1
|
Li J, Chen L, Chen M, Lin M, Xie Z, Wu H, Zhou Z, Lin W. Dap10 co-stimulation enhances the anti-HCC efficacy of NKp30 chimeric antigen receptor T cells. Transl Oncol 2025; 57:102425. [PMID: 40393250 DOI: 10.1016/j.tranon.2025.102425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 03/30/2025] [Accepted: 05/16/2025] [Indexed: 05/22/2025] Open
Abstract
Chimeric antigen receptor (CAR) T-cell immunotherapy has made significant breakthroughs in the treatment of relapsed or refractory hematologic malignancies, but its efficacy in solid tumors remains limited. In this study, we developed a chimeric NKp30 (chNKp30) receptor whose ligand, B7H6, is often up-regulated in various tumor cells and sparsely expressed in healthy cells. Introduction of the cytoplasmic structural domain of dnax-activating protein 10 (DAP10) into CAR resulted in chNKp30-Dap10 CAR-T cells that showed superior cell proliferation, activation, and apoptosis inhibition after antigenic stimulation compared with conventional chNKp30-CD28 and chNKp30-Wt CAR-T cells lacking any structural domains, along with inducing a central memory T cell phenotype, whereas chNKp30-CD28 and chNKp30-Wt triggered an effector memory phenotype. In addition, chNKp30-Dap10 T cells secreted higher levels of pro-inflammatory cytokines such as IL-2, IFN-γ, and TNF-α, while chNKp30-CD28 T cells secreted more of the anti-inflammatory cytokine IL-10. In the killing assay, chNKp30-Dap10 T cells demonstrated stronger anti-tumor effects. Similarly, better tumor regression was observed in the hepatocellular carcinoma transplantation tumor model. These findings suggest that B7H6 is an attractive therapeutic target and DAP10 signaling is involved in the functional regulation of CAR-T cells in hepatocellular carcinoma, which may induce preferential cytokine profiling and differentiation for cancer therapy, and that NKp30-Dap10 CAR-T cell therapy offers a potential option for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- JieYu Li
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, PR China; Fuzhou University College of Chemistry, Fuzhou 350002, PR China; The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, PR China; Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, Fujian Province, PR China
| | - LiMei Chen
- Department of Clinical Laboratory, Fuzhou 350014, PR China
| | - MingShui Chen
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, PR China; Fuzhou University College of Chemistry, Fuzhou 350002, PR China; The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, PR China
| | - Miao Lin
- Fuzhou University College of Chemistry, Fuzhou 350002, PR China
| | - Zineng Xie
- Fuzhou University College of Chemistry, Fuzhou 350002, PR China
| | - HuiLing Wu
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, PR China
| | - ZhiFeng Zhou
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, PR China; Fuzhou University College of Chemistry, Fuzhou 350002, PR China; The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, PR China; Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, Fujian Province, PR China.
| | - WanSong Lin
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, PR China; Fuzhou University College of Chemistry, Fuzhou 350002, PR China; The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, PR China; Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, Fujian Province, PR China.
| |
Collapse
|
2
|
Goddard JF, Mehrotra S, Mehrotra M. Osteogenesis imperfecta: exploring an autoimmune and immunotherapy perspective. JBMR Plus 2025; 9:ziaf053. [PMID: 40353205 PMCID: PMC12063996 DOI: 10.1093/jbmrpl/ziaf053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/07/2025] [Accepted: 03/23/2025] [Indexed: 05/14/2025] Open
Abstract
Osteogenesis imperfecta (OI), also called brittle bone disease, is a genetic osteodysplasia characterized by a defect in type 1 collagen. Often diagnosed in infancy or early childhood, young patients are affected by frequent fractures. Osteogenesis imperfecta was first named almost 200 yr ago, yet there are still no FDA-approved treatments for OI, and existing treatments target only the skeletal defects of the disease. In this review, we briefly examine current treatments and ongoing clinical trials. Then, by analyzing OI with an osteoimmunological perspective, we have compiled evidence that OI has an autoimmune component. This autoimmune component of OI remains unconsidered, even though an immunology-based therapy has shown promise in treating OI. Acknowledging an autoimmune component of OI is critical to understanding its mechanisms and allowing for the development of more efficacious treatments and novel immunotherapies. Considering the existing literature and the growing impact of immunotherapeutic therapies in cancer and other autoimmune diseases, we believe it may be time to rethink the immune aspects of this genetic disorder and develop novel immunomodulating strategies to improve the quality of life for OI patients.
Collapse
Affiliation(s)
- Jackson F Goddard
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Meenal Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, United States
| |
Collapse
|
3
|
Peter J, Toppeta F, Trubert A, Danhof S, Hudecek M, Däullary T. Multi-Targeting CAR-T Cell Strategies to Overcome Immune Evasion in Lymphoid and Myeloid Malignancies. Oncol Res Treat 2025; 48:265-279. [PMID: 40090318 DOI: 10.1159/000543806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/15/2025] [Indexed: 03/18/2025]
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-T cell therapy has become a groundbreaking treatment for hematological malignancies, particularly lymphomas and multiple myeloma, with high remission rates in refractory and relapsed patients. However, most CAR-T therapies target a single antigen, such as CD19, which can result in immune evasion through antigen escape. This mechanism describes the downregulation or complete loss of the targeted antigen by the tumor cells, eventually leading to relapse. To address this issue, multi-targeting strategies like logic-gated CARs, adapter CARs, or combination therapies can increase the potency of CAR-T cells. These approaches aim to minimize immune evasion by targeting multiple antigens simultaneously, thereby increasing treatment durability. Additionally, advanced tools such as next-generation sequencing (NGS), direct stochastic optical reconstruction microscopy (dSTORM), or multiparametric flow cytometry are helping to identify novel tumor-specific targets and improve therapy designs. SUMMARY This review explores the current landscape of CAR-T cell therapies in lymphoid and myeloid malignancies, highlights ongoing clinical trials, and discusses the future of these innovative multi-targeting approaches to improve patient outcome. KEY MESSAGES Antigen escape limits CAR-T cell therapy success, but multi-targeting strategies like logic gates and adapter CARs offer solutions. Optimizing antigen selection and CAR design, along with larger clinical trials, is essential for improving patient outcomes. Personalization using advanced technologies like CRISPR screening and single-cell RNA sequencing can enhance durability and effectiveness of treatments for heavily pretreated patients.
Collapse
Affiliation(s)
- Jessica Peter
- Chair in Cellular Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
- NCT WERA, National Center for Tumor Diseases (Würzburg, Erlangen, Regensburg and Augsburg), Würzburg, Germany
- BZKF, Bavarian Center for Cancer Research, Erlangen, Germany
| | - Fabio Toppeta
- Chair in Cellular Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
- NCT WERA, National Center for Tumor Diseases (Würzburg, Erlangen, Regensburg and Augsburg), Würzburg, Germany
- BZKF, Bavarian Center for Cancer Research, Erlangen, Germany
| | - Alexandre Trubert
- Chair in Cellular Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
- NCT WERA, National Center for Tumor Diseases (Würzburg, Erlangen, Regensburg and Augsburg), Würzburg, Germany
- BZKF, Bavarian Center for Cancer Research, Erlangen, Germany
| | - Sophia Danhof
- Chair in Cellular Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
- NCT WERA, National Center for Tumor Diseases (Würzburg, Erlangen, Regensburg and Augsburg), Würzburg, Germany
- BZKF, Bavarian Center for Cancer Research, Erlangen, Germany
| | - Michael Hudecek
- Chair in Cellular Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
- NCT WERA, National Center for Tumor Diseases (Würzburg, Erlangen, Regensburg and Augsburg), Würzburg, Germany
- BZKF, Bavarian Center for Cancer Research, Erlangen, Germany
| | - Thomas Däullary
- Chair in Cellular Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
- NCT WERA, National Center for Tumor Diseases (Würzburg, Erlangen, Regensburg and Augsburg), Würzburg, Germany
- BZKF, Bavarian Center for Cancer Research, Erlangen, Germany
| |
Collapse
|
4
|
Sonkin D, Thomas A, Teicher BA. Cancer treatments: Past, present, and future. Cancer Genet 2024; 286-287:18-24. [PMID: 38909530 PMCID: PMC11338712 DOI: 10.1016/j.cancergen.2024.06.002] [Citation(s) in RCA: 133] [Impact Index Per Article: 133.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/21/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024]
Abstract
There is a rich history of cancer treatments which provides a number of important lessons for present and future cancer therapies. We outline this history by looking in the past, reviewing the current landscape of cancer treatments, and by glancing at the potential future cancer therapies.
Collapse
Affiliation(s)
- Dmitriy Sonkin
- National Cancer Institute, Division of Cancer Treatment and Diagnosis, Rockville, MD 20850, USA.
| | - Anish Thomas
- National Cancer Institute, Center for Cancer Research, Bethesda, MD 20892, USA
| | - Beverly A Teicher
- National Cancer Institute, Division of Cancer Treatment and Diagnosis, Rockville, MD 20850, USA
| |
Collapse
|
5
|
Anurogo D, Liu CL, Chang YC, Chang YH, Qiu JT. Discovery of differentially expressed proteins for CAR-T therapy of ovarian cancers with a bioinformatics analysis. Aging (Albany NY) 2024; 16:11409-11433. [PMID: 39033780 PMCID: PMC11315388 DOI: 10.18632/aging.206024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/07/2024] [Indexed: 07/23/2024]
Abstract
Target antigens are crucial for developing chimeric antigen receptor (CAR)-T cells, but their application to ovarian cancers is limited. This study aimed to identify potential genes as CAR-T-cell antigen candidates for ovarian cancers. A differential gene expression analysis was performed on ovarian cancer samples from four datasets obtained from the GEO datasets. Functional annotation, pathway analysis, protein localization, and gene expression analysis were conducted using various datasets and tools. An oncogenicity analysis and network analysis were also performed. In total, 153 differentially expressed genes were identified in ovarian cancer samples, with 60 differentially expressed genes expressing plasma membrane proteins suitable for CAR-T-cell antigens. Among them, 21 plasma membrane proteins were predicted to be oncogenes in ovarian cancers, with nine proteins playing crucial roles in the network. Key genes identified in the oncogenic pathways of ovarian cancers included MUC1, CXCR4, EPCAM, RACGAP1, UBE2C, PRAME, SORT1, JUP, and CLDN3, suggesting them as recommended antigens for CAR-T-cell therapy for ovarian cancers. This study sheds light on potential targets for immunotherapy in ovarian cancers.
Collapse
Affiliation(s)
- Dito Anurogo
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Makassar, Makassar 90221, Indonesia
| | - Chao-Lien Liu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- PhD Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Chu Chang
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Hsiang Chang
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - J. Timothy Qiu
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| |
Collapse
|
6
|
Olejarz W, Sadowski K, Szulczyk D, Basak G. Advancements in Personalized CAR-T Therapy: Comprehensive Overview of Biomarkers and Therapeutic Targets in Hematological Malignancies. Int J Mol Sci 2024; 25:7743. [PMID: 39062986 PMCID: PMC11276786 DOI: 10.3390/ijms25147743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy is a novel anticancer therapy using autologous or allogeneic T-cells. To date, six CAR-T therapies for specific B-cell acute lymphoblastic leukemia (B-ALL), non-Hodgkin lymphomas (NHL), and multiple myeloma (MM) have been approved by the Food and Drug Administration (FDA). Significant barriers to the effectiveness of CAR-T therapy include cytokine release syndrome (CRS), neurotoxicity in the case of Allogeneic Stem Cell Transplantation (Allo-SCT) graft-versus-host-disease (GVHD), antigen escape, modest antitumor activity, restricted trafficking, limited persistence, the immunosuppressive microenvironment, and senescence and exhaustion of CAR-Ts. Furthermore, cancer drug resistance remains a major problem in clinical practice. CAR-T therapy, in combination with checkpoint blockades and bispecific T-cell engagers (BiTEs) or other drugs, appears to be an appealing anticancer strategy. Many of these agents have shown impressive results, combining efficacy with tolerability. Biomarkers like extracellular vesicles (EVs), cell-free DNA (cfDNA), circulating tumor (ctDNA) and miRNAs may play an important role in toxicity, relapse assessment, and efficacy prediction, and can be implicated in clinical applications of CAR-T therapy and in establishing safe and efficacious personalized medicine. However, further research is required to fully comprehend the particular side effects of immunomodulation, to ascertain the best order and combination of this medication with conventional chemotherapy and targeted therapies, and to find reliable predictive biomarkers.
Collapse
Affiliation(s)
- Wioletta Olejarz
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Karol Sadowski
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Daniel Szulczyk
- Chair and Department of Biochemistry, The Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Grzegorz Basak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland;
| |
Collapse
|
7
|
Giraudo MF, Jackson Z, Das I, Abiona OM, Wald DN. Chimeric Antigen Receptor (CAR)-T Cell Therapy for Non-Hodgkin's Lymphoma. Pathog Immun 2024; 9:1-17. [PMID: 38550613 PMCID: PMC10972674 DOI: 10.20411/pai.v9i1.647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/28/2024] [Indexed: 04/15/2024] Open
Abstract
This review focuses on the use of chimeric antigen receptor (CAR)-T cell therapy to treat non-Hodgkin's lymphoma (NHL), a classification of heterogeneous malignant neoplasms of the lymphoid tissue. Despite various conventional and multidrug chemotherapies, the poor prognosis for NHL patients remains and has prompted the utilization of groundbreaking personalized therapies such as CAR-T cells. CAR-T cells are T cells engineered to express a CAR that enables T cells to specifically lyse tumor cells with extracellular expression of a tumor antigen of choice. A CAR is composed of an extracellular antibody fragment or target protein binding domain that is conjugated to activating intracellular signaling motifs common to T cells. In general, CAR-T cell therapies for NHL are designed to recognize cellular markers ubiquitously expressed on B cells such as CD19+, CD20+, and CD22+. Clinical trials using CAR-T cells such as ZUMA-7 and TRANSFORM demonstrated promising results compared to standard of care and ultimately led to FDA approval for the treatment of relapsed/refractory NHL. Despite the success of CAR-T therapy for NHL, challenges include adverse side effects as well as extrinsic and intrinsic mechanisms of tumor resistance that lead to suboptimal outcomes. Overall, CAR-T cell therapies have improved clinical outcomes in NHL patients and generated optimism around their future applications.
Collapse
Affiliation(s)
| | - Zachary Jackson
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Indrani Das
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | | | - David N. Wald
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
- Department of Pathology, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio
| |
Collapse
|
8
|
Zhang PF, Xie D. Targeting the gut microbiota to enhance the antitumor efficacy and attenuate the toxicity of CAR-T cell therapy: a new hope? Front Immunol 2024; 15:1362133. [PMID: 38558812 PMCID: PMC10978602 DOI: 10.3389/fimmu.2024.1362133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Chimeric antigen receptor (CAR) -T cell therapy has achieved tremendous efficacy in the treatment of hematologic malignancies and represents a promising treatment regimen for cancer. Despite the striking response in patients with hematologic malignancies, most patients with solid tumors treated with CAR-T cells have a low response rate and experience major adverse effects, which indicates the need for biomarkers that can predict and improve clinical outcomes with future CAR-T cell treatments. Recently, the role of the gut microbiota in cancer therapy has been established, and growing evidence has suggested that gut microbiota signatures may be harnessed to personally predict therapeutic response or adverse effects in optimizing CAR-T cell therapy. In this review, we discuss current understanding of CAR-T cell therapy and the gut microbiota, and the interplay between the gut microbiota and CAR-T cell therapy. Above all, we highlight potential strategies and challenges in harnessing the gut microbiota as a predictor and modifier of CAR-T cell therapy efficacy while attenuating toxicity.
Collapse
Affiliation(s)
- Peng-Fei Zhang
- Gastric Cancer Center, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Xie
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
9
|
Chen Z, Hu T, Zhou J, Gu X, Chen S, Qi Q, Wang L. Overview of tumor immunotherapy based on approved drugs. Life Sci 2024; 340:122419. [PMID: 38242494 DOI: 10.1016/j.lfs.2024.122419] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/25/2023] [Accepted: 01/07/2024] [Indexed: 01/21/2024]
Abstract
Tumor immunotherapy has become a new hotspot for cancer treatment. Various immunotherapies, such as immune checkpoint inhibitors, oncolytic viruses (OVs), cytokines, and cancer vaccines, have been used to treat tumors. They operate through different mechanisms, along with certain toxicities and side effects. Understanding the mechanisms by which immunotherapy modulates the immune system is essential for improving the efficacy and managing these adverse effects. This article discusses various currently approved cancer immunotherapy mechanisms and related agents approved by the Food and Drug Administration, the European Medicines Agency, and the Medicines and Medical Devices Agency. We also review the latest progress in immune drugs approved by the National Medical Products Administration, including monoclonal antibodies, cytokines, OVs, and chimeric antigen receptor-T cell therapy, to help understand the clinical application of tumor immunotherapy.
Collapse
Affiliation(s)
- Ziqin Chen
- College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Tiantian Hu
- Clinical Base of Qingpu Traditional Medicine Hospital, the Academy of Integrative Medicine of Fudan University, Shanghai 201700, China
| | - Jing Zhou
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China; The Academy of Integrative Medicine of Fudan University, Shanghai 200011, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai 200011, China
| | - Xiaolei Gu
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Song Chen
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Qing Qi
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China; The Academy of Integrative Medicine of Fudan University, Shanghai 200011, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai 200011, China.
| | - Ling Wang
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China; The Academy of Integrative Medicine of Fudan University, Shanghai 200011, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai 200011, China.
| |
Collapse
|
10
|
Sadek NL, Costa BA, Nath K, Mailankody S. CAR T-Cell Therapy for Multiple Myeloma: A Clinical Practice-Oriented Review. Clin Pharmacol Ther 2023; 114:1184-1195. [PMID: 37750399 DOI: 10.1002/cpt.3057] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/02/2023] [Indexed: 09/27/2023]
Abstract
The emergence of chimeric antigen receptor (CAR) T-cell therapy has revolutionized the treatment of hematologic malignancies, including multiple myeloma (MM). Two BCMA-directed CAR T-cell products - idecabtagene vicleucel (ide-cel) and ciltacabtagene autoleucel (cilta-cel) - have received US Food and Drug Administration (FDA) approval for patients with relapsed/refractory MM who underwent four or more prior lines of therapy (including an immunomodulatory agent, a proteasome inhibitor, and an anti-CD38 monoclonal antibody). Despite producing unprecedented response rates in an otherwise difficult to treat patient population, CAR T-cell therapies are commonly associated with immune-related adverse events (e.g., cytokine release syndrome and neurotoxicity), cytopenias, and infections. Moreover, many patients continue to exhibit relapse post-treatment, with resistance mechanisms yet to be fully understood. Ongoing basic, translational, and clinical research efforts are poised to generate deeper insights into the optimal utilization of these therapies, improve their efficacy, minimize associated toxicity, and identify new target antigens in patients with MM.
Collapse
Affiliation(s)
- Norah Layla Sadek
- Department of Medicine, Mount Sinai Morningside and West, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bruno Almeida Costa
- Department of Medicine, Mount Sinai Morningside and West, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Karthik Nath
- Department of Medicine, Cellular Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sham Mailankody
- Department of Medicine, Cellular Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Myeloma Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
11
|
Chen C, Jung A, Yang A, Monroy I, Zhang Z, Chaurasiya S, Deshpande S, Priceman S, Fong Y, Park AK, Woo Y. Chimeric Antigen Receptor-T Cell and Oncolytic Viral Therapies for Gastric Cancer and Peritoneal Carcinomatosis of Gastric Origin: Path to Improving Combination Strategies. Cancers (Basel) 2023; 15:5661. [PMID: 38067366 PMCID: PMC10705752 DOI: 10.3390/cancers15235661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 02/12/2024] Open
Abstract
Precision immune oncology capitalizes on identifying and targeting tumor-specific antigens to enhance anti-tumor immunity and improve the treatment outcomes of solid tumors. Gastric cancer (GC) is a molecularly heterogeneous disease where monoclonal antibodies against human epidermal growth factor receptor 2 (HER2), vascular endothelial growth factor (VEGF), and programmed cell death 1 (PD-1) combined with systemic chemotherapy have improved survival in patients with unresectable or metastatic GC. However, intratumoral molecular heterogeneity, variable molecular target expression, and loss of target expression have limited antibody use and the durability of response. Often immunogenically "cold" and diffusely spread throughout the peritoneum, GC peritoneal carcinomatosis (PC) is a particularly challenging, treatment-refractory entity for current systemic strategies. More adaptable immunotherapeutic approaches, such as oncolytic viruses (OVs) and chimeric antigen receptor (CAR) T cells, have emerged as promising GC and GCPC treatments that circumvent these challenges. In this study, we provide an up-to-date review of the pre-clinical and clinical efficacy of CAR T cell therapy for key primary antigen targets and provide a translational overview of the types, modifications, and mechanisms for OVs used against GC and GCPC. Finally, we present a novel, summary-based discussion on the potential synergistic interplay between OVs and CAR T cells to treat GCPC.
Collapse
Affiliation(s)
- Courtney Chen
- Department of Surgery, City of Hope, Duarte, CA 91010, USA; (C.C.); (A.J.); (A.Y.); (Z.Z.); (S.C.); (S.D.); (Y.F.)
| | - Audrey Jung
- Department of Surgery, City of Hope, Duarte, CA 91010, USA; (C.C.); (A.J.); (A.Y.); (Z.Z.); (S.C.); (S.D.); (Y.F.)
| | - Annie Yang
- Department of Surgery, City of Hope, Duarte, CA 91010, USA; (C.C.); (A.J.); (A.Y.); (Z.Z.); (S.C.); (S.D.); (Y.F.)
| | - Isabel Monroy
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA; (I.M.); (S.P.)
| | - Zhifang Zhang
- Department of Surgery, City of Hope, Duarte, CA 91010, USA; (C.C.); (A.J.); (A.Y.); (Z.Z.); (S.C.); (S.D.); (Y.F.)
| | - Shyambabu Chaurasiya
- Department of Surgery, City of Hope, Duarte, CA 91010, USA; (C.C.); (A.J.); (A.Y.); (Z.Z.); (S.C.); (S.D.); (Y.F.)
| | - Supriya Deshpande
- Department of Surgery, City of Hope, Duarte, CA 91010, USA; (C.C.); (A.J.); (A.Y.); (Z.Z.); (S.C.); (S.D.); (Y.F.)
| | - Saul Priceman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA; (I.M.); (S.P.)
- Cancer Immunotherapeutics Program, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Yuman Fong
- Department of Surgery, City of Hope, Duarte, CA 91010, USA; (C.C.); (A.J.); (A.Y.); (Z.Z.); (S.C.); (S.D.); (Y.F.)
| | - Anthony K. Park
- Department of Surgery, City of Hope, Duarte, CA 91010, USA; (C.C.); (A.J.); (A.Y.); (Z.Z.); (S.C.); (S.D.); (Y.F.)
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA; (I.M.); (S.P.)
- Cancer Immunotherapeutics Program, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Yanghee Woo
- Department of Surgery, City of Hope, Duarte, CA 91010, USA; (C.C.); (A.J.); (A.Y.); (Z.Z.); (S.C.); (S.D.); (Y.F.)
- Cancer Immunotherapeutics Program, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
12
|
Mishra AK, Gupta A, Dagar G, Das D, Chakraborty A, Haque S, Prasad CP, Singh A, Bhat AA, Macha MA, Benali M, Saini KS, Previs RA, Saini D, Saha D, Dutta P, Bhatnagar AR, Darswal M, Shankar A, Singh M. CAR-T-Cell Therapy in Multiple Myeloma: B-Cell Maturation Antigen (BCMA) and Beyond. Vaccines (Basel) 2023; 11:1721. [PMID: 38006053 PMCID: PMC10674477 DOI: 10.3390/vaccines11111721] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/19/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Significant progress has been achieved in the realm of therapeutic interventions for multiple myeloma (MM), leading to transformative shifts in its clinical management. While conventional modalities such as surgery, radiotherapy, and chemotherapy have improved the clinical outcomes, the overarching challenge of effecting a comprehensive cure for patients afflicted with relapsed and refractory MM (RRMM) endures. Notably, adoptive cellular therapy, especially chimeric antigen receptor T-cell (CAR-T) therapy, has exhibited efficacy in patients with refractory or resistant B-cell malignancies and is now also being tested in patients with MM. Within this context, the B-cell maturation antigen (BCMA) has emerged as a promising candidate for CAR-T-cell antigen targeting in MM. Alternative targets include SLAMF7, CD38, CD19, the signaling lymphocyte activation molecule CS1, NKG2D, and CD138. Numerous clinical studies have demonstrated the clinical efficacy of these CAR-T-cell therapies, although longitudinal follow-up reveals some degree of antigenic escape. The widespread implementation of CAR-T-cell therapy is encumbered by several barriers, including antigenic evasion, uneven intratumoral infiltration in solid cancers, cytokine release syndrome, neurotoxicity, logistical implementation, and financial burden. This article provides an overview of CAR-T-cell therapy in MM and the utilization of BCMA as the target antigen, as well as an overview of other potential target moieties.
Collapse
Affiliation(s)
- Abhinava K. Mishra
- Molecular, Cellular and Developmental Biology Department, University of California Santa Barbara, Santa Barbara, CA 93106, USA;
| | - Ashna Gupta
- Department of Medical Oncology (Lab), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India; (A.G.); (G.D.); (C.P.P.)
| | - Gunjan Dagar
- Department of Medical Oncology (Lab), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India; (A.G.); (G.D.); (C.P.P.)
| | - Dayasagar Das
- Department of Medicine, NYU Langone Health, New York, NY 10016, USA;
| | - Abhijit Chakraborty
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Shabirul Haque
- Feinstein Institute of Medical Research, Northwell Health, Manhasset, NY 11030, USA;
| | - Chandra Prakash Prasad
- Department of Medical Oncology (Lab), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India; (A.G.); (G.D.); (C.P.P.)
| | - Archana Singh
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India;
| | - Ajaz A. Bhat
- Precision Medicine in Diabetes, Obesity and Cancer Program, Department of Human Genetics, Sidra Medicine, Doha P.O. Box 26999, Qatar;
| | - Muzafar A. Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora 192122, India;
| | - Moez Benali
- Fortrea Inc., Durham, NC 27709, USA; (M.B.); (K.S.S.)
| | - Kamal S. Saini
- Fortrea Inc., Durham, NC 27709, USA; (M.B.); (K.S.S.)
- Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Rebecca Ann Previs
- Labcorp Oncology, Durham, NC 27560, USA;
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Deepak Saini
- Department of Materia Medica, State Lal Bahadur Shastri Homoeopathic Medical College, Prayagraj 211013, India;
| | - Dwaipayan Saha
- Pratap Chandra Memorial Homoeopathic Hospital & College, Kolkata 700011, India; (D.S.); (P.D.)
| | - Preyangsee Dutta
- Pratap Chandra Memorial Homoeopathic Hospital & College, Kolkata 700011, India; (D.S.); (P.D.)
| | - Aseem Rai Bhatnagar
- Department of Radiation Oncology, Henry Ford Cancer Institute, Detroit, MI 48202, USA;
| | - Mrinalini Darswal
- Harvard T.H. Chan School of Public Health, Huntington Ave, Boston, MA 02115, USA;
| | - Abhishek Shankar
- Department of Radiation Oncology, Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Mayank Singh
- Department of Medical Oncology (Lab), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India; (A.G.); (G.D.); (C.P.P.)
| |
Collapse
|
13
|
Uscanga-Palomeque AC, Chávez-Escamilla AK, Alvizo-Báez CA, Saavedra-Alonso S, Terrazas-Armendáriz LD, Tamez-Guerra RS, Rodríguez-Padilla C, Alcocer-González JM. CAR-T Cell Therapy: From the Shop to Cancer Therapy. Int J Mol Sci 2023; 24:15688. [PMID: 37958672 PMCID: PMC10649325 DOI: 10.3390/ijms242115688] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 11/15/2023] Open
Abstract
Cancer is a worldwide health problem. Nevertheless, new technologies in the immunotherapy field have emerged. Chimeric antigen receptor (CAR) technology is a novel biological form to treat cancer; CAR-T cell genetic engineering has positively revolutionized cancer immunotherapy. In this paper, we review the latest developments in CAR-T in cancer treatment. We present the structure of the different generations and variants of CAR-T cells including TRUCK (T cells redirected for universal cytokine killing. We explain the approaches of the CAR-T cells manufactured ex vivo and in vivo. Moreover, we describe the limitations and areas of opportunity for this immunotherapy and the current challenges of treating hematological and solid cancer using CAR-T technology as well as its constraints and engineering approaches. We summarize other immune cells that have been using CAR technology, such as natural killer (NK), macrophages (M), and dendritic cells (DC). We conclude that CAR-T cells have the potential to treat not only cancer but other chronic diseases.
Collapse
Affiliation(s)
- Ashanti Concepción Uscanga-Palomeque
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66450, Nuevo León, Mexico; (A.K.C.-E.); (C.A.A.-B.); (S.S.-A.); (L.D.T.-A.); (R.S.T.-G.); (C.R.-P.)
| | | | | | | | | | | | | | - Juan Manuel Alcocer-González
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66450, Nuevo León, Mexico; (A.K.C.-E.); (C.A.A.-B.); (S.S.-A.); (L.D.T.-A.); (R.S.T.-G.); (C.R.-P.)
| |
Collapse
|
14
|
Miranda JA, Huvet C, Donzel M, Lazareth A, Perrot J, Dalle S. Sudden-onset painful eruption of the hands: A cutaneous chimeric antigen receptor T-cell therapy reaction. JAAD Case Rep 2023; 40:92-95. [PMID: 37771358 PMCID: PMC10523419 DOI: 10.1016/j.jdcr.2023.07.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023] Open
Affiliation(s)
- Jimena A. Miranda
- Department of Dermatology, Lyon Sud University Hospital, Hospices Civils de Lyon, France
| | - Charles Huvet
- Department of Dermatology, Lyon Sud University Hospital, Hospices Civils de Lyon, France
| | - Marie Donzel
- Department of Pathology, Lyon Sud University Hospital, Hospices Civils de Lyon, France
| | - Anne Lazareth
- Department of Hematology, Lyon Sud University Hospital, Hospices Civils de Lyon, France
| | - Jimmy Perrot
- Department of Pathology, Lyon Sud University Hospital, Hospices Civils de Lyon, France
| | - Stéphane Dalle
- Department of Dermatology, Lyon Sud University Hospital, Hospices Civils de Lyon, France
- Lyon Cancer Research Centre, Claude Bernard Lyon 1 University, France
| |
Collapse
|
15
|
Mulgaonkar A, Udayakumar D, Yang Y, Harris S, Öz OK, Ramakrishnan Geethakumari P, Sun X. Current and potential roles of immuno-PET/-SPECT in CAR T-cell therapy. Front Med (Lausanne) 2023; 10:1199146. [PMID: 37441689 PMCID: PMC10333708 DOI: 10.3389/fmed.2023.1199146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/25/2023] [Indexed: 07/15/2023] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapies have evolved as breakthrough treatment options for the management of hematological malignancies and are also being developed as therapeutics for solid tumors. However, despite the impressive patient responses from CD19-directed CAR T-cell therapies, ~ 40%-60% of these patients' cancers eventually relapse, with variable prognosis. Such relapses may occur due to a combination of molecular resistance mechanisms, including antigen loss or mutations, T-cell exhaustion, and progression of the immunosuppressive tumor microenvironment. This class of therapeutics is also associated with certain unique toxicities, such as cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, and other "on-target, off-tumor" toxicities, as well as anaphylactic effects. Furthermore, manufacturing limitations and challenges associated with solid tumor infiltration have delayed extensive applications. The molecular imaging modalities of immunological positron emission tomography and single-photon emission computed tomography (immuno-PET/-SPECT) offer a target-specific and highly sensitive, quantitative, non-invasive platform for longitudinal detection of dynamic variations in target antigen expression in the body. Leveraging these imaging strategies as guidance tools for use with CAR T-cell therapies may enable the timely identification of resistance mechanisms and/or toxic events when they occur, permitting effective therapeutic interventions. In addition, the utilization of these approaches in tracking the CAR T-cell pharmacokinetics during product development and optimization may help to assess their efficacy and accordingly to predict treatment outcomes. In this review, we focus on current challenges and potential opportunities in the application of immuno-PET/-SPECT imaging strategies to address the challenges encountered with CAR T-cell therapies.
Collapse
Affiliation(s)
- Aditi Mulgaonkar
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Durga Udayakumar
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yaxing Yang
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Shelby Harris
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Orhan K. Öz
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Praveen Ramakrishnan Geethakumari
- Section of Hematologic Malignancies/Transplant and Cell Therapy, Division of Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Xiankai Sun
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
16
|
Wang X, Chen Z, Li B, Fan J, Xu W, Xiao J. Immunotherapy as a Promising Option for the Treatment of Advanced Chordoma: A Systemic Review. Cancers (Basel) 2022; 15:cancers15010264. [PMID: 36612259 PMCID: PMC9818311 DOI: 10.3390/cancers15010264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE To summarize the function and efficacy of immunotherapy as an adjunctive therapy in the treatment of advanced chordoma. METHODS Literature search was conducted by two reviewers independently. Case reports, case series and clinical trials of immunotherapy for chordoma were retrieved systematically from Pubmed, Web of Science, Scoupus and Cochrane Library. Clinical outcome data extracted from the literature included median progression-free survival (PFS), median overall survival (OS), clinical responses and adverse events (AEs). RESULTS All studies were published between 2015 and 2022. Twenty-two eligible studies were selected for systemic review. PD-1/PD-L1 immune checkpoint inhibitors (ICIs) were the most common used immunotherapy agents in chordoma, among which Pembrolizumab was the most frequently prescribed. CTLA-4 antibody was only used as combination therapy in chordoma. Dose Limiting Toxicity (DLT) was not observed in any vaccine targeting brachyury, and injection site response was the most frequent AV. The response evaluation criteria in solid tumors (RECIST) were the most generally used evaluation standard in chordoma immunotherapy, and none of the included studies employed the Choi criteria. CONCLUSIONS No clinical data have demonstrated that CTLA-4 ICIs combined with PD-1/PD-L1 ICIs is more effective than ICIs monotherapy in treating chordoma, and ICIs in combination with other therapies exhibit more toxicity than monotherapy. PD-1/PD-L1 ICIs monotherapy is recommended as an immunotherapy in patients with advanced chordoma, which may even benefit PD-L1-negative patients. The brachyury vaccine has shown good safety in chordoma patients, and future clinical trials should focus on how to improve its therapeutic efficacy. The use of immunomodulatory agents is a promising therapeutic option, though additional clinical trials are required to evaluate their safety and effectiveness. RECIST does not seem to be an appropriate standard for assessing medications of intratumoral immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Wei Xu
- Correspondence: (W.X.); (J.X.); Tel./Fax: +86-021-13761278657 (W.X.); +86-021-13701785283 (J.X.); +(086)-021-81885634 (W.X. & J.X.)
| | - Jianru Xiao
- Correspondence: (W.X.); (J.X.); Tel./Fax: +86-021-13761278657 (W.X.); +86-021-13701785283 (J.X.); +(086)-021-81885634 (W.X. & J.X.)
| |
Collapse
|
17
|
Menasché P. Immunothérapie par CAR-T cells : du traitement des hémopathies malignes à celui des maladies cardiaques ? BULLETIN DE L'ACADÉMIE NATIONALE DE MÉDECINE 2022. [DOI: 10.1016/j.banm.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Clinically Applicable Assessment of Tisagenlecleucel CAR T Cell Treatment by Digital Droplet PCR for Copy Number Variant Assessment. Int J Mol Sci 2022; 23:ijms23147573. [PMID: 35886920 PMCID: PMC9322953 DOI: 10.3390/ijms23147573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/04/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy is an innovative immunotherapy for treating cancers in both children and adults with proven utility in numerous clinical trials. Significantly, some CAR T cell therapies have now been approved by relevant national regulatory bodies across numerous countries for clinical therapeutic use outside of clinical trials. One such recently licensed product is tisagenlecleucel, a CAR T therapy approved for the treatment of B-cell acute lymphoblastic leukemia (B-ALL) using autologous T cells from the patient. The genetically engineered T cells target a protein called CD19, common to B cells, through a CAR incorporating a 4-1BB costimulatory domain to improve response. Since tisagenlecleucel is now a standard of care treatment for B-ALL, it is clinically essential to be able to accurately monitor these CAR T cells in patients. Assessment of the copy number variant (CNV) of the CAR T cell products allows this within a clinically acceptable timeframe for optimal patient benefit. However, no standardized method with high reproducibility and efficiency has been described within a routine clinical laboratory setting. Here, we demonstrated a novel digital droplet PCR (ddPCR)-based methodology for the study of CNV (ddPCR-CNV) in 4-1BB CD19-specific CAR T cells with universal applicability across clinical diagnostic laboratories.
Collapse
|