1
|
Rahn K, Abdallah AT, Gan L, Herbrich S, Sonntag R, Benitez O, Malaney P, Zhang X, Rodriguez AG, Brottem J, Marx G, Brümmendorf TH, Ostareck DH, Ostareck-Lederer A, Crysandt M, Post SM, Naarmann-de Vries IS. Insight into the mechanism of AML del(9q) progression: hnRNP K targets the myeloid master regulators CEBPA (C/EBPα) and SPI1 (PU.1). BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195004. [PMID: 38008244 DOI: 10.1016/j.bbagrm.2023.195004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Deletions on the long arm of chromosome 9 (del(9q)) are recurrent abnormalities in about 2 % of acute myeloid leukemia cases, which usually involve HNRNPK and are frequently associated with other known aberrations. Based on an Hnrnpk haploinsufficient mouse model, a recent study demonstrated a function of hnRNP K in pathogenesis of myeloid malignancies via the regulation of cellular proliferation and myeloid differentiation programs. Here, we provide evidence that reduced hnRNP K expression results in the dysregulated expression of C/EBPα and additional transcription factors. CyTOF analysis revealed monocytic skewing with increased levels of mature myeloid cells. To explore the role of hnRNP K during normal and pathological myeloid differentiation in humans, we characterized hnRNP K-interacting RNAs in human AML cell lines. Notably, RNA-sequencing revealed several mRNAs encoding key transcription factors involved in the regulation of myeloid differentiation as targets of hnRNP K. We showed that specific sequence motifs confer the interaction of SPI1 and CEBPA 5' and 3'UTRs with hnRNP K. The siRNA mediated reduction of hnRNP K in human AML cells resulted in an increase of PU.1 and C/EBPα that is most pronounced for the p30 isoform. The combinatorial treatment with the inducer of myeloid differentiation valproic acid resulted in increased C/EBPα expression and myeloid differentiation. Together, our results indicate that hnRNP K post-transcriptionally regulates the expression of myeloid master transcription factors. These novel findings can inaugurate novel options for targeted treatment of AML del(9q) by modulation of hnRNP K function.
Collapse
Affiliation(s)
- Kerstin Rahn
- Department of Intensive Care Medicine, University Hospital RWTH Aachen University, Aachen, Germany; Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ali T Abdallah
- Interdisciplinary Center for Clinical Research (IZKF) Aachen, RWTH Aachen University, Germany; Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Lin Gan
- Interdisciplinary Center for Clinical Research (IZKF) Aachen, RWTH Aachen University, Germany
| | - Shelley Herbrich
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roland Sonntag
- Department of Internal Medicine III, University Hospital RWTH Aachen University, Aachen, Germany
| | - Oscar Benitez
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Prerna Malaney
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaorui Zhang
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ashely G Rodriguez
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jared Brottem
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gernot Marx
- Department of Intensive Care Medicine, University Hospital RWTH Aachen University, Aachen, Germany
| | - Tim H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen University, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Dirk H Ostareck
- Department of Intensive Care Medicine, University Hospital RWTH Aachen University, Aachen, Germany
| | - Antje Ostareck-Lederer
- Department of Intensive Care Medicine, University Hospital RWTH Aachen University, Aachen, Germany
| | - Martina Crysandt
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen University, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Sean M Post
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Isabel S Naarmann-de Vries
- Department of Intensive Care Medicine, University Hospital RWTH Aachen University, Aachen, Germany; Section of Bioinformatics and Systems Cardiology, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
2
|
Zheng Ms B, Wang Ms H, Wang Ms JX, Liu Ms ZH, Zhang Md P, Zhang Md D. The Clinical Significance of RMI2 in Hepatocellular Carcinoma. Technol Cancer Res Treat 2021; 20:15330338211045496. [PMID: 34634948 PMCID: PMC8516379 DOI: 10.1177/15330338211045496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC), which is the most common type of primary liver cancer, often presents at advanced stage with a dismal prognosis. Novel tumor biomarkers are needed to aid in HCC early detection and prognostication. Methods: Immunohistochemical staining for RecQ-mediated genome instability protein 2 (RMI2) was performed in 330 surgically resected HCC specimens and 190 adjacent normal tissues. Univariate and multivariate regression analysis were applied to identify prognostic indicators of HCC outcomes. Patient's survival was assessed with the Kaplan-Meier method. Results: RMI2 in HCC tissue was significantly higher than that in adjacent normal tissues, and was positively correlated with HCC histological grade and stage (P < .05) but negatively correlated with the survival period. RIM2 was identified to be an independent prognostic indicator for HCC. Conclusion: The abnormal expression of RMI2 may be related to the occurrence and development of HCC. RIM2 could potentially serve as a novel tumor-specific biomarker for HCC diagnosis and prognosis prediction.
Collapse
Affiliation(s)
- Bin Zheng Ms
- 74678Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, China.,The Second Clinical Medical College, 70571Zhejiang Chinese Medical University, HangZhou, China
| | - Heng Wang Ms
- 74678Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, China
| | | | - Zheng-Hong Liu Ms
- The Second Clinical Medical College, 70571Zhejiang Chinese Medical University, HangZhou, China
| | - Pu Zhang Md
- 74678Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Dahong Zhang Md
- 74678Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, China.,The Second Clinical Medical College, 70571Zhejiang Chinese Medical University, HangZhou, China
| |
Collapse
|
3
|
de Alencastro G, Puzzo F, Pavel-Dinu M, Zhang F, Pillay S, Majzoub K, Tiffany M, Jang H, Sheikali A, Cromer MK, Meetei R, Carette JE, Porteus MH, Pekrun K, Kay MA. Improved Genome Editing through Inhibition of FANCM and Members of the BTR Dissolvase Complex. Mol Ther 2021; 29:1016-1027. [PMID: 33678249 DOI: 10.1016/j.ymthe.2020.10.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/27/2020] [Accepted: 10/19/2020] [Indexed: 11/16/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors have the unique property of being able to perform genomic targeted integration (TI) without inducing a double-strand break (DSB). In order to improve our understanding of the mechanism behind TI mediated by AAV and improve its efficiency, we performed an unbiased genetic screen in human cells using a promoterless AAV-homologous recombination (AAV-HR) vector system. We identified that the inhibition of the Fanconi anemia complementation group M (FANCM) protein enhanced AAV-HR-mediated TI efficiencies in different cultured human cells by ∼6- to 9-fold. The combined knockdown of the FANCM and two proteins also associated with the FANCM complex, RecQ-mediated genome instability 1 (RMI1) and Bloom DNA helicase (BLM) from the BLM-topoisomerase IIIα (TOP3A)-RMI (BTR) dissolvase complex (RMI1, having also been identified in our screen), led to the enhancement of AAV-HR-mediated TI up to ∼17 times. AAV-HR-mediated TI in the presence of a nuclease (CRISPR-Cas9) was also increased by ∼1.5- to 2-fold in FANCM and RMI1 knockout cells, respectively. Furthermore, knockdown of FANCM in human CD34+ hematopoietic stem and progenitor cells (HSPCs) increased AAV-HR-mediated TI by ∼3.5-fold. This study expands our knowledge on the mechanisms related to AAV-mediated TI, and it highlights new pathways that might be manipulated for future improvements in AAV-HR-mediated TI.
Collapse
Affiliation(s)
| | - Francesco Puzzo
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA, USA
| | - Mara Pavel-Dinu
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford, CA, USA
| | - Feijie Zhang
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA, USA
| | - Sirika Pillay
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Karim Majzoub
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Matthew Tiffany
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA, USA
| | - Hagoon Jang
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA, USA
| | - Adam Sheikali
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford, CA, USA
| | - M Kyle Cromer
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford, CA, USA
| | - Ruhikanta Meetei
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Matthew H Porteus
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford, CA, USA
| | - Katja Pekrun
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA, USA
| | - Mark A Kay
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
4
|
Characterization of acute myeloid leukemia with del(9q) - Impact of the genes in the minimally deleted region. Leuk Res 2018; 76:15-23. [PMID: 30476680 DOI: 10.1016/j.leukres.2018.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/13/2018] [Accepted: 11/15/2018] [Indexed: 02/06/2023]
Abstract
Acute myeloid leukemia is an aggressive disease that arises from clonal expansion of malignant hematopoietic precursor cells of the bone marrow. Deletions on the long arm of chromosome 9 (del(9q)) are observed in 2% of acute myeloid leukemia patients. Our deletion analysis in a cohort of 31 del(9q) acute myeloid leukemia patients further supports the importance of a minimally deleted region composed of seven genes potentially involved in leukemogenesis: GKAP1, KIF27, C9ORF64, HNRNPK, RMI1, SLC28A3 and NTRK2. Importantly, among them HNRNPK, encoding heterogeneous nuclear ribonucleoprotein K is proposed to function in leukemogenesis. We show that expression of HNRNPK and the other genes of the minimally deleted region is significantly reduced in patients with del(9q) compared with normal karyotype acute myeloid leukemia. Also, two mRNAs interacting with heterogeneous nuclear ribonucleoprotein K, namely CDKN1A and CEBPA are significantly downregulated. While the deletion size is not correlated with outcome, associated genetic aberrations are important. Patients with an additional t(8;21) show a good prognosis. RUNX1-RUNX1T1, which emerges from the t(8;21) leads to transcriptional down-regulation of CEBPA. Acute myeloid leukemia patients with mutations in CEBPA have a good prognosis as well. Interestingly, in del(9q) patients with CEBPA mutation mRNA levels of HNRNPK and the other genes located in the minimally deleted region is restored to normal karyotype level. Our data indicate that a link between CEBPA and the genes of the minimally deleted region, among them HNRNPK contributes to leukemogenesis in acute myeloid leukemia with del(9q).
Collapse
|
5
|
Valka J, Vesela J, Votavova H, Dostalova-Merkerova M, Horakova Z, Campr V, Brezinova J, Zemanova Z, Jonasova A, Cermak J, Belickova M. Differential expression of homologous recombination DNA repair genes in the early and advanced stages of myelodysplastic syndrome. Eur J Haematol 2017; 99:323-331. [PMID: 28681469 DOI: 10.1111/ejh.12920] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND The high incidence of mutations and cytogenetic abnormalities in patients with myelodysplastic syndrome (MDS) suggests that defects in DNA repair mechanisms. We monitored DNA repair pathways in MDS and their alterations during disease progression. METHODS Expression profiling of DNA repair genes was performed on CD34+ cells, and paired samples were used for monitoring of RAD51 and XRCC2 gene expression during disease progression. Immunohistochemical staining for RAD51 was done on histology samples. RESULTS RAD51 and XRCC2 showed differential expression between low-risk and high-risk MDS (P<.0001), whereas RPA3 was generally decreased among the entire cohort (FC=-2.65, P<.0001). We demonstrated that RAD51 and XRCC2 expression gradually decreased during the progression of MDS. Down-regulation of XRCC2 and RAD51 expression was connected with abnormalities on chromosome 7 (P=.0858, P=.0457). Immunohistochemical staining revealed the presence of RAD51 only in the cytoplasm in low-risk MDS, while in both the cytoplasm and nucleus in high-risk MDS. The multivariate analysis identified RAD51 expression level (HR 0.49; P=.01) as significant prognostic factor for overall survival of patients with MDS. CONCLUSIONS Our study demonstrates that the expression of DNA repair factors, primarily RAD51 and XRCC2, is deregulated in patients with MDS and presents a specific pattern with respect to prognostic categories.
Collapse
Affiliation(s)
- Jan Valka
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Jitka Vesela
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Hana Votavova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | | | - Zuzana Horakova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Vit Campr
- Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Jana Brezinova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Zuzana Zemanova
- Center of Oncocytogenetics, General University Hospital and First Faculty of Medicine of Charles University, Prague, Czech Republic
| | - Anna Jonasova
- First Internal Clinic-Clinic of Hematology, General University Hospital, Prague, Czech Republic
| | - Jaroslav Cermak
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Monika Belickova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| |
Collapse
|
6
|
Abou Zahr A, Kavi AM, Mukherjee S, Zeidan AM. Therapy-related myelodysplastic syndromes, or are they? Blood Rev 2016; 31:119-128. [PMID: 27923516 DOI: 10.1016/j.blre.2016.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/14/2016] [Accepted: 11/22/2016] [Indexed: 12/12/2022]
Abstract
The incidence of therapy-related myelodysplastic syndromes (t-MDS) is increasing as the number of cancer survivors is increasing. While t-MDS is currently defined descriptively by prior receipt of chemotherapy and/or radiotherapy, some forms of MDS that occur post localized radiation monotherapy, biologically and clinically resemble de novo (d)-MDS more than t-MDS, and therefore may not be truly therapy-related. Although patients with t-MDS, as a group, fare worse than patients with d-MDS, a variation in individual outcomes of patients with t-MDS has increasingly been appreciated. As such, accurate risk stratification is important for counseling of patients and for clinical decision making. Most of the current clinical tools used for prognostication in t-MDS were developed for d-MDS and were not specifically validated in patients with t-MDS. The management of patients with t-MDS remains challenging, highlighting the importance of developing effective prevention strategies as well as newer, targeted, and rationally-designed therapeutic interventions.
Collapse
Affiliation(s)
- Abdallah Abou Zahr
- Section of Hematology/Oncology, Department of Internal Medicine, Mount Sinai Beth Israel, New York City, New York, NY, USA
| | - Ami M Kavi
- Department of Internal Medicine, Mount Sinai Beth Israel, New York City, New York, NY, USA
| | - Sudipto Mukherjee
- Hematology and Medical Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Amer M Zeidan
- Section of Hematology, Department of Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
7
|
Zhou T, Chen P, Gu J, Bishop AJR, Scott LM, Hasty P, Rebel VI. Potential relationship between inadequate response to DNA damage and development of myelodysplastic syndrome. Int J Mol Sci 2015; 16:966-89. [PMID: 25569081 PMCID: PMC4307285 DOI: 10.3390/ijms16010966] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/22/2014] [Indexed: 12/29/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are responsible for the continuous regeneration of all types of blood cells, including themselves. To ensure the functional and genomic integrity of blood tissue, a network of regulatory pathways tightly controls the proliferative status of HSCs. Nevertheless, normal HSC aging is associated with a noticeable decline in regenerative potential and possible changes in other functions. Myelodysplastic syndrome (MDS) is an age-associated hematopoietic malignancy, characterized by abnormal blood cell maturation and a high propensity for leukemic transformation. It is furthermore thought to originate in a HSC and to be associated with the accrual of multiple genetic and epigenetic aberrations. This raises the question whether MDS is, in part, related to an inability to adequately cope with DNA damage. Here we discuss the various components of the cellular response to DNA damage. For each component, we evaluate related studies that may shed light on a potential relationship between MDS development and aberrant DNA damage response/repair.
Collapse
Affiliation(s)
- Ting Zhou
- Greehey Children's Cancer Research Center, University of Texas Health Science Center San Antonio (UTHSCSA), 8403 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | - Peishuai Chen
- Greehey Children's Cancer Research Center, University of Texas Health Science Center San Antonio (UTHSCSA), 8403 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | - Jian Gu
- Department of Hematology, Northern Jiangsu People's Hospital, Yangzhou 225001, China.
| | - Alexander J R Bishop
- Greehey Children's Cancer Research Center, University of Texas Health Science Center San Antonio (UTHSCSA), 8403 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | - Linda M Scott
- The University of Queensland Diamantina Institute, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia.
| | - Paul Hasty
- The Cancer Therapy Research Center, UTHSCSA, 7979 Wurzbach Road, San Antonio, TX 78229, USA.
| | - Vivienne I Rebel
- Greehey Children's Cancer Research Center, University of Texas Health Science Center San Antonio (UTHSCSA), 8403 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
8
|
Aktuglu MB, Ayer M, Bireller ES, Rencuzogullari C, Acik H, Karaali Z, Alioglu T, Yigit N, Velet M, Atalay E, Ure OS, Cakmakoglu B. Investigation of DNA repair gene variants on myelodysplastic syndromes in a Turkish population. Med Oncol 2014; 31:174. [DOI: 10.1007/s12032-014-0174-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 08/09/2014] [Indexed: 11/30/2022]
|
9
|
|
10
|
Chen SH, Chan NL, Hsieh TS. New mechanistic and functional insights into DNA topoisomerases. Annu Rev Biochem 2013; 82:139-70. [PMID: 23495937 DOI: 10.1146/annurev-biochem-061809-100002] [Citation(s) in RCA: 269] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA topoisomerases are nature's tools for resolving the unique problems of DNA entanglement that occur owing to unwinding and rewinding of the DNA helix during replication, transcription, recombination, repair, and chromatin remodeling. These enzymes perform topological transformations by providing a transient DNA break, formed by a covalent adduct with the enzyme, through which strand passage can occur. The active site tyrosine is responsible for initiating two transesterifications to cleave and then religate the DNA backbone. The cleavage reaction intermediate is exploited by cytotoxic agents, which have important applications as antibiotics and anticancer drugs. The reactions mediated by these enzymes can also be regulated by their binding partners; one example is a DNA helicase capable of modulating the directionality of strand passage, enabling important functions like reannealing denatured DNA and resolving recombination intermediates. In this review, we cover recent advances in mechanistic insights into topoisomerases and their various cellular functions.
Collapse
Affiliation(s)
- Stefanie Hartman Chen
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | |
Collapse
|
11
|
Belickova M, Merkerova MD, Stara E, Vesela J, Sponerova D, Mikulenkova D, Brdicka R, Neuwirtova R, Jonasova A, Cermak J. DNA repair gene variants are associated with an increased risk of myelodysplastic syndromes in a Czech population. J Hematol Oncol 2013; 6:9. [PMID: 23339595 PMCID: PMC3556100 DOI: 10.1186/1756-8722-6-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 01/17/2013] [Indexed: 01/18/2023] Open
Abstract
Background Interactions between genetic variants and risk factors in myelodysplastic syndromes are poorly understood. In this case–control study, we analyzed 1 421 single nucleotide polymorphisms in 408 genes involved in cancer-related pathways in 198 patients and 292 controls. Methods The Illumina SNP Cancer Panel was used for genotyping of samples. The chi-squared, p-values, odds ratios and upper and lower limits of the 95% confidence interval were calculated for all the SNPs that passed the quality control filtering. Results Gene-based analysis showed nine candidate single nucleotide polymorphisms significantly associated with the disease susceptibility (q-value < 0.05). Four of these polymorphisms were located in oxidative damage/DNA repair genes (LIG1, RAD52, MSH3 and GPX3), which may play important roles in the pathobiology of myelodysplastic syndromes. Two of nine candidate polymorphisms were located in transmembrane transporters (ABCB1 and SLC4A2), contributing to individual variability in drug responses and patient prognoses. Moreover, the variations in the ROS1 and STK6 genes were associated with the overall survival of patients. Conclusions Our association study identified genetic variants in Czech population that may serve as potential markers for myelodysplastic syndromes.
Collapse
Affiliation(s)
- Monika Belickova
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
RMI1 promotes DNA replication fork progression and recovery from replication fork stress. Mol Cell Biol 2012; 32:3054-64. [PMID: 22645306 DOI: 10.1128/mcb.00255-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RMI1 is a member of an evolutionarily conserved complex composed of BLM and topoisomerase IIIα (TopoIIIα). This complex exhibits strand passage activity in vitro, which is likely important for DNA repair and DNA replication in vivo. The inactivation of RMI1 causes genome instability, including elevated levels of sister chromatid exchange and accelerated tumorigenesis. Using molecular combing to analyze DNA replication at the single-molecule level, we show that RMI1 is required to promote normal replication fork progression. The fork progression defect in RMI1-depleted cells is alleviated in cells lacking BLM, indicating that RMI1 functions downstream of BLM in promoting replication elongation. RMI1 localizes to subnuclear foci with BLM and TopoIIIα in response to replication stress. The proper localization of the complex requires a BLM-TopoIIIα-RMI1 interaction and is essential for RMI1 to promote recovery from replication stress. These findings reveal direct roles of RMI1 in DNA replication and the replication stress response, which could explain the molecular basis for its involvement in suppressing sister chromatid exchange and tumorigenesis.
Collapse
|
13
|
Pathways for Holliday junction processing during homologous recombination in Saccharomyces cerevisiae. Mol Cell Biol 2011; 31:1921-33. [PMID: 21343337 DOI: 10.1128/mcb.01130-10] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Saccharomyces cerevisiae Rmi1 protein is a component of the highly conserved Sgs1-Top3-Rmi1 complex. Deletion of SGS1, TOP3, or RMI1 is synthetically lethal when combined with the loss of the Mus81-Mms4 or Slx1-Slx4 endonucleases, which have been implicated in Holliday junction (HJ) resolution. To investigate the causes of this synthetic lethality, we isolated a temperature-sensitive mutant of the RMI1 strain, referred to as the rmi1-1 mutant. At the restrictive temperature, this mutant phenocopies an rmi1Δ strain but behaves like the wild type at the permissive temperature. Following a transient exposure to methyl methanesulfonate, rmi1-1 mutants accumulate unprocessed homologous recombination repair (HRR) intermediates. These intermediates are slowly resolved at the restrictive temperature, revealing a redundant resolution activity when Rmi1 is impaired. This resolution depends on Mus81-Mms4 but not on either Slx1-Slx4 or another HJ resolvase, Yen1. Similar results were also observed when Top3 function was impaired. We propose that the Sgs1-Top3-Rmi1 complex constitutes the main pathway for the processing of HJ-containing HRR intermediates but that Mus81-Mms4 can also resolve these intermediates.
Collapse
|
14
|
Chen H, You MJ, Jiang Y, Wang W, Li L. RMI1 attenuates tumor development and is essential for early embryonic survival. Mol Carcinog 2011; 50:80-8. [PMID: 21229605 PMCID: PMC3079784 DOI: 10.1002/mc.20694] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 09/27/2010] [Indexed: 01/13/2023]
Abstract
RMI1/BLAP75 (RecQ-mediated genome instability 1/Bloom-associated protein 75) is an OB-fold protein highly conserved from yeast to human. Previous studies showed that RMI1 is required for the stability of the BLM/RMI1/Top3α complex and for the suppression of elevated sister chromatids exchange (SCE). The presence of RMI1 strongly stimulates Holliday dissolution activity of the Bloom helicase in vitro. The in vivo function of RMI1, however, remains largely undefined. To address this question, we generated RMI1 knockout mice through homologous replacement targeting. We found that, while RMI1 +/⁻ mice showed no obvious developmental phenotype, deletion of both mRMI1 alleles resulted in early embryonic lethality before implantation. To determine whether RMI1 plays a role in tumorigenesis, we generated RMI1/p53 double heterozygous mice and analyzed their onset of ionizing radiation-induced tumor development. RMI1 +/⁻/p53 +/⁻ mice succumbed to tumor with a higher frequency and exhibited a substantially shortened survival when compared to the wild type, RMI1 +/⁻ and p53 +/⁻ cohorts. These results demonstrated a dual-role of RMI1 in embryonic development and tumor suppression.
Collapse
Affiliation(s)
- Haoyi Chen
- Department of Experimental Radiation Oncology, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, Texas 77030
| | - M James You
- Department of Hematopathology, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, Texas 77030
| | - Yingjun Jiang
- Department of Experimental Radiation Oncology, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, Texas 77030
| | - Weidong Wang
- Laboratory of Genetics, National Institute on Aging, National Institute of Health, 251 Bayview Boulevard, Baltimore, MD 21224
| | - Lei Li
- Department of Experimental Radiation Oncology, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, Texas 77030
- Department of Genetics, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, Texas 77030
| |
Collapse
|
15
|
Frank B, Hoffmeister M, Klopp N, Illig T, Chang-Claude J, Brenner H. Colorectal cancer and polymorphisms in DNA repair genes WRN, RMI1 and BLM. Carcinogenesis 2009; 31:442-5. [PMID: 19945966 DOI: 10.1093/carcin/bgp293] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
RecQ helicase family members are involved in multiple DNA repair pathways, protecting the genome from incorrect recombination during mitosis and maintaining its stability. Deficiencies in genes encoding the RecQ helicases WRN and BLM lead to rare autosomal recessive diseases, Werner and Bloom syndromes, which have been implicated in early onset of aging, and predisposition to various types of cancer. We investigated associations of WRN, BLM and BLM-associated protein (BLAP75/RMI1) gene polymorphisms and risk of colorectal cancer (CRC), genotyping WRN V114I (rs2230009), WRN L1074F (rs2725362), WRN C1367R (rs1346044), RMI1 S455N (rs1982151) and BLM P868L (rs11852361). A large population-based case-control study, including 1795 CRC cases and 1805 controls, found no evidence for an association between the selected allelic variants in DNA repair-related genes and CRC risk. However, we detected a significant association of BLM P868L with an increased rectal cancer risk (odds ratio = 1.29, 95% confidence interval 1.02-1.64 and P = 0.04), suggesting a potential cancer-site specificity. This is the first study to analyze the associations between polymorphisms in WRN, BLM and RMI1 and CRC risk. Although none of them showed a significant association with CRC, the association of BLM P868L with rectal cancer risk requires further investigation.
Collapse
Affiliation(s)
- Bernd Frank
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, 69115 Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
16
|
Mocellin S, Verdi D, Nitti D. DNA repair gene polymorphisms and risk of cutaneous melanoma: a systematic review and meta-analysis. Carcinogenesis 2009; 30:1735-43. [PMID: 19706646 DOI: 10.1093/carcin/bgp207] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Polymorphisms of DNA repair-related genes might modulate cancer predisposition. We performed a systematic review and meta-analysis of the available evidence regarding the relationship between these polymorphisms and the risk of developing cutaneous melanoma. Relevant studies were searched using PubMed, Medline, Embase, Cancerlit, Cochrane and ISI Web of Knowledge databases. Data were gathered according to the Meta-analysis Of Observational Studies in Epidemiology (MOOSE) guidelines. The model-free approach was adopted to perform the meta-analysis of the retrieved data. We identified 20 original reports that describe the relationship between melanoma risk and the single-nucleotide polymorphisms (SNPs) of 16 genes (cases = 4195). For seven SNPs considered in at least two studies, the findings were heterogeneous. Data were suitable for meta-analysis only in the case of the XPD/ERCC2 SNP rs13181 (cases = 2308, controls = 3698) and demonstrated that the variant C allele is associated with increased melanoma risk (odds ratio = 1.12, 95% confidence interval = 1.03-1.21, P = 0.01; population attributable risk = 9.6%). This is the first meta-analysis suggesting that XPD/ERCC2 might represent a low-penetrance melanoma susceptibility gene. Much work is still to be done before definitive conclusions can be drawn on the role of DNA repair alterations in melanomagenesis since for the other genes involved in this highly complex process, the available information is scarce or null.
Collapse
Affiliation(s)
- Simone Mocellin
- Department of Oncological and Surgical Sciences, Meta-analysis Unit, University of Padova, Padova, Italy.
| | | | | |
Collapse
|
17
|
Fabiani E, D’Alò F, Scardocci A, Greco M, Di Ruscio A, Criscuolo M, Fianchi L, Pagano L, Hohaus S, Leone G, Voso MT. Polymorphisms of detoxification and DNA repair enzymes in myelodyplastic syndromes. Leuk Res 2009; 33:1068-71. [DOI: 10.1016/j.leukres.2008.10.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 10/14/2008] [Accepted: 10/14/2008] [Indexed: 11/16/2022]
|
18
|
Broberg K, Huynh E, Schläwicke Engström K, Björk J, Albin M, Ingvar C, Olsson H, Höglund M. Association between polymorphisms in RMI1, TOP3A, and BLM and risk of cancer, a case-control study. BMC Cancer 2009; 9:140. [PMID: 19432957 PMCID: PMC2685436 DOI: 10.1186/1471-2407-9-140] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 05/11/2009] [Indexed: 12/17/2022] Open
Abstract
Background Mutations altering BLM function are associated with highly elevated cancer susceptibility (Bloom syndrome). Thus, genetic variants of BLM and proteins that form complexes with BLM, such as TOP3A and RMI1, might affect cancer risk as well. Methods In this study we have studied 26 tagged single nucleotide polymorphisms (tagSNPs) in RMI1, TOP3A, and BLM and their associations with cancer risk in acute myeloid leukemia/myelodysplatic syndromes (AML/MDS; N = 152), malignant melanoma (N = 170), and bladder cancer (N = 61). Two population-based control groups were used (N = 119 and N = 156). Results Based on consistency in effect estimates for the three cancer forms and similar allelic frequencies of the variant alleles in the control groups, two SNPs in TOP3A (rs1563634 and rs12945597) and two SNPs in BLM (rs401549 and rs2532105) were selected for analysis in breast cancer cases (N = 200) and a control group recruited from spouses of cancer patients (N = 131). The rs12945597 in TOP3A and rs2532105 in BLM showed increased risk for breast cancer. We then combined all cases (N = 584) and controls (N = 406) respectively and found significantly increased risk for variant carriers of rs1563634 A/G (AG carriers OR = 1.7 [95%CI 1.1–2.6], AA carriers OR = 1.8 [1.2–2.8]), rs12945597 G/A (GA carriers OR = 1.5 [1.1–1.9], AA carriers OR = 1.6 [1.0–2.5]), and rs2532105 C/T (CT+TT carriers OR = 1.8 [1.4–2.5]). Gene-gene interaction analysis suggested an additive effect of carrying more than one risk allele. For the variants of TOP3A, the risk increment was more pronounced for older carriers. Conclusion These results further support a role of low-penetrance genes involved in BLM-associated homologous recombination for cancer risk.
Collapse
Affiliation(s)
- Karin Broberg
- Department of Occupational and Environmental Medicine, Lund University, Lund, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Xu D, Guo R, Sobeck A, Bachrati CZ, Yang J, Enomoto T, Brown GW, Hoatlin ME, Hickson ID, Wang W. RMI, a new OB-fold complex essential for Bloom syndrome protein to maintain genome stability. Genes Dev 2008; 22:2843-55. [PMID: 18923082 PMCID: PMC2569887 DOI: 10.1101/gad.1708608] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Accepted: 08/19/2008] [Indexed: 11/25/2022]
Abstract
BLM, the helicase mutated in Bloom syndrome, associates with topoisomerase 3alpha, RMI1 (RecQ-mediated genome instability), and RPA, to form a complex essential for the maintenance of genome stability. Here we report a novel component of the BLM complex, RMI2, which interacts with RMI1 through two oligonucleotide-binding (OB)-fold domains similar to those in RPA. The resulting complex, named RMI, differs from RPA in that it lacks obvious DNA-binding activity. Nevertheless, RMI stimulates the dissolution of a homologous recombination intermediate in vitro and is essential for the stability, localization, and function of the BLM complex in vivo. Notably, inactivation of RMI2 in chicken DT40 cells results in an increased level of sister chromatid exchange (SCE)--the hallmark feature of Bloom syndrome cells. Epistasis analysis revealed that RMI2 and BLM suppress SCE within the same pathway. A point mutation in the OB domain of RMI2 disrupts the association between BLM and the rest of the complex, and abrogates the ability of RMI2 to suppress elevated SCE. Our data suggest that multi-OB-fold complexes mediate two modes of BLM action: via RPA-mediated protein-DNA interaction, and via RMI-mediated protein-protein interactions.
Collapse
Affiliation(s)
- Dongyi Xu
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, Baltimore, Maryland 21224, USA
| | - Rong Guo
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, Baltimore, Maryland 21224, USA
| | - Alexandra Sobeck
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Csanad Z. Bachrati
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | - Jay Yang
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Takemi Enomoto
- Molecular Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Grant W. Brown
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Maureen E. Hoatlin
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Ian D. Hickson
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | - Weidong Wang
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, Baltimore, Maryland 21224, USA
| |
Collapse
|