1
|
Lu Z, Wang T, Wang L, Ming J. Research progress on estrogen receptor-positive/progesterone receptor-negative breast cancer. Transl Oncol 2025; 56:102387. [PMID: 40222338 PMCID: PMC12018574 DOI: 10.1016/j.tranon.2025.102387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 03/19/2025] [Accepted: 04/05/2025] [Indexed: 04/15/2025] Open
Abstract
Breast cancer, which arises from the epithelial tissue of the breast, is one of the most common cancers affecting women worldwide. Its incidence and mortality rates have been increasing in both developed and developing countries. As a hormone-dependent cancer, breast cancer is classified into several molecular subtypes based on the expression of key markers: Estrogen Receptor (ER), Progesterone Receptor (PR), Human Epidermal Growth Factor Receptor 2 (HER-2), and Ki67. PR loss is associated with endocrine resistance and a poorer prognosis in breast cancer. Despite this, the underlying mechanisms of ER-positive/PR-negative (ER+PR-) breast cancer remain poorly understood. This study aims to review recent advancements in research on ER+PR- breast cancer, analyze its clinical characteristics and molecular mechanisms, and provide recommendations for more targeted therapeutic approaches.
Collapse
Affiliation(s)
- Zhengjia Lu
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tingrui Wang
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lu Wang
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jia Ming
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Rangel N, Sánchez IL, Valbuena DS, Rondón-Lagos M. ZNF217 Gene Copy Number as a Marker of Response to Standard Therapy Drugs According to ERα Status in Breast Cancer. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:127-139. [PMID: 38505863 PMCID: PMC10950081 DOI: 10.2147/bctt.s445753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/24/2024] [Indexed: 03/21/2024]
Abstract
Purpose The therapeutic decision for the management of breast cancer (BC) patients is based on the evaluation of prognostic factors alongside clinical and pathological parameters. Despite the use of standard biomarkers, response and resistance to therapy represent a challenge for clinicians. Among the new potential biomarkers for BC the ZNF217 gene have gained importance in recent years. However, while associations between ZNF217 gene copy number and clinicopathological characteristics have been established, its correlation with treatment response remains unclear. Patients and Methods This study aimed to evaluate the ZNF217 gene copy number and establish its associations with treatment response in estrogen receptor positive (ERα+) and ERα negative (ERα-) BC cell lines. In addition, a validation of the relationship between ZNF217 gene copy number and its prognostic value was performed using datasets of BC patients retrieved from the cBioPortal public database. Results Our data show that in ERα+ cells, ZNF217 gene copy number increase (amplification), while cell proliferation decreases in response to standard drug treatments. In contrast, both ZNF217 gene copy number (gain) and cell proliferation increases in response to standard drug treatments in ERα- cells. The results obtained align with findings from the cBioPortal database analysis, demonstrating that ERα+/HER2- low proliferation patients, exhibiting ZNF217 gene amplification or gain, have a significantly higher survival probability after treatment, compared to ERα-/HER2- and HER2+ patients. Conclusion Our results suggest that in ERα+ BC cells, ZNF217 gene amplification could be indicative of a favorable response, while in ERα- BC cells, ZNF217 gene gain could be postulated as a potential predictor of treatment resistance. A broader understanding of the role of ZNF217 gene in treatment response, together with prospective studies in BC patients, could contribute to confirming our data, as well as optimizing existing treatments and exploring novel approaches to improve overall cancer treatment outcomes.
Collapse
Affiliation(s)
- Nelson Rangel
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, 110231, Colombia
| | - Iris Lorena Sánchez
- School of Biological Sciences, Universidad Pedagógica Y Tecnológica de Colombia, Tunja, 150003, Colombia
| | - Duván Sebastián Valbuena
- School of Biological Sciences, Universidad Pedagógica Y Tecnológica de Colombia, Tunja, 150003, Colombia
| | - Milena Rondón-Lagos
- School of Biological Sciences, Universidad Pedagógica Y Tecnológica de Colombia, Tunja, 150003, Colombia
| |
Collapse
|
3
|
Zhu Z, Wang L, Guo R, Pang D, Wang W, Wu Y, Wei N, Li J, Tu P. XJ-8, a natural compound isolated from Sanguis draxonis, inhibits platelet function and thrombosis by targeting MAP3K3. J Thromb Haemost 2022; 20:605-618. [PMID: 34780114 DOI: 10.1111/jth.15593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/02/2021] [Accepted: 11/12/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Vascular injury initiates rapid platelet activation, which is critical for haemostasis, while it also causes fatal thrombotic diseases, such as myocardial infarction or ischemic stroke. OBJECTIVES To study the inhibitory effects and underlying mechanisms of XJ-8, a natural compound isolated from Sanguis draxonis, on platelet activation and thrombosis. METHODS The regulatory effects of XJ-8 on the dense granule release, thromboxane A2 (TxA2 ) synthesis, α-granule release, activation of integrin αIIbβ3, and aggregation of platelets induced by multiple agonists were investigated in in vitro experiments. The effects of XJ-8 on bleeding time and FeCl3 -induced carotid artery thrombosis were also evaluated in in vivo experiments. Furthermore, we investigated the underlying mechanisms by which XJ-8 exerted its pharmacological effects. RESULTS XJ-8 not only significantly inhibited the dense granule release, TxA2 synthesis, and aggregation of platelets induced by multiple agonists, but also exerted extending effects on bleeding time and therapeutic effects on thrombotic disease. In addition, XJ-8 selectively and moderately inhibited the activity of mitogen-activated protein kinase kinase kinase 3 (MAP3K3) and the activation of signalling pathways downstream MAP3K3, which play important roles in platelet activation. CONCLUSION XJ-8 can inhibit platelet function and thrombosis by targeting MAP3K3 and has potential to be developed into a novel therapeutic agent for the treatment of thrombotic diseases.
Collapse
Affiliation(s)
- Zhixiang Zhu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Lili Wang
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ran Guo
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Daoran Pang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wenxuan Wang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Wu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ning Wei
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
4
|
Liu XY, Ma D, Xu XE, Jin X, Yu KD, Jiang YZ, Shao ZM. Genomic Landscape and Endocrine-Resistant Subgroup in Estrogen Receptor-Positive, Progesterone Receptor-Negative, and HER2-Negative Breast Cancer. Am J Cancer Res 2018; 8:6386-6399. [PMID: 30613307 PMCID: PMC6299689 DOI: 10.7150/thno.29164] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 11/08/2018] [Indexed: 02/01/2023] Open
Abstract
Estrogen receptor-positive, progesterone receptor-negative, and human epidermal growth factor receptor 2 (HER2)-negative (ER+PR-HER2-) breast cancer comprise a special type of breast cancer that constitutes ~10% of all breast cancer patients. ER+PR-HER2- tumor benefits less from endocrine therapy, while its genomic features remain elusive. In this study, we systematically assessed the multiomic landscape and endocrine responsiveness of ER+PR-HER2- breast cancer. Methods: This study incorporated five cohorts. The first and second cohorts were from the Surveillance, Epidemiology, and End Results database (n=130,856) and Molecular Taxonomy of Breast Cancer International Consortium (n=1,055) for analyzing survival outcomes and endocrine responsiveness. The third cohort was from The Cancer Genome Atlas (n=630) for multiomic analysis and endocrine-resistant subgroup exploration. The fourth cohort, from the MD Anderson database (n=92), was employed to assist gene selection. The fifth cohort was a prospective observational cohort from Fudan University Shanghai Cancer Center (n=245) that was utilized to validate the gene-defined subgroup by immunohistochemistry (IHC). Results: Clinically, ER+PR-HER2- tumors showed lower endocrine responsiveness than did ER+PR+HER2- tumors. Genomically, copy number loss or promoter methylation of PR genes occurred in 75% of ER+PR-HER2- tumors, collectively explaining PR loss. ER+PR-HER2- tumors had higher TP53 (30.3% vs. 17.0%) and lower PIK3CA mutation rates (25.8% vs. 42.7%) and exhibited more ZNF703 (21.5% vs. 13.6%) and RPS6KB1 (18.5% vs. 7.8%) amplification events than ER+PR+HER2- tumors. Among ER+PR-HER2- tumors, nearly 20% were of the PAM50-defined non-luminal-like subgroup and manifested lower endocrine sensitivity scores and enriched biosynthesis, metabolism and DNA replication pathways. We further identified the non-luminal-like subgroup using three IHC markers, GATA3, CK5, and EGFR. These IHC-defined non-luminal-like (GATA3-negative, CK5-positive and/or EGFR-positive) tumors received limited benefit from adjuvant endocrine therapy. Conclusion: ER+PR-HER2- breast cancer consists of clinically and genomically distinct groups that may require different treatment strategies. The non-luminal-like subgroup was associated with reduced benefit from endocrine therapy.
Collapse
|
5
|
Farabaugh SM, Chan BT, Cui X, Dearth RK, Lee AV. Lack of interaction between ErbB2 and insulin receptor substrate signaling in breast cancer. Cell Commun Signal 2016; 14:25. [PMID: 27765041 PMCID: PMC5073819 DOI: 10.1186/s12964-016-0148-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 10/13/2016] [Indexed: 11/10/2022] Open
Abstract
Background ErbB2 Receptor Tyrosine Kinase 2 (ErbB2, HER2/Neu) is amplified in breast cancer and associated with poor prognosis. Growing evidence suggests interplay between ErbB2 and insulin-like growth factor (IGF) signaling. For example, ErbB2 inhibitors can block IGF-induced signaling while, conversely, IGF1R inhibitors can inhibit ErbB2 action. ErbB receptors can bind and phosphorylate insulin receptor substrates (IRS) and this may be critical for ErbB-mediated anti-estrogen resistance in breast cancer. Herein, we examined crosstalk between ErbB2 and IRSs using cancer cell lines and transgenic mouse models. Methods MMTV-ErbB2 and MMTV-IRS2 transgenic mice were crossed to create hemizygous MMTV-ErbB2/MMTV-IRS2 bigenic mice. Signaling crosstalk between ErbB2 and IRSs was examined in vitro by knockdown or overexpression followed by western blot analysis for downstream signaling intermediates and growth assays. Results A cross between MMTV-ErbB2 and MMTV-IRS2 mice demonstrated no enhancement of ErbB2 mediated mammary tumorigenesis or metastasis by elevated IRS2. Substantiating this, overexpression or knockdown of IRS1 or IRS2 in MMTV-ErbB2 mammary cancer cell lines had little effect upon ErbB2 signaling. Similar results were obtained in human mammary epithelial cells (MCF10A) and breast cancer cell lines. Conclusion Despite previous evidence suggesting that ErbB receptors can bind and activate IRSs, our findings indicate that ErbB2 does not cooperate with the IRS pathway in these models to promote mammary tumorigenesis.
Collapse
Affiliation(s)
- Susan M Farabaugh
- Women's Cancer Research Center, Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, Magee Women's Research Institute, 204 Craft Avenue, Room A412, Pittsburgh, PA, 15213, USA
| | - Bonita T Chan
- Lester and Sue Smith Breast Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xiaojiang Cui
- Lester and Sue Smith Breast Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Robert K Dearth
- Lester and Sue Smith Breast Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Adrian V Lee
- Women's Cancer Research Center, Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, Magee Women's Research Institute, 204 Craft Avenue, Room A412, Pittsburgh, PA, 15213, USA. .,Lester and Sue Smith Breast Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Rojo F, González-Pérez A, Furriol J, Nicolau MJ, Ferrer J, Burgués O, Sabbaghi M, González-Navarrete I, Cristobal I, Serrano L, Zazo S, Madoz J, Servitja S, Tusquets I, Albanell J, Lluch A, Rovira A, Eroles P. Non-canonical NF-κB pathway activation predicts outcome in borderline oestrogen receptor positive breast carcinoma. Br J Cancer 2016; 115:322-31. [PMID: 27404455 PMCID: PMC4973161 DOI: 10.1038/bjc.2016.204] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 05/26/2016] [Accepted: 06/02/2016] [Indexed: 12/17/2022] Open
Abstract
Background: NF-κB signalling appears deregulated in breast tumours. The purpose of this study was to determine whether the non-canonical NF-κB pathway, is activated in oestrogen receptor positive (ER+) breast cancer, to identify any correlation between its activity and the clinico-pathological phenotype and to explore whether NF-κB2 and RelB subunits and/or any of their target genes might be used as a predictive marker. Methods: Two independent cohorts of ER+ early breast cancer patients treated with adjuvant endocrine therapy were included in the study. Activation of RelB and NF-κB2 subunits was determined in a training set of 121 patients by measuring DNA-binding activities in nuclear extracts from fresh frozen specimens by an ELISA-based assay. Samples of 15 ER− breast cancer patients were also included in the study. In a large validation cohort of 207 patients, nuclear immunostaining of RelB and NF-κB2 on formalin-fixed paraffin-embedded specimens was performed. Statistical correlation within clinico-pathological factors, disease-free survival (DFS) and overall survival (OS) was evaluated. Publicly available gene expression and survival data have been interrogated aimed to identify target genes. Results: Activation of NF-κB2 and RelB was found in 53.7 and 49.2% of the 121 ER+ tumours analysed, with similar levels to ER− breast tumours analysed in parallel for comparisons. In the validation cohort, we obtained a similar proportion of cases with activation of NF-κB2 and RelB (59.9 and 32.4%), with a 39.6% of co-activation. Multiplexing immunofluorescence in breast cancer tissue confirmed an inverse spatial distribution of ER with NF-κB2 and RelB nuclear expression in tumour cells. Interestingly, NF-κB2 and RelB mRNA expression was inversely correlated with ER gene (ESR1) levels (P<0.001, both) and its activation was significantly associated with worse DFS (P=0.005 and P=0.035, respectively) in ER+ breast cancer. Moreover, the co-activation of both subunits showed a stronger association with early relapse (P=0.002) and OS (P=0.001). Finally, higher expression of the non-canonical NF-κB target gene myoglobin was associated with a poor outcome in ER+ breast cancer (DFS, P<0.05). Conclusions: The non-canonical NF-κB pathway activation is inversely associated with oestrogen receptor expression in ER+ breast cancer and predicts poor survival in this subgroup. The myoglobin gene expression has been identified as a possible surrogate marker of the non-canonical NF-κB pathway activation in these tumours.
Collapse
Affiliation(s)
- Federico Rojo
- Pathology Department, IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain
| | | | - Jessica Furriol
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - Ma Jesús Nicolau
- Pathology Department Hospital General Universitario de Castellón, 12004 Castellón, Spain
| | - Jaime Ferrer
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - Octavio Burgués
- Pathology Department, Hospital Clinico Universitario, 46010 Valencia, Spain
| | - MohammadA Sabbaghi
- Cancer Research Program, IMIM (Hospital del Mar Research Institute), 08003 Barcelona, Spain.,Medical Oncology Department, Hospital del Mar, 08003 Barcelona, Spain
| | | | - Ion Cristobal
- Pathology Department, IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Laia Serrano
- Cancer Research Program, IMIM (Hospital del Mar Research Institute), 08003 Barcelona, Spain
| | - Sandra Zazo
- Pathology Department, IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Juan Madoz
- Pathology Department, IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Sonia Servitja
- Cancer Research Program, IMIM (Hospital del Mar Research Institute), 08003 Barcelona, Spain.,Medical Oncology Department, Hospital del Mar, 08003 Barcelona, Spain
| | - Ignasi Tusquets
- Cancer Research Program, IMIM (Hospital del Mar Research Institute), 08003 Barcelona, Spain.,Medical Oncology Department, Hospital del Mar, 08003 Barcelona, Spain
| | - Joan Albanell
- Cancer Research Program, IMIM (Hospital del Mar Research Institute), 08003 Barcelona, Spain.,Medical Oncology Department, Hospital del Mar, 08003 Barcelona, Spain.,Universitat Pompeu Fabra, 08002 Barcelona, Spain
| | - Ana Lluch
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain.,Oncology and Hematology Department, Hospital Clinico Universitario, 46010 Valencia, Spain
| | - Ana Rovira
- Cancer Research Program, IMIM (Hospital del Mar Research Institute), 08003 Barcelona, Spain.,Medical Oncology Department, Hospital del Mar, 08003 Barcelona, Spain
| | - Pilar Eroles
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| |
Collapse
|
7
|
Granata S, Dalla Gassa A, Carraro A, Brunelli M, Stallone G, Lupo A, Zaza G. Sirolimus and Everolimus Pathway: Reviewing Candidate Genes Influencing Their Intracellular Effects. Int J Mol Sci 2016; 17:ijms17050735. [PMID: 27187382 PMCID: PMC4881557 DOI: 10.3390/ijms17050735] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/21/2016] [Accepted: 05/06/2016] [Indexed: 02/07/2023] Open
Abstract
Sirolimus (SRL) and everolimus (EVR) are mammalian targets of rapamycin inhibitors (mTOR-I) largely employed in renal transplantation and oncology as immunosuppressive/antiproliferative agents. SRL was the first mTOR-I produced by the bacterium Streptomyces hygroscopicus and approved for several medical purposes. EVR, derived from SRL, contains a 2-hydroxy-ethyl chain in the 40th position that makes the drug more hydrophilic than SRL and increases oral bioavailability. Their main mechanism of action is the inhibition of the mTOR complex 1 and the regulation of factors involved in a several crucial cellular functions including: protein synthesis, regulation of angiogenesis, lipid biosynthesis, mitochondrial biogenesis and function, cell cycle, and autophagy. Most of the proteins/enzymes belonging to the aforementioned biological processes are encoded by numerous and tightly regulated genes. However, at the moment, the polygenic influence on SRL/EVR cellular effects is still not completely defined, and its comprehension represents a key challenge for researchers. Therefore, to obtain a complete picture of the cellular network connected to SRL/EVR, we decided to review major evidences available in the literature regarding the genetic influence on mTOR-I biology/pharmacology and to build, for the first time, a useful and specific “SRL/EVR genes-focused pathway”, possibly employable as a starting point for future in-depth research projects.
Collapse
Affiliation(s)
- Simona Granata
- Renal Unit, Department of Medicine, University/Hospital of Verona, 37126 Verona, Italy.
| | | | - Amedeo Carraro
- Liver Transplant Unit, Department of General Surgery and Odontoiatrics, University/Hospital of Verona, 37126 Verona, Italy.
| | - Matteo Brunelli
- Department of Pathology and Diagnostics, University of Verona, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy.
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, University of Foggia, 71122 Foggia, Italy.
| | - Antonio Lupo
- Renal Unit, Department of Medicine, University/Hospital of Verona, 37126 Verona, Italy.
| | - Gianluigi Zaza
- Renal Unit, Department of Medicine, University/Hospital of Verona, 37126 Verona, Italy.
| |
Collapse
|
8
|
Hagelstrom RT, Ford J, Reiser GM, Nelson M, Pickering DL, Althof PA, Sanger WG, Coccia PF. Breast Cancer and Non-Hodgkin Lymphoma in a Young Male with Cowden Syndrome. Pediatr Blood Cancer 2016; 63:544-6. [PMID: 26468640 DOI: 10.1002/pbc.25796] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/16/2015] [Indexed: 01/28/2023]
Abstract
Male breast cancer (MBC) is unusual, especially in young adults. Most cases of MBC as a secondary malignancy relate to the previous treatment with ionizing radiation. MBC can be associated with mutations in hereditary cancer predisposition syndrome genes (i.e., BRCA2); however, no such association has been reported in patients with Cowden syndrome (involving the phosphatase and tensin homolog [PTEN] gene). We describe a patient with Cowden syndrome who was initially diagnosed with B-cell lymphoblastic lymphoma at the age of 7 years, then MBC at the age of 31 years, and never received radiation therapy.
Collapse
Affiliation(s)
- Robert Tanner Hagelstrom
- Human Genetics Laboratory, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska
| | - James Ford
- Pediatric Oncology/ Hematology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Gwendolyn M Reiser
- Genetic Medicine, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska
| | - Marilu Nelson
- Human Genetics Laboratory, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska
| | - Diane L Pickering
- Human Genetics Laboratory, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska
| | - Pamela A Althof
- Human Genetics Laboratory, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska
| | - Warren G Sanger
- Human Genetics Laboratory, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska
| | - Peter F Coccia
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
9
|
Abstract
Around 70% of all breast cancers are estrogen receptor alpha positive and hence their development is highly dependent on estradiol. While the invention of endocrine therapies has revolusioned the treatment of the disease, resistance to therapy eventually occurs in a large number of patients. This paper seeks to illustrate and discuss the complexity and heterogeneity of the mechanisms which underlie resistance and the approaches proposed to combat them. It will also focus on the use and development of methods for predicting which patients are likely to develop resistance.
Collapse
|
10
|
Hu L, Ru K, Zhang L, Huang Y, Zhu X, Liu H, Zetterberg A, Cheng T, Miao W. Fluorescence in situ hybridization (FISH): an increasingly demanded tool for biomarker research and personalized medicine. Biomark Res 2014; 2:3. [PMID: 24499728 PMCID: PMC3917523 DOI: 10.1186/2050-7771-2-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 01/30/2014] [Indexed: 12/24/2022] Open
Abstract
Extensive studies of the genetic aberrations related to human diseases conducted over the last two decades have identified recurrent genomic abnormalities as potential driving factors underlying a variety of cancers. Over the time, a series of cutting-edge high-throughput genetic tests, such as microarrays and next-generation sequencing, have been developed and incorporated into routine clinical practice. Although it is a classical low-throughput cytogenetic test, fluorescence in situ hybridization (FISH) does not show signs of fading; on the contrary, it plays an increasingly important role in detecting specific biomarkers in solid and hematologic neoplasms and has therefore become an indispensable part of the rapidly developing field of personalized medicine. In this article, we have summarized the recent advances in FISH application for both de novo discovery and routine detection of chromosomal rearrangements, amplifications, and deletions that are associated with the pathogenesis of various hematopoietic and non-hematopoietic malignancies. In addition, we have reviewed the recent developments in FISH methodology as well.
Collapse
Affiliation(s)
- Linping Hu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing Road 288, Tianjin 300020, P.R. China
| | - Kun Ru
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Department of Pathology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Li Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Department of Pediatrics, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yuting Huang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Department of Pediatrics, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing Road 288, Tianjin 300020, P.R. China
| | - Hanzhi Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing Road 288, Tianjin 300020, P.R. China
| | - Anders Zetterberg
- Department of Oncology-Pathology and Karolinska Cancer Center, Karolinska Institute, Stockholm, Sweden
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing Road 288, Tianjin 300020, P.R. China
| | - Weimin Miao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing Road 288, Tianjin 300020, P.R. China
| |
Collapse
|
11
|
|