1
|
Yang S, Guo J, Chen D, Sun Z, Pu L, Sun G, Yang M, Peng Y. The Cardioprotective Effect of Ginseng Derived Exosomes via Inhibition of Oxidative Stress and Apoptosis. ACS APPLIED BIO MATERIALS 2025; 8:814-824. [PMID: 39740230 DOI: 10.1021/acsabm.4c01644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Ginsenosides possess potential protective effects against cisplatin (CDDP)-induced toxicity, but the limited bioavailability of ginsenosides hampered their therapeutic application. Ginseng exosomes (G-Exo), which are active ingredients in ginseng, exhibit excellent biocompatibility and low immunogenicity. Here, G-Exo were isolated from ginseng roots through a combination of ultracentrifugation and sucrose gradient centrifugation techniques. Subsequently, the potential protective effect of G-Exo on CDDP induced cardiotoxicity, and its underlying mechanisms were explored. The findings demonstrated that G-Exo effectively mitigated CDDP-induced oxidative stress and apoptosis in vitro. Moreover, in vivo experiments revealed that G-Exo significantly inhibited the increases in serum cardiac troponin T (cTnT), creatine kinase (CK), and lactate dehydrogenase (LDH) levels in mice induced by CDDP. Histological assessment and tissue staining further corroborated that G-Exo alleviated the cardiac tissue damage and apoptosis caused by CDDP. Mechanistically, G-Exo were found to alleviate CDDP-induced apoptosis through blocking the MAPK signaling. Collectively, these results suggest that G-Exo hold the potential to mitigate cisplatin-induced cardiac injury by regulating the MAPK pathway, thereby highlighting the therapeutic potential of G-Exo as a protective agent against CDDP-induced cardiotoxicity.
Collapse
Affiliation(s)
- Shuiyue Yang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130112, China
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, Jilin 130012, China
| | - Jia Guo
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130112, China
| | - Danyang Chen
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130112, China
| | - Zepeng Sun
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130112, China
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, Jilin 130012, China
| | - Li Pu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130112, China
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, Jilin 130012, China
| | - Guoying Sun
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, Jilin 130012, China
| | - Min Yang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130112, China
| | - Yinghua Peng
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130112, China
| |
Collapse
|
2
|
Carron J, Coser LDO, Lima CSP, Lourenço GJ. The impact of ERP29 on the progression of pharyngeal squamous cell carcinoma. Sci Rep 2024; 14:25681. [PMID: 39465248 PMCID: PMC11514305 DOI: 10.1038/s41598-024-76210-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 10/11/2024] [Indexed: 10/29/2024] Open
Abstract
ERP29 gene encodes a chaperone protein critical for protein folding and secretion. Previous study linked ERP29 inhibition to an elevated risk of pharynx squamous cell carcinoma (PSCC) and reduced patients' survival. However, ERP29 role in PSCC progression remains unknown. Here, we investigated ERP29 impact on PSCC progression in cisplatin (CDDP)-sensitive (FaDu and LAU-2063), CDDP-treated (FaDu-CDDP), and CDDP-resistant (FaDu-R) cells. ERP29 silencing decreased necrosis and increased migration in CDDP-sensitive, treated, and resistant cells; and reduced E-cadherin and increased vimentin immunoexpression in CDDP-sensitive 3D-spheroids. During CDDP treatment, ERP29 silencing enhanced proliferation. In CDDP-sensitive cells, ERP29 silencing upregulated genes associated with WNT, MAPK, and PI3K/AKT signaling pathways while downregulating CASP9 expression. During CDDP treatment, ERP29 silencing downregulated MDM2 and CASP9 expression. In CDDP-resistant cells, ERP29 silencing upregulated SOS1, MAPK1, AKT1, ITGAV, and CCNE1, while downregulating KRAS, JUN, MDM2, and CASP9 expression. In addition, inhibition of microRNA miR-4421 increased ERP29 expression and decreased MAPK1, AKT1, and JUN expression in CDDP-sensitive cells, as well as SOS1, MAPK1, AKT1, and ITGAV in CDDP-resistant cells. Lower ERP29 and higher miR-4421 expressions were predictive of poor survival, suggesting a potential therapeutic use for miR-4421 inhibitors. Upon validation, these findings may contribute to targeted therapies for PSCC based on ensuring ERP29 expression.
Collapse
Affiliation(s)
- Juliana Carron
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, 50 Vital Brasil Street, Barão Geraldo, Campinas, São Paulo, 13083-888, Brazil
| | - Lilian de Oliveira Coser
- Laboratory of Nerve Regeneration, Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Carmen Silvia Passos Lima
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, 50 Vital Brasil Street, Barão Geraldo, Campinas, São Paulo, 13083-888, Brazil
- Department of Anesthesiology, Oncology and Radiology, School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Gustavo Jacob Lourenço
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, 50 Vital Brasil Street, Barão Geraldo, Campinas, São Paulo, 13083-888, Brazil.
| |
Collapse
|
3
|
Santos JAV, Silva D, Marques MPM, Batista de Carvalho LAE. Platinum-based chemotherapy: trends in organic nanodelivery systems. NANOSCALE 2024; 16:14640-14686. [PMID: 39037425 DOI: 10.1039/d4nr01483a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Despite the investment in platinum drugs research, cisplatin, carboplatin and oxaliplatin are still the only Pt-based compounds used as first line treatments for several cancers, with a few other compounds being approved for administration in some Asian countries. However, due to the severe and worldwide impact of oncological diseases, there is an urge for improved chemotherapeutic approaches. Furthermore, the pharmaceutical application of platinum complexes is hindered by their inherent toxicity and acquired resistance. Nanodelivery systems rose as a key strategy to overcome these challenges, with recognized versatility and ability towards improving the safety, bioavailability and efficacy of the available drugs. Among the known nanocarriers, organic systems have been widely applied, taking advantage of their potential as drug vehicles. Researchers have mainly focused on the development of lipidic and polymeric carriers, including supramolecular structures, with an overall improvement of encapsulated platinum complexes. Herein, an overview of recent trends and strategies is presented, with the main focus on the encapsulation of platinum compounds into organic nanocarriers, showcasing the evolution in the design and development of these promising systems. This comprehensive review highlights formulation methods as well as characterization procedures, providing insights that may be helpful for the development of novel platinum nanocarriers aiming at future pharmaceutical applications.
Collapse
Affiliation(s)
- João A V Santos
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Daniela Silva
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Maria Paula M Marques
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Luís A E Batista de Carvalho
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| |
Collapse
|
4
|
Guo D, Huang Y, Wang K, Yang C, Ma L, Zhang Y, Yu H, Cui M, Tang Z. Preparation and Characterization Evaluation of Poly(L-Glutamic Acid)- g-Methoxy Poly(Ethylene Glycol)/Combretastatin A4/BLZ945 Nanoparticles for Cervical Cancer Therapy. Int J Nanomedicine 2023; 18:6901-6914. [PMID: 38026524 PMCID: PMC10676729 DOI: 10.2147/ijn.s441131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/12/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Cervical cancer (CC) is a highly vascularized tumor with abundant abnormal blood vessel, which could be targeted by therapeutic strategies. Poly(L-glutamic acid)-g-methoxy poly(ethylene glycol)/combretastatin A4 (CA4)/BLZ945 nanoparticles (CB-NPs) have shown great potential as nano vascular disrupting agents (VDAs) in the realm of synergistic cancer therapy. Methods In this study, we investigated the nanocharacteristics of CB-NPs, focusing on active pharmaceutical ingredients (API), as well as lyophilized samples combining API with protective agents (PAs). The in vivo efficacy of final sample (API + PAs) was evaluated. Results The assembled sphere of API with complex core and thin-shell structure was confirmed. PAs were found to significantly influence in vivo efficacy. Collaborative efforts between API and PAs, namely mannitol and lactose, resulted in the most promising lyophilized sample, ie, the final sample (FS2) for CC therapy. Impressively, FS2 demonstrated an exceptional 100% cure rate on the CC U14-bearing mice model. Conclusion FS2 has provided significant insights for cervical cancer therapy. It is also crucial to develop a comprehensive evaluation strategy for the formulation of nanomedicine, which has the potential to serve as a guideline for future clinical trials.
Collapse
Affiliation(s)
- Dongmei Guo
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, Jilin Province, 130041, People’s Republic of China
| | - Yue Huang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People’s Republic of China
| | - Kun Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People’s Republic of China
| | - Chenguang Yang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People’s Republic of China
| | - Lili Ma
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People’s Republic of China
| | - Yu Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People’s Republic of China
| | - Haiyang Yu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People’s Republic of China
| | - Manhua Cui
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, Jilin Province, 130041, People’s Republic of China
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People’s Republic of China
| |
Collapse
|
5
|
Li J, Zhang Y, Ye F, Qian P, Qin Z, Li D, Ye L, Feng L. DKK1 Promotes Epithelial-Mesenchymal Transition and Cisplatin Resistance in Gastric Cancer via Activation of the PI3K/AKT Pathway. Cancers (Basel) 2023; 15:4756. [PMID: 37835450 PMCID: PMC10571993 DOI: 10.3390/cancers15194756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Chemotherapy is a classical method of cancer treatment. Cisplatin-based chemotherapy is a traditional and essential therapeutic approach in gastric cancer treatment. However, the development of drug resistance during treatment is a major obstacle that limits their further application, and molecular changes have occurred in the development of drug resistance. Here, we found that Dickkopf-related protein 1 (DKK1) is highly expressed in gastric cancer and related to poor prognosis in gastric cancer patients through public database mining. Next, we also identified that DKK1 is highly expressed in CDDP-resistant gastric cancer cell lines, supporting the notion that DKK1 is a necessary regulator of CDDP resistance. In terms of mechanistic research, our data reveal that DKK1 was able to activate the PI3K/AKT pathway and affect epithelial-to-mesenchymal transition, further contributing to CDDP resistance. Genetic knockdown and pharmacological inhibition of DKK1 recovered CDDP sensitivity both in vitro and in vivo. Therefore, our study highlights the potential of targeted inhibition of DKK1 to reverse CDDP resistance and alleviate metastatic properties in gastric cancer.
Collapse
Affiliation(s)
- Jian Li
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai 201199, China; (J.L.); (Y.Z.); (F.Y.); (Z.Q.); (D.L.)
| | - Yaqiong Zhang
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai 201199, China; (J.L.); (Y.Z.); (F.Y.); (Z.Q.); (D.L.)
| | - Fangzhou Ye
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai 201199, China; (J.L.); (Y.Z.); (F.Y.); (Z.Q.); (D.L.)
| | - Peiyu Qian
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China;
| | - Zhe Qin
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai 201199, China; (J.L.); (Y.Z.); (F.Y.); (Z.Q.); (D.L.)
| | - Deming Li
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai 201199, China; (J.L.); (Y.Z.); (F.Y.); (Z.Q.); (D.L.)
| | - Li Ye
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR 999078, China
| | - Li Feng
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai 201199, China; (J.L.); (Y.Z.); (F.Y.); (Z.Q.); (D.L.)
| |
Collapse
|
6
|
Chun J. Isoalantolactone Suppresses Glycolysis and Resensitizes Cisplatin-Based Chemotherapy in Cisplatin-Resistant Ovarian Cancer Cells. Int J Mol Sci 2023; 24:12397. [PMID: 37569773 PMCID: PMC10419319 DOI: 10.3390/ijms241512397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Cisplatin is a potent chemotherapeutic drug for ovarian cancer (OC) treatment. However, its efficacy is significantly limited due to the development of cisplatin resistance. Although the acquisition of cisplatin resistance is a complex process involving various molecular alterations within cancer cells, the increased reliance of cisplatin-resistant cells on glycolysis has gained increasing attention. Isoalantolactone, a sesquiterpene lactone isolated from Inula helenium L., possesses various pharmacological properties, including anticancer activity. In this study, isoalantolactone was investigated as a potential glycolysis inhibitor to overcome cisplatin resistance in OC. Isoalantolactone effectively targeted key glycolytic enzymes (e.g., lactate dehydrogenase A, phosphofructokinase liver type, and hexokinase 2), reducing glucose consumption and lactate production in cisplatin-resistant OC cells (specifically A2780 and SNU-8). Importantly, it also sensitized these cells to cisplatin-induced apoptosis. Isoalantolactone-cisplatin treatment regulated mitogen-activated protein kinase and AKT pathways more effectively in cisplatin-resistant cells than individual treatments. In vivo studies using cisplatin-sensitive and resistant OC xenograft models revealed that isoalantolactone, either alone or in combination with cisplatin, significantly suppressed tumor growth in cisplatin-resistant tumors. These findings highlight the potential of isoalantolactone as a novel glycolysis inhibitor for treating cisplatin-resistant OC. By targeting the dysregulated glycolytic pathway, isoalantolactone offers a promising approach to overcoming drug resistance and enhancing the efficacy of cisplatin-based therapies.
Collapse
Affiliation(s)
- Jaemoo Chun
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| |
Collapse
|
7
|
Raj D, Kraish B, Martikainen J, Podraza-Farhanieh A, Kao G, Naredi P. Cisplatin toxicity is counteracted by the activation of the p38/ATF-7 signaling pathway in post-mitotic C. elegans. Nat Commun 2023; 14:2886. [PMID: 37210583 DOI: 10.1038/s41467-023-38568-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 05/09/2023] [Indexed: 05/22/2023] Open
Abstract
Cisplatin kills proliferating cells via DNA damage but also has profound effects on post-mitotic cells in tumors, kidneys, and neurons. However, the effects of cisplatin on post-mitotic cells are still poorly understood. Among model systems, C. elegans adults are unique in having completely post-mitotic somatic tissues. The p38 MAPK pathway controls ROS detoxification via SKN-1/NRF and immune responses via ATF-7/ATF2. Here, we show that p38 MAPK pathway mutants are sensitive to cisplatin, but while cisplatin exposure increases ROS levels, skn-1 mutants are resistant. Cisplatin exposure leads to phosphorylation of PMK-1/MAPK and ATF-7 and the IRE-1/TRF-1 signaling module functions upstream of the p38 MAPK pathway to activate signaling. We identify the response proteins whose increased abundance depends on IRE-1/p38 MAPK activity as well as cisplatin exposure. Four of these proteins are necessary for protection from cisplatin toxicity, which is characterized by necrotic death. We conclude that the p38 MAPK pathway-driven proteins are crucial for adult cisplatin resilience.
Collapse
Affiliation(s)
- Dorota Raj
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE413 45, Gothenburg, Sweden
| | - Bashar Kraish
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE413 45, Gothenburg, Sweden
| | - Jari Martikainen
- Bioinformatics and Data Centre, Sahlgrenska Academy, University of Gothenburg, Gothenburg, SE413 45, Gothenburg, Sweden
| | - Agnieszka Podraza-Farhanieh
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE413 45, Gothenburg, Sweden
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, SE413 45, Gothenburg, Sweden
| | - Gautam Kao
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE413 45, Gothenburg, Sweden.
| | - Peter Naredi
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE413 45, Gothenburg, Sweden.
- Department of Surgery, Sahlgrenska University Hospital, SE413 45, Gothenburg, Sweden.
| |
Collapse
|
8
|
Jiang Y, Song L, Lin Y, Nowialis P, Gao Q, Li T, Li B, Mao X, Song Q, Xing C, Zheng G, Huang S, Jin L. ROS-mediated SRMS activation confers platinum resistance in ovarian cancer. Oncogene 2023; 42:1672-1684. [PMID: 37020040 PMCID: PMC10231978 DOI: 10.1038/s41388-023-02679-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023]
Abstract
Ovarian cancer is the leading cause of death among gynecological malignancies. Checkpoint blockade immunotherapy has so far only shown modest efficacy in ovarian cancer and platinum-based chemotherapy remains the front-line treatment. Development of platinum resistance is one of the most important factors contributing to ovarian cancer recurrence and mortality. Through kinome-wide synthetic lethal RNAi screening combined with unbiased datamining of cell line platinum response in CCLE and GDSC databases, here we report that Src-Related Kinase Lacking C-Terminal Regulatory Tyrosine And N-Terminal Myristylation Sites (SRMS), a non-receptor tyrosine kinase, is a novel negative regulator of MKK4-JNK signaling under platinum treatment and plays an important role in dictating platinum efficacy in ovarian cancer. Suppressing SRMS specifically sensitizes p53-deficient ovarian cancer cells to platinum in vitro and in vivo. Mechanistically, SRMS serves as a "sensor" for platinum-induced ROS. Platinum treatment-induced ROS activates SRMS, which inhibits MKK4 kinase activity by directly phosphorylating MKK4 at Y269 and Y307, and consequently attenuates MKK4-JNK activation. Suppressing SRMS leads to enhanced MKK4-JNK-mediated apoptosis by inhibiting MCL1 transcription, thereby boosting platinum efficacy. Importantly, through a "drug repurposing" strategy, we uncovered that PLX4720, a small molecular selective inhibitor of B-RafV600E, is a novel SRMS inhibitor that can potently boost platinum efficacy in ovarian cancer in vitro and in vivo. Therefore, targeting SRMS with PLX4720 holds the promise to improve the efficacy of platinum-based chemotherapy and overcome chemoresistance in ovarian cancer.
Collapse
Affiliation(s)
- Yunhan Jiang
- Department of Molecular Medicine, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Lina Song
- Department of Molecular Medicine, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Yizhu Lin
- Department of Cell and Tissue Biology, School of Dentistry, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Pawel Nowialis
- Department of Molecular Medicine, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Qiongmei Gao
- Department of Molecular Medicine, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Tao Li
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Bin Li
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Xiaobo Mao
- Institute for Cell Engineering, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Qianqian Song
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
| | - Chengguo Xing
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Shuang Huang
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Lingtao Jin
- Department of Molecular Medicine, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
9
|
Song J, Peng C, Wang R, Hua Y, Wu Q, Deng L, Cao Y, Zhang L, Hou L. Ribosome Biogenesis Regulator 1 Homolog (RRS1) Promotes Cisplatin Resistance by Regulating AEG-1 Abundance in Breast Cancer Cells. Molecules 2023; 28:molecules28072939. [PMID: 37049702 PMCID: PMC10095748 DOI: 10.3390/molecules28072939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Many ribosomal proteins are highly expressed in tumors and are closely related to their diagnosis, prognosis and pathological characteristics. However, few studies are available on the correlation between ribosomal proteins and chemoresistance. RRS1 (human regulator of ribosome synthesis 1), a critical nuclear protein involved in ribosome biogenesis, also plays a key role in the genesis and development of breast cancer by protecting cancer cells from apoptosis. Given that apoptosis resistance is one of the causes of the cisplatin resistance of tumor cells, our aim was to determine the relationship between RRS1 and cisplatin resistance in breast cancer cells. Here, we report that RRS1 is associated with cisplatin resistance in breast cancer cells. RRS1 silencing increased the sensitivity of MCF-7/DDP cells to cisplatin and inhibited cancer cell proliferation by blocking cell cycle distribution and enhancing apoptosis. AEG-1 (astrocyte elevated gene-1) promotes drug resistance by interfering with the ubiquitination and proteasomal degradation of MDR1 (multidrug resistance gene 1), thereby enhancing drug efflux. We found that RRS1 binds to and stabilizes AEG-1 by inhibiting ubiquitination and subsequent proteasomal degradation, which then promotes drug efflux by upregulating MDR1. Furthermore, RRS1 also induces apoptosis resistance in breast cancer cells through the ERK/Bcl-2/BAX signaling pathway. Our study is the first to show that RRS1 sensitizes breast cancer cells to cisplatin by binding to AEG-1, and it provides a theoretical basis to improve the efficacy of cisplatin-based chemotherapy.
Collapse
|
10
|
Sun H, Bai J, Sun Y, Zhen D, Fu D, Wang Y, Wei C. Oxymatrine attenuated isoproterenol-induced heart failure via the TLR4/NF-κB and MAPK pathways in vivo and in vitro. Eur J Pharmacol 2023; 941:175500. [PMID: 36627098 DOI: 10.1016/j.ejphar.2023.175500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
Oxymatrine (OMT) is a quinoline alkaloid isolated from the root of the Sophora flavescens that has a variety of biological activities. However, the effect and potential mechanism of OMT on isoproterenol (ISO)-induced heart failure (HF) are not clear. In this study, we found that OMT improved the survival of HL-1 cells induced by ISO. We also demonstrated that OMT significantly inhibited the levels of the inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). OMT decreased the levels of the TLR4 and reduced the phosphorylation levels of nuclear factor-κB (NF-κB) inhibitor (IκB), p65, c-Jun N-terminal kinases (JNK) and p38. The inhibitory effect of the TLR4 inhibitor TAK242 on HL-1 cells was evaluated. The results showed that the effect of OMT on the phosphorylation levels of IκBα and p65 was enhanced in HL-1 cells treated with TAK242. Using animal models, OMT significantly reduced ISO-induced cardiac injury, myocardial necrosis, interstitial edema, and fibrosis. In addition, OMT attenuated TNF-α and IL-6 and inhibited the expression of TLR4/NF-κB and MAPK pathway-related proteins. This finding suggests that OMT may alleviate HF by interfering with the TLR4/NF-κB and MAPK pathways.
Collapse
Affiliation(s)
- Haijuan Sun
- Inner Mongolia Minzu University, Tongliao, Inner Mongolia, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, PR China
| | - Jingjing Bai
- Inner Mongolia Minzu University, Tongliao, Inner Mongolia, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, PR China
| | - Yuting Sun
- Inner Mongolia Minzu University, Tongliao, Inner Mongolia, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, PR China
| | - Dong Zhen
- Inner Mongolia Minzu University, Tongliao, Inner Mongolia, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, PR China
| | - Danni Fu
- Inner Mongolia Minzu University, Tongliao, Inner Mongolia, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, PR China
| | - Yu Wang
- Inner Mongolia Minzu University, Tongliao, Inner Mongolia, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, PR China.
| | - Chengxi Wei
- Inner Mongolia Minzu University, Tongliao, Inner Mongolia, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, PR China.
| |
Collapse
|
11
|
Tsukamoto Y, Kurogi S, Shibata T, Suzuki K, Hirashita Y, Fumoto S, Yano S, Yanagihara K, Nakada C, Mieno F, Kinoshita K, Fuchino T, Mizukami K, Ueda Y, Etoh T, Uchida T, Hanada T, Takekawa M, Daa T, Shirao K, Hironaka S, Murakami K, Inomata M, Hijiya N, Moriyama M. Enhanced phosphorylation of c-Jun by cisplatin treatment as a potential predictive biomarker for cisplatin response in combination with patient-derived tumor organoids. J Transl Med 2022; 102:1355-1366. [PMID: 35922477 DOI: 10.1038/s41374-022-00827-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/09/2022] Open
Abstract
Despite recent advances in sequencing technology and large-scale drug screenings employing hundreds of cell lines, the predictive accuracy of mutation-based biomarkers is still insufficient as a guide for cancer therapy. Therefore, novel types of diagnostic methods using alternative biomarkers would be highly desirable. We have hypothesized that sensitivity-specific changes in the phosphorylation of signaling molecules could be useful in this respect. Here, with the aim of developing a method for predicting the response of cancers to cisplatin using a combination of specific biomarker(s) and patient-derived tumor organoids (PDOs), we found that cisplatin-sensitive cell lines or PDOs showed enhanced phosphorylation of c-Jun (p-c-Jun) within 24 h after cisplatin treatment. We also compared the responses of 6 PDOs to cisplatin with the therapeutic effect of neoadjuvant chemotherapy (docetaxel/cisplatin/5-fluorouracil) in 6 matched patients. Mechanistically, the c-Jun induction was partly related to TNF signaling induced by cisplatin. Our data suggest that enhanced phosphorylation of c-Jun in response to cisplatin treatment could be a predictive biomarker for the efficacy of cisplatin in selected cancer patients.
Collapse
Affiliation(s)
- Yoshiyuki Tsukamoto
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Oita, Japan.
| | - Shusaku Kurogi
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Oita, Japan
| | - Tomotaka Shibata
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, Oita, Japan
| | - Kosuke Suzuki
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, Oita, Japan
| | - Yuka Hirashita
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Oita, Japan.,Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Shoichi Fumoto
- Department of Surgery, Oita Nakamura Hospital, Oita, Japan
| | - Shinji Yano
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, Oita, Japan
| | - Kazuyoshi Yanagihara
- Exploratory Oncology Research and Clinical Trial Center, National Cancer Center Hospital East, Chiba, Japan
| | - Chisato Nakada
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Oita, Japan.,Department of Urology, Faculty of Medicine, Oita University, Oita, Japan
| | - Fumi Mieno
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Oita, Japan
| | - Keisuke Kinoshita
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Oita, Japan.,Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Takafumi Fuchino
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Oita, Japan.,Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Kazuhiro Mizukami
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Yoshitake Ueda
- Department of Comprehensive Surgery for Community Medicine, Oita University, Oita, Japan
| | - Tsuyoshi Etoh
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, Oita, Japan
| | - Tomohisa Uchida
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Oita, Japan
| | - Toshikatsu Hanada
- Department of Cell Biology, Oita University Faculty of Medicine, Oita University, Oita, Japan
| | - Mutsuhiro Takekawa
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Sciences, University of Tokyo, Tokyo, Japan
| | - Tsutomu Daa
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, Oita, Japan
| | - Kuniaki Shirao
- Department of Medical Oncology and Hematology, Faculty of Medicine, Oita University, Oita, Japan
| | - Shuichi Hironaka
- Department of Medical Oncology and Hematology, Faculty of Medicine, Oita University, Oita, Japan
| | - Kazunari Murakami
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Masafumi Inomata
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, Oita, Japan
| | - Naoki Hijiya
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Oita, Japan
| | - Masatsugu Moriyama
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Oita, Japan
| |
Collapse
|
12
|
Characterization of the RAS/RAF/ERK Signal Cascade as a Novel Regulating Factor in Alpha-Amanitin-Induced Cytotoxicity in Huh-7 Cells. Int J Mol Sci 2022; 23:ijms232012294. [PMID: 36293151 PMCID: PMC9603094 DOI: 10.3390/ijms232012294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 12/24/2022] Open
Abstract
The well-known hepatotoxicity mechanism resulting from alpha-amanitin (α-AMA) exposure arises from RNA polymerase II (RNAP II) inhibition. RNAP Ⅱ inhibition occurs through the dysregulation of mRNA synthesis. However, the signaling pathways in hepatocytes that arise from α-AMA have not yet been fully elucidated. Here, we identified that the RAS/RAF/ERK signaling pathway was activated through quantitative phosphoproteomic and molecular biological analyses in Huh-7 cells. Bioinformatics analysis showed that α-AMA exposure increased protein phosphorylation in a time-dependent α-AMA exposure. In addition, phosphorylation increased not only the components of the ERK signaling pathway but also U2AF65 and SPF45, known splicing factors. Therefore, we propose a novel mechanism of α-AMA as follows. The RAS/RAF/ERK signaling pathway involved in aberrant splicing events is activated by α-AMA exposure followed by aberrant splicing events leading to cell death in Huh-7 cells.
Collapse
|
13
|
Fish Collagen Peptides Protect against Cisplatin-Induced Cytotoxicity and Oxidative Injury by Inhibiting MAPK Signaling Pathways in Mouse Thymic Epithelial Cells. Mar Drugs 2022; 20:md20040232. [PMID: 35447905 PMCID: PMC9032569 DOI: 10.3390/md20040232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 11/23/2022] Open
Abstract
Thymic epithelial cells (TECs) account for the most abundant and dominant stromal component of the thymus, where T cells mature. Oxidative- or cytotoxic-stress associated injury in TECs, a significant and common problem in many clinical settings, may cause a compromised thymopoietic capacity of TECs, resulting in clinically significant immune deficiency disorders or impairment in the adaptive immune response in the body. The present study demonstrated that fish collagen peptides (FCP) increase cell viability, reduce intracellular levels of reactive oxygen species (ROS), and impede apoptosis by repressing the expression of Bax and Bad and the release of cytochrome c, and by upregulating the expression of Bcl-2 and Bcl-xL in cisplatin-treated TECs. These inhibitory effects of FCP on TEC damage occur via the suppression of ROS generation and MAPK (p38 MAPK, JNK, and ERK) activity. Taken together, our data suggest that FCP can be used as a promising protective agent against cytotoxic insults- or ROS-mediated TEC injury. Furthermore, our findings provide new insights into a therapeutic approach for the future application of FCP in the prevention and treatment of various types of oxidative- or cytotoxic stress-related cell injury in TECs as well as age-related or acute thymus involution.
Collapse
|
14
|
Relevance of Fluorinated Ligands to the Design of Metallodrugs for Their Potential Use in Cancer Treatment. Pharmaceutics 2022; 14:pharmaceutics14020402. [PMID: 35214133 PMCID: PMC8874657 DOI: 10.3390/pharmaceutics14020402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/29/2022] Open
Abstract
Fluorination of pharmaceutical agents has afforded crucial modifications to their pharmacological profiles, leading to important advances in medicinal chemistry. On the other hand, metallodrugs are considered to be valuable candidates in the treatment of several diseases, albeit with the caveat that they may exhibit pharmacological disadvantages, such as poor water solubility, low bioavailability and short circulating time. To surmount these limitations, two approaches have been developed: one based on the design of novel metallodrug-delivering carriers and the other based on optimizing the structure of the ligands bound to the metal center. In this context, fluorination of the ligands may bring beneficial changes (physicochemical and biological) that can help to elude the aforementioned drawbacks. Thus, in this review, we discuss the use of fluorinated ligands in the design of metallodrugs that may exhibit potential anticancer activity.
Collapse
|
15
|
Jia C, Deacon GB, Zhang Y, Gao C. Platinum(IV) antitumor complexes and their nano-drug delivery. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213640] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Chromosomal and molecular pathway alterations in the neuroendocrine carcinoma and adenocarcinoma components of gastric mixed neuroendocrine-nonneuroendocrine neoplasm. Mod Pathol 2020; 33:2602-2613. [PMID: 32461621 DOI: 10.1038/s41379-020-0579-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/18/2022]
Abstract
Gastric mixed adenoneuroendocrine carcinoma (MANEC) is a clinically aggressive subtype of mixed neuroendocrine-nonneuroendocrine neoplasm (MiNEN) with unclear clonal origin. In this study, we analyzed high-resolution copy number (CN) profiling data using the OncoScan CNV Assay in the neuroendocrine carcinoma (NEC) and adenocarcinoma components of eight MANECs. Some common CNVs, including the gain of CCNE1 (19q12) and the loss of FAT1 (4q35.2), were frequently detected in both components; these CNVs were verified by FISH, qPCR and immunohistochemistry staining assays in samples with sufficient material. The identification of common CNVs in both components supports the likelihood of single clonal origin of morphologically heterogeneous tumor cells and suggests several novel genetic events potentially involved in the development of gastric MANEC. We also detected and validated some CNVs and alterations specific for the NEC component, such as MAPK1 loss and MAPK signaling pathway alterations, which could contribute to the neuroendocrine differentiation of gastric MANEC. In addition, we found that the NEC component presented more CNVs and greater CN loss than the adenocarcinoma component (P = 0.007 and P = 0.004, respectively); the NEC components from different cases were not clustered in the hierarchical clustering analysis, indicating the marked genetic heterogenicity of the NEC component in gastric MANEC. In summary, this study describes the cytogenetic characteristics of each component of gastric MANEC, providing some clues for further studies on the development and progression of gastric MANEC as well as providing some potential therapeutic targets.
Collapse
|
17
|
Tilekar K, Upadhyay N, Iancu CV, Pokrovsky V, Choe JY, Ramaa CS. Power of two: combination of therapeutic approaches involving glucose transporter (GLUT) inhibitors to combat cancer. Biochim Biophys Acta Rev Cancer 2020; 1874:188457. [PMID: 33096154 PMCID: PMC7704680 DOI: 10.1016/j.bbcan.2020.188457] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 12/20/2022]
Abstract
Cancer research of the Warburg effect, a hallmark metabolic alteration in tumors, focused attention on glucose metabolism whose targeting uncovered several agents with promising anticancer effects at the preclinical level. These agents' monotherapy points to their potential as adjuvant combination therapy to existing standard chemotherapy in human trials. Accordingly, several studies on combining glucose transporter (GLUT) inhibitors with chemotherapeutic agents, such as doxorubicin, paclitaxel, and cytarabine, showed synergistic or additive anticancer effects, reduced chemo-, radio-, and immuno-resistance, and reduced toxicity due to lowering the therapeutic doses required for desired chemotherapeutic effects, as compared with monotherapy. The combinations have been specifically effective in treating cancer glycolytic phenotypes, such as pancreatic and breast cancers. Even combining GLUT inhibitors with other glycolytic inhibitors and energy restriction mimetics seems worthwhile. Though combination clinical trials are in the early phase, initial results are intriguing. The various types of GLUTs, their role in cancer progression, GLUT inhibitors, and their anticancer mechanism of action have been reviewed several times. However, utilizing GLUT inhibitors as combination therapeutics has received little attention. We consider GLUT inhibitors agents that directly affect glucose transporters by binding to them or indirectly alter glucose transport by changing the transporters' expression level. This review mainly focuses on summarizing the effects of various combinations of GLUT inhibitors with other anticancer agents and providing a perspective on the current status.
Collapse
Affiliation(s)
- Kalpana Tilekar
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth’s College of Pharmacy, Navi Mumbai, Maharashtra, India
| | - Neha Upadhyay
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth’s College of Pharmacy, Navi Mumbai, Maharashtra, India
| | - Cristina V. Iancu
- East Carolina Diabetes and Obesity Institute, Department of Chemistry, East Carolina University, Greenville, North Carolina, USA
| | - Vadim Pokrovsky
- Laboratory of Combined Therapy, N.N. Blokhin Cancer Research Center, Moscow, Russia
- Department of Biochemistry, People’s Friendship University, Moscow, Russia
| | - Jun-yong Choe
- East Carolina Diabetes and Obesity Institute, Department of Chemistry, East Carolina University, Greenville, North Carolina, USA
| | - C. S. Ramaa
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth’s College of Pharmacy, Navi Mumbai, Maharashtra, India
| |
Collapse
|
18
|
Shimizu T, Fujii T, Sakai H. The Relationship Between Actin Cytoskeleton and Membrane Transporters in Cisplatin Resistance of Cancer Cells. Front Cell Dev Biol 2020; 8:597835. [PMID: 33195280 PMCID: PMC7655133 DOI: 10.3389/fcell.2020.597835] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
Cisplatin [cis-diamminedichloroplatinum (II)] is a platinum-based anticancer drug widely used for the treatment of various cancers. It forms interstrand and intrastrand cross-linking with DNA and block DNA replication, resulting in apoptosis. On the other hand, intrinsic and acquired cisplatin resistance restricts its therapeutic effects. Although some studies suggest that dramatic epigenetic alternations are involved in the resistance triggered by cisplatin, the mechanism is complicated and remains poorly understood. Recent studies reported that cytoskeletal structures regulate cisplatin sensitivity and that activities of membrane transporters contribute to the development of resistance to cisplatin. Therefore, we focus on the roles of actin filaments and membrane transporters in cisplatin-induced apoptosis. In this review, we summarize the relationship between actin cytoskeleton and membrane transporters in the cisplatin resistance of cancer cells.
Collapse
Affiliation(s)
- Takahiro Shimizu
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Takuto Fujii
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hideki Sakai
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
19
|
Xiong H, Zhang AH, Zhao QQ, Yan GL, Sun H, Wang XJ. Discovery of quality-marker ingredients of Panax quinquefolius driven by high-throughput chinmedomics approach. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 74:152928. [PMID: 31451286 DOI: 10.1016/j.phymed.2019.152928] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Quality control of traditional Chinese medicine (TCM) has always been a hot issue to TCM. However, due to the complexity of TCM ingredients, the current quality standards of TCM have problems that are difficult to guarantee clinical efficacy. American ginseng, the dried roots of Pawajc quinquefolium L. (Araliaceae), is a valuable herbal medicine due to various pharmacological effects and huge health benefit, which are associated with numerous active ingredients such as ginsenosides. Although a large number of studies have investigated the active ingredients of American ginseng, Q-markers reflecting comprehensive review on its efficacies has yet been unrevealed. PURPOSE The study aims to discover the Q-markers of Panax quinquefolius (American ginseng), provides a powerful method to clarify the significant ingredents of TCM and help further discovering extensive quality evaluation model,contributing to a significant improvement of TCM quality standard. METHODS Mice general status, biochemical indexes assay, urine metabolic profile, and serum metabolic profile were utilized for model replication and efficacy evaluation. The in vitro and in vivo constituents of American ginseng using ultra-high performance liquid chromatography coupled with mass spectrometry (UPLC-MS) with Serum Pharmacochemistry of TCM were in-depth investigated. Q-markers that were associated with core markers of therapeutic effects were excavated by a plotting of correlation between marker metabolites and serum constituents (PCMS) approach. RESULTS Correlation analysis of 41 blood and urine labeled metabolites with 14 serum components showed that 24-methyl-7-cholesten-3β-ol, zizybeoside II, betulin, ginsenoside Rd, cinnamyl alcohol, pseudoginsenoside F11 is highly correlated with the therapeutic effects of Compound Zaofan Pill (CZP), while pseudoginsenoside F11 and ginsenoside Rd are highly correlated with the therapeutic effects of American ginseng. The six absorbed blood compounds can be considered as potential Q-markers for compound, of which two compounds, such as pseudoginsenoside F11 and ginsenoside Rd, can be considered as potential Q-markers for American ginseng. CONCLUSION The study has demonstrated that the Chinmedomics is an effective, comprehensive and fire-new method for discovering the Q-markers of TCM, and it may be more reasonable choices to establish quality standards of TCM.
Collapse
Affiliation(s)
- Hui Xiong
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Ai-Hua Zhang
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Qi-Qi Zhao
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Guang-Li Yan
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Hui Sun
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Xi-Jun Wang
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau.
| |
Collapse
|
20
|
Shin S, Gombedza FC, Bandyopadhyay BC. l-ornithine activates Ca 2+ signaling to exert its protective function on human proximal tubular cells. Cell Signal 2020; 67:109484. [PMID: 31770578 PMCID: PMC7302702 DOI: 10.1016/j.cellsig.2019.109484] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 01/14/2023]
Abstract
Oxidative stress and reactive oxygen species (ROS) generation can be influenced by G-protein coupled receptor (GPCR)-mediated regulation of intracellular Ca2+ ([Ca2+]i) signaling. ROS production are much higher in proximal tubular (PT) cells; in addition, the lack of antioxidants enhances the vulnerability to oxidative damage. Despite such predispositions, PT cells show resiliency, and therefore must possess some inherent mechanism to protect from oxidative damage. While the mechanism in unknown, we tested the effect of l-ornithine, since it is abundantly present in PT luminal fluid and can activate Ca2+-sensing receptor (CaSR), a GPCR, expressed in the PT luminal membrane. We used human kidney 2 (HK2) cells, a PT cell line, and performed Ca2+ imaging and electrophysiological experiments to show that l-ornithine has a concentration-dependent effect on CaSR activation. We further demonstrate that the operation of CaSR activated Ca2+ signaling in HK-2 cells mediated by the transient receptor potential canonical (TRPC) dependent receptor-operated Ca2+ entry (ROCE) using pharmacological and siRNA inhibitors. Since PT cells are vulnerable to ROS, we simulated such deleterious effects using genetically encoded peroxide-induced ROS production (HyperRed indicator) to show that the l-ornithine-induced ROCE mediated [Ca2+]i signaling protects from ROS production. Furthermore, we performed cell viability, necrosis and apoptosis assays, and mitochondrial oxidative gene expression to establish that presence of l-ornithine rescued the ROS-induced damage in HK-2 cells. Moreover, l-ornithine-activation of CaSR can reverse ROS production and apoptosis via mitogen-activated protein kinase p38 activation. Such nephroprotective role of l-ornithine can be useful as the translational option for reversing kidney diseases involving PT cell damage due to oxidative stress or crystal nephropathies.
Collapse
Affiliation(s)
- Samuel Shin
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA
| | - Farai C Gombedza
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA
| | - Bidhan C Bandyopadhyay
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA; Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University, Washington, DC 20037, USA; Department of Biomedical Engineering, The Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064, USA.
| |
Collapse
|
21
|
Banerjee A, Mohanty M, Lima S, Samanta R, Garribba E, Sasamori T, Dinda R. Synthesis, structure and characterization of new dithiocarbazate-based mixed ligand oxidovanadium(iv) complexes: DNA/HSA interaction, cytotoxic activity and DFT studies. NEW J CHEM 2020. [DOI: 10.1039/d0nj01246g] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis, structure and characterization of mixed ligand oxidovanadium(iv) complexes [VIVOL1–2(LN–N)] (1–3) are reported. With a view to evaluating their biological activity, their DNA/HSA interaction and cytotoxicity activity have been explored.
Collapse
Affiliation(s)
- Atanu Banerjee
- Department of Chemistry
- National Institute of Technology
- Rourkela
- India
| | - Monalisa Mohanty
- Department of Chemistry
- National Institute of Technology
- Rourkela
- India
| | - Sudhir Lima
- Department of Chemistry
- National Institute of Technology
- Rourkela
- India
| | - Rajib Samanta
- Department of Chemistry
- National Institute of Technology
- Rourkela
- India
| | - Eugenio Garribba
- Dipartimento di Chimica e Farmacia
- Università di Sassari
- I-07100 Sassari
- Italy
| | - Takahiro Sasamori
- Graduate School of Natural Sciences
- Nagoya City University Yamanohata 1
- Nagoya
- Japan
| | - Rupam Dinda
- Department of Chemistry
- National Institute of Technology
- Rourkela
- India
| |
Collapse
|
22
|
Rusnak L, Tang C, Qi Q, Mo X, Fu H. Large tumor suppressor 2, LATS2, activates JNK in a kinase-independent mechanism through ASK1. J Mol Cell Biol 2019; 10:549-558. [PMID: 30496488 DOI: 10.1093/jmcb/mjy061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/15/2018] [Indexed: 12/25/2022] Open
Abstract
Apoptosis signal-regulating kinase 1 (ASK1) is an important mediator of the cell stress response pathways. Because of its central role in regulating cell death, the activity of ASK1 is tightly regulated by protein-protein interactions and post-translational modifications. Deregulation of ASK1 activity has been linked to human diseases, such as neurological disorders and cancer. Here we describe the identification and characterization of large tumor suppressor 2 (LATS2) as a novel binding partner for ASK1. LATS2 is a core kinase in the Hippo signaling pathway and is commonly downregulated in cancer. We found that LATS2 interacts with ASK1 and increases ASK1-mediated signaling to promote apoptosis and activate the JNK mitogen-activated protein kinase (MAPK). This change in MAPK signaling is dependent on the catalytic activity of ASK1 but does not require LATS2 kinase activity. This work identifies a novel role for LATS2 as a positive regulator of the ASK1-MKK-JNK signaling pathway and establishes a kinase-independent function of LATS2 that may be part of the intricate regulatory system for cellular response to diverse stress signals.
Collapse
Affiliation(s)
- Lauren Rusnak
- Graduate Program in Cancer Biology, Emory University, Atlanta, GA, USA.,Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University, Atlanta, GA, USA
| | - Cong Tang
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University, Atlanta, GA, USA.,The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, China
| | - Qi Qi
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University, Atlanta, GA, USA
| | - Xiulei Mo
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University, Atlanta, GA, USA
| | - Haian Fu
- Graduate Program in Cancer Biology, Emory University, Atlanta, GA, USA.,Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University, Atlanta, GA, USA.,Winship Cancer Institute, Emory University, Atlanta, GA, USA.,Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| |
Collapse
|
23
|
Modulatory effect of zingerone against cisplatin or γ-irradiation induced hepatotoxicity by molecular targeting regulation. Appl Radiat Isot 2019; 154:108891. [PMID: 31536909 DOI: 10.1016/j.apradiso.2019.108891] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/16/2019] [Accepted: 09/09/2019] [Indexed: 12/19/2022]
Abstract
Zingerone (ZO) is an ingredient of ginger (Zingiber officinale) which has different pharmacological properties. The objective of this research was to evaluate the protective effect of ZO against Cisplatin (Cis) or γ-Irradiation (IR)-induced hepatotoxicity in rats. ZO was given orally for consecutive 14 days prior to the treatment with Cis or exposure to IR at 15th day. Animals were sacrificed at the 23rd day. Cis or IR induced a marked increase in MAPK signal transduction as evidenced by increased p38 MAPK, JNK and ErK1/2. CYP2E1 and NADPH oxidase were significantly up-regulated. Inflammatory markers (TLR4, iNOS, COX-2 and MPO) and liver enzymes (AST, ALT and ALP) activities were also increased. Administration of ZO significantly ameliorated the above mentioned parameters.
Collapse
|
24
|
Ahmad S, Hussain A, Hussain A, Abdullah I, Ali MS, Froeyen M, Mirza MU. Quantification of Berberine in Berberis vulgaris L. Root Extract and Its Curative and Prophylactic Role in Cisplatin-Induced In Vivo Toxicity and In Vitro Cytotoxicity. Antioxidants (Basel) 2019; 8:E185. [PMID: 31248160 PMCID: PMC6616455 DOI: 10.3390/antiox8060185] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 01/16/2023] Open
Abstract
Cisplatin is amongst the most potent chemotherapeutic drugs with applications in more than 50% of cancer treatments, but dose-dependent side effects limit its usefulness. Berberis vulgaris L. (B. vulgaris) has a proven role in several therapeutic applications in the traditional medicinal system. High-performance liquid chromatography was used to quantify berberine, a potent alkaloid in the methanolic root extract of B. vulgaris (BvRE). Berberine chloride in BvRE was found to be 10.29% w/w. To assess the prophylactic and curative protective effects of BvRE on cisplatin-induced nephrotoxicity, hepatotoxicity, and hyperlipidemia, in vivo toxicity trials were carried out on 25 healthy male albino Wistar rats (130-180 g). Both prophylactic and curative trials included a single dose of cisplatin (4 mg/kg, i.p.) and nine doses of BvRE (500 mg/kg/day, orally). An array of marked toxicity effects appeared in response to cisplatin dosage evident by morphological condition, biochemical analysis of serum (urea, creatinine, total protein, alanine transaminase, aspartate transaminase, total cholesterol, and triglyceride), and organ tissue homogenates (malondialdehyde and catalase). Statistically-significant (p < 0.05) variations were observed in various parameters. Moreover, histological studies of liver and kidney tissues revealed that the protective effect of BvRE effectively minimized and reversed nephrotoxic, hepatotoxic, and hyperlipidemic effects caused by cisplatin in both prophylactic and curative groups with relatively promising ameliorative effects in the prophylactic regimen. The in vitro cell viability effect of cisplatin, BvRE, and their combination was determined on HeLa cells using the tetrazolium (MTT) assay. MTT clearly corroborated that HeLa cells appeared to be less sensitive to cisplatin and berberine individually, while the combination of both at the same concentrations resulted in growth inhibition of HeLa cells in a remarkable synergistic way. The present study validated the use of BvRE as a protective agent in combination therapy with cisplatin.
Collapse
Affiliation(s)
- Sarfraz Ahmad
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Amina Hussain
- Department of Biochemistry, Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore, Lahore 54000, Pakistan.
| | - Aroosha Hussain
- Department of Biochemistry, Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore, Lahore 54000, Pakistan.
| | - Iskandar Abdullah
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Muhammad Sajjad Ali
- Department of Biochemistry, Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore, Lahore 54000, Pakistan.
| | - Matheus Froeyen
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, University of Leuven, B-3000 Leuven, Belgium.
| | - Muhammad Usman Mirza
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, University of Leuven, B-3000 Leuven, Belgium.
| |
Collapse
|
25
|
Pernar M, Kokan Z, Kralj J, Glasovac Z, Tumir LM, Piantanida I, Eljuga D, Turel I, Brozovic A, Kirin SI. Organometallic ruthenium(II)-arene complexes with triphenylphosphine amino acid bioconjugates: Synthesis, characterization and biological properties. Bioorg Chem 2019; 87:432-446. [DOI: 10.1016/j.bioorg.2019.03.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 03/05/2019] [Accepted: 03/15/2019] [Indexed: 12/25/2022]
|
26
|
AMPK: A promising molecular target for combating cisplatin toxicities. Biochem Pharmacol 2019; 163:94-100. [DOI: 10.1016/j.bcp.2019.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/05/2019] [Indexed: 02/07/2023]
|
27
|
Jalali A, Zafari J, Jouni FJ, Abdolmaleki P, Shirazi FH, Khodayar MJ. Combination of static magnetic field and cisplatin in order to reduce drug resistance in cancer cell lines. Int J Radiat Biol 2019; 95:1194-1201. [PMID: 30822212 DOI: 10.1080/09553002.2019.1589012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Purpose: In this study, the effects of different intensities of Static Magnetic Fields (SMFs) (10, 15 and 25 mT) and different concentrations of cisplatin drug were investigated on the viability percent and IC50 of the A2780 and A2780-CP cell lines at 24, 48 and 96 h to show useful potential of SMF as a physical agent to enhance the effectiveness of common therapeutic approaches and decrease of drug resistance to cisplatin anticancer drug. Materials and methods: Magnetic field exposure was performed using a locally designed generator. The cell viability percent, IC50 and cisplatin uptake in treated cells were evaluated by MTT assay and inductively coupled plasma (ICP), respectively. Results: Increasing of concentration and time of cisplatin drug showed a noticeable decrease in viability percent in sensitive and resistant cell lines compared with control group. These decreases were more significant in resistant cells compared with sensitive cells. The obtained IC50 values for resistant were greater than the values obtained for A2780 cells. ICP analysis demonstrated an increased uptake of cisplatin after treatment for 48 and 96 h relative to untreated groups in both resistant and sensitive cells. Conclusion: Results showed that A2780 cells were more sensitive to cisplatin than A2780-CP. Studies have shown that SMF can increase the effect of cisplatin on cell viability percent and decrease the resistance of A2780-CP cells by producing large, verruca shaped structures at the surface of the cell membrane.
Collapse
Affiliation(s)
- Amir Jalali
- a Toxicology Research Center and Department of Toxicology, School of Pharmacy and, Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran
| | - Jaber Zafari
- a Toxicology Research Center and Department of Toxicology, School of Pharmacy and, Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran
| | - Fatemeh Javani Jouni
- b Department of Microbiology, Islamic Azad University, Tehran North Branch , Tehran , Iran
| | - Parviz Abdolmaleki
- c Faculty of Biological Sciences, Department of Biophysics, Tarbiat Modares University , Tehran , Iran
| | - Farshad H Shirazi
- d Department of Toxico/Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences , Tehran , Iran.,e Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Mohammad Javad Khodayar
- a Toxicology Research Center and Department of Toxicology, School of Pharmacy and, Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran
| |
Collapse
|
28
|
Kozlova NI, Morozevich GE, Ushakova NA, Berman AE. Implication of integrin α2β1 in anoikis of SK-Mel-147 human melanoma cells: a non-canonical function of Akt protein kinase. Oncotarget 2019; 10:1829-1839. [PMID: 30956761 PMCID: PMC6443001 DOI: 10.18632/oncotarget.26746] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/15/2019] [Indexed: 11/25/2022] Open
Abstract
Suppression of anoikis, a kind of apoptosis caused by disruption of contacts between cell and extracellular matrix, is an important prerequisite for cancer cell metastasis. In this communication, we demonstrate that shRNA-mediated depletion of α2 integrin subunit induces anoikis and substantially decreases colony-forming potential in SK-Mel-147 human melanoma cells. Suppression of α2β1 upregulates the levels of pro-apoptotic protein p53 and cyclin-dependent kinase inhibitors p21 and p27. Concomitantly, we detected decrease in the levels of anti-apoptotic protein Bcl-2 and cell cycle regulator c-Myc. Moreover, depletion of α2β1 reduces the activity of protein kinase Erk, while increases activity of Akt kinase. Pharmacological inhibition of P3IK kinase, an upstream activator of Akt, greatly enhanced anoikis in control cells while reduced that in cells with decreased levels of α2β1. Of three isoforms of Akt, down-regulation of Akt1 greatly diminished anoikis of cells depleted of α2β1, while down-regulation of Akt2 and Akt3 sharply increased anoikis in these cells. These findings were supported by the data of pharmacological inhibition of the Akt isoforms. Our results demonstrate for the first time that anoikis induced by α2β1 integrin knockdown can be attenuated by Akt1 inhibition.
Collapse
Affiliation(s)
| | | | | | - Albert E Berman
- VN Orekhovich Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
29
|
Mylavarapu S, Kumar H, Kumari S, Sravanthi LS, Jain M, Basu A, Biswas M, Mylavarapu SVS, Das A, Roy M. Activation of Epithelial-Mesenchymal Transition and Altered β-Catenin Signaling in a Novel Indian Colorectal Carcinoma Cell Line. Front Oncol 2019; 9:54. [PMID: 30828563 PMCID: PMC6385509 DOI: 10.3389/fonc.2019.00054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/18/2019] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer is the third major cause of cancer-related mortality worldwide. The upward trend in incidence and mortality rates, poor sensitivity to conventional therapies and a dearth of early diagnostic parameters pose a huge challenge in the management of colorectal cancer in India. Due to the high level of genetic diversity present in the Indian population, unraveling the genetic contributions toward pathogenesis is key for understanding the etiology of colorectal cancer and in reversing this trend. We have established a novel cell line, MBC02, from an Indian colorectal cancer patient and have carried out extensive molecular characterization to unravel the pathological alterations in this cell line. In-depth molecular analysis of MBC02 revealed suppression of E-cadherin expression, concomitant with overexpression of EMT related molecules, which manifested in the form of highly migratory and invasive cells. Loss of membrane-tethered E-cadherin released β-catenin from the adherens junction resulting in its cytoplasmic and nuclear accumulation and consequently, upregulation of c-Myc. MBC02 also showed dramatic transcriptional upregulation of β-catenin. Remarkably, we observed significantly elevated proteasome activity that perhaps co-evolved to compensate for the unnaturally high mRNA level of β-catenin to regulate the increased protein load. In addition, there was substantial misregulation of other clinically relevant signaling pathways that have clinical relevance in the pathogenesis of colorectal cancer. Our findings pave the way toward understanding the molecular differences that could define pathogenesis in cancers originating in the Indian population.
Collapse
Affiliation(s)
- Sanghamitra Mylavarapu
- Invictus Oncology Pvt. Ltd., New Delhi, India.,Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Harsh Kumar
- Regional Centre for Biotechnology, Faridabad, India.,School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | | | | | - Misti Jain
- Division of Cancer Biology, MITRARxDx India Pvt. Ltd., Bangalore, India
| | - Aninda Basu
- Division of Cancer Biology, MITRARxDx India Pvt. Ltd., Bangalore, India
| | - Manjusha Biswas
- Department of Molecular Pathology, MITRARxDx India Pvt. Ltd., Bangalore, India
| | - Sivaram V S Mylavarapu
- Regional Centre for Biotechnology, Faridabad, India.,School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Asmita Das
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Monideepa Roy
- Invictus Oncology Pvt. Ltd., New Delhi, India.,India Innovation Research Center, New Delhi, India
| |
Collapse
|
30
|
Vizza D, Lupinacci S, Toteda G, Puoci F, Ortensia I P, De Bartolo A, Lofaro D, Scrivano L, Bonofiglio R, La Russa A, Bonofiglio M, Perri A. An Olive Leaf Extract Rich in Polyphenols Promotes Apoptosis in Cervical Cancer Cells by Upregulating p21 Cip/WAF1 Gene Expression. Nutr Cancer 2019; 71:320-333. [PMID: 30661406 DOI: 10.1080/01635581.2018.1559934] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Most of the common drugs used to treat the cervical cancer, which main etiological factor is the HPV infection, cause side effects and intrinsic/acquired resistance to chemotherapy. In this study we investigated whether an olive leaf extract (OLE), rich in polyphenols, was able to exert anti-tumor effects in human cervical cancer cells (HeLa). MTT assay results showed a reduction of HeLa cells viability OLE-induced, concomitantly with a gene and protein down-regulation of Cyclin-D1 and an up-regulation of p21, triggering intrinsic apoptosis. OLE reduced NFkB nuclear translocation, which constitutive activation, stimulated by HPV-oncoproteins, promotes cancer progression and functional studies revealed that OLE activated p21Cip/WAF1 in a transcriptional-dependent-manner, by reducing the nuclear recruitment of NFkB on its responsive elements. Furthermore, OLE treatment counteracted epithelial-to-mesenchymal-transition and inhibited anchorage-dependent and -independent cell growth EGF-induced. Finally, MTT assay results revealed that OLE plus Cisplatin strengthened the reduction of cells viability Cisplatin-induced, as OLE inhibited NFkB, AkT and MAPK pathways, all involved in Cisplatin chemoresistance. In conclusion, we demonstrated that in HeLa cells OLE exerts pro-apoptotic effects, elucidating the molecular mechanism and that OLE could mitigate Cisplatin chemoresistance. Further studies are needed to explore the potential coadiuvant use of OLE for cervical cancer treatment.
Collapse
Affiliation(s)
- Donatella Vizza
- a Kidney and Transplantation Research Center, Annunziata Hospital , Cosenza , Italy
| | - Simona Lupinacci
- a Kidney and Transplantation Research Center, Annunziata Hospital , Cosenza , Italy
| | - Giuseppina Toteda
- a Kidney and Transplantation Research Center, Annunziata Hospital , Cosenza , Italy
| | - Francesco Puoci
- b Department of Pharmacy Health and Nutritional Sciences , University of Calabria , Cosenza , Italy
| | - Parisi Ortensia I
- b Department of Pharmacy Health and Nutritional Sciences , University of Calabria , Cosenza , Italy
| | - Anna De Bartolo
- a Kidney and Transplantation Research Center, Annunziata Hospital , Cosenza , Italy
| | - Danilo Lofaro
- a Kidney and Transplantation Research Center, Annunziata Hospital , Cosenza , Italy
| | - Luca Scrivano
- b Department of Pharmacy Health and Nutritional Sciences , University of Calabria , Cosenza , Italy
| | - Renzo Bonofiglio
- a Kidney and Transplantation Research Center, Annunziata Hospital , Cosenza , Italy
| | - Antonella La Russa
- a Kidney and Transplantation Research Center, Annunziata Hospital , Cosenza , Italy
| | - Martina Bonofiglio
- a Kidney and Transplantation Research Center, Annunziata Hospital , Cosenza , Italy
| | - Anna Perri
- a Kidney and Transplantation Research Center, Annunziata Hospital , Cosenza , Italy
| |
Collapse
|
31
|
Miras-Portugal MT, Queipo MJ, Gil-Redondo JC, Ortega F, Gómez-Villafuertes R, Gualix J, Delicado EG, Pérez-Sen R. P2 receptor interaction and signalling cascades in neuroprotection. Brain Res Bull 2018; 151:74-83. [PMID: 30593879 DOI: 10.1016/j.brainresbull.2018.12.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/27/2018] [Accepted: 12/19/2018] [Indexed: 02/08/2023]
Abstract
Nucleotides can contribute to the survival of different glial and neuronal models at the nervous system via activation of purinergic P2X and P2Y receptors. Their activation counteracts different proapoptotic events, such as excitotoxicity, mitochondrial impairment, oxidative stress and DNA damage, which concur to elicit cell loss in different processes of neurodegeneration and brain injury. Thus, it is frequent to find that different neuroprotective mediators converge in the activation of the same intracellular survival pathways to protect cells from death. The present review focuses on the role of P2Y1 and P2Y13 metabotropic receptors, and P2X7 ionotropic receptors to regulate the balance between survival and apoptosis. In particular, we analyze the intracellular pathways involved in the signaling of these nucleotide receptors to elicit survival, including calcium/PLC, PI3K/Akt/GSK3, MAPK cascades, and the expression of antioxidant and antiapoptotic genes. This review emphasizes the novel contribution of nucleotide receptors to maintain cell homeostasis through the regulation of MAP kinases and phosphatases. Unraveling the different roles found for nucleotide receptors in different models and cellular contexts may be crucial to delineate future therapeutic applications based on targeting nucleotide receptors for neuroprotection.
Collapse
Affiliation(s)
- Mª Teresa Miras-Portugal
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain
| | - Mª José Queipo
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain
| | - Juan Carlos Gil-Redondo
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain
| | - Felipe Ortega
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain
| | - Rosa Gómez-Villafuertes
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain
| | - Javier Gualix
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain
| | - Esmerilda G Delicado
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain.
| | - Raquel Pérez-Sen
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain.
| |
Collapse
|
32
|
Mosca L, Pagano M, Ilisso CP, Cave DD, Desiderio V, Mele L, Caraglia M, Cacciapuoti G, Porcelli M. AdoMet triggers apoptosis in head and neck squamous cancer by inducing ER stress and potentiates cell sensitivity to cisplatin. J Cell Physiol 2018; 234:13277-13291. [PMID: 30575033 DOI: 10.1002/jcp.28000] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/29/2018] [Indexed: 01/07/2023]
Abstract
S-Adenosyl-l-methionine (AdoMet) is a naturally and widely occurring sulfonium compound that plays a primary role in cell metabolism and acts as the principal methyl donor in many methylation reactions. AdoMet also exhibits antiproliferative and proapoptotic activities in different cancer cells. However, the molecular mechanisms underlying the effects exerted by AdoMet have only been partially studied. In the current study, we evaluated the antiproliferative effect of AdoMet on Cal-33 oral and JHU-SCC-011 laryngeal squamous cancer cells to define the underlying mechanisms. We demonstrated that AdoMet induced apoptosis in Cal-33 and JHU-SCC-011 cells, involving a caspase-dependent mechanism paralleled by an increased Bax/Bcl-2 ratio. Moreover, we showed, for the first time, that AdoMet induced ER-stress in Cal-33 cells and activated the unfolded protein response, which can be responsible for apoptosis induction through the activation of CHOP and JNK. In addition, AdoMet-induced ER-stress was followed by autophagy with a consistent increase in the levels of the autophagic marker LC3B-II, which was indeed potentiated by the autophago-lysosome inhibitor chloroquine. As both escape from apoptosis and decreased activation of JNK are mechanisms of resistance to cisplatin (cDPP), an agent usually used in cancer therapy, we have evaluated the effects of AdoMet in combination with cDPP on Cal-33 cells. Our data showed that the combined treatment resulted in a strong synergism in inhibiting cell proliferation and in enhancing apoptosis via intrinsic mechanism. These results demonstrate that AdoMet has ER-stress-mediated antiproliferative activity and synergizes with cDDP on cell growth inhibition, thus providing the basis for its use in new anticancer strategies.
Collapse
Affiliation(s)
- Laura Mosca
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Martina Pagano
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Concetta Paola Ilisso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Donatella Delle Cave
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Vincenzo Desiderio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Luigi Mele
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanna Cacciapuoti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marina Porcelli
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
33
|
Wu X, Li Y, Liu X, Chen C, Harrington SM, Cao S, Xie T, Pham T, Mansfield AS, Yan Y, Kwon ED, Wang L, Ling K, Dong H. Targeting B7-H1 (PD-L1) sensitizes cancer cells to chemotherapy. Heliyon 2018; 4:e01039. [PMID: 30603685 PMCID: PMC6300616 DOI: 10.1016/j.heliyon.2018.e01039] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/24/2018] [Accepted: 12/07/2018] [Indexed: 12/20/2022] Open
Abstract
Development of resistance to chemotherapy is a major obstacle in extending the survival of patients with cancer. Although originally defined as an immune checkpoint molecule, B7-H1 (also named as PD-L1 or CD274) was found to play a role in cancer chemoresistance; however, the underlying mechanism of action of B7-H1 in regulation of chemotherapy sensitivity remains unclear in cancer cells. Here we show that development of chemoresistance depends on an increased activation of ERK in cancer cells overexpressing B7-H1. Conversely, B7-H1 knockout (KO) by CRISPR/Cas9 renders human cancer cells susceptible to chemotherapy in a cell-context dependent manner through a reduced activation of p38 MAPK. B7-H1 was found to associate with the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) and this association promoted or maintained the activation of ERK or p38 MAPK in cancer cells. Importantly, we found that targeting B7-H1 by anti-B7-H1 monoclonal antibody (H1A) increased the sensitivity of human triple negative breast cancer cells to cisplatin therapy in vivo. Our results suggest that targeting B7-H1 by an antibody capable of disrupting B7-H1 signals may be a new approach to sensitize cancer cells to chemotherapy.
Collapse
Affiliation(s)
- Xiaosheng Wu
- Department of Medicine Division of Hematology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Yanli Li
- Department of Urology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Xin Liu
- Department of Urology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Chunhua Chen
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Susan M Harrington
- Department of Urology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Siyu Cao
- Department of Urology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Tiancheng Xie
- Department of Urology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Tu Pham
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Aaron S Mansfield
- Division of Medical Oncology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Yiyi Yan
- Division of Medical Oncology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Eugene D Kwon
- Department of Urology, Mayo Clinic College of Medicine, Rochester, MN, USA.,Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Kun Ling
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Haidong Dong
- Department of Urology, Mayo Clinic College of Medicine, Rochester, MN, USA.,Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
34
|
Liu Z, Peng Q, Li Y, Gao Y. Resveratrol enhances cisplatin-induced apoptosis in human hepatoma cells via glutamine metabolism inhibition. BMB Rep 2018. [PMID: 30103844 PMCID: PMC6177506 DOI: 10.5483/bmbrep.2018.51.9.114] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cisplatin is one of the most effective chemotherapeutic drugs used in the treatment of HCC, but many patients will ultimately relapse with cisplatin-resistant disease. Used in combination with cisplatin, resveratrol has synergistic effect of increasing chemosensitivity of cisplatin in various cancer cells. However, the mechanisms of resveratrol enhancing cisplatin-induced toxicity have not been well characterized. Our study showed that resveratrol enhances cisplatin toxicity in human hepatoma cells via an apoptosis-dependent mechanism. Further studies reveal that resveratrol decreases the absorption of glutamine and glutathione content by reducing the expression of glutamine transporter ASCT2. Flow cytometric analyses demonstrate that resveratrol and cisplatin combined treatment leads to a significant increase in ROS production compared to resveratrol or cisplatin treated hepatoma cells alone. Phosphorylated H2AX (γH2AX) foci assay demonstrate that both resveratrol and cisplatin treatment result in a significant increase of γH2AX foci in hepatoma cells, and the resveratrol and cisplatin combined treatment results in much more γH2AX foci formation than either resveratrol or cisplatin treatment alone. Furthermore, our studies show that over-expression of ASCT2 can attenuate cisplatin-induced ROS production, γH2AX foci formation and apoptosis in human hepatoma cells. Collectively, our studies suggest resveratrol may sensitize human hepatoma cells to cisplatin chemotherapy via glutamine metabolism inhibition.
Collapse
Affiliation(s)
- Zhaoyuan Liu
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Qing Peng
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Yang Li
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Yi Gao
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province; State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
35
|
Abstract
Sensorineural hearing impairment is the most common sensory disorder and a major health and socio-economic issue in industrialized countries. It is primarily due to the degeneration of mechanosensory hair cells and spiral ganglion neurons in the cochlea via complex pathophysiological mechanisms. These occur following acute and/or chronic exposure to harmful extrinsic (e.g., ototoxic drugs, noise...) and intrinsic (e.g., aging, genetic) causative factors. No clinical therapies currently exist to rescue the dying sensorineural cells or regenerate these cells once lost. Recent studies have, however, provided renewed hope, with insights into the therapeutic targets allowing the prevention and treatment of ototoxic drug- and noise-induced, age-related hearing loss as well as cochlear cell degeneration. Moreover, genetic routes involving the replacement or corrective editing of mutant sequences or defected genes are showing promise, as are cell-replacement therapies to repair damaged cells for the future restoration of hearing in deaf people. This review begins by recapitulating our current understanding of the molecular pathways that underlie cochlear sensorineural damage, as well as the survival signaling pathways that can provide endogenous protection and tissue rescue. It then guides the reader through to the recent discoveries in pharmacological, gene and cell therapy research towards hearing protection and restoration as well as their potential clinical application.
Collapse
Affiliation(s)
- Jing Wang
- INSERM UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; and University of Montpellier, Montpellier, France
| | - Jean-Luc Puel
- INSERM UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; and University of Montpellier, Montpellier, France
| |
Collapse
|
36
|
Silva VAO, Alves ALV, Rosa MN, Silva LRV, Melendez ME, Cury FP, Gomes INF, Tansini A, Longato GB, Martinho O, Oliveira BG, Pinto FE, Romão W, Ribeiro RIMA, Reis RM. Hexane partition from Annona crassiflora Mart. promotes cytotoxity and apoptosis on human cervical cancer cell lines. Invest New Drugs 2018; 37:602-615. [PMID: 30155717 DOI: 10.1007/s10637-018-0657-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/14/2018] [Indexed: 12/23/2022]
Abstract
Cervical cancer is the third most commonly diagnosed tumor type and the fourth cause of cancer-related death in females. Therapeutic options for cervical cancer patients remain very limited. Annona crassiflora Mart. is used in traditional medicine as antimicrobial and antineoplastic agent. However, little is known about its antitumoral properties. In this study the antineoplastic effect of crude extract and derived partitions from A. crassiflora Mart in cervical cancer cell lines was evaluated. The crude extract significantly alters cell viability of cervical cancer cell lines as well as proliferation and migration, and induces cell death in SiHa cells. Yet, the combination of the crude extract with cisplatin leads to antagonistic effect. Importantly, the hexane partition derived from the crude extract presented cytotoxic effect both in vitro and in vivo, and initiates cell responses, such as DNA damage (H2AX activity), apoptosis via intrinsic pathway (cleavage of caspase-9, caspase-3, poly (ADP-ribose) polymerase (PARP) and mitochondrial membrane depolarization) and decreased p21 expression by ubiquitin proteasome pathway. Concluding, this work shows that hexane partition triggers several biological responses such as DNA damage and apoptosis, by intrinsic pathways, and was also able to promote a direct decrease in tumor perimeter in vivo providing a basis for further investigation on its antineoplastic activity on cervical cancer.
Collapse
Affiliation(s)
- Viviane A O Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, 14784400, São Paulo, Brazil
| | - Ana Laura V Alves
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, 14784400, São Paulo, Brazil
| | - Marcela N Rosa
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, 14784400, São Paulo, Brazil
| | - Larissa R V Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, 14784400, São Paulo, Brazil
| | - Matias E Melendez
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, 14784400, São Paulo, Brazil
| | - Fernanda P Cury
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, 14784400, São Paulo, Brazil
| | - Izabela N F Gomes
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, 14784400, São Paulo, Brazil
| | - Aline Tansini
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, 14784400, São Paulo, Brazil
| | - Giovanna B Longato
- Research Laboratory in Cellular and Molecular Biology of Tumors and Bioactive Compounds, San Francisco University, Bragança Paulista, 12916900, São Paulo, Brazil
| | - Olga Martinho
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, 14784400, São Paulo, Brazil.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, 4710057, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, 4806909, Portugal
| | - Bruno G Oliveira
- Petroleomic and Forensic Laboratory, Chemistry Department, Federal University of Espírito Santo, Vitória, 29075-910, ES, Brazil
| | - Fernanda E Pinto
- Petroleomic and Forensic Laboratory, Chemistry Department, Federal University of Espírito Santo, Vitória, 29075-910, ES, Brazil
| | - Wanderson Romão
- Petroleomic and Forensic Laboratory, Chemistry Department, Federal University of Espírito Santo, Vitória, 29075-910, ES, Brazil
| | - Rosy I M A Ribeiro
- Laboratory of Experimental Pathology, Federal University of São João del Rei-CCO/UFSJ, Divinópolis, 35501-296, Brazil
| | - Rui M Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, 14784400, São Paulo, Brazil. .,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, 4710057, Portugal. .,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, 4806909, Portugal.
| |
Collapse
|
37
|
Zhang Y, Wang L, Gao P, Sun Z, Li N, Lu Y, Shen J, Sun J, Yang Y, Dai H, Cai H. ISL1 promotes cancer progression and inhibits cisplatin sensitivity in triple-negative breast cancer cells. Int J Mol Med 2018; 42:2343-2352. [PMID: 30226569 PMCID: PMC6192754 DOI: 10.3892/ijmm.2018.3842] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 07/31/2018] [Indexed: 12/26/2022] Open
Abstract
Triple‑negative breast cancer (TNBC) is a type of breast cancer that is characterized by the lack of expression of estrogen and progesterone receptors, and epidermal growth factor receptor 2. Therefore, there is an absence of a specific target for effective therapy in TNBC. Cisplatin is usually employed as a first‑line chemotherapy agent for patients with TNBC. However, resistance remains an obstacle for cisplatin‑based chemotherapy, due to its elusive underlying mechanism. Previously, abnormal expression of Islet 1 (ISL1) was demonstrated to be closely associated with cancer development and progression. The present study revealed that (ISL1) was significantly upregulated in TNBC tissues in comparison with adjacent normal tissues. Overexpression of ISL1 markedly promoted the proliferation and invasion of the TNBC MDA‑MB‑231 and MDA‑MB‑468 cell lines, while knockdown of ISL1 inhibited cell invasion and proliferation in these cell lines. In addition, overexpression of ISL1 reversed cisplatin‑induced cell apoptosis, while knockdown of ISL1 enhanced apoptosis following cisplatin treatment in MDA‑MB‑231 and MDA‑MB‑468 cells. Furthermore, the levels of the anti‑apoptotic proteins, phosphorylated‑protein kinase B and B‑cell lymphoma‑2 (Bcl‑2), were significantly decreased, while the levels of the pro‑apoptotic protein Bcl‑2‑associated X protein were remarkably increased in response to cisplatin treatment. The present study revealed that ISL1 overexpression reversed the protein expression profile of p‑Akt, Bcl‑2 and Bax, while ISL1 knockdown promoted cell apoptosis. Therefore, the data of the present study demonstrated that ISL1 contributes to TNBC progression and reverses cell sensitivity towards cisplatin in TNBC cells, suggesting that ISL1 is a potential therapeutic target for the treatment of TNBC.
Collapse
Affiliation(s)
- Yang Zhang
- The Second Department of Breast Surgery, Tangshan People's Hospital, Tangshan, Hebei 063000, P.R. China
| | - Lu Wang
- The Second Department of Breast Surgery, Tangshan People's Hospital, Tangshan, Hebei 063000, P.R. China
| | - Peng Gao
- The Second Department of Chemoradiotherapy, Tangshan People's Hospital, Tangshan, Hebei 063000, P.R. China
| | - Zhiguo Sun
- The Second Department of Breast Surgery, Tangshan People's Hospital, Tangshan, Hebei 063000, P.R. China
| | - Ning Li
- The Second Department of Breast Surgery, Tangshan People's Hospital, Tangshan, Hebei 063000, P.R. China
| | - Yanqin Lu
- The Second Department of Breast Surgery, Tangshan People's Hospital, Tangshan, Hebei 063000, P.R. China
| | - Jianglun Shen
- The Second Department of Breast Surgery, Tangshan People's Hospital, Tangshan, Hebei 063000, P.R. China
| | - Jian Sun
- The Second Department of Breast Surgery, Tangshan People's Hospital, Tangshan, Hebei 063000, P.R. China
| | - Yiming Yang
- The Second Department of Breast Surgery, Tangshan People's Hospital, Tangshan, Hebei 063000, P.R. China
| | - Hao Dai
- The Second Department of Breast Surgery, Tangshan People's Hospital, Tangshan, Hebei 063000, P.R. China
| | - Haifeng Cai
- The Second Department of Breast Surgery, Tangshan People's Hospital, Tangshan, Hebei 063000, P.R. China
| |
Collapse
|
38
|
Han X, Chen H, Zhou J, Steed H, Postovit LM, Fu Y. Pharmacological Inhibition of p38 MAPK by SB203580 Increases Resistance to Carboplatin in A2780cp Cells and Promotes Growth in Primary Ovarian Cancer Cells. Int J Mol Sci 2018; 19:ijms19082184. [PMID: 30049957 PMCID: PMC6121386 DOI: 10.3390/ijms19082184] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/21/2018] [Accepted: 07/25/2018] [Indexed: 12/31/2022] Open
Abstract
Chemoresistance renders current chemotherapy regimens ineffective against advanced epithelial ovarian cancer (EOC). Carboplatin (the first-line chemotherapeutic agent to treat EOC) induces cell death by regulating multiple signaling pathways. The objective of this study is to identify the signaling pathways that contribute to carboplatin resistance in EOC. To this end, we performed a proteome profiler human phospho-kinase array experiment and compared the phosphorylation profiles between the cisplatin-sensitive A2780s versus its derivative cisplatin-resistant A2780cp cells. The phospho-kinase array revealed that A2780s and A2780cp cells displayed different profiles in basal and carboplatin-induced phosphorylation. Phosphorylation of p38 MAPK was increased by carboplatin more markedly in A2780s cells compared to A2780cp cells. Inhibition of p38 MAPK activity by its specific inhibitor SB203580 increased resistance to carboplatin in A2780cp cells, but not in A2780s cells or in ascites-derived high-grade serous EOC cells. Interestingly, SB203580 increased the number of viable cells in the primary EOC cells, which was concomitant with an increase in survivin expression. In conclusion, inhibition of p38 MAPK by SB203580 increases resistance to carboplatin in A2780cp cells and the number of viable cells in the primary EOC cells, suggesting that pharmacological inhibition of p38 MAPK might not be an effective therapeutic strategy for EOC.
Collapse
Affiliation(s)
- Xiaolu Han
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1 Canada.
| | - Huachen Chen
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1 Canada.
| | - Jiesi Zhou
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1 Canada.
| | - Helen Steed
- Department of Obstetrics and Gynecology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| | - Lynne-Marie Postovit
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1 Canada.
- Department of Obstetrics and Gynecology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| | - YangXin Fu
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1 Canada.
- Department of Obstetrics and Gynecology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| |
Collapse
|
39
|
Wang J, Huang X, Zhang K, Mao X, Ding X, Zeng Q, Bai S, Xuan Y, Peng H. Vanadate oxidative and apoptotic effects are mediated by the MAPK-Nrf2 pathway in layer oviduct magnum epithelial cells. Metallomics 2018; 9:1562-1575. [PMID: 29022012 DOI: 10.1039/c7mt00191f] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Vanadium is a metal of high physiological, environmental and industrial importance. However, vanadium-induced oxidative stress can reduce the egg quality of poultry, and be potentially harmful to humans, and the underlying mechanism is not clear. In this study, we investigated the underlying relationship between the oxidant-sensitive mitogen-activated protein kinase (MAPK) signaling pathway and vanadium-induced oxidative stress in oviduct magnum epithelial (OME) cells. Cultured OME cells were treated with 100 μmol L-1 vanadium and/or MAPK inhibitors [P38 MAPK inhibitor, SB203580; extracellular regulated protein kinase 1 and 2 (ERK1/2) inhibitor, U0126; c-JUN N-terminal kinases (JNK) inhibitor, SP600125]. Cell viability, apoptosis, and generation of reactive oxygen species (ROS) were assessed using flow cytometry. The expression of oxidative stress-related genes and their proteins was measured by reverse transcription-polymerase chain reaction and western blotting. Vanadium treatment reduced cell viability, whereas pretreated OME cells with SB203580 and U0126 prevented the reducing effect of vanadium on cell viability (P < 0.05). Likewise, MAPK inhibitors effectively suppressed vanadium-induced apoptosis and ROS generation (P < 0.05). In the OME cells treated with vanadium, SB203580 (P < 0.05) and SP600125 (P = 0.08) increased catalase activity by 89.3% and 55.3%; SB203580 and U0126 increased (P < 0.05) glutathione peroxidase activity by 44.9% and 51.1%, respectively. Incubation of OME cells with MAPK inhibitors also prevents malondialdehyde concentration increase and lactic dehydrogenase activity decrease in response to vanadium (P < 0.05). Vanadium downregulated P38, ERK1/2, JNK, Nrf2, sMaf, GCLC, NQO1 and HO-1 mRNA expression (P < 0.05). In contrast, inhibition of JNK with SP600125 upregulated P38, ERK1/2, JNK, Nrf2, GCLC and HO-1 mRNA expression (P < 0.05); inhibition of P38 with SB203580 upregulated JNK, NQO1 and HO-1 mRNA expression (P < 0.05); and inhibition of ERK1/2 with U0126 upregulated ERK1/2, GCLC and HO-1 mRNA expression (P < 0.05). Moreover, phosphorylation of P38, ERK1/2, JNK, and Nrf2 proteins was enhanced by V incubation; however, SP600125 blocked the phosphorylation of these proteins, whereas SB203580 blocked the phosphorylation of P38 and Nrf2. These results indicate that vanadium inducing oxidative stress in OME cells might be, at least, associated with the phosphorylation of the P38MAPK/JNK-Nrf2 pathway, which reduces the expression of phase II detoxifying enzymes.
Collapse
Affiliation(s)
- Jianping Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Chengdu 611130, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Sun Y, Heidary DK, Zhang Z, Richards CI, Glazer EC. Bacterial Cytological Profiling Reveals the Mechanism of Action of Anticancer Metal Complexes. Mol Pharm 2018; 15:3404-3416. [PMID: 29865789 PMCID: PMC6083414 DOI: 10.1021/acs.molpharmaceut.8b00407] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
Target
identification and mechanistic studies of cytotoxic agents
are challenging processes that are both time-consuming and costly.
Here we describe an approach to mechanism of action studies for potential
anticancer compounds by utilizing the simple prokaryotic system, E. coli, and we demonstrate its utility with the characterization
of a ruthenium polypyridyl complex [Ru(bpy)2dmbpy2+]. Expression of the photoconvertible fluorescent protein Dendra2
facilitated both high throughput studies and single-cell imaging.
This allowed for simultaneous ratiometric analysis of inhibition of
protein production and phenotypic investigations. The profile of protein
production, filament size and population, and nucleoid morphology
revealed important differences between inorganic agents that damage
DNA vs more selective inhibitors of transcription and translation.
Trace metal analysis demonstrated that DNA is the preferred nucleic
acid target of the ruthenium complex, but further studies in human
cancer cells revealed altered cell signaling pathways compared to
the commonly administrated anticancer agent cisplatin. This study
demonstrates E. coli can be used to rapidly distinguish
between compounds with disparate mechanisms of action and also for
more subtle distinctions within in studies in mammalian cells.
Collapse
Affiliation(s)
- Yang Sun
- Department of Chemistry , University of Kentucky , Lexington , Kentucky 40506 , United States
| | - David K Heidary
- Department of Chemistry , University of Kentucky , Lexington , Kentucky 40506 , United States
| | - Zhihui Zhang
- Department of Chemistry , University of Kentucky , Lexington , Kentucky 40506 , United States
| | - Christopher I Richards
- Department of Chemistry , University of Kentucky , Lexington , Kentucky 40506 , United States
| | - Edith C Glazer
- Department of Chemistry , University of Kentucky , Lexington , Kentucky 40506 , United States
| |
Collapse
|
41
|
Olaisen C, Kvitvang HFN, Lee S, Almaas E, Bruheim P, Drabløs F, Otterlei M. The role of PCNA as a scaffold protein in cellular signaling is functionally conserved between yeast and humans. FEBS Open Bio 2018; 8:1135-1145. [PMID: 29988559 PMCID: PMC6026702 DOI: 10.1002/2211-5463.12442] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 02/19/2018] [Accepted: 05/01/2018] [Indexed: 12/11/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA), a member of the highly conserved DNA sliding clamp family, is an essential protein for cellular processes including DNA replication and repair. A large number of proteins from higher eukaryotes contain one of two PCNA-interacting motifs: PCNA-interacting protein box (PIP box) and AlkB homologue 2 PCNA-interacting motif (APIM). APIM has been shown to be especially important during cellular stress. PIP box is known to be functionally conserved in yeast, and here, we show that this is also the case for APIM. Several of the 84 APIM-containing yeast proteins are associated with cellular signaling as hub proteins, which are able to interact with a large number of other proteins. Cellular signaling is highly conserved throughout evolution, and we recently suggested a novel role for PCNA as a scaffold protein in cellular signaling in human cells. A cell-penetrating peptide containing the APIM sequence increases the sensitivity toward the chemotherapeutic agent cisplatin in both yeast and human cells, and both yeast and human cells become hypersensitive when the Hog1/p38 MAPK pathway is blocked. These results suggest that the interactions between APIM-containing signaling proteins and PCNA during the DNA damage response is evolutionary conserved between yeast and mammals and that PCNA has a role in cellular signaling also in yeast.
Collapse
Affiliation(s)
- Camilla Olaisen
- Department of Clinical and Molecular MedicineFaculty of Medicine and Health SciencesNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Hans Fredrik N. Kvitvang
- Department of Biotechnology and Food ScienceFaculty of Natural SciencesNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Sungmin Lee
- Department of Biotechnology and Food ScienceFaculty of Natural SciencesNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Eivind Almaas
- Department of Biotechnology and Food ScienceFaculty of Natural SciencesNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Per Bruheim
- Department of Biotechnology and Food ScienceFaculty of Natural SciencesNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Finn Drabløs
- Department of Clinical and Molecular MedicineFaculty of Medicine and Health SciencesNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Marit Otterlei
- Department of Clinical and Molecular MedicineFaculty of Medicine and Health SciencesNorwegian University of Science and Technology (NTNU)TrondheimNorway
| |
Collapse
|
42
|
Subramaniam M, Liew SK, In LLA, Awang K, Ahmed N, Nagoor NH. Inactivation of nuclear factor κB by MIP-based drug combinations augments cell death of breast cancer cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:1053-1063. [PMID: 29750018 PMCID: PMC5935191 DOI: 10.2147/dddt.s141925] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background Drug combination therapy to treat cancer is a strategic approach to increase successful treatment rate. Optimizing combination regimens is vital to increase therapeutic efficacy with minimal side effects. Materials and methods In the present study, we evaluated the in vitro cytotoxicity of double and triple combinations consisting of 1′S-1′-acetoxychavicol acetate (ACA), Mycobacterium indicus pranii (MIP) and cisplatin (CDDP) against 14 various human cancer cell lines to address the need for more effective therapy. Our data show synergistic effects in MCF-7 cells treated with MIP:ACA, MIP:CDDP and MIP:ACA:CDDP combinations. The type of interaction between MIP, ACA and CDDP was evaluated based on combination index being <0.8 for synergistic effect. Identifying the mechanism of cell death based on previous studies involved intrinsic apoptosis and nuclear factor kappa B (NF-κB) and tested in Western blot analysis. Inactivation of NF-κB was confirmed by p65 and IκBα, while intrinsic apoptosis pathway activation was confirmed by caspase-9 and Apaf-1 expression. Results All combinations confirmed intrinsic apoptosis activation and NF-κB inactivation. Conclusion Double and triple combination regimens that target induction of the same death mechanism with reduced dosage of each drug could potentially be clinically beneficial in reducing dose-related toxicities.
Collapse
Affiliation(s)
- Menaga Subramaniam
- Institute of Biological Science (Genetics & Molecular Biology), Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Su Ki Liew
- Institute of Biological Science (Genetics & Molecular Biology), Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Lionel LA In
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Khalijah Awang
- Centre for Natural Product Research and Drug Discovery (CENAR), University of Malaya, Kuala Lumpur, Malaysia.,Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Niyaz Ahmed
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, India
| | - Noor Hasima Nagoor
- Institute of Biological Science (Genetics & Molecular Biology), Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.,Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
43
|
The molecular mechanism of anticancer action of novel octahydropyrazino[2,1-a:5,4-a']diisoquinoline derivatives in human gastric cancer cells. Invest New Drugs 2018; 36:970-984. [PMID: 29549610 PMCID: PMC6244973 DOI: 10.1007/s10637-018-0584-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/01/2018] [Indexed: 02/08/2023]
Abstract
Objective The aim of the current study was to examine the anticancer activity and the detailed mechanism of novel diisoquinoline derivatives in human gastric cancer cells (AGS). Methods The viability of AGS cells was measured by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Cell cycle analysis and apoptosis assay were performed by standard flow cytometric method. Confocal microscopy bioimaging was used to demonstrate the expression of pivotal proteins engaged in apoptosis (caspase-8, caspase-3, p53) and cell signaling (AKT, ERK1/2). Results All compounds decreased the number of viable cells in a dose-dependent manner after 24 and 48 h of incubation, although compound 2 was a more cytotoxic agent, with IC50 values of 21 ± 2 and 6 ± 2 μM, compared to 80 ± 2 and 45 ± 2 μM for etoposide. The cytotoxic and antiproliferative effects of novel compounds were associated with the induction of apoptosis. The highest percentage of early and late apoptotic cells was observed after 48 h of incubation with compound 2 (89.9%). The value was higher compared to compound 1 (20.4%) and etoposide (24.1%). The novel diisoquinoline derivatives decreased the expression of AKT and ERK1/2. Their mechanism was associated with p53-mediated apoptosis, accumulation of cells in the G2/M phase of cell cycle and inhibition of topoisomerase II. Conclusion These data strongly support compound 2 as a promising molecule for treatment of gastric cancer.
Collapse
|
44
|
Liu Y, Yue C, Li J, Wu J, Wang S, Sun D, Guo Y, Lin Z, Zhang D, Wang R. Enhancement of cisplatin cytotoxicity by Retigeric acid B involves blocking DNA repair and activating DR5 in prostate cancer cells. Oncol Lett 2017; 15:2871-2880. [PMID: 29435013 PMCID: PMC5778852 DOI: 10.3892/ol.2017.7664] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 11/10/2017] [Indexed: 02/07/2023] Open
Abstract
Retigeric acid B (RAB), a natural compound isolated from lichen, has been demonstrated to inhibit cell growth and promote apoptosis in prostate cancer (PCa) cells. The present study evaluated the function of RAB combined with clinical chemotherapeutic drugs in PCa cell lines by MTT assay, reverse transcription quantitative polymerase chain reaction and western blot analysis, and identified that RAB at low doses produced significant synergistic cytotoxicity in combination with cisplatin (CDDP); however, no marked synergism between RAB and the other chemotherapeutics was observed. Additional studies revealed that RAB exerted an inhibitory effect on DNA damage repair pathways, including the nucleotide excision repair and mismatch repair pathways, which are involved in the sensitivity to CDDP-based chemotherapy, as suggested by the significantly downregulated expression of certain associated repair proteins. Notably, Excision repair cross-complementing 1, a critical gene in the nucleotide excision repair pathway, exhibited the most significant decrease. When combined with CDDP, RAB-mediated impairment of DNA repair resulted in prolonged DNA damage, as demonstrated by the long-lasting appearance of phosphorylation of histone H2AX at Ser139, which potentially enhanced the chemosensitivity to CDDP. Concurrently, the proapoptotic protein death receptor 5 (DR5) was activated by RAB, which also enhanced the chemotherapeutic response of CDDP. Knockdown of DR5 partially blocked RAB-CDDP synergism, suggesting the crucial involvement of DR5 in this event. The results of the present study identified that RAB functioned synergistically with CDDP to increase the efficacy of CDDP by inhibiting DNA damage repair and activating DR5, suggesting the mechanistic basis for the antitumor effect of RAB in combination with current chemotherapeutics.
Collapse
Affiliation(s)
- Yongqing Liu
- Department of Pharmacy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Chunwen Yue
- Department of Pharmacy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Juan Li
- Department of Pharmacy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Jing Wu
- Department of Pharmacy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Shikang Wang
- Department of Emergency Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Deqing Sun
- Department of Pharmacy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yanxia Guo
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Zhaomin Lin
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Denglu Zhang
- Department of Urology Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Rongmei Wang
- Department of Pharmacy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
45
|
Rusnak L, Fu H. Regulation of ASK1 signaling by scaffold and adaptor proteins. Adv Biol Regul 2017; 66:23-30. [PMID: 29102394 DOI: 10.1016/j.jbior.2017.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 06/07/2023]
Abstract
The mitogen-activated protein kinase (MAPK) signaling pathway is a three-tiered kinase cascade where mitogen-activated protein kinase kinase kinases (MAP3Ks) lead to the activation of mitogen-activated protein kinase kinases (MAP2K), and ultimately MAPK proteins. MAPK signaling can promote a diverse set of biological outcomes, ranging from cell death to proliferation. There are multiple mechanisms which govern MAPK output, such as the duration and strength of the signal, cellular localization to upstream and downstream binding partners, pathway crosstalk and the binding to scaffold and adaptor molecules. This review will focus on scaffold and adaptor proteins that bind to and regulate apoptosis signal-regulating kinase 1 (ASK1), a MAP3K protein with a critical role in mediating stress response pathways.
Collapse
Affiliation(s)
- Lauren Rusnak
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University, Atlanta, GA 30322, USA; Graduate Program in Cancer Biology, Emory University, Atlanta, GA 30322, USA.
| | - Haian Fu
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University, Atlanta, GA 30322, USA; Graduate Program in Cancer Biology, Emory University, Atlanta, GA 30322, USA; Department of Hematology & Medical Oncology, Emory University, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
46
|
Schneider V, Chaib S, Spanier C, Knapp M, Moscvin V, Scordovillo L, Ewertz A, Jaehde U, Kalayda GV. Transporter-Mediated Interaction Between Platinum Drugs and Sorafenib at the Cellular Level. AAPS JOURNAL 2017; 20:9. [PMID: 29192345 DOI: 10.1208/s12248-017-0169-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/02/2017] [Indexed: 12/19/2022]
Abstract
Combining the multikinase inhibitor sorafenib with the platinum-based chemotherapy of solid tumors was expected to improve treatment outcome. However, in many clinical trials, no benefit from sorafenib addition to the platinum-containing regimen could be demonstrated. Moreover, in some studies, decreased survival of ovarian cancer patients as well as non-small cell lung cancer patients with squamous cell histology was observed. The aim of this study was to investigate the cellular mechanisms of the pharmacological interaction between platinum drugs and sorafenib in different cancer cell lines. The interaction was characterized by combination index analysis, platinum accumulation and DNA platination were determined using flameless atomic absorption spectrometry, and protein expression was assessed with Western blot. In the sensitive A2780 ovarian carcinoma and H520 squamous cell lung carcinoma cell lines, sorafenib induced downregulation of Na+,K+-ATPase. In A2780 cells, the kinase inhibitor also decreased the expression of copper transporter 1 (CTR1). As a result, sorafenib treatment led to a diminished cellular accumulation of cisplatin and carboplatin and to a decrease in DNA platination in these cell lines. This was not the case in the cisplatin-resistant A2780cis ovarian carcinoma and H522 lung adenocarcinoma cell lines featuring lower basal expression of the above-mentioned transporters. In all cell lines studied, an antagonistic interaction between platinum drugs and sorafenib was found. Our results suggest that sorafenib impairs cisplatin and carboplatin uptake through downregulation of CTR1 and/or Na+,K+-ATPase resulting in reduction of DNA platination. This effect is not observed in cancer cells with defects in platinum accumulation.
Collapse
Affiliation(s)
- Verena Schneider
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Selim Chaib
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Claudia Spanier
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Mandy Knapp
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Violeta Moscvin
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Laura Scordovillo
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Alessandra Ewertz
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Ulrich Jaehde
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Ganna V Kalayda
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany.
| |
Collapse
|
47
|
Zhang D, Ding L, Li Y, Ren J, Shi G, Wang Y, Zhao S, Ni Y, Hou Y. Midkine derived from cancer-associated fibroblasts promotes cisplatin-resistance via up-regulation of the expression of lncRNA ANRIL in tumour cells. Sci Rep 2017; 7:16231. [PMID: 29176691 PMCID: PMC5701200 DOI: 10.1038/s41598-017-13431-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 09/25/2017] [Indexed: 01/16/2023] Open
Abstract
Midkine (MK) is a heparin-binding growth factor that promotes carcinogenesis and chemoresistance. The tumour microenvironment (TME) can affect chemotherapy sensitivity. However, the role of stromal-derived MK, especially in cancer-associated fibroblasts (CAFs), is unclear. Here, we confirmed that MK decreased cisplatin-induced cell death in oral squamous cell carcinoma (OSCC) cells, ovarian cancer cells and lung cancer cells. We also isolated primary CAFs (n = 3) from OSCC patients and found that CAFs secreted increased levels of MK, which abrogated cisplatin-induced cell death. Moreover, MK increased the expression of lncRNA ANRIL in the tumour cells. Normal tissues, matched tumour-adjacent tissues and OSCC tissues were analysed (n = 60) and showed that lncRNA ANRIL was indeed overexpressed during carcinogenesis and correlated with both high TNM stage and lymph node metastasis (LNM). Furthermore, lncRNA ANRIL knockdown in tumour cells inhibited proliferation, induced apoptosis and increased cisplatin cytotoxicity of the tumour cells via impairment of the drug transporters MRP1 and ABCC2, which could be restored by treatment with human MK in a caspase-3/BCL-2-dependent manner. In conclusion, we firstly describe that CAFs in the TME contribute to the high level of MK in tumours and that CAF-derived MK can promote cisplatin resistance via the elevated expression of lncRNA ANRIL.
Collapse
Affiliation(s)
- Dongya Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology and Hospital of Stomatology, Medical School, Nanjing University, Nanjing, China
| | - Liang Ding
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology and Hospital of Stomatology, Medical School, Nanjing University, Nanjing, China
| | - Yi Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology and Hospital of Stomatology, Medical School, Nanjing University, Nanjing, China
| | - Jing Ren
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology and Hospital of Stomatology, Medical School, Nanjing University, Nanjing, China
| | - Guoping Shi
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology and Hospital of Stomatology, Medical School, Nanjing University, Nanjing, China
| | - Yong Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology and Hospital of Stomatology, Medical School, Nanjing University, Nanjing, China
| | - Shuli Zhao
- Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Yanhong Ni
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology and Hospital of Stomatology, Medical School, Nanjing University, Nanjing, China.
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology and Hospital of Stomatology, Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
48
|
Olaparib modulates DNA repair efficiency, sensitizes cervical cancer cells to cisplatin and exhibits anti-metastatic property. Sci Rep 2017; 7:12876. [PMID: 28993682 PMCID: PMC5634505 DOI: 10.1038/s41598-017-13232-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/20/2017] [Indexed: 11/08/2022] Open
Abstract
PARP1 trapping at DNA lesion by pharmacological inhibitors has been exploited in several cancers exhibiting defects in DNA repair mechanisms. PARP1 hyperactivation is involved in therapeutic resistance in multiple cancers. The role of PARP1 in cervical cancer (CC) resistance and implication of PARP inhibitor is yet to be elucidated. Our data demonstrates significantly higher expression of PARP1 in primary cervical tumors and CC cell lines SiHa and ME180. Upon cisplatin treatment CC cells display significant overexpression of PARP1 and its hyperactivation. PARP inhibitor olaparib shows significant anti-proliferative effect on CC cells and drive loss of clonogenic survival and enhanced cell death in combination with cisplatin. PARP inhibited cells show delay in resolution of γH2A.X foci and prolonged late S and G2-M phase arrest resulting in apoptosis. Further, PARP inhibition disrupts the localization of base excision repair (BER) effector XRCC1 and non-homologous end joining (NHEJ) proteins Ku80 and XRCC4. Due to disrupted relocation of repair factors, cisplatin induced stalled replication forks collapse and convert into double strand breaks (DSBs). Interestingly, PARP inhibition also shows anti-migratory and anti-invasive properties in CC cells, increases anchorage independent cell death and induces anoikis. Collectively, our data demonstrates therapeutic potential of PARP inhibitor in cervical cancer.
Collapse
|
49
|
Abstract
Inhibitor of differentiation 4 (Id4) plays an important role in tumorigenesis, but its role in cancer chemoresistance remains unclear. Our study showed that Id4 expression in cisplatin-resistant A549/DDP cells was higher than that in parental A549 cells. Moreover, overexpression of Id4 in A549 cells results in cisplatin resistance and apoptosis inhibition, while increasing the IC50 for cisplatin through activation of phospho-p38 MAPK. However, Id4 knockdown in A549/DDP cells was shown to resensitize A549/DDP cells to cisplatin and induce apoptosis, as well as decrease the IC50 for cisplatin through inactivation of phospho-p38 MAPK. In addition, a p38 MAPK inhibitor (SB202190) could partly reverse both Id4-reduced apoptosis and Id4-induced cisplatin resistance. These results suggest that Id4 inhibits cisplatin-induced apoptosis in human lung adenocarcinoma, partially through activation of the p38 MAPK pathway. Our research indicates that Id4 may be a new target for non-small-cell lung cancer treatment.
Collapse
|
50
|
Bar J, Hasim MS, Baghai T, Niknejad N, Perkins TJ, Stewart DJ, Sekhon HS, Villeneuve PJ, Dimitroulakos J. Induction of Activating Transcription Factor 3 Is Associated with Cisplatin Responsiveness in Non-Small Cell Lung Carcinoma Cells. Neoplasia 2017; 18:525-35. [PMID: 27659012 PMCID: PMC5031866 DOI: 10.1016/j.neo.2016.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 06/30/2016] [Accepted: 07/11/2016] [Indexed: 11/30/2022] Open
Abstract
Non–small cell lung carcinoma (NSCLC) is the most common cause of cancer deaths, with platin-based combination chemotherapy the most efficacious therapies. Gains in overall survival are modest, highlighting the need for novel therapeutic approaches including the development of next-generation platin combination regimens. The goal of this study was to identify novel regulators of platin-induced cytotoxicity as potential therapeutic targets to further enhance platin cytotoxicity. Employing RNA-seq transcriptome analysis comparing two parental NSCLC cell lines Calu6 and H23 to their cisplatin-resistant sublines, Calu6cisR1 and H23cisR1, activating transcription factor 3 (ATF3) was robustly induced in cisplatin-treated parental sensitive cell lines but not their resistant sublines, and in three of six tumors evaluated, but not in their corresponding normal adjacent lung tissue (0/6). Cisplatin-induced JNK activation was a key regulator of this ATF3 induction. Interestingly, in both resistant sublines, this JNK induction was abrogated, and the expression of an activated JNK construct in these cells enhanced both cisplatin-induced cytotoxicity and ATF3 induction. An FDA-approved drug compound screen was employed to identify enhancers of cisplatin cytotoxicity that were dependent on ATF3 gene expression. Vorinostat, a histone deacetylase inhibitor, was identified in this screen and demonstrated synergistic cytotoxicity with cisplatin in both the parental Calu6 and H23 cell lines and importantly in their resistant sublines as well that was dependent on ATF3 expression. Thus, we have identified ATF3 as an important regulator of cisplatin cytotoxicity and that ATF3 inducers in combination with platins are a potential novel therapeutic approach for NSCLC.
Collapse
Affiliation(s)
- Jair Bar
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Medical Oncology, the Ottawa Hospital, Ottawa, Ontario, Canada
| | - Mohamed S Hasim
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, Ontario, Canada
| | - Tabassom Baghai
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Nima Niknejad
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Theodore J Perkins
- Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, Ontario, Canada; Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - David J Stewart
- Department of Medical Oncology, the Ottawa Hospital, Ottawa, Ontario, Canada
| | | | - Patrick J Villeneuve
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Thoracic Surgery, the Ottawa Hospital, Ottawa, Ontario, Canada
| | - Jim Dimitroulakos
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, Ontario, Canada.
| |
Collapse
|