1
|
Hamad SH, Montgomery SA, Simon JM, Bowman BM, Spainhower KB, Murphy RM, Knudsen ES, Fenton SE, Randell SH, Holt JR, Hayes DN, Witkiewicz AK, Oliver TG, Major MB, Weissman BE. TP53, CDKN2A/P16, and NFE2L2/NRF2 regulate the incidence of pure- and combined-small cell lung cancer in mice. Oncogene 2022; 41:3423-3432. [PMID: 35577980 PMCID: PMC10039451 DOI: 10.1038/s41388-022-02348-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 04/20/2022] [Accepted: 05/05/2022] [Indexed: 12/11/2022]
Abstract
Studies have shown that Nrf2E79Q/+ is one of the most common mutations found in human tumors. To elucidate how this genetic change contributes to lung cancer, we compared lung tumor development in a genetically-engineered mouse model (GEMM) with dual Trp53/p16 loss, the most common mutations found in human lung tumors, in the presence or absence of Nrf2E79Q/+. Trp53/p16-deficient mice developed combined-small cell lung cancer (C-SCLC), a mixture of pure-SCLC (P-SCLC) and large cell neuroendocrine carcinoma. Mice possessing the LSL-Nrf2E79Q mutation showed no difference in the incidence or latency of C-SCLC compared with Nrf2+/+ mice. However, these tumors did not express NRF2 despite Cre-induced recombination of the LSL-Nrf2E79Q allele. Trp53/p16-deficient mice also developed P-SCLC, where activation of the NRF2E79Q mutation associated with a higher incidence of this tumor type. All C-SCLCs and P-SCLCs were positive for NE-markers, NKX1-2 (a lung cancer marker) and negative for P63 (a squamous cell marker), while only P-SCLC expressed NRF2 by immunohistochemistry. Analysis of a consensus NRF2 pathway signature in human NE+-lung tumors showed variable activation of NRF2 signaling. Our study characterizes the first GEMM that develops C-SCLC, a poorly-studied human cancer and implicates a role for NRF2 activation in SCLC development.
Collapse
Affiliation(s)
- Samera H Hamad
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Stephanie A Montgomery
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Jeremy M Simon
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Brittany M Bowman
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Kyle B Spainhower
- Department of Oncological Sciences, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Ryan M Murphy
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Erik S Knudsen
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Suzanne E Fenton
- Division of National Toxicology Program, NIEHS/NIH, Research Triangle Park, NC, USA
| | - Scott H Randell
- Marsico Lung Institute, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Jeremiah R Holt
- University of Tennessee Health Science Center for Cancer Research, Department of Medicine, Division of Hematology and Oncology, University of Tennessee, Memphis, TN, USA
| | - D Neil Hayes
- University of Tennessee Health Science Center for Cancer Research, Department of Medicine, Division of Hematology and Oncology, University of Tennessee, Memphis, TN, USA
| | | | - Trudy G Oliver
- Department of Oncological Sciences, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - M Ben Major
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| | - Bernard E Weissman
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
2
|
Osorio JC, Blanco R, Corvalán AH, Muñoz JP, Calaf GM, Aguayo F. Epstein-Barr Virus Infection in Lung Cancer: Insights and Perspectives. Pathogens 2022; 11:132. [PMID: 35215076 PMCID: PMC8878590 DOI: 10.3390/pathogens11020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 11/30/2022] Open
Abstract
Lung cancer (LC) is the leading cause of cancer death worldwide. Tobacco smoke is the most frequent risk factor etiologically associated with LC, although exposures to other environmental factors such as arsenic, radon or asbestos are also involved. Additionally, the involvement of some viral infections such as high-risk human papillomaviruses (HR-HPVs), Merkel cell polyomavirus (MCPyV), Jaagsiekte Sheep Retrovirus (JSRV), John Cunningham Virus (JCV), and Epstein-Barr virus (EBV) has been suggested in LC, though an etiological relationship has not yet been established. EBV is a ubiquitous gamma herpesvirus causing persistent infections and some lymphoid and epithelial tumors. Since EBV is heterogeneously detected in LCs from different parts of the world, in this review we address the epidemiological and experimental evidence of a potential role of EBV. Considering this evidence, we propose mechanisms potentially involved in EBV-associated lung carcinogenesis. Additional studies are warranted to dissect the role of EBV in this very frequent malignancy.
Collapse
Affiliation(s)
- Julio C. Osorio
- Population Registry of Cali, Department of Pathology, Universidad del Valle, Cali 760042, Colombia;
| | - Rancés Blanco
- Laboratorio de Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile;
| | - Alejandro H. Corvalán
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago 8320000, Chile;
| | - Juan P. Muñoz
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (J.P.M.); (G.M.C.)
| | - Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (J.P.M.); (G.M.C.)
- Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA
| | | |
Collapse
|
3
|
Zhang G, Yu T, Zhang Q, Zhang H, Xiao M, Cui S, Zhao Y, Lu X. Malignant transformation of human bronchial epithelial cells induced by benzo [a] pyrene suggests a negative feedback of TP53 to PPP1R13L via binding a possible enhancer element. Chem Biol Interact 2021; 349:109683. [PMID: 34610339 DOI: 10.1016/j.cbi.2021.109683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/11/2021] [Accepted: 09/09/2021] [Indexed: 01/29/2023]
Abstract
Previous studies have shown that PPP1R13L as an inhibitor of apoptosis protease TP53 can lead to abnormal cell proliferation and carcinogenesis, however, the function of PPP1R13L was complicated and the interaction between TP53 and PPP1R13L needs to be further explored. In the present study, a malignant transformation model of human bronchial epithelial cells induced by benzo (a) pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE) was established to observe the regulatory patterns between TP53 and PPP1R13L during carcinogenesis. In vitro experiments including CRISPR-Cas9 editing, RNA silence, Co-Immunoprecipitation and Chromatin Immunoprecipitation were applied to discuss their interactive effects. Additionally, TCGA data profile and our clinical samples of lung cancer were also used to analyze their relationship at the transcriptome level. Interestingly, we found that the mRNA and protein level of TP53 and PPP1R13L fluctuated as a wave in BPDE-induced malignant transformation under wild-type TP53 genetic background. Our results have also demonstrated that PPP1R13L acts as an inhibitor of TP53, while TP53 can regulate PPP1R13L via binding a possible enhancer of the first intron of PPP1R13L gene. Likewise, TCGA data and clinical samples have identified that in the case of TP53 mutation, TP53 expression was negatively correlated with PPP1R13L, while in the case of TP53 wild-type, TP53 expression was not correlated with PPP1R13L. It suggested that there existed a negative feedback of wild-type TP53 to PPP1R13L, which reminded a unique implication during chemical carcinogenesis.
Collapse
Affiliation(s)
- Guopei Zhang
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Tao Yu
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Qianye Zhang
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Hongchao Zhang
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Mingyang Xiao
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Su Cui
- Dept. of Thoracic Surgery Ward 2, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Yue Zhao
- Dept. of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, 110122, China
| | - Xiaobo Lu
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
4
|
Cui ZG, Ahmed K, Zaidi SF, Muhammad JS. Ins and outs of cadmium-induced carcinogenesis: Mechanism and prevention. Cancer Treat Res Commun 2021; 27:100372. [PMID: 33865114 DOI: 10.1016/j.ctarc.2021.100372] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 11/16/2022]
Abstract
Cadmium (Cd) is a heavy metal and a highly toxic pollutant that is released into the environment as a byproduct of most modern factories and industries. Cd enters our body in significant quantities from contaminated water, cigarette smoke, or food product to many detrimental health hazards. Based on causal association all the Cd-related or derived compounds have been classified as carcinogens. In this study, we present an overview of the published literature to understand the molecular mechanisms for Cd-induced carcinogenesis and its prevention. In acute Cd poisoning production of reactive oxygen species is a key factor. However, chronic Cd exposure can transform cells to become more resistant to oxidative stress. Also, as an epigenetic mechanism Cd acts indirectly on DNA repair mechanisms via alteration of reactions upstream. Those transformed cells acquire resistance to apoptosis and deregulation of calcium homeostasis. Leading to uncontrolled carcinogenic cell proliferation and inherent DNA lesions. Flavonoids commonly found in plant foods have been shown to have a protective effect against Cd-induced carcinogenicity. A wide variety of tumorigenic mechanisms involved in chronic Cd exposure and the beneficial effects of flavonoids against Cd-induced carcinogenicity necessitate further investigations.
Collapse
Affiliation(s)
- Zheng-Guo Cui
- Graduate School of Medicine, Henan Polytechnic University, Jiaozuo 454000, China; Department of Environmental Health, University of Fukui School of Medical Science, 23-3 Matsuoka Shimoaizuki, Eiheiji, Fukui 910-1193 Japan
| | - Kanwal Ahmed
- Department of Basic Medical Sciences, College of Medicine, King Saud Bin Abdulaziz University of Health Sciences, Jeddah, Saudi Arabia
| | - Syed Faisal Zaidi
- Department of Basic Medical Sciences, College of Medicine, King Saud Bin Abdulaziz University of Health Sciences, Jeddah, Saudi Arabia
| | - Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
5
|
Luo Y, Deng J, Cui Y, Li T, Bai J, Huang L, Sun Y, Dong F, Zhang Q. Long-term instillation to four natural representative chrysotile of China induce the inactivation of P53 and P16 and the activation of C-JUN and C-FOS in the lung tissues of Wistar rats. Toxicol Lett 2020; 333:140-149. [PMID: 32755622 DOI: 10.1016/j.toxlet.2020.07.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/25/2020] [Accepted: 07/29/2020] [Indexed: 12/23/2022]
Abstract
Chrysotile is the only type of asbestos still widely exploited, and all kinds of asbestos including chrysotile was classified as a group I carcinogen by the IARC. There is a wealth of evidence that chrysotile can cause a range of cancers, including cancer of the lung, larynx, ovary, and mesothelioma. As the second largest chrysotile producer, China is at great risk of occupational exposure. Moreover, our previous experiment and some other studies have shown that the toxicity of mineral fibre from various mining areas may be different. To explore the oncogenic potential of chrysotile from different mining areas of China, Wistar rats were administered 0.5 mL chrysotile asbestos suspension of 2.0 mg/mL (from Akesai, Gansu; Mangnai, Qinghai; XinKang, Sichuan; and Shannan, Shaanxi) dissolved in saline by intratracheal instillation once-monthly and were sacrificed at 1 mo, 6 mo, and 12 mo. Our results found that chrysotile caused lung inflammation and lung tissue damage. Moreover, prolonged exposure of chrysotile can induce inactivation of the tumor suppressor gene P53 and P16 and activation of the protooncogene C-JUN and C-FOS both in the messenger RNA and protein level. In addition, chrysotile from Shannan and XinKang has a stronger effect which may link to cancer than that from Akesai and Mangnai.
Collapse
Affiliation(s)
- Yingyu Luo
- School of Public Health, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jianjun Deng
- Medical Laboratory, Sichuan Mianyang 404 Hospital, No.2 Affiliated Hospital of North Sichuan Medical College, Mianyang 621000, Sichuan Province, China
| | - Yan Cui
- School of Public Health, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Tao Li
- Key Laboratory of Ministry of Education, Myocardial electrical laboratory, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jun Bai
- School of Public Health, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Liuwen Huang
- School of Public Health, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yaochuan Sun
- School of Earth Science and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, Sichuan, China
| | - Faqin Dong
- Key Laboratory of Solid Waste Treatment and the Resource Recycle, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China.
| | - Qingbi Zhang
- School of Public Health, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
6
|
Zhao J, Chen HQ, Yang HF, Li Y, Chen DJ, Huang YJ, He LX, Zheng CF, Wang LQ, Wang J, Zhang N, Cao J, Liu JY, Shu WQ, Liu WB. Epigenetic silencing of ALX4 regulates microcystin-LR induced hepatocellular carcinoma through the P53 pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 683:317-330. [PMID: 31132711 DOI: 10.1016/j.scitotenv.2019.05.144] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/10/2019] [Accepted: 05/11/2019] [Indexed: 06/09/2023]
Abstract
Recent studies have shown that microcystin-LR (MC-LR) is one of the principal factors that cause liver cancer. Previously we have found that Aristaless-like Homeobox 4 (ALX4) was differentially expressed in MC-LR-induced malignant transformed L02 cells. However, the expression regulation, role and molecular mechanism of ALX4 during the process of liver cancer induced by MC-LR are still unclear. The expression of ALX4 was detected by quantitative reverse-transcription PCR and Western blot in MC-LR induced malignantly transformed cell and rat models. Methylation status of ALX4 promoter region was evaluated by methylation-specific PCR and bisulfite genomic sequencing. The anti-tumor effects of ALX4 on MC-LR induced liver cancer were identified in vitro and in vivo. ALX4 expression was progressively down-regulated in MC-LR-induced malignantly transformed L02 cells and the MC-LR exposed rat models. ALX4 promoter regions were highly methylated in malignantly transformed cells, while treatment with demethylation agent 5-aza-dC significantly increased ALX4 expression. Functional studies showed that overexpression of ALX4 inhibits cell proliferation, migration, invasion and metastasis in vitro and in vivo, blocks the G1/S phase and promotes the apoptosis. Conversely, knockdown of ALX4 promotes cell proliferation, migration and invasion. Mechanism study found that ALX4 exerts its antitumor function through the P53 pathway, C-MYC and MMP9. More importantly, ALX4 expression level showed a negative relation with serum MC-LR levels in patients with hepatocellular carcinoma. Our results suggested that ALX4 was inactivated by DNA methylation and played a tumor suppressor function through the P53 pathway in MC-LR induced liver cancer.
Collapse
Affiliation(s)
- Ji Zhao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China; College of Public Health and Management, Ningxia Medical University, Yinchuan 750004, PR China
| | - Hong-Qiang Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Hui-Fang Yang
- College of Public Health and Management, Ningxia Medical University, Yinchuan 750004, PR China
| | - Yan Li
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China; The Calmette International Hospital, Kunming 650224, PR China
| | - Dong-Jiao Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China; College of Public Health and Management, Ningxia Medical University, Yinchuan 750004, PR China
| | - Yu-Jing Huang
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Li-Xiong He
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Chuan-Fen Zheng
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Ling-Qiao Wang
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Jia Wang
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Na Zhang
- College of Public Health and Management, Ningxia Medical University, Yinchuan 750004, PR China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Jin-Yi Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Wei-Qun Shu
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.
| | - Wen-Bin Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.
| |
Collapse
|
7
|
Zeng Y, Cui Y, Ma J, Huo T, Dong F, Zhang Q, Deng J, Zhang X, Yang J, Wang Y. Lung injury and expression of p53 and p16 in Wistar rats induced by respirable chrysotile fiber dust from four primary areas of China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:22389-22399. [PMID: 28963651 DOI: 10.1007/s11356-017-0279-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
Chrysotile products were widely used in daily life, and a large amount of respirable dust was produced in the process of production and application. At present, there was seldom research on the safety of chrysotile fiber dust, and whether its long-term inhalation can lead to lung cancer was unknown. In order to determine whether respirable chrysotile fiber dust of China caused lung cancer, four major chrysotile-producing mine areas in China were selected for this study. Chrysotile fibers were prepared into respirable dust. Particle size was measured by laser particle analysis, morphology was observed by scanning electron microscope, chrysotile fiber phase was analyzed by X-ray diffraction, trace chemical elements were identified by X-ray fluorescence, and the structure and the active groups of the dust were determined after grinding by Fourier transform infrared spectroscopy. Male Wistar rats were exposed to non-exposed intratracheal instillation with different concentrations of chrysotile fiber dust. The rats were weighed after 1, 3, and 6 months, then the lung tissues were separated, the lung morphology was observed, and the pulmonary index was calculated. Pathological changes in lung tissues were observed by optical microscope after the HE staining of tissues, and the gene expression of p53 and p16 was determined by reverse transcription polymerase chain reaction. First, the results showed that the particle sizes of the four fibers were less than 10 μm. Four primary areas of chrysotile had similar fibrous structure, arranged in fascicles, or mixed with thin chunks of material. Second, the elementary composition of the four fibers was mainly chrysotile, and the structure and the active groups of the grinding dust were not damaged. Third, the weights of the treated rats were obviously lower, and the lung weights and the pulmonary index increased significantly (P < 0.05). Fourth, the treated Wistar rat lung tissues revealed different degrees of congestion, edema, inflammatory cell infiltration, and mild fibrosis. Fifth, the p53 and p16 genes decreased in the Mangnai group after 1 month of exposure, and the other groups increased. The expression of p53 and p16 in each group decreased significantly after 6 months (P < 0.05). In conclusion, the respirable chrysotile fiber dust from the four primary areas of China had the risk of causing lung injury, and these changes may be related to the physical and chemical characteristics of chrysotile from different production areas.
Collapse
Affiliation(s)
- Yali Zeng
- Department of Clinical Laboratory, 404 Hospital of Mianyang, Mianyang, 621000, Sichuan, People's Republic of China
| | - Yan Cui
- School of Public Health, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Ji Ma
- Department of Clinical Laboratory, 404 Hospital of Mianyang, Mianyang, 621000, Sichuan, People's Republic of China
| | - Tingting Huo
- Key Laboratory of Solid Waste Treatment and the Resource Recycle, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China
| | - Faqin Dong
- Key Laboratory of Solid Waste Treatment and the Resource Recycle, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China.
| | - Qingbi Zhang
- School of Public Health, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jianjun Deng
- Department of Clinical Laboratory, 404 Hospital of Mianyang, Mianyang, 621000, Sichuan, People's Republic of China.
| | - Xu Zhang
- Department of Clinical Laboratory, 404 Hospital of Mianyang, Mianyang, 621000, Sichuan, People's Republic of China
| | - Jie Yang
- Department of Clinical Laboratory, 404 Hospital of Mianyang, Mianyang, 621000, Sichuan, People's Republic of China
| | - Yulin Wang
- Department of Clinical Laboratory, 404 Hospital of Mianyang, Mianyang, 621000, Sichuan, People's Republic of China
| |
Collapse
|
8
|
Luevano J, Damodaran C. A review of molecular events of cadmium-induced carcinogenesis. J Environ Pathol Toxicol Oncol 2014; 33:183-94. [PMID: 25272057 DOI: 10.1615/jenvironpatholtoxicoloncol.2014011075] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cadmium (Cd) is a toxic, heavy industrial metal that poses serious environmental health hazards to both humans and wildlife. Recently, Cd and Cd-containing compounds have been classified as known human carcinogens, and epidemiological data show causal associations with prostate, breast, and lung cancer. The molecular mechanisms involved in Cd-induced carcinogenesis are poorly understood and are only now beginning to be elucidated. The effects of chronic exposure to Cd have recently attracted great interest due to the development of malignancies in Cd-induced tumorigenesis in animals models. Briefly, various in vitro studies demonstrate that Cd can act as a mitogen, can stimulate cell proliferation and inhibit apoptosis and DNA repair, and can induce carcinogenesis in several mammalian tissues and organs. Thus, the various mechanisms involved in chronic Cd exposure and malignant transformations warrant further investigation. In this review, we focus on recent evidence of various leading general and tissue-specific molecular mechanisms that follow chronic exposure to Cd in prostate-, breast-, and lung-transformed malignancies. In addition, in this review, we consider less defined mechanisms such as epigenetic modification and autophagy, which are thought to play a role in the development of Cd-induced malignant transformation.
Collapse
Affiliation(s)
- Joe Luevano
- Center of Excellence in Cancer Research, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | | |
Collapse
|
9
|
Person RJ, Tokar EJ, Xu Y, Orihuela R, Olive Ngalame NN, Waalkes MP. Chronic cadmium exposure in vitro induces cancer cell characteristics in human lung cells. Toxicol Appl Pharmacol 2013; 273:281-8. [PMID: 23811327 PMCID: PMC3863781 DOI: 10.1016/j.taap.2013.06.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 06/13/2013] [Accepted: 06/18/2013] [Indexed: 01/22/2023]
Abstract
Cadmium is a known human lung carcinogen. Here, we attempt to develop an in vitro model of cadmium-induced human lung carcinogenesis by chronically exposing the peripheral lung epithelia cell line, HPL-1D, to a low level of cadmium. Cells were chronically exposed to 5 μM cadmium, a noncytotoxic level, and monitored for acquired cancer characteristics. By 20 weeks of continuous cadmium exposure, these chronic cadmium treated lung (CCT-LC) cells showed marked increases in secreted MMP-2 activity (3.5-fold), invasion (3.4-fold), and colony formation in soft agar (2-fold). CCT-LC cells were hyperproliferative, grew well in serum-free media, and overexpressed cyclin D1. The CCT-LC cells also showed decreased expression of the tumor suppressor genes p16 and SLC38A3 at the protein levels. Also consistent with an acquired cancer cell phenotype, CCT-LC cells showed increased expression of the oncoproteins K-RAS and N-RAS as well as the epithelial-to-mesenchymal transition marker protein Vimentin. Metallothionein (MT) expression is increased by cadmium, and is typically overexpressed in human lung cancers. The major MT isoforms, MT-1A and MT-2A were elevated in CCT-LC cells. Oxidant adaptive response genes HO-1 and HIF-1A were also activated in CCT-LC cells. Expression of the metal transport genes ZNT-1, ZNT-5, and ZIP-8 increased in CCT-LC cells culminating in reduced cadmium accumulation, suggesting adaptation to the metal. Overall, these data suggest that exposure of human lung epithelial cells to cadmium causes acquisition of cancer cell characteristics. Furthermore, transformation occurs despite the cell's ability to adapt to chronic cadmium exposure.
Collapse
Affiliation(s)
- Rachel J. Person
- Inorganic Toxicology Group, National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Erik J. Tokar
- Inorganic Toxicology Group, National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Yuanyuan Xu
- Inorganic Toxicology Group, National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Ruben Orihuela
- Inorganic Toxicology Group, National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Ntube N. Olive Ngalame
- Inorganic Toxicology Group, National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Michael P. Waalkes
- Inorganic Toxicology Group, National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
10
|
Bi W, Wei Y, Wu J, Sun G, Guo Y, Zhang Q, Dong L. MADD promotes the survival of human lung adenocarcinoma cells by inhibiting apoptosis. Oncol Rep 2013; 29:1533-9. [PMID: 23443411 DOI: 10.3892/or.2013.2258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 12/14/2012] [Indexed: 11/05/2022] Open
Abstract
MAPK-activating death domain protein (MADD) binds to the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor and acts as a key downstream mediator in the TRAIL-induced apoptosis pathway. The aim of this study was to evaluate the expression of MADD in normal human and adenocarcinoma tissues of the lungs and its influence on proliferation and apoptosis of A549 human lung adenocarcinoma cells. Immunohistochemistry was carried out to detect the expression of MADD in normal and tumor tissues of the lungs. Expression of the MADD gene in A549 cells was measured by reverse transcription-polymerase chain reaction. A549 cells were transfected with plasmids carrying the DNA fragment encoding MADD and lentiviral vectors used for RNA interference, respectively. MADD expression in the transfected A549 cells was determined by western blotting. Proliferation and apoptosis were detected using MTT assay and flow cytometry, respectively. It was found that non-small cell lung cancer tissues expressed MADD at higher levels compared to normal lung tissues, and the level of MADD in lung adenocarcinoma was higher compared to that in lung squamous cell carcinoma. MADD was expressed in A549 cells. Both introduction of the DNA fragment encoding MADD and RNA interference targeting MADD effectively altered levels of MADD in the A549 cells. Overexpression of MADD in the A549 cells inhibited apoptosis and increased survival whereas abrogation of MADD promoted apoptosis and reduced cell proliferation. These results suggest that MADD may be a potential therapeutic target for lung adenocarcinoma therapy involving the TRAIL-induced apoptosis pathway.
Collapse
Affiliation(s)
- Wenxiang Bi
- Institute of Biochemistry and Molecular Biology, School of Medicine, Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China
| | | | | | | | | | | | | |
Collapse
|
11
|
Olsson H, Hultman P, Monsef N, Rosell J, Jahnson S. Immunohistochemical evaluation of cell cycle regulators: impact on predicting prognosis in stage t1 urinary bladder cancer. ISRN UROLOGY 2012; 2012:379081. [PMID: 23304558 PMCID: PMC3523551 DOI: 10.5402/2012/379081] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 10/17/2012] [Indexed: 12/20/2022]
Abstract
Background and Objective. The cell cycle is regulated by proteins at different checkpoints, and dysregulation of this cycle plays a role in carcinogenesis. Matrix metalloproteinases (MMPs) are enzymes that degrade collagen and promote tumour infiltration. The aim of this study was to evaluate the expression of various cell cycle regulators and MMPs and to correlate such expression with progression and recurrence in patients with stage T1 urothelial carcinoma of the bladder (UCB). Patients and Methods. This population-based cohort study comprised 201 well-characterized patients with primary stage T1 urothelial carcinoma of the bladder. Immunohistochemistry was performed on formalin-fixed material to quantify expression of cell cycle regulators and two MMPs. Results. Normal expression of p53 and abnormal expression of MMP9 were associated with greater risk of tumour recurrence. Also, normal p16 expression was related to a lower risk of tumour progression. MMP2, p21, cyclin D1, and pRb showed no significant results that could estimate progression or recurrence. Conclusions. Normal p16 expression is associated with a lower risk of tumour progression, but immunohistochemistry on cell cycle regulators and MMPs has little value in predicting the prognosis in stage T1 UCB.
Collapse
Affiliation(s)
- Hans Olsson
- Molecular and Immunological Pathology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Department of Clinical Pathology and Clinical Genetics, County Council of Östergötland, 581 85 Linköping, Sweden
| | | | | | | | | |
Collapse
|
12
|
Krasnov GS, Oparina NY, Dmitriev AA, Kudryavtseva AV, Anedchenko EA, Kondrat’eva TT, Zabarovsky ER, Senchenko VN. RPN1, a new reference gene for quantitative data normalization in lung and kidney cancer. Mol Biol 2011. [DOI: 10.1134/s0026893311020129] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|