria sp. RAM1 carotenoids can be used as a distinctive natural pigment with potent properties.
Collapse
Affiliation(s)
- Rasha A. Metwally
- grid.419615.e0000 0004 0404 7762Marine Microbiology Lab., National Institute of Oceanography and Fisheries, NIOF, Alexandria, Egypt
| | - Nermeen A. El-Sersy
- grid.419615.e0000 0004 0404 7762Marine Microbiology Lab., National Institute of Oceanography and Fisheries, NIOF, Alexandria, Egypt
| | - Amany El Sikaily
- grid.419615.e0000 0004 0404 7762Marine Pollution Lab., National Institute of Oceanography and Fisheries, NIOF, Alexandria, Egypt
| | - Soraya A. Sabry
- grid.7155.60000 0001 2260 6941Botany & Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Hanan A. Ghozlan
- grid.7155.60000 0001 2260 6941Botany & Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
20
|
Carotenoid-Producing Yeasts: Selection of the Best-Performing Strain and the Total Carotenoid Extraction Procedure. Processes (Basel) 2022. [DOI: 10.3390/pr10091699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Yeasts are considered an extraordinary alternative source of natural carotenoids and pigmented terpenoids with multiple applications. Production of carotenoids by yeast fermentation technology has many benefits; it is cost-effective, easily scalable, and safe. The aim of this research is the isolation of yeasts from natural resources and selection of the most potent bioagent for carotenoid production. Additionally, an upgraded carotenoid extraction protocol we established, which implies the testing of four methods for cell lysis (hydrochloric acid treatment, ultrasound treatment, milling treatment, and osmotic pressure treatment), three extraction methods (conventional extraction, ultrasound extraction, and conventional + ultrasound extraction), and three extraction solvents (acetone, isopropanol/methanol (50:50), and ethanol). For the first time, the obtained results were further modeled by an artificial neural network (ANN). Based on the obtained maximal carotenoid yield (253.74 ± 9.74 mg/100 g d.w) for the best-performing Rhodotorula mucilaginosa, the optimized extraction procedure involving milling treatment (for cell lysis) and conventional extraction with acetone (for carotenoid extraction) convincingly stood out compared to the other 35 tested protocols. Therefore, the selected carotenoid extraction protocol was verified with respect to its universality for all other yeast isolates, demonstrating its simplicity and effectiveness.
Collapse
|
21
|
Industrial-Scale Production of Mycotoxin Binder from the Red Yeast Sporidiobolus pararoseus KM281507. J Fungi (Basel) 2022; 8:jof8040353. [PMID: 35448584 PMCID: PMC9029514 DOI: 10.3390/jof8040353] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
Red yeast Sporidiobolus pararoseus KM281507 has been recognized as a potential feed additive. Beyond their nutritional value (carotenoids and lipids), red yeast cells (RYCs) containing high levels of β-glucan can bind mycotoxins. This study investigated the industrial feasibility of the large-scale production of RYCs, along with their ability to act as a mycotoxin binder. Under a semi-controlled pH condition in a 300 L bioreactor, 28.70-g/L biomass, 8.67-g/L lipids, and 96.10-mg/L total carotenoids were obtained, and the RYCs were found to contain 5.73% (w/w) β-glucan. The encapsulated RYC was in vitro tested for its mycotoxin adsorption capacity, including for aflatoxin B1 (AFB1), zearalenone (ZEA), ochratoxin A (OTA), T-2 toxin (T-2) and deoxynivalenol (DON). The RYCs had the highest binding capacity for OTA and T-2 at concentrations of 0.31–1.25 and 0.31–2.5 µg/mL, respectively. The mycotoxin adsorption capacity was further tested using a gastrointestinal poultry model. The adsorption capacities of the RYCs and a commercial mycotoxin binder (CMB) were comparable. The RYCs not only are rich in lipids and carotenoids but also play an important role in mycotoxin binding. Since the industrial-scale production and downstream processing of RYCs were successfully demonstrated, RYCs could be applied as possible feed additives.
Collapse
|