1
|
Simpson APA, George CE, Hui HYL, Doddi R, Kotecha RS, Fuller KA, Erber WN. Imaging Flow Cytometric Identification of Chromosomal Defects in Paediatric Acute Lymphoblastic Leukaemia. Cells 2025; 14:114. [PMID: 39851542 PMCID: PMC11763943 DOI: 10.3390/cells14020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/30/2025] Open
Abstract
Acute lymphoblastic leukaemia is the most common childhood malignancy that remains a leading cause of death in childhood. It may be characterised by multiple known recurrent genetic aberrations that inform prognosis, the most common being hyperdiploidy and t(12;21) ETV6::RUNX1. We aimed to assess the applicability of a new imaging flow cytometry methodology that incorporates cell morphology, immunophenotype, and fluorescence in situ hybridisation (FISH) to identify aneuploidy of chromosomes 4 and 21 and the translocation ETV6::RUNX1. We evaluated this new "immuno-flowFISH" platform on 39 cases of paediatric ALL of B-lineage known to have aneuploidy of chromosomes 4 and 21 and the translocation ETV6::RUNX1. After identifying the leukaemic population based on immunophenotype (i.e., expression of CD34, CD10, and CD19 antigens), we assessed for copy numbers of loci for the centromeres of chromosomes 4 and 21 and the ETV6 and RUNX1 regions using fluorophore-labelled DNA probes in more than 1000 cells per sample. Trisomy 4 and 21, tetrasomy 21, and translocations of ETV6::RUNX1, as well as gains and losses of ETV6 and RUNX1, could all be identified based on FISH spot counts and digital imagery. There was variability in clonal makeup in individual cases, suggesting the presence of sub-clones. Copy number alterations and translocations could be detected even when the cell population comprised less than 1% of cells and included cells with a mature B-cell phenotype, i.e., CD19-positive, lacking CD34 and CD10. In this proof-of-principle study of 39 cases, this sensitive and specific semi-automated high-throughput imaging flow cytometric immuno-flowFISH method has been able to show that alterations in ploidy and ETV6::RUNX1 could be detected in the 39 cases of paediatric ALL. This imaging flow cytometric FISH method has potential applications for diagnosis and monitoring disease and marrow regeneration (i.e., distinguishing residual ALL from regenerating haematogones) following chemotherapy.
Collapse
Affiliation(s)
- Ana P. A. Simpson
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Carly E. George
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children’s Hospital, Perth, WA 6009, Australia
- PathWest Laboratory Medicine, Nedlands, WA 6009, Australia
| | - Henry Y. L. Hui
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Ravi Doddi
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Rishi S. Kotecha
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children’s Hospital, Perth, WA 6009, Australia
- Medical School, The University of Western Australia, Crawley, WA 6009, Australia
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia
| | - Kathy A. Fuller
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Wendy N. Erber
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA 6009, Australia
- PathWest Laboratory Medicine, Nedlands, WA 6009, Australia
| |
Collapse
|
2
|
陈 霞, 雷 小, 管 贤, 窦 颖, 温 贤, 郭 玉, 高 惠, 于 洁. [Risk factors for recurrence of childhood acute lymphoblastic leukemia after treatment with the Chinese Children's Cancer Group ALL-2015 protocol]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:701-707. [PMID: 39014946 PMCID: PMC11562041 DOI: 10.7499/j.issn.1008-8830.2401010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/27/2024] [Indexed: 07/18/2024]
Abstract
OBJECTIVES To investigate the cumulative incidence of recurrence (CIR) in children with acute lymphoblastic leukemia (ALL) after treatment with the Chinese Children's Cancer Group ALL-2015 (CCCG-ALL-2015) protocol and the risk factors for recurrence. METHODS A retrospective analysis was conducted on the clinical data of 852 children who were treated with the CCCG-ALL-2015 protocol from January 2015 to December 2019. CIR was calculated, and the risk factors for the recurrence of B-lineage acute lymphoblastic leukemia (B-ALL) were analyzed. RESULTS Among the 852 children with ALL, 146 (17.1%) experienced recurrence, with an 8-year CIR of 19.8%±1.6%. There was no significant difference in 8-year CIR between the B-ALL group and the acute T lymphocyte leukemia group (P>0.05). For the 146 children with recurrence, recurrence was mainly observed in the very early stage (n=62, 42.5%) and the early stage (n=46, 31.5%), and there were 42 children with bone marrow recurrence alone (28.8%) in the very early stage and 27 children with bone marrow recurrence alone (18.5%) in the early stage. The Cox proportional-hazards regression model analysis showed that positive MLLr fusion gene (HR=4.177, 95%CI: 2.086-8.364, P<0.001) and minimal residual disease≥0.01% on day 46 (HR=2.013, 95%CI: 1.163-3.483, P=0.012) were independent risk factors for recurrence in children with B-ALL after treatment with the CCCG-ALL-2015 protocol. CONCLUSIONS There is still a relatively high recurrence rate in children with ALL after treatment with the CCCG-ALL-2015 protocol, mainly bone marrow recurrence alone in the very early stage and the early stage, and minimal residual disease≥0.01% on day 46 and positive MLLr fusion gene are closely associated with the recurrence of B-ALL.
Collapse
|
3
|
Kovach AE, Wengyn M, Vu MH, Doan A, Raca G, Bhojwani D. IKZF1 PLUS alterations contribute to outcome disparities in Hispanic/Latino children with B-lymphoblastic leukemia. Pediatr Blood Cancer 2024; 71:e30996. [PMID: 38637852 PMCID: PMC11193948 DOI: 10.1002/pbc.30996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/20/2024] [Accepted: 03/19/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Compared to other ethnicities, Hispanics/Latinos (H/L) have a high incidence of acute lymphoblastic leukemia (ALL), enrichment of unfavorable ALL genetic subtypes, and worse outcomes, even after correcting for socioeconomic factors. We previously demonstrated increased incidence of the high-risk genetic drivers IKZF1 deletion and IGH::CRLF2 rearrangement in H/L compared to non-H/L children with B-ALL. Here in an expanded pediatric cohort, we sought to identify novel genetic drivers and secondary genetic alterations in B-ALL associated with H/L ethnicity. PROCEDURE Comprehensive clinicopathologic data from patients with B-ALL treated from 2016 to 2020 were analyzed. Subtype was determined from karyotype, fluorescence in situ hybridization (FISH), chromosome microarray (CMA), and our next-generation sequencing (NGS) panel (OncoKids). Non-driver genetic variants were also examined. p-Values less than .05 (Fisher's exact test) were considered significant. RESULTS Among patients with B-ALL at diagnosis (n = 273), H/L patients (189, 69.2%) were older (p = .018), more likely to present with CNS2 or CNS3 disease (p = .004), and NCI high-risk ALL (p = .014) compared to non-H/L patients. Higher incidence of IGH::CRLF2 rearrangement (B-ALL, BCR::ABL1-like, unfavorable; p = .016) and lower incidence of ETV6::RUNX1 rearrangement (favorable, p = .02) were also associated with H/L ethnicity. Among secondary (non-subtype-defining) genetic variants, B-ALL in H/L was associated with IKFZ1 deletion alone (p = .001) or with IGH::CRLF2 rearrangement (p = .003). The IKZF1PLUS profile (IKZF1 deletion plus CDKN2A/2Bdel, PAX5del, or P2RY8::CRLF2 rearrangement without DUX4 rearrangement) was identified as a novel high-risk feature enriched in H/L patients (p = .001). CONCLUSIONS Our study shows enrichment of high-risk genetic variants in H/L B-ALL and raises consideration for novel therapeutic targets.
Collapse
Affiliation(s)
- Alexandra E. Kovach
- Hematopathology, Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA
- Keck School of Medicine of University of Southern California, Los Angeles, CA
| | | | - My H. Vu
- Keck School of Medicine of University of Southern California, Los Angeles, CA
- Biostatistics Core, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Andrew Doan
- Keck School of Medicine of University of Southern California, Los Angeles, CA
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Gordana Raca
- Keck School of Medicine of University of Southern California, Los Angeles, CA
- Cytogenomics, Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Deepa Bhojwani
- Keck School of Medicine of University of Southern California, Los Angeles, CA
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA
| |
Collapse
|
4
|
Hu GH, Zhang XH, Liu KY, Xu LP, Wang Y, Cheng YF, Huang XJ. Outcome and Prognostic Factors of Haploidentical Allogeneic Hematopoietic Stem Cell Transplantation in Pediatric Relapsed or Refractory ETV6/RUNX1-Positive Acute Lymphoblastic Leukemia. Acta Haematol 2024; 147:534-542. [PMID: 38246140 DOI: 10.1159/000536396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/25/2023] [Indexed: 01/23/2024]
Abstract
INTRODUCTION The role of haploidentical allogeneic hematopoietic stem cell transplantation (haplo-HSCT) in pediatric patients with relapsed or refractory (R/R) ETV6/RUNX1-positive acute lymphoblastic leukemia (ALL) is unclear. This study aimed to identify prognostic factors and explore the role of haplo-HSCT in the treatment of ETV6/RUNX1-positive ALL. METHODS We analyzed the clinical characteristics and treatment outcomes of 20 pediatric patients who were diagnosed with ETV6/RUNX1-positive ALL and received chemotherapy/chimeric antigen receptor T-cell bridged to haplo-HSCT between 2016 and 2021 at our institution. RESULTS With a median follow-up time of 47 months, the 3-year cumulative incidence of relapse, disease-free survival, and overall survival were 35.9% (95% confidence interval (CI): 15.3-57.1%), 59.1% (95% CI: 37.2-81.0%), and 75.0% (95% CI: 56.0-94.0%), respectively. Multivariate analysis revealed that pre-HSCT measurable residual disease (MRD) positivity (hazard ratio, 13.275; 95% CI: 2.406-73.243; p = 0.003) had a significant negative impact on relapse. A total of 7 patients experienced positive ETV6/RUNX1 gene expression at a median of 7.2 months after haplo-HSCT, and 5 of them experienced relapse at a median time of 12.1 months after haplo-HSCT. ROC curve analysis was performed to analyze the significance of pre-HSCT and post-HSCT ETV6/RUNX1 transcripts for predicting relapse; the AUC were 0.798 (95% CI: 0.567-1.0, p = 0.035) and 0.875 (95% CI: 0.690-1.0, p = 0.008), respectively. The optimal cut-off points to predict an inevitable relapse were 0.011% and 0.0019%, respectively. CONCLUSION Patients with R/R ETV6/RUNX1-positive ALL may benefit from haplo-HSCT. Deeply eliminating pre-HSCT MRD and preemptive treatment for post-HSCT MRD may be crucial to further improving the prognosis.
Collapse
Affiliation(s)
- Guan-Hua Hu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Chinese Academic of Medical Sciences, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Chinese Academic of Medical Sciences, Beijing, China
| | - Kai-Yan Liu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Chinese Academic of Medical Sciences, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Chinese Academic of Medical Sciences, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Chinese Academic of Medical Sciences, Beijing, China
| | - Yi-Fei Cheng
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Chinese Academic of Medical Sciences, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Chinese Academic of Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Sharma G, Tran TM, Bansal I, Beg MS, Bhardwaj R, Bassi J, Tan Y, Jaiswal AK, Tso C, Jain A, Singh J, Chattopadhyay P, Singh A, Chopra A, Bakhshi S, Casero D, Rao DS, Palanichamy JK. RNA binding protein IGF2BP1 synergizes with ETV6-RUNX1 to drive oncogenic signaling in B-cell Acute Lymphoblastic Leukemia. J Exp Clin Cancer Res 2023; 42:231. [PMID: 37670323 PMCID: PMC10478443 DOI: 10.1186/s13046-023-02810-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 08/27/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Acute lymphoblastic leukemia (ALL) is the most common pediatric hematological malignancy, with ETV6::RUNX1 being the most prevalent translocation whose exact pathogenesis remains unclear. IGF2BP1 (Insulin-like Growth Factor 2 Binding Protein 1) is an oncofetal RNA binding protein seen to be specifically overexpressed in ETV6::RUNX1 positive B-ALL. In this study, we have studied the mechanistic role of IGF2BP1 in leukemogenesis and its synergism with the ETV6::RUNX1 fusion protein. METHODS Gene expression was analyzed from patient bone marrow RNA using Real Time RT-qPCR. Knockout cell lines were created using CRISPR-Cas9 based lentiviral vectors. RNA-Seq and RNA Immunoprecipitation sequencing (RIP-Seq) after IGF2BP1 pulldown were performed using the Illumina platform. Mouse experiments were done by retroviral overexpression of donor HSCs followed by lethal irradiation of recipients using a bone marrow transplant model. RESULTS We observed specific overexpression of IGF2BP1 in ETV6::RUNX1 positive patients in an Indian cohort of pediatric ALL (n=167) with a positive correlation with prednisolone resistance. IGF2BP1 expression was essential for tumor cell survival in multiple ETV6::RUNX1 positive B-ALL cell lines. Integrated analysis of transcriptome sequencing after IGF2BP1 knockout and RIP-Seq after IGF2BP1 pulldown in Reh cell line revealed that IGF2BP1 targets encompass multiple pro-oncogenic signalling pathways including TNFα/NFκB and PI3K-Akt pathways. These pathways were also dysregulated in primary ETV6::RUNX1 positive B-ALL patient samples from our center as well as in public B-ALL patient datasets. IGF2BP1 showed binding and stabilization of the ETV6::RUNX1 fusion transcript itself. This positive feedback loop led to constitutive dysregulation of several oncogenic pathways. Enforced co-expression of ETV6::RUNX1 and IGF2BP1 in mouse bone marrow resulted in marrow hypercellularity which was characterized by multi-lineage progenitor expansion and strong Ki67 positivity. This pre-leukemic phenotype confirmed their synergism in-vivo. Clonal expansion of cells overexpressing both ETV6::RUNX1 and IGF2BP1 was clearly observed. These mice also developed splenomegaly indicating extramedullary hematopoiesis. CONCLUSION Our data suggest a combined impact of the ETV6::RUNX1 fusion protein and RNA binding protein, IGF2BP1 in activating multiple oncogenic pathways in B-ALL which makes IGF2BP1 and these pathways as attractive therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Gunjan Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Room 4008, Convergence Block, New Delhi, 110029, India
| | - Tiffany M Tran
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Ishu Bansal
- Department of Biochemistry, All India Institute of Medical Sciences, Room 4008, Convergence Block, New Delhi, 110029, India
| | - Mohammad Sabique Beg
- Department of Biochemistry, All India Institute of Medical Sciences, Room 4008, Convergence Block, New Delhi, 110029, India
| | - Ruchi Bhardwaj
- Department of Biochemistry, All India Institute of Medical Sciences, Room 4008, Convergence Block, New Delhi, 110029, India
| | - Jaspal Bassi
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Yuande Tan
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Amit Kumar Jaiswal
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Christine Tso
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Ayushi Jain
- Department of Biochemistry, All India Institute of Medical Sciences, Room 4008, Convergence Block, New Delhi, 110029, India
| | - Jay Singh
- Department of Laboratory Oncology, Dr B.R Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Parthaprasad Chattopadhyay
- Department of Biochemistry, All India Institute of Medical Sciences, Room 4008, Convergence Block, New Delhi, 110029, India
| | - Archna Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Room 4008, Convergence Block, New Delhi, 110029, India
| | - Anita Chopra
- Department of Laboratory Oncology, Dr B.R Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Sameer Bakhshi
- Department of Medical Oncology, Dr B.R Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - David Casero
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Dinesh S Rao
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Jayanth Kumar Palanichamy
- Department of Biochemistry, All India Institute of Medical Sciences, Room 4008, Convergence Block, New Delhi, 110029, India.
| |
Collapse
|
6
|
Ampatzidou M, Papadhimitriou SI, Paisiou A, Paterakis G, Tzanoudaki M, Papadakis V, Florentin L, Polychronopoulou S. The Prognostic Effect of CDKN2A/2B Gene Deletions in Pediatric Acute Lymphoblastic Leukemia (ALL): Independent Prognostic Significance in BFM-Based Protocols. Diagnostics (Basel) 2023; 13:diagnostics13091589. [PMID: 37174980 PMCID: PMC10178600 DOI: 10.3390/diagnostics13091589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
One of the most frequent genes affected in pediatric ALL is the CDKN2A/2B gene, acting as a secondary cooperating event and playing an important role in cell-cycle regulation and chemosensitivity. Despite its inclusion in combined CNA (copy-number alterations) classifiers, like the IKZF1plus entity and the UKALL CNA profile, the prognostic impact of the individual gene deletions outside the context of a combined CNA evaluation remains controversial. Addressing the CDKN2A/2B deletions' additive prognostic effect in current risk-stratification algorithms, we present a retrospective study of a Greek pediatric ALL cohort comprising 247 patients studied over a 24-year period (2000-2023). Herein, we provide insight regarding the correlation with disease features, MRD clearance, and independent prognostic significance for this ALL cohort treated with contemporary BFM-based treatment protocols. Within an extended follow-up time of 135 months, the presence of the CDKN2A/2B deletions (biallelic or monoallelic) was associated with inferior EFS rates (65.1% compared to 91.8% for the gene non-deleted subgroup, p < 0.001), with the relapse rate accounting for 22.2% and 5.9%, respectively (p < 0.001). The presence of the biallelic deletion was associated with the worst outcomes (EFS 57.2% vs. 89.6% in the case of any other status, monoallelic or non-deleted, p < 0.001). Survival differences were demonstrated for B-ALL cases (EFS 65.3% vs. 93.6% for the non-deleted B-ALL subgroup, p < 0.001), but the prognostic effect was not statistically significant within the T-ALL cohort (EFS 64.3 vs. 69.2, p = 0.947). The presence of the CDKN2A/2B deletions clearly correlated with inferior outcomes within all protocol-defined risk groups (standard risk (SR): EFS 66.7% vs. 100%, p < 0.001, intermediate risk (IR): EFS 77.1% vs. 97.9%, p < 0.001, high risk (HR): EFS 42.1% vs. 70.5% p < 0.001 for deleted vs non-deleted cases in each patient risk group); additionally, in this study, the presence of the deletion differentiated prognosis within both MRD-positive and -negative subgroups on days 15 and 33 of induction. In multivariate analysis, the presence of the CDKN2A/2B deletions was the most important prognostic factor for relapse and overall survival, yielding a hazard ratio of 5.2 (95% confidence interval: 2.59-10.41, p < 0.001) and 5.96 (95% confidence interval: 2.97-11.95, p < 0.001), respectively, designating the alteration's independent prognostic significance in the context of modern risk stratification. The results of our study demonstrate that the presence of the CDKN2A/2B deletions can further stratify all existing risk groups, identifying patient subgroups with different outcomes. The above biallelic deletions could be incorporated into future risk-stratification algorithms, refining MRD-based stratification. In the era of targeted therapies, future prospective controlled clinical trials will further explore the possible use of cyclin-dependent kinase inhibitors (CDKIs) in CDKN2A/2B-affected ALL pediatric subgroups.
Collapse
Affiliation(s)
- Mirella Ampatzidou
- Department of Pediatric Hematology-Oncology (TAO), "Aghia Sophia" Children's Hospital, 11527 Athens, Greece
| | - Stefanos I Papadhimitriou
- Laboratory of Hematology, Unit of Molecular Cytogenetics, "G. Gennimatas" General Hospital, 11527 Athens, Greece
| | - Anna Paisiou
- Bone Marrow Transplantation Unit, "Aghia Sophia" Children's Hospital, 11527 Athens, Greece
| | - Georgios Paterakis
- Laboratory of Flow Cytometry, Department of Immunology, "G. Gennimatas" General Hospital, 11527 Athens, Greece
| | - Marianna Tzanoudaki
- Department of Immunology, "Aghia Sophia" Children's Hospital, 11527 Athens, Greece
| | - Vassilios Papadakis
- Department of Pediatric Hematology-Oncology (TAO), "Aghia Sophia" Children's Hospital, 11527 Athens, Greece
| | - Lina Florentin
- Alfa Laboratory Diagnostic Center, YGEIA Hospital, 11524 Athens, Greece
| | - Sophia Polychronopoulou
- Department of Pediatric Hematology-Oncology (TAO), "Aghia Sophia" Children's Hospital, 11527 Athens, Greece
| |
Collapse
|
7
|
Kaczmarska A, Derebas J, Pinkosz M, Niedźwiecki M, Lejman M. The Landscape of Secondary Genetic Rearrangements in Pediatric Patients with B-Cell Acute Lymphoblastic Leukemia with t(12;21). Cells 2023; 12:cells12030357. [PMID: 36766699 PMCID: PMC9913634 DOI: 10.3390/cells12030357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The most frequent chromosomal rearrangement in childhood B-cell acute lymphoblastic leukemia (B-ALL) is translocation t(12;21)(p13;q22). It results in the fusion of the ETV6::RUNX1 gene, which is active in the regulation of multiple crucial cellular pathways. Recent studies hypothesize that many translocations are influenced by RAG-initiated deletions, as well as defects in the RAS and NRAS pathways. According to a "two-hit" model for the molecular pathogenesis of pediatric ETV6::RUNX1-positive B-ALL, the t(12;21) translocation requires leukemia-causing secondary mutations. Patients with ETV6::RUNX1 express up to 60 different aberrations, which highlights the heterogeneity of this B-ALL subtype and is reflected in differences in patient response to treatment and chances of relapse. Most studies of secondary genetic changes have concentrated on deletions of the normal, non-rearranged ETV6 allele. Other predominant structural changes included deletions of chromosomes 6q and 9p, loss of entire chromosomes X, 8, and 13, duplications of chromosome 4q, or trisomy of chromosomes 21 and 16, but the impact of these changes on overall survival remains unclarified. An equally genetically diverse group is the recently identified new B-ALL subtype ETV6::RUNX1-like ALL. In our review, we provide a comprehensive description of recurrent secondary mutations in pediatric B-ALL with t(12;21) to emphasize the value of investigating detailed molecular mechanisms in ETV6::RUNX1-positive B-ALL, both for our understanding of the etiology of the disease and for future clinical advances in patient treatment and management.
Collapse
Affiliation(s)
- Agnieszka Kaczmarska
- Student Scientific Society of Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, A. Gębali 6, 20-093 Lublin, Poland
| | - Justyna Derebas
- Student Scientific Society of Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, A. Gębali 6, 20-093 Lublin, Poland
| | - Michalina Pinkosz
- Student Scientific Society of Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, A. Gębali 6, 20-093 Lublin, Poland
| | - Maciej Niedźwiecki
- Department of Pediatrics, Hematology and Oncology Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, A. Gębali 6, 20-093 Lublin, Poland
- Correspondence:
| |
Collapse
|
8
|
Meléndez-Flórez MP, Valbuena DS, Cepeda S, Rangel N, Forero-Castro M, Martínez-Agüero M, Rondón-Lagos M. Profile of Chromosomal Alterations, Chromosomal Instability and Clonal Heterogeneity in Colombian Farmers Exposed to Pesticides. Front Genet 2022; 13:820209. [PMID: 35281828 PMCID: PMC8908452 DOI: 10.3389/fgene.2022.820209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/28/2022] [Indexed: 12/04/2022] Open
Abstract
Pesticides are a group of environmental pollutants widely used in agriculture to protect crops, and their indiscriminate use has led to a growing public awareness about the health hazards associated with exposure to these substances. In fact, exposure to pesticides has been associated with an increased risk of developing diseases, including cancer. In a study previously published by us, we observed the induction of specific chromosomal alterations and, in general, the deleterious effect of pesticides on the chromosomes of five individuals exposed to pesticides. Considering the importance of our previous findings and their implications in the identification of cytogenetic biomarkers for the monitoring of exposed populations, we decided to conduct a new study with a greater number of individuals exposed to pesticides. Considering the above, the aim of this study was to evaluate the type and frequency of chromosomal alterations, chromosomal variants, the level of chromosomal instability and the clonal heterogeneity in a group of thirty-four farmers occupationally exposed to pesticides in the town of Simijacá, Colombia, and in a control group of thirty-four unexposed individuals, by using Banding Cytogenetics and Molecular Cytogenetics (Fluorescence in situ hybridization). Our results showed that farmers exposed to pesticides had significantly increased frequencies of chromosomal alterations, chromosomal variants, chromosomal instability and clonal heterogeneity when compared with controls. Our results confirm the results previously reported by us, and indicate that occupational exposure to pesticides induces not only chromosomal instability but also clonal heterogeneity in the somatic cells of people exposed to pesticides. This study constitutes, to our knowledge, the first study that reports clonal heterogeneity associated with occupational exposure to pesticides. Chromosomal instability and clonal heterogeneity, in addition to reflecting the instability of the system, could predispose cells to acquire additional instability and, therefore, to an increased risk of developing diseases.
Collapse
Affiliation(s)
| | - Duvan Sebastián Valbuena
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Sebastián Cepeda
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Nelson Rangel
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Maribel Forero-Castro
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - María Martínez-Agüero
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Milena Rondón-Lagos
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| |
Collapse
|
9
|
Evaluating outcomes of adult patients with acute lymphoblastic leukemia and lymphoblastic lymphoma treated on the GMALL 07/2003 protocol. Ann Hematol 2022; 101:581-593. [PMID: 35088172 DOI: 10.1007/s00277-021-04738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/11/2021] [Indexed: 11/01/2022]
Abstract
Chemotherapy-based approaches still constitute an essential feature in the treatment paradigm of adult acute lymphoblastic leukemia (ALL). The German Multicenter Study Group (GMALL) is a well-established protocol for ALL. In this study, we assessed our recent experience with the GMALL 07/2003 protocol reviewing all adult ALL patients who were treated with GMALL in three major centers in Israel during 2007-2020. The analysis comprised 127 patients with a median age of 41 years (range 17-83). Sixty-two were B-ALL (49%), 20 (16%) patients were Philadelphia chromosome positive ALL, and 45 (35%) were T-ALL. The 2-year and 5-year overall survival rates were 71% and 57%, respectively. The 2-year relapse rate was 30% with 2-year and 5-year leukemia-free survival rates of 59% and 50%, respectively. Adolescents and young adults experienced significantly longer overall survival (84 months versus 51 months; p=0.047) as well as leukemia-free survival compared with older patients (66 months versus 54 months, p=0.003; hazard ratio=0.39, 95% confidence interval, 0.19-0.79; p=0.009). T-ALL patients had longer survival compared to B-ALL patients while survival was comparable among Philadelphia chromosome positive patients and Philadelphia chromosome negative patients. An increased number of cytogenetic clones at diagnosis were tightly associated with adverse prognosis (15-month survival for ≥2 clones versus 81 months for normal karyotype; p=0.003). Positive measurable residual disease studies following consolidation were predictive for increased risk of relapse (64% versus 22%; p=0.003) and shorter leukemia-free survival (11 months versus 42 months; p=0.0003). While GMALL is an effective adult regimen, a substantial patient segment still experiences relapse.
Collapse
|
10
|
Avgerinou G, Stefanaki K, Liapis K, Kostopoulos IV, Kossiva L, Tzoumaka-Bakoula C, Pavlidis D, Filippidou M, Katsibardi K, Ampatzidou M, Kattamis A, Polychronopoulou S, Mantzourani M, Papadhimitriou SI. Fish evaluation of additional cytogenetic aberrations and hyperdiploidy in childhood Burkitt lymphoma. Leuk Lymphoma 2021; 63:551-561. [PMID: 34727830 DOI: 10.1080/10428194.2021.1998480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Beyond MYC rearrangement, Burkitt lymphoma (BL) often presents with additional aberrations. Biopsy touch imprints from 72 children with BL were tested with interphase fluorescence in-situ hybridization (i-FISH) for MYC, BCL2, BCL6, IGH, IGK and IGL rearrangements and copy-number aberrations involving 1q21/1p32, 7cen/7q31, 9cen/9p21, 13q14/13q34 and 17cen/17p13. Diploid status deviations were investigated with chromosome enumeration probes. MYC rearrangement was demonstrated in all cases. Additional aberrations included +1q (21/72:29.2%), +7q (14/72:19.4%), 13q- (14/72:19.4%), 9p-(6/72:8.3%) and hyperdiploidy (6/72:8.3%). Advanced clinical stage IV, +7q and 9p- were associated with shorter overall survival, with stage IV and +7q retaining prognostic significance on multivariate analysis. No relapse or death was reported among the hyperdiploid cases. This i-FISH investigation provides information on the genetic profile of BL and may prove valuable for patients with no karyotype analysis. Demonstration of hyperdiploidy could evolve research on clonal evolution pathways and probably identify a subgroup of children with favorable prognosis.
Collapse
Affiliation(s)
- Georgia Avgerinou
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Kalliopi Stefanaki
- Department of Pathology, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Konstantinos Liapis
- Department of Laboratory Hematology, "G.Gennimatas" Athens General Hospital, Athens, Greece.,Department of Hematology, Alexandroupolis University Hospital, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioannis V Kostopoulos
- Department of Laboratory Hematology, "G.Gennimatas" Athens General Hospital, Athens, Greece.,Department of Biology, School of Science, National & Kapodistrian University of Athens, Athens, Greece
| | - Lydia Kossiva
- Second Department of Paediatrics, School of Medicine, "P. & A. Kyriakou" Children's Hospital, National and Kapodistrian University of Athens (NKUA)
| | - Chryssa Tzoumaka-Bakoula
- Second Department of Paediatrics, School of Medicine, "P. & A. Kyriakou" Children's Hospital, National and Kapodistrian University of Athens (NKUA)
| | - Dimitris Pavlidis
- Department of Laboratory Hematology, "G.Gennimatas" Athens General Hospital, Athens, Greece
| | - Maria Filippidou
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Katerina Katsibardi
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Maria Ampatzidou
- Department Of Paediatric Haematology-Oncology, "Aghia Sophia" Children's Hospital Αthens, Greece
| | - Antonis Kattamis
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Sophia Polychronopoulou
- Department Of Paediatric Haematology-Oncology, "Aghia Sophia" Children's Hospital Αthens, Greece
| | - Marina Mantzourani
- Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | | |
Collapse
|
11
|
Ampatzidou M, Florentin L, Papadakis V, Paterakis G, Tzanoudaki M, Bouzarelou D, Papadhimitriou SI, Polychronopoulou S. Copy Number Alteration Profile Provides Additional Prognostic Value for Acute Lymphoblastic Leukemia Patients Treated on BFM Protocols. Cancers (Basel) 2021; 13:cancers13133289. [PMID: 34209196 PMCID: PMC8268490 DOI: 10.3390/cancers13133289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 01/03/2023] Open
Abstract
Simple Summary Recent advances in genomic analyses of acute lymphoblastic leukemia (ALL) have identified novel prognostic markers associated with patient outcome. In this frame, copy number alterations (CNAs) are constantly gaining relevance as potential risk stratification markers. Herein, we present our data of a proposed CNA-profile risk-index applied on a Greek ALLIC-BFM cohort. The results of our study demonstrate that EFS for GR(good-risk)-CNA-profile patients was 96.0% versus 57.6% of PR(poor-risk)-CNA-profile ones (p < 0.001) in the whole cohort. EFS within the IR-group for the GR-CNA vs. PR-CNA subgroups was 100.0% vs. 60.0% (p < 0.001), and within the HR-group, 88.2% vs. 55.6% (p = 0.047), respectively. The above results indicate that the application of the proposed CNA-profile classifier is feasible in BFM-based protocols, adding prognostic value to the existing prognostic markers and successfully stratifying patients within prognostic subgroups. This novel genomic risk index can be incorporated in future risk-stratification algorithms, further refining MRD-based stratification and possibly reassigning optimal treatment strategies. Abstract We present our data of a novel proposed CNA-profile risk-index, applied on a Greek ALLIC-BFM-treated cohort, aiming at further refining genomic risk-stratification. Eighty-five of 227 consecutively treated ALL patients were analyzed for the copy-number-status of eight genes (IKZF1/CDKN2A/2B/PAR1/BTG1/EBF1/PAX5/ETV6/RB1). Using the MLPA-assay, patients were stratified as: (1) Good-risk(GR)-CNA-profile (n = 51), with no deletion of IKZF1/CDKN2A/B/PAR1/BTG1/EBF1/PAX5/ETV6/RB1 or isolated deletions of ETV6/PAX5/BTG1 or ETV6 deletions with a single additional deletion of BTG1/PAX5/CDKN2A/B. (2) Poor-risk(PR)-CNA-profile (n = 34), with any deletion of ΙΚΖF1/PAR1/EBF1/RB1 or any other CNA. With a median follow-up time of 49.9 months, EFS for GR-CNA-profile and PR-CNA-profile patients was 96.0% vs. 57.6% (p < 0.001). For IR-group and HR-group patients, EFS for the GR-CNA/PR-CNA subgroups was 100.0% vs. 60.0% (p < 0.001) and 88.2% vs. 55.6% (p = 0.047), respectively. Among FC-MRDd15 + patients (MRDd15 ≥ 10−4), EFS rates were 95.3% vs. 51.7% for GR-CNA/PR-CNA subjects (p < 0.001). Similarly, among FC-MRDd33 + patients (MRDd33 ≥ 10−4), EFS was 92.9% vs. 27.3% (p < 0.001) and for patients FC-MRDd33 − (MRDd33 < 10−4), EFS was 97.2% vs. 72.7% (p = 0.004), for GR-CNA/PR-CNA patients, respectively. In a multivariate analysis, the CNA-profile was the most important outcome predictor. In conclusion, the CNA-profile can establish a new genomic risk-index, identifying a distinct subgroup with increased relapse risk among the IR-group, as well as a subgroup of patients with superior prognosis among HR-patients. The CNA-profile is feasible in BFM-based protocols, further refining MRD-based risk-stratification.
Collapse
Affiliation(s)
- Mirella Ampatzidou
- Department of Pediatric Hematology-Oncology, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece; (V.P.); (S.P.)
- Correspondence:
| | - Lina Florentin
- Alfa Laboratory Diagnostic Center, YGEIA Hospital, 11524 Athens, Greece; (L.F.); (D.B.)
| | - Vassilios Papadakis
- Department of Pediatric Hematology-Oncology, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece; (V.P.); (S.P.)
| | - Georgios Paterakis
- Laboratory of Flow Cytometry, Department of Immunology, “G.Gennimatas” General Hospital, 11527 Athens, Greece;
| | - Marianna Tzanoudaki
- Department of Immunology, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece;
| | - Dimitra Bouzarelou
- Alfa Laboratory Diagnostic Center, YGEIA Hospital, 11524 Athens, Greece; (L.F.); (D.B.)
| | - Stefanos I. Papadhimitriou
- Laboratory of Hematology, Department of Molecular Cytogenetics, “G.Gennimatas” General Hospital, 11527 Athens, Greece;
| | - Sophia Polychronopoulou
- Department of Pediatric Hematology-Oncology, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece; (V.P.); (S.P.)
| |
Collapse
|
12
|
Mattano LA, Devidas M, Maloney KW, Wang C, Friedmann AM, Buckley P, Borowitz MJ, Carroll AJ, Gastier-Foster JM, Heerema NA, Kadan-Lottick NS, Matloub YH, Marshall DT, Stork LC, Loh ML, Raetz EA, Wood BL, Hunger SP, Carroll WL, Winick NJ. Favorable Trisomies and ETV6-RUNX1 Predict Cure in Low-Risk B-Cell Acute Lymphoblastic Leukemia: Results From Children's Oncology Group Trial AALL0331. J Clin Oncol 2021; 39:1540-1552. [PMID: 33739852 DOI: 10.1200/jco.20.02370] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
PURPOSE Children's Oncology Group (COG) AALL0331 tested whether pegaspargase intensification on a low-intensity chemotherapy backbone would improve the continuous complete remission (CCR) rate in a low-risk subset of children with standard-risk B-acute lymphoblastic leukemia (ALL). METHODS AALL0331 enrolled 5,377 patients with National Cancer Institute standard-risk B-ALL (age 1-9 years, WBC < 50,000/μL) between 2005 and 2010. Following a common three-drug induction, a cohort of 1,857 eligible patients participated in the low-risk ALL random assignment. Low-risk criteria included no extramedullary disease, < 5% marrow blasts by day 15, end-induction marrow minimal residual disease < 0.1%, and favorable cytogenetics (ETV6-RUNX1 fusion or simultaneous trisomies of chromosomes 4, 10, and 17). Random assignment was to standard COG low-intensity therapy (including two pegaspargase doses, one each during induction and delayed intensification) with or without four additional pegaspargase doses at 3-week intervals during consolidation and interim maintenance. The study was powered to detect a 4% improvement in 6-year CCR rate from 92% to 96%. RESULTS The 6-year CCR and overall survival (OS) rates for the entire low-risk cohort were 94.7% ± 0.6% and 98.7% ± 0.3%, respectively. The CCR rates were similar between arms (intensified pegaspargase 95.3% ± 0.8% v standard 94.0% ± 0.8%; P = .13) with no difference in OS (98.1% ± 0.5% v 99.2% ± 0.3%; P = .99). Compared to a subset of standard-risk study patients given identical therapy who had the same early response characteristics but did not have favorable or unfavorable cytogenetics, outcomes were significantly superior for low-risk patients (CCR hazard ratio 1.95; P = .0004; OS hazard ratio 5.42; P < .0001). CONCLUSION Standard COG therapy without intensified pegaspargase, which can easily be given as an outpatient with limited toxicity, cures nearly all children with B-ALL identified as low-risk by clinical, early response, and favorable cytogenetic criteria.
Collapse
Affiliation(s)
| | - Meenakshi Devidas
- Department of Global Pediatric Medicine, St Jude Children's Research Hospital, Memphis, TN
| | - Kelly W Maloney
- Department of Pediatrics, University of Colorado and Children's Hospital Colorado, Aurora, CO
| | - Cindy Wang
- Department of Biostatistics, Colleges of Medicine, Public Health, and Health Professions, University of Florida, Gainesville, FL
| | - Alison M Friedmann
- Department of Pediatrics, Massachusetts General Hospital Cancer Center, Boston, MA
| | - Patrick Buckley
- Department of Pathology, Duke University Medical Center, Durham, NC
| | | | - Andrew J Carroll
- Department of Genetics, Children's Hospital of Alabama, Birmingham, AL
| | - Julie M Gastier-Foster
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Ohio State University College of Medicine, Columbus, OH.,Departments of Pathology and Pediatrics, Ohio State University College of Medicine, Columbus, OH
| | - Nyla A Heerema
- Department of Pathology, Wexner Medical Center, Ohio State University, Columbus, OH
| | | | - Yousif H Matloub
- Case Western Reserve University School of Medicine, Cleveland, OH
| | - David T Marshall
- Department of Radiation Oncology, Medical University of South Carolina, Charleston, SC
| | - Linda C Stork
- Department of Pediatrics, Oregon Health and Science University, Portland, OR
| | - Mignon L Loh
- Department of Pediatrics, Benioff Children's Hospital and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
| | - Elizabeth A Raetz
- Perlmutter Cancer Center and Department of Pediatrics, NYU Langone Medical Center, New York, NY
| | - Brent L Wood
- Departments of Pathology and Medicine, University of Washington, Seattle, WA
| | - Stephen P Hunger
- Department of Pediatrics and The Center for Childhood Cancer Research, Children's Hospital of Philadelphia and the Perelman School of Medicine at The University of Philadelphia, Philadelphia, PA
| | - William L Carroll
- Perlmutter Cancer Center and Department of Pediatrics, NYU Langone Medical Center, New York, NY
| | - Naomi J Winick
- Department of Pediatrics, UT Southwestern, Simmons Cancer Center, Dallas, TX
| |
Collapse
|
13
|
Zheng YZ, Pan LL, Li J, Chen ZS, Hua XL, Le SH, Zheng H, Chen C, Hu JD. [Clinical features and prognosis of ETV6-RUNX1-positive childhood B-precursor acute lymphocyte leukemia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 42:45-51. [PMID: 33677868 PMCID: PMC7957247 DOI: 10.3760/cma.j.issn.0253-2727.2021.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Indexed: 11/05/2022]
Abstract
Objective: To investigate the clinical features and prognosis of ETV6-RUNX1-positive childhood B-precursor acute lymphocyte leukemia (B-ALL) . Methods: The clinical data of 927 newly diagnosed children with B-ALL admitted to the Fujian Medical University Union Hospital from April 2011 to May 2020 were retrospectively analyzed. According to the results of ETV6-RUNX1 gene, the patients were divided into ETV6-RUNX1(+) and ETV6-RUNX1(-) groups. The clinical features and prognosis between the two groups were compared. Among the 182 children with ETV6-RUNX1(+), 144 patients received the Chinese Childhood Leukemia Collaborative Group (CCLG) -ALL 2008 protocol (CCLG-ALL 2008 group) and 38 received the China Childhood Cancer Collaborative Group (CCCG) -ALL2015 protocol (CCCG-ALL 2015 group) . The efficacy, serious adverse effects (SAE) incidence, and treatment-related mortality (TRM) of the two groups were also compared. Results: Of the 927 B-ALL patients, 189 (20.4% ) were ETV6-RUNX1(+). The proportion of patients with risk factors (age ≥10 years or <1 year, white blood cell count ≥50×10(9)/L) in the ETV6-RUNX1(+) group was significantly lower than that in the ETV6-RUNX1(-) group (P=0.000, 0.001, respectively) , while the proportion of patients with good early response (good response to prednisone, d15 or d19 MRD <1% , and d33 or d46 MRD<0.01% in induction chemotherapy) in the ETV6-RUNX1(+) group was significantly higher than that in the ETV6-RUNX1(-) group (P=0.028, 0.004, respectively) . The 5-year EFS and OS of the ETV6-RUNX1(+) group were significantly higher than those of the ETV6-RUNX1(-) group (EFS: 89.8% vs 83.2% , P=0.003; OS: 90.2% vs 86.3% , P=0.030) . The incidence of infection-related SAE and TRM was significantly higher than that of CCCG-ALL 2015 group. A statistical difference was observed between the incidence of infection-related SAE of the two groups (27.1% vs 5.3% , P=0.004) , but no difference in TRM (4.9% vs 0, P=0.348) . Conclusion: ETV6-RUNX1(+)B-ALL children have fewer risk factors at diagnosis, better early response, lower recurrence rate, and good prognosis than that of ETV6-RUNX1(-)B-ALL children. Reducing the intensity of chemotherapy appropriately can lower the infection-related SAE and TRM and improve the long-term survival in this subtype.
Collapse
Affiliation(s)
- Y Z Zheng
- Department of Pediatric Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - L L Pan
- Department of Pediatric Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - J Li
- Department of Pediatric Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Z S Chen
- Department of Pediatric Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - X L Hua
- Department of Pediatric Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - S H Le
- Department of Pediatric Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - H Zheng
- Department of Pediatric Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - C Chen
- Department of Pediatric Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - J D Hu
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory, Fujian Medical University Union Hospital, Fuzhou 350001, China
| |
Collapse
|
14
|
Qiu KY, Xu HG, Luo XQ, Mai HR, Liao N, Yang LH, Zheng MC, Wan WQ, Wu XD, Liu RY, Chen QW, Chen HQ, Sun XF, Jiang H, Long XJ, Chen GH, Li XY, Li CG, Huang LB, Ling YY, Lin DN, Wen C, Kuang WY, Feng XQ, Ye ZL, Wu BY, He XL, Li QR, Wang LN, Kong XL, Xu LH, Li CK, Fang JP. Prognostic Value and Outcome for ETV6/RUNX1-Positive Pediatric Acute Lymphoblastic Leukemia: A Report From the South China Children's Leukemia Group. Front Oncol 2021; 11:797194. [PMID: 34988026 PMCID: PMC8722219 DOI: 10.3389/fonc.2021.797194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/29/2021] [Indexed: 02/05/2023] Open
Abstract
PURPOSE To analyzed the outcome of ETV6/RUNX1-positive pediatric acute B lymphoblastic leukemia (B-ALL) with the aim of identifying prognostic value. METHOD A total of 2,530 pediatric patients who were diagnosed with B-ALL were classified into two groups based on the ETV6/RUNX1 status by using a retrospective cohort study method from February 28, 2008, to June 30, 2020, at 22 participating ALL centers. RESULTS In total, 461 (18.2%) cases were ETV6/RUNX1-positive. The proportion of patients with risk factors (age <1 year or ≥10 years, WB≥50×109/L) in ETV6/RUNX1-positive group was significantly lower than that in negative group (P<0.001), while the proportion of patients with good early response (good response to prednisone, D15 MRD < 0.1%, and D33 MRD < 0.01%) in ETV6/RUNX1-positive group was higher than that in the negative group (P<0.001, 0.788 and 0.004, respectively). Multivariate analysis of 2,530 patients found that age <1 or ≥10 years, SCCLG-ALL-2016 protocol, and MLL were independent predictor of outcome but not ETV6/RUNX1. The EFS and OS of the ETV6/RUNX1-positive group were significantly higher than those of the negative group (3-year EFS: 90.11 ± 4.21% vs 82 ± 2.36%, P<0.0001, 3-year OS: 91.99 ± 3.92% vs 88.79 ± 1.87%, P=0.017). Subgroup analysis showed that chemotherapy protocol, age, prednisone response, and D15 MRD were important factors affecting the prognosis of ETV6/RUNX1-positive children. CONCLUSIONS ETV6/RUNX1-positive pediatric ALL showed an excellent outcome but lack of independent prognostic significance in South China. However, for older patients who have the ETV6/RUNX1 fusion and slow response to therapy, to opt for more intensive treatment.
Collapse
Affiliation(s)
- Kun-yin Qiu
- Children’s Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hong-gui Xu
- Children’s Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xue-qun Luo
- Department of Paediatrics, Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Hui-rong Mai
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Ning Liao
- Department of Paediatrics, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Li-hua Yang
- Department of Paediatrics, Southern Medical University Zhujiang Hospital, Guangzhou, China
| | - Min-cui Zheng
- Department of Hematology, Hunan Children’s Hospital, Changsha, China
| | - Wu-qing Wan
- Department of Paediatrics, Second Xiangya Hospital of Central South University, Changsha, China
| | - Xue-dong Wu
- Department of Paediatrics, Southern Medical University Nanfang Hospital, Guangzhou, China
| | - Ri-yang Liu
- Department of Paediatrics, Huizhou Central People’s Hospital, Huizhou, China
| | - Qi-wen Chen
- Department of Paediatrics, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hui-qin Chen
- Department of Paediatrics, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiao-fei Sun
- Department of Paediatrics, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hua Jiang
- Department of Hematology, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| | - Xing-jiang Long
- Department of Paediatrics, Liuzhou People’s Hospital, Liuzhou, China
| | - Guo-hua Chen
- Department of Paediatrics, Huizhou First People’s Hospital, HuiZhou, China
| | - Xin-yu Li
- Children’s Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chang-gang Li
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Li-bin Huang
- Department of Paediatrics, Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Ya-yun Ling
- Department of Paediatrics, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Dan-na Lin
- Department of Paediatrics, Southern Medical University Zhujiang Hospital, Guangzhou, China
| | - Chuan Wen
- Department of Paediatrics, Second Xiangya Hospital of Central South University, Changsha, China
| | - Wen-yong Kuang
- Department of Hematology, Hunan Children’s Hospital, Changsha, China
| | - Xiao-qin Feng
- Department of Paediatrics, Southern Medical University Nanfang Hospital, Guangzhou, China
| | - Zhong-lv Ye
- Department of Paediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bei-yan Wu
- Department of Paediatrics, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xiang-lin He
- Department of Paediatrics, Hunan Provincial People’s Hospital, Changsha, China
| | - Qiao-ru Li
- Department of Paediatrics, Zhongshan People’s Hospital, Zhongshan, China
| | - Li-na Wang
- Department of Paediatrics, Guangzhou First People’s Hospital, Guangzhou, China
| | - Xian-ling Kong
- Department of Paediatrics, Boai Hospital of Zhongshan, Zhongshan, China
| | - Lu-hong Xu
- Children’s Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chi-kong Li
- Department of Paediatrics, Hong Kong Children Hospital and Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jian-pei Fang
- Children’s Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Jian-pei Fang,
| |
Collapse
|
15
|
危 彤, 陈 晓, 张 陆, 张 傲, 竺 晓. [Clinical significance of minimal residual disease in B-lineage acute lymphoblastic leukemia pediatric patients with different fusion gene backgrounds]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2020; 22:1279-1285. [PMID: 33327998 PMCID: PMC7735931 DOI: 10.7499/j.issn.1008-8830.2007097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To study the clinical significance of minimal residual disease (MRD) in B-lineage acute lymphoblastic leukemia (B-ALL) pediatric patients with different fusion gene backgrounds. METHODS A retrospective analysis was performed on the medical data of 441 B-ALL children who were treated from January 2008 to April 2015. Among the 441 children, 336 had negative fusion gene, 79 had positive ETV6-RUNX1 fusion gene, and 26 had positive E2A-PBX1 fusion gene. Flow cytometry was used to detect MRD, and the influence of MRD on day 15 (TP1), day 33 (TP2), and week 12 (TP3) of induction therapy on prognosis was analyzed. RESULTS In patients with negative fusion gene, the positive MRD group had significantly lower overall survival (OS) rate and event-free survival (EFS) rate (P < 0.05) and significantly higher recurrence rate and mortality rate at TP1, TP2, and TP3, compared with the negative MRD group (P < 0.05). In patients with positive ETV6-RUNX1, the positive MRD group had significantly lower OS and EFS rates (P < 0.05) and significantly higher recurrence rate and mortality rate (P < 0.05) than the negative MRD group only at TP1. In patients with positive E2A-PBX1, there were no significant differences in the OS rate, recurrence rate, and mortality rate between the positive and negative MRD groups at TP1, TP2, and TP3 (P > 0.05). CONCLUSIONS MRD has the most definite prognostic significance in pediatric B-ALL patients with negative fusion gene, while it has unsatisfactory prognostic significance in those with positive ETV6-RUNX1 or positive E2A-PBX1.
Collapse
Affiliation(s)
- 彤 危
- />中国医学科学院北京协和医学院血液病医院(中国医学科学院血液学研究所), 实验血液学国家重点实验室, 国家血液系统疾病临床医学研究中心, 天津 300020State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - 晓娟 陈
- />中国医学科学院北京协和医学院血液病医院(中国医学科学院血液学研究所), 实验血液学国家重点实验室, 国家血液系统疾病临床医学研究中心, 天津 300020State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - 陆阳 张
- />中国医学科学院北京协和医学院血液病医院(中国医学科学院血液学研究所), 实验血液学国家重点实验室, 国家血液系统疾病临床医学研究中心, 天津 300020State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - 傲利 张
- />中国医学科学院北京协和医学院血液病医院(中国医学科学院血液学研究所), 实验血液学国家重点实验室, 国家血液系统疾病临床医学研究中心, 天津 300020State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - 晓凡 竺
- />中国医学科学院北京协和医学院血液病医院(中国医学科学院血液学研究所), 实验血液学国家重点实验室, 国家血液系统疾病临床医学研究中心, 天津 300020State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| |
Collapse
|
16
|
Mehtonen J, Teppo S, Lahnalampi M, Kokko A, Kaukonen R, Oksa L, Bouvy-Liivrand M, Malyukova A, Mäkinen A, Laukkanen S, Mäkinen PI, Rounioja S, Ruusuvuori P, Sangfelt O, Lund R, Lönnberg T, Lohi O, Heinäniemi M. Single cell characterization of B-lymphoid differentiation and leukemic cell states during chemotherapy in ETV6-RUNX1-positive pediatric leukemia identifies drug-targetable transcription factor activities. Genome Med 2020; 12:99. [PMID: 33218352 PMCID: PMC7679990 DOI: 10.1186/s13073-020-00799-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Tight regulatory loops orchestrate commitment to B cell fate within bone marrow. Genetic lesions in this gene regulatory network underlie the emergence of the most common childhood cancer, acute lymphoblastic leukemia (ALL). The initial genetic hits, including the common translocation that fuses ETV6 and RUNX1 genes, lead to arrested cell differentiation. Here, we aimed to characterize transcription factor activities along the B-lineage differentiation trajectory as a reference to characterize the aberrant cell states present in leukemic bone marrow, and to identify those transcription factors that maintain cancer-specific cell states for more precise therapeutic intervention. METHODS We compared normal B-lineage differentiation and in vivo leukemic cell states using single cell RNA-sequencing (scRNA-seq) and several complementary genomics profiles. Based on statistical tools for scRNA-seq, we benchmarked a workflow to resolve transcription factor activities and gene expression distribution changes in healthy bone marrow lymphoid cell states. We compared these to ALL bone marrow at diagnosis and in vivo during chemotherapy, focusing on leukemias carrying the ETV6-RUNX1 fusion. RESULTS We show that lymphoid cell transcription factor activities uncovered from bone marrow scRNA-seq have high correspondence with independent ATAC- and ChIP-seq data. Using this comprehensive reference for regulatory factors coordinating B-lineage differentiation, our analysis of ETV6-RUNX1-positive ALL cases revealed elevated activity of multiple ETS-transcription factors in leukemic cells states, including the leukemia genome-wide association study hit ELK3. The accompanying gene expression changes associated with natural killer cell inactivation and depletion in the leukemic immune microenvironment. Moreover, our results suggest that the abundance of G1 cell cycle state at diagnosis and lack of differentiation-associated regulatory network changes during induction chemotherapy represent features of chemoresistance. To target the leukemic regulatory program and thereby overcome treatment resistance, we show that inhibition of ETS-transcription factors reduced cell viability and resolved pathways contributing to this using scRNA-seq. CONCLUSIONS Our data provide a detailed picture of the transcription factor activities characterizing both normal B-lineage differentiation and those acquired in leukemic bone marrow and provide a rational basis for new treatment strategies targeting the immune microenvironment and the active regulatory network in leukemia.
Collapse
Affiliation(s)
- Juha Mehtonen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Yliopistonranta 1, FI-70211, Kuopio, Finland
| | - Susanna Teppo
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, FI-33014, Tampere, Finland
| | - Mari Lahnalampi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Yliopistonranta 1, FI-70211, Kuopio, Finland
| | - Aleksi Kokko
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Yliopistonranta 1, FI-70211, Kuopio, Finland
| | - Riina Kaukonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Laura Oksa
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, FI-33014, Tampere, Finland
| | - Maria Bouvy-Liivrand
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Yliopistonranta 1, FI-70211, Kuopio, Finland
| | - Alena Malyukova
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Artturi Mäkinen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, FI-33014, Tampere, Finland
| | - Saara Laukkanen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, FI-33014, Tampere, Finland
| | - Petri I Mäkinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Yliopistonranta 1, FI-70211, Kuopio, Finland
| | | | - Pekka Ruusuvuori
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, FI-33014, Tampere, Finland
| | - Olle Sangfelt
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Riikka Lund
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Tapio Lönnberg
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Olli Lohi
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, FI-33014, Tampere, Finland
- Tays Cancer Centre, Tampere University Hospital, Tampere, Finland
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Yliopistonranta 1, FI-70211, Kuopio, Finland.
| |
Collapse
|
17
|
Lee JW, Kim S, Jang PS, Chung NG, Cho B. Differing Outcomes of Patients with High Hyperdiploidy and ETV6-RUNX1 Rearrangement in Korean Pediatric Precursor B Cell Acute Lymphoblastic Leukemia. Cancer Res Treat 2020; 53:567-575. [PMID: 33070555 PMCID: PMC8053883 DOI: 10.4143/crt.2020.507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/08/2020] [Indexed: 11/21/2022] Open
Abstract
Purpose: Recent cooperative trials in pediatric acute lymphoblastic leukemia (ALL) report long-term event-free survival (EFS) of greater than 80%. In this study, we analyzed the outcome and prognostic factors for patients with precursor B cell ALL (n=405) diagnosed during a 10-year period (2005–2015) at our institution. Materials and Methods All patients were treated with a uniform institutional regimen based on four risk groups, except for steroid type; patients diagnosed up till 2008 receiving dexamethasone, while subsequent patients received prednisolone. None of the patients received cranial irradiation in first complete remission. Results The 10-year EFS and overall survival was 76.3%±2.3% and 85.1%±1.9%. Ten-year cumulative incidence of relapse, any central nervous system (CNS) relapse and isolated CNS relapse was 20.8%±2.2%, 3.7%±1.1%, and 2.5%±0.9%, respectively. A comparison of established, good prognosis genetic abnormalities showed that patients with high hyperdiploidy had significantly better EFS than those with ETV6-RUNX1 rearrangement (10-year EFS of 91.2%±3.0% vs. 79.5%±4.4%, p=0.033). For the overall cohort, male sex, infant ALL, initial CNS involvement, and Philadelphia chromosome (+) ALL were significant factors for lower EFS in multivariate study, while high hyperdiploidy conferred favorable outcome. For high and very high risk patients (n=231), high hyperdiploidy was the only significant factor for EFS in multivariate study. Conclusion Regarding good prognosis genetic abnormalities, patients with high hyperdiploidy had significantly better outcome than ETV6-RUNX1(+) patients. High hyperdiploidy was a major, favorable prognostic factor in the overall patient group, as well as the subgroup of patients with higher risk.
Collapse
Affiliation(s)
- Jae Wook Lee
- Division of Hematology and Oncology, Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seongkoo Kim
- Division of Hematology and Oncology, Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Pil-Sang Jang
- Division of Hematology and Oncology, Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Nack-Gyun Chung
- Division of Hematology and Oncology, Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Bin Cho
- Division of Hematology and Oncology, Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
18
|
Zhang D, Cheng Y, Fan J, Yao J, Zhao Z, Jiang Y, Li Y, Zuo Z, Tang Y, Guo Y. A Nomogram for the Prediction of Progression and Overall Survival in Childhood Acute Lymphoblastic Leukemia. Front Oncol 2020; 10:1550. [PMID: 32984014 PMCID: PMC7477348 DOI: 10.3389/fonc.2020.01550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/20/2020] [Indexed: 11/25/2022] Open
Abstract
Background: Advances in treatment and supportive care have significantly improved the overall survival (OS) of pediatric patients with acute lymphoblastic leukemia (ALL). However, there is a large number of these patients who continue to relapse after receiving standard treatment. Accurate identification of patients at high risk of relapse and targeted therapy may significantly improve their prognosis. Therefore, the aim of this study was to identify significant prognostic factors for pediatric ALL and establish a novel nomogram for the prediction of survival. Methods: The ALL clinical data of Phases I and II of the Therapeutic Applicable Research to Generate Effective Treatments (TARGET) project were merged and randomly divided into training and validation groups. The LASSO regression model was used to select the specific factors related to the OS of the training group and generate prognostic nomograms according to the selected characteristics. The predictive accuracy of the nomogram for OS was verified using the concordance index of the training and validation groups, the area under the receiver operating characteristic curve for prognostic diagnosis, and the calibration curve. Results: A total of 1,000 children with ALL were included in the TARGET project. Of those, 489 patients had complete follow-up data for further analysis. The data were randomly divided into the training group (n = 345) and the validation group (n = 144). Seven clinical characteristics, namely age at diagnosis, peripheral white blood cells, bone marrow and CNS site of relapse, ETV6/RUNX1 fusion, TCF3/PBX1, and BCR/ABL1 status, were selected to construct the nomogram. The concordance indices of the training and validation groups were 0.809 (95% confidence interval: 0.766–0.852) and 0.826 (95% confidence interval: 0.767–0.885), respectively. The areas under the receiver operating characteristic curve of the 3-year, 5-year, and 10-year OS in the training group were 0.804, 0.848, and 0.885, respectively, while that of the validation group were 0.777, 0.825, and 0.863, respectively. Moreover, the calibration curves demonstrated a favorable consistency between the predicted and actual survival probabilities. Conclusions: Independent predictors of OS in children with ALL included age at diagnosis, white blood cells, bone marrow site of relapse, CNS site of relapse, ETV6/RUNX1 fusion, TCF3/PBX1, and BCR/ABL1 status. The nomograms developed using these high-risk factors can more simply, accurately, and quantitatively predict the survival of children, and improve treatment and prognosis.
Collapse
Affiliation(s)
- Dan Zhang
- Clinical Laboratory of Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, China
| | - Yu Cheng
- Sichuan Luzhou Traditional Chinese Medicine Hospital, Luzhou, China
| | - Jia Fan
- Clinical Laboratory of Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, China
| | - Juan Yao
- Clinical Laboratory of Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, China
| | - Zijun Zhao
- Clinical Laboratory of Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, China
| | - Yao Jiang
- Southwest Medical University, Luzhou, China
| | - Yiqin Li
- Southwest Medical University, Luzhou, China
| | - Zhihua Zuo
- Southwest Medical University, Luzhou, China
| | - Yan Tang
- Department of Clinical Laboratory Medicine, Jinniu Maternity and Child Health Hospital of Chengdu, Chengdu, China
| | - Yongcan Guo
- Clinical Laboratory of Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, China
| |
Collapse
|
19
|
Goto H, Yoshino Y, Ito M, Nagai J, Kumamoto T, Inukai T, Sakurai Y, Miyagawa N, Keino D, Yokosuka T, Iwasaki F, Hamanoue S, Shiomi M, Goto S. Aurora B kinase as a therapeutic target in acute lymphoblastic leukemia. Cancer Chemother Pharmacol 2020; 85:773-783. [PMID: 32144432 DOI: 10.1007/s00280-020-04045-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/19/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE Acute lymphoblastic leukemia (ALL) is curable with standardized chemotherapy. However, the development of novel therapies is still required, especially for patients with relapsed or refractory disease. By utilizing an in vitro drug screening system, active molecular targeting agents against ALL were explored in this study. METHODS By the in vitro drug sensitivity test, 81 agents with various actions were screened for their cytotoxicity in a panel of 22 ALL cell lines and ALL clinical samples. The drug effect score (DES) was calculated from the dose-response of each drug for comparison among drugs or samples. Normal peripheral blood mononuclear cells were also applied onto the drug screening to provide the reference control values. The drug combination effect was screened based on the Bliss independent model, and validated by the improved isobologram method. RESULTS On sensitivity screening in a cell line panel, barasertib-HQPA which is an active metabolite of barasertib, an aurora B kinase inhibitor, alisertib, an aurora A kinase inhibitor, and YM155, a survivin inhibitor, were effective against the broadest range of ALL cells. The DES of barasertib-HQPA was significantly higher in ALL clinical samples compared to the reference value. There were significant correlations in DES between barasertib-HQPA and vincristine or docetaxel. In the drug combination assay, barasertib-HQPA and eribulin showed additive to synergistic effects. CONCLUSION Aurora B kinase was identified to be an active therapeutic target in a broad range of ALL cells. Combination therapy of barasertib and a microtubule-targeting drug is of clinical interest.
Collapse
Affiliation(s)
- Hiroaki Goto
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, 2-138-4 Mutsukawa Minami-Ku, Yokohama, Japan.
| | - Yuki Yoshino
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, 2-138-4 Mutsukawa Minami-Ku, Yokohama, Japan
| | - Mieko Ito
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, 2-138-4 Mutsukawa Minami-Ku, Yokohama, Japan
| | - Junichi Nagai
- Department of Laboratory Medicine, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Tadashi Kumamoto
- Department of Pediatric Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Takesi Inukai
- Department of Pediatrics, School of Medicine, Yamanashi University, Kofu, Japan
| | - Yukari Sakurai
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, 2-138-4 Mutsukawa Minami-Ku, Yokohama, Japan
| | - Naoyuki Miyagawa
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, 2-138-4 Mutsukawa Minami-Ku, Yokohama, Japan
| | - Dai Keino
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, 2-138-4 Mutsukawa Minami-Ku, Yokohama, Japan
| | - Tomoko Yokosuka
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, 2-138-4 Mutsukawa Minami-Ku, Yokohama, Japan
| | - Fuminori Iwasaki
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, 2-138-4 Mutsukawa Minami-Ku, Yokohama, Japan
| | - Satoshi Hamanoue
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, 2-138-4 Mutsukawa Minami-Ku, Yokohama, Japan
| | - Masae Shiomi
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, 2-138-4 Mutsukawa Minami-Ku, Yokohama, Japan
| | - Shoko Goto
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, 2-138-4 Mutsukawa Minami-Ku, Yokohama, Japan
| |
Collapse
|