1
|
Singh J, Saeedan AS, Kaithwas G, Ansari MN. Small interfering RNA: From designing to therapeutic in cancer. J Genet Eng Biotechnol 2025; 23:100484. [PMID: 40390497 PMCID: PMC11999615 DOI: 10.1016/j.jgeb.2025.100484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/13/2025] [Accepted: 03/23/2025] [Indexed: 05/21/2025]
Abstract
Cancer has become a significant public health concern worldwide. It is a group of diseases, often resulting from the dysregulation of multiple cellular pathways involved in differentiation, cell proliferation, cell cycle regulation, and DNA repair. These disruptions are primarily caused by genetic mutation and epigenetic alterations which lead to uncontrolled growth and tumor formation. Targeted therapy is a precise and effective strategy to overcome the shortcomings of conventional therapy. RNA interference (RNAi) is a gene-silencing mechanism that has an uncanny ability to target disease-associated genes. Small interfering RNA (siRNA) is a key component of RNAi and has shown promise in silencing oncogenes and inhibiting cancer progression. However, the therapeutic application of siRNA faces several challenges such as poor cellular uptake, short half-life, endosomal escape, immune system activation, and off-target. Strategies to address these challenges are optimized designing of siRNA, advanced delivery systems, and chemical modification to improve cellular uptake and protect from degradation. This review focuses on the therapeutic potential of siRNA in cancer treatment and discusses the action mechanism of siRNA, barriers in siRNA, and strategies to overcome them. The review shed light on the current clinical trial of siRNA-based cancer therapy, along with outcomes and limitations.
Collapse
Affiliation(s)
- Jyoti Singh
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow 226025 Uttar Pradesh, India
| | - Abdulaziz S Saeedan
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow 226025 Uttar Pradesh, India
| | - Mohd Nazam Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia.
| |
Collapse
|
2
|
Andrysik Z, Espinosa JM. Harnessing p53 for targeted cancer therapy: new advances and future directions. Transcription 2025; 16:3-46. [PMID: 40031988 PMCID: PMC11970777 DOI: 10.1080/21541264.2025.2452711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 03/05/2025] Open
Abstract
The transcription factor p53 is the most frequently impaired tumor suppressor in human cancers. In response to various stress stimuli, p53 activates transcription of genes that mediate its tumor-suppressive functions. Distinctive characteristics of p53 outlined here enable a well-defined program of genes involved in cell cycle arrest, apoptosis, senescence, differentiation, metabolism, autophagy, DNA repair, anti-viral response, and anti-metastatic functions, as well as facilitating autoregulation within the p53 network. This versatile, anti-cancer network governed chiefly by a single protein represents an immense opportunity for targeted cancer treatment, since about half of human tumors retain unmutated p53. During the last two decades, numerous compounds have been developed to block the interaction of p53 with the main negative regulator MDM2. However, small molecule inhibitors of MDM2 only induce a therapeutically desirable apoptotic response in a limited number of cancer types. Moreover, clinical trials of the MDM2 inhibitors as monotherapies have not met expectations and have revealed hematological toxicity as a characteristic adverse effect across this drug class. Currently, combination treatments are the leading strategy for enhancing efficacy and reducing adverse effects of MDM2 inhibitors. This review summarizes efforts to identify and test therapeutics that work synergistically with MDM2 inhibitors. Two main types of drugs have emerged among compounds used in the following combination treatments: first, modulators of the p53-regulated transcriptome (including chromatin modifiers), translatome, and proteome, and second, drugs targeting the downstream pathways such as apoptosis, cell cycle arrest, DNA repair, metabolic stress response, immune response, ferroptosis, and growth factor signaling. Here, we review the current literature in this field, while also highlighting overarching principles that could guide target selection in future combination treatments.
Collapse
Affiliation(s)
- Zdenek Andrysik
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Joaquin M. Espinosa
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
3
|
Li B, Mi J, Yuan Q. Fatty acid metabolism-related enzymes in colorectal cancer metastasis: from biological function to molecular mechanism. Cell Death Discov 2024; 10:350. [PMID: 39103344 DOI: 10.1038/s41420-024-02126-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024] Open
Abstract
Colorectal cancer (CRC) is a highly aggressive and life-threatening malignancy that metastasizes in ~50% of patients, posing significant challenges to patient survival and treatment. Fatty acid (FA) metabolism regulates proliferation, immune escape, metastasis, angiogenesis, and drug resistance in CRC. FA metabolism consists of three pathways: de novo synthesis, uptake, and FA oxidation (FAO). FA metabolism-related enzymes promote CRC metastasis by regulating reactive oxygen species (ROS), matrix metalloproteinases (MMPs), angiogenesis and epithelial-mesenchymal transformation (EMT). Mechanistically, the PI3K/AKT/mTOR pathway, wnt/β-catenin pathway, and non-coding RNA signaling pathway are regulated by crosstalk of enzymes related to FA metabolism. Given the important role of FA metabolism in CRC metastasis, targeting FA metabolism-related enzymes and their signaling pathways is a potential strategy to treat CRC metastasis.
Collapse
Affiliation(s)
- Biao Li
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Jing Mi
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Qi Yuan
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China.
| |
Collapse
|
4
|
Schmidt K, Thatcher A, Grobe A, Broussard P, Hicks L, Gu H, Ellies LG, Sears DD, Kalachev L, Kroll E. The combined treatment with ketogenic diet and metformin slows tumor growth in two mouse models of triple negative breast cancer. TRANSLATIONAL MEDICINE COMMUNICATIONS 2024; 9:21. [PMID: 39574543 PMCID: PMC11580796 DOI: 10.1186/s41231-024-00178-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/22/2024] [Indexed: 11/24/2024]
Abstract
Background Many tumors contain hypoxic microenvironments caused by inefficient tumor vascularization. Hypoxic tumors have been shown to resist conventional cancer therapies. Hypoxic cancer cells rely on glucose to meet their energetic and anabolic needs to fuel uncontrolled proliferation and metastasis. This glucose dependency is linked to a metabolic shift in response to hypoxic conditions. Methods To leverage the glucose dependency of hypoxic tumor cells, we assessed the effects of a mild reduction in systemic glucose by controlling both dietary carbohydrates with a ketogenic diet and endogenous glucose production by using metformin on two mouse models of triple-negative breast cancer (TNBC). Results Here, we showed that animals with TNBC treated with the combination regimen of ketogenic diet and metformin (a) had their tumor burden lowered by two-thirds, (b) displayed 38% slower tumor growth, and (c) showed 36% longer latency, compared to the animals treated with a ketogenic diet or metformin alone. As a result, lowering systemic glucose by this combined dietary and pharmacologic approach improved overall survival in our mouse TNBC models by 31 days, approximately equivalent to 3 years of life extension in human terms. Conclusion This preclinical study demonstrates that reducing systemic glucose by combining a ketogenic diet and metformin significantly inhibits tumor proliferation and increases overall survival. Our findings suggest a possible treatment for a broad range of hypoxic and glycolytic tumor types that can augment existing treatment options to improve patient outcomes.
Collapse
Affiliation(s)
- Karen Schmidt
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Amber Thatcher
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Albert Grobe
- Silverlake Research Corporation, Missoula, MT, USA
| | - Pamela Broussard
- College of Humanities and Sciences, University of Montana, Missoula, MT, USA
| | - Linda Hicks
- College of Humanities and Sciences, University of Montana, Missoula, MT, USA
| | - Haiwei Gu
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Lesley G Ellies
- Department of Pathology, University of California San Diego, San Diego, CA, USA
| | - Dorothy D. Sears
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Leonid Kalachev
- Department of Mathematical Sciences, University of Montana, Missoula, MT, USA
| | - Eugene Kroll
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
- Present address: Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
5
|
Pham TTD, Phan LMT, Nam SN, Hoang TX, Nam J, Cho S, Park J. Selective photothermal and photodynamic capabilities of conjugated polymer nanoparticles. POLYMER 2024; 294:126689. [DOI: 10.1016/j.polymer.2024.126689] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
|
6
|
Makino A, Kume K, Mori T, Tsujikawa T, Asai T, Okazawa H, Kiyono Y. High efficacy of particle beam therapies against tumors under hypoxia and prediction of the early stage treatment effect using 3'-deoxy-3'-[ 18F]fluorothymidine positron emission tomography. Ann Nucl Med 2024; 38:112-119. [PMID: 37856073 PMCID: PMC10822821 DOI: 10.1007/s12149-023-01877-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023]
Abstract
OBJECTIVE Compared with radiation therapy using photon beams, particle therapies, especially those using carbons, show a high relative biological effectiveness and low oxygen enhancement ratio. Using cells cultured under normoxic conditions, our group reported a greater suppressive effect on cell growth by carbon beams than X-rays, and the subsequent therapeutic effect can be predicted by the cell uptake amount of 3'-deoxy-3'-[18F]fluorothymidine (18F-FLT) the day after treatment. On the other hand, a hypoxic environment forms locally around solid tumors, influencing the therapeutic effect of radiotherapy. In this study, the influence of tumor hypoxia on particle therapies and the ability to predict the therapeutic effect using 18F-FLT were evaluated. METHODS Using a murine colon carcinoma cell line (colon 26) cultured under hypoxic conditions (1.0% O2 and 5.0% CO2), the suppressive effect on cell growth by X-ray, proton, and carbon irradiation was evaluated. In addition, the correlation between decreased 18F-FLT uptake after irradiation and subsequent suppression of cell proliferation was investigated. RESULTS Tumor cell growth was suppressed most efficiently by carbon-beam irradiation. 18F-FLT uptake temporarily increased the day after irradiation, especially in the low-dose irradiation groups, but then decreased from 50 h after irradiation, which is well correlated with the subsequent suppression on tumor cell growth. CONCLUSIONS Carbon beam treatment shows a strong therapeutic effect against cells under hypoxia. Unlike normoxic tumors, it is desirable to perform 18F-FLT positron emission tomography 2-3 days after irradiation for early prediction of the treatment effect.
Collapse
Affiliation(s)
- Akira Makino
- Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan.
- Life Science Innovation Center, University of Fukui, 9-1 Bunkyo-3, Fukui-Shi, Fukui, 910-8507, Japan.
| | - Kyo Kume
- The Wakasa Wan Energy Research Center, 64-52-1 Nagatani, Tsuruga-Shi, Fukui, 914-0192, Japan
| | - Tetsuya Mori
- Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
| | - Tetsuya Tsujikawa
- Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
| | - Tatsuya Asai
- Graduate School of Engineering, University of Fukui, 9-1 Bunkyo-3, Fukui-Shi, Fukui, 910-8507, Japan
| | - Hidehiko Okazawa
- Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
- Life Science Innovation Center, University of Fukui, 9-1 Bunkyo-3, Fukui-Shi, Fukui, 910-8507, Japan
| | - Yasushi Kiyono
- Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan.
- Life Science Innovation Center, University of Fukui, 9-1 Bunkyo-3, Fukui-Shi, Fukui, 910-8507, Japan.
| |
Collapse
|
7
|
Schmidt K, Thatcher A, Grobe A, Hicks L, Gu H, Sears DD, Ellies LG, Kalachev L, Kroll E. The Combined Treatment with Ketogenic Diet and Metformin Slows Tumor Growth in Two Mouse Models of Triple Negative Breast Cancer. RESEARCH SQUARE 2023:rs.3.rs-3664129. [PMID: 38196628 PMCID: PMC10775859 DOI: 10.21203/rs.3.rs-3664129/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
BACKGROUND Many tumors contain hypoxic microenvironments caused by inefficient tumor vascularization. Hypoxic tumors have been shown to resist conventional cancer therapies. Hypoxic cancer cells rely on glucose to meet their energetic and anabolic needs to fuel uncontrolled proliferation and metastasis. This glucose dependency is linked to a metabolic shift in response to hypoxic conditions. METHODS To leverage the glucose dependency of hypoxic tumor cells, we assessed the effects of a controlled reduction in systemic glucose by combining dietary carbohydrate restriction, using a ketogenic diet, with gluconeogenesis inhibition, using metformin, on two mouse models of triple-negative breast cancer (TNBC). RESULTS We confirmed that MET - 1 breast cancer cells require abnormally high glucose concentrations to survive in a hypoxic environment in vitro. Then, we showed that, compared to a ketogenic diet or metformin alone, animals treated with the combination regimen showed significantly lower tumor burden, higher tumor latency and slower tumor growth. As a result, lowering systemic glucose by this combined dietary and pharmacologic approach improved overall survival in our mouse model by 31 days, which is approximately equivalent to 3 human years. CONCLUSION This is the first preclinical study to demonstrate that reducing systemic glucose by combining a ketogenic diet and metformin significantly inhibits tumor proliferation and increases overall survival. Our findings suggest a possible treatment for a broad range of hypoxic and glycolytic tumor types, one that can also augment existing treatment options to improve patient outcomes.
Collapse
Affiliation(s)
- Karen Schmidt
- University of Montana Division of Biological Sciences
| | | | | | - Linda Hicks
- University of Montana Division of Biological Sciences
| | - Haiwei Gu
- Arizona State University School of Life Sciences
| | | | | | | | - Eugene Kroll
- University of Montana Missoula: University of Montana
| |
Collapse
|
8
|
Pham TTD, Phan LMT, Cho S, Park J. Enhancement approaches for photothermal conversion of donor–acceptor conjugated polymer for photothermal therapy: a review. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:707-734. [DOI: 10.1080/14686996.2022.2134976] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 05/14/2025]
Affiliation(s)
- Thi-Thuy Duong Pham
- Department of Intelligence Energy and Industry, School of Chemical Engineering and Materials Science, Chung-Ang University, Seoul, Republic of Korea
| | - Le Minh Tu Phan
- Department of Electronic Engineering, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Sungbo Cho
- Department of Electronic Engineering, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Juhyun Park
- Department of Intelligence Energy and Industry, School of Chemical Engineering and Materials Science, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Significance of Specific Oxidoreductases in the Design of Hypoxia-Activated Prodrugs and Fluorescent Turn Off–On Probes for Hypoxia Imaging. Cancers (Basel) 2022; 14:cancers14112686. [PMID: 35681666 PMCID: PMC9179281 DOI: 10.3390/cancers14112686] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/08/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Hypoxia-activated prodrugs (HAPs), selectively reduced by specific oxidoreductases under hypoxic conditions, form cytotoxic agents damaging the local cancer cells. On the basis of the reported clinical data concerning several HAPs, one can draw conclusions regarding their preclinical attractiveness and, regrettably, the low efficacy of Phase III clinical trials. Clinical failure may be explained, inter alia, by the lack of screening of patients on the basis of tumor hypoxia and low availability of specific oxidoreductases involved in HAP activation. There is surprisingly little information on the quantification of these enzymes in cells or tissues, compared to the advanced research associated with the use of HAPs. Our knowledge about the expression and activity of these enzymes in various cancer cell lines under hypoxic conditions is inadequate. Only in a few cases were researchers able to demonstrate the differences in the expression or activity of selected oxidoreductases, depending on the oxygen concentration. Additionally, it was cell line dependent. More systematic studies are required. The optical probes, based on turning on the fluorescence emission upon irreversible reduction catalyzed by the overexpressed oxidoreductases, can be helpful in this type of research. Ultimately, such sensors can estimate both the oxidoreductase activity and the degree of oxygenation in one step. To achieve this goal, their response must be correlated with the expression or activity of enzymes potentially involved in turning on their emissions, as determined by biochemical methods. In conclusion, the incorporation of biomarkers to identify hypoxia is a prerequisite for successful HAP therapies. However, it is equally important to assess the level of specific oxidoreductases required for their activation. Abstract Hypoxia is one of the hallmarks of the tumor microenvironment and can be used in the design of targeted therapies. Cellular adaptation to hypoxic stress is regulated by hypoxia-inducible factor 1 (HIF-1). Hypoxia is responsible for the modification of cellular metabolism that can result in the development of more aggressive tumor phenotypes. Reduced oxygen concentration in hypoxic tumor cells leads to an increase in oxidoreductase activity that, in turn, leads to the activation of hypoxia-activated prodrugs (HAPs). The same conditions can convert a non-fluorescent compound into a fluorescent one (fluorescent turn off–on probes), and such probes can be designed to specifically image hypoxic cancer cells. This review focuses on the current knowledge about the expression and activity of oxidoreductases, which are relevant in the activation of HAPs and fluorescent imaging probes. The current clinical status of HAPs, their limitations, and ways to improve their efficacy are briefly discussed. The fluorescence probes triggered by reduction with specific oxidoreductase are briefly presented, with particular emphasis placed on those for which the correlation between the signal and enzyme expression determined with biochemical methods is achievable.
Collapse
|
10
|
Abedi Jafari F, Abdoli A, Pilehchian R, Soleimani N, Hosseini SM. The oncolytic activity of Clostridium novyi nontoxic spores in breast cancer. BIOIMPACTS : BI 2021; 12:405-414. [PMID: 36381634 PMCID: PMC9596882 DOI: 10.34172/bi.2021.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 06/16/2023]
Abstract
Introduction: Hypoxia context is highly specific for tumors and represents a unique niche which is not found elsewhere in the body. Clostridium novyi is an obligate anaerobic bacterium. It has a potential to treat tumors. The aim of this study was to produce the C. novyi nontoxic spores and to investigate its oncolytic effect on breast cancer in mice model. Methods: Primarily, the lethal toxin gene in C. novyi type B was removed. Colonies were isolated using PCR testing. To assure the removal of alpha-toxin, plasmid extraction and in vivo assay were conducted. Next, to treat breast cancer model in different sizes of tumors, a single dose of spores of C. novyi nontoxic was tested. Results: The results denoted that C. novyi nontoxic lost lethal toxin and a--ppeared to be safe. For smaller than 1000 mm3 tumors, a single dose of C. novyi nontoxic was able to cure 100% of mice bearing breast tumors. Hence the mice remained free of tumor relapse. Tumors larger than 1000 mm3 were not cured by a single dose- of C. novyi nontoxic treatment. Conclusion: The experiment concluded that the C. novyi nontoxic might be a suitable and safe candidate, a novel therapeutic approach to encounter such hypoxic regions in the center of tumors. Research also showed that bacteriolytic therapy by C. novyi nontoxic could lead to regression in small tumor.
Collapse
Affiliation(s)
- Fatemeh Abedi Jafari
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Asghar Abdoli
- Department of Hepatitis and HIV, Pasteur Institute of Iran (IPI), Tehran, Iran
| | - Reza Pilehchian
- Specialized Clostridia Research Laboratory, Department of Anaerobic Vaccine Research and Production, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Alborz, Iran
| | - Neda Soleimani
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Seyed Masoud Hosseini
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
11
|
Abstract
Hypoxia is an important feature of the tumor microenvironment, and is closely associated with cell proliferation, angiogenesis, metabolism and the tumor immune response. All these factors can further promote tumor progression, increase tumor aggressiveness, enhance tumor metastatic potential and lead to poor prognosis. In this review, these effects of hypoxia on tumor biology will be discussed, along with their significance for tumor detection and treatment.
Collapse
Affiliation(s)
- Yue Li
- Department of Nuclear Medicine, The Second Clinical Medical College, Jinan University (12387Shenzhen People's Hospital), Shenzhen, Guangdong, China.,The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China.,Clinical Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong, China.,Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Long Zhao
- Department of Nuclear Medicine, The Second Clinical Medical College, Jinan University (12387Shenzhen People's Hospital), Shenzhen, Guangdong, China.,Clinical Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong, China.,Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiao-Feng Li
- Department of Nuclear Medicine, The Second Clinical Medical College, Jinan University (12387Shenzhen People's Hospital), Shenzhen, Guangdong, China.,Clinical Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong, China.,Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
12
|
Li Y, Zhao L, Li XF. Targeting Hypoxia: Hypoxia-Activated Prodrugs in Cancer Therapy. Front Oncol 2021; 11:700407. [PMID: 34395270 PMCID: PMC8358929 DOI: 10.3389/fonc.2021.700407] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/09/2021] [Indexed: 12/18/2022] Open
Abstract
Hypoxia is an important characteristic of most solid malignancies, and is closely related to tumor prognosis and therapeutic resistance. Hypoxia is one of the most important factors associated with resistance to conventional radiotherapy and chemotherapy. Therapies targeting tumor hypoxia have attracted considerable attention. Hypoxia-activated prodrugs (HAPs) are bioreductive drugs that are selectively activated under hypoxic conditions and that can accurately target the hypoxic regions of solid tumors. Both single-agent and combined use with other drugs have shown promising antitumor effects. In this review, we discuss the mechanism of action and the current preclinical and clinical progress of several of the most widely used HAPs, summarize their existing problems and shortcomings, and discuss future research prospects.
Collapse
Affiliation(s)
- Yue Li
- Department of Nuclear Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,The First Affiliated Hospital, Jinan University, Guangzhou, China.,Department of Nuclear Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Long Zhao
- Department of Nuclear Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,Department of Nuclear Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Xiao-Feng Li
- Department of Nuclear Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,Department of Nuclear Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
13
|
Li Y, Zhao L, Li XF. The Hypoxia-Activated Prodrug TH-302: Exploiting Hypoxia in Cancer Therapy. Front Pharmacol 2021; 12:636892. [PMID: 33953675 PMCID: PMC8091515 DOI: 10.3389/fphar.2021.636892] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/25/2021] [Indexed: 12/21/2022] Open
Abstract
Hypoxia is an important feature of most solid tumors, conferring resistance to radiation and many forms of chemotherapy. However, it is possible to exploit the presence of tumor hypoxia with hypoxia-activated prodrugs (HAPs), agents that in low oxygen conditions undergo bioreduction to yield cytotoxic metabolites. Although many such agents have been developed, we will focus here on TH-302. TH-302 has been extensively studied, and we discuss its mechanism of action, as well as its efficacy in preclinical and clinical studies, with the aim of identifying future research directions.
Collapse
Affiliation(s)
- Yue Li
- Department of Nuclear Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,The First Affiliated Hospital, Jinan University, Guangzhou, China.,Department of Nuclear Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Long Zhao
- Department of Nuclear Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,Department of Nuclear Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Xiao-Feng Li
- Department of Nuclear Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,Department of Nuclear Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
14
|
CD73 facilitates EMT progression and promotes lung metastases in triple-negative breast cancer. Sci Rep 2021; 11:6035. [PMID: 33727591 PMCID: PMC7966763 DOI: 10.1038/s41598-021-85379-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/24/2021] [Indexed: 12/18/2022] Open
Abstract
CD73 is a cell surface ecto-5′-nucleotidase, which converts extracellular adenosine monophosphate to adenosine. High tumor CD73 expression is associated with poor outcome among triple-negative breast cancer (TNBC) patients. Here we investigated the mechanisms by which CD73 might contribute to TNBC progression. This was done by inhibiting CD73 with adenosine 5′-(α, β-methylene) diphosphate (APCP) in MDA-MB-231 or 4T1 TNBC cells or through shRNA-silencing (sh-CD73). Effects of such inhibition on cell behavior was then studied in normoxia and hypoxia in vitro and in an orthotopic mouse model in vivo. CD73 inhibition, through shRNA or APCP significantly decreased cellular viability and migration in normoxia. Inhibition of CD73 also resulted in suppression of hypoxia-induced increase in viability and prevented cell protrusion elongation in both normoxia and hypoxia in cancer cells. Sh-CD73 4T1 cells formed significantly smaller and less invasive 3D organoids in vitro, and significantly smaller orthotopic tumors and less lung metastases than control shRNA cells in vivo. CD73 suppression increased E-cadherin and decreased vimentin expression in vitro and in vivo, proposing maintenance of a more epithelial phenotype. In conclusion, our results suggest that CD73 may promote early steps of tumor progression, possibly through facilitating epithelial–mesenchymal transition.
Collapse
|
15
|
Meng X, Wu Y, Bu W. Functional CT Contrast Nanoagents for the Tumor Microenvironment. Adv Healthc Mater 2021; 10:e2000912. [PMID: 32691929 DOI: 10.1002/adhm.202000912] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/30/2020] [Indexed: 12/18/2022]
Abstract
Understanding the detailed tumor microenvironment (TME) is essential to achieve effective treatment of tumor, because TME has an extremely profound influence on the occurrence, development, invasion, and metastasis of tumor. It is of great significance to realize accurate diagnosis of the TME by using functional computed tomography (CT) contrast nanoagents (FCTNAs). Here, an overview of FCTNAs that respond to the overexpressed receptors, acidic microenvironment, overexpressed glutathione and enzymes, and hypoxia in tumor is provided, and also prospects the advance of novel spectral CT technique to detect the TME precisely. Utilizing FCTNAs is expected to achieve accurate monitoring of the TME and further provide guidance for the effective personalized tumor treatment in clinic.
Collapse
Affiliation(s)
- Xianfu Meng
- Tongji University Cancer Center Shanghai Tenth People's Hospital Tongji University School of Medicine Shanghai 200072 P. R. China
- Department of Materials Science Fudan University Shanghai 200433 P. R. China
| | - Yelin Wu
- Tongji University Cancer Center Shanghai Tenth People's Hospital Tongji University School of Medicine Shanghai 200072 P. R. China
| | - Wenbo Bu
- Department of Materials Science Fudan University Shanghai 200433 P. R. China
| |
Collapse
|
16
|
Pharmacokinetic modeling reveals parameters that govern tumor targeting and delivery by a pH-Low Insertion Peptide (pHLIP). Proc Natl Acad Sci U S A 2021; 118:2016605118. [PMID: 33443162 PMCID: PMC7817199 DOI: 10.1073/pnas.2016605118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tumors exhibit an acidic extracellular microenvironment that is accentuated at cell surfaces. As a result, they can be targeted by a pH-Low Insertion Peptide (pHLIP), an acid-triggered tumor-targeting peptide that can also serve as a vehicle for drug delivery. In this work, we use a pharmacokinetic modeling approach to deepen our understanding of the mechanisms and factors that influence pHLIP tumor targeting and delivery, and also identify factors that do not. In so doing, we predict pHLIP phenotypes with significantly enhanced capabilities. The model may therefore be useful for guiding the future development of pHLIP variants. A pH-Low Insertion Peptide (pHLIP) is a pH-sensitive peptide that undergoes membrane insertion, resulting in transmembrane helix formation, on exposure to acidity at a tumor cell surface. As a result, pHLIPs preferentially accumulate within tumors and can be used for tumor-targeted imaging and drug delivery. Here we explore the determinants of pHLIP insertion, targeting, and delivery through a computational modeling approach. We generate a simple mathematical model to describe the transmembrane insertion process and then integrate it into a pharmacokinetic model, which predicts the tumor vs. normal tissue biodistribution of the most studied pHLIP, “wild-type pHLIP,” over time after a single intravenous injection. From these models, we gain insight into the various mechanisms behind pHLIP tumor targeting and delivery, as well as the various biological parameters that influence it. Furthermore, we analyze how changing the properties of pHLIP can influence the efficacy of tumor targeting and delivery, and we predict the properties for optimal pHLIP phenotypes that have superior tumor targeting and delivery capabilities compared with wild-type pHLIP.
Collapse
|
17
|
Zhu H, Li Q, Shi B, Ge F, Liu Y, Mao Z, Zhu H, Wang S, Yu G, Huang F, Stang PJ. Dual-Emissive Platinum(II) Metallacage with a Sensitive Oxygen Response for Imaging of Hypoxia and Imaging-Guided Chemotherapy. Angew Chem Int Ed Engl 2020; 59:20208-20214. [PMID: 32710650 DOI: 10.1002/anie.202009442] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 12/17/2022]
Abstract
Imaging of hypoxia in vivo helps with accurate cancer diagnosis and evaluation of therapeutic outcomes. A PtII metallacage with oxygen-responsive red phosphorescence and steady fluorescence for in vivo hypoxia imaging and chemotherapy is reported. The therapeutic agent and diagnostic probe were integrated into the metallacage through heteroligation-directed self-assembly. Nanoformulation by encapsulating the metallacage into nanoparticles greatly enhanced its stability the in physiological environment, rendering biomedical applications feasible. Apart from enhanced red phosphorescence upon hypoxia, the ratio between red and blue emissions, which only varies with intracellular oxygen level, provides a more precise standard for hypoxia imaging and detection. Moreover, in vivo explorations demonstrate the promising potential applications of the metallacage-loaded nanoparticles as theranostic agents for tumor hypoxia imaging and chemotherapy.
Collapse
Affiliation(s)
- Huangtianzhi Zhu
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China.,Department of Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Qi Li
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China.,Department of Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Bingbing Shi
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Fujing Ge
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yuezhou Liu
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Hong Zhu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Sheng Wang
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin, 300072, P. R. China
| | - Guocan Yu
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China.,Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Peter J Stang
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
18
|
Zhu H, Li Q, Shi B, Ge F, Liu Y, Mao Z, Zhu H, Wang S, Yu G, Huang F, Stang PJ. Dual‐Emissive Platinum(II) Metallacage with a Sensitive Oxygen Response for Imaging of Hypoxia and Imaging‐Guided Chemotherapy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Huangtianzhi Zhu
- State Key Laboratory of Chemical Engineering Center for Chemistry of High-Performance & Novel Materials Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
- Department of Chemistry University of Utah Salt Lake City UT 84112 USA
| | - Qi Li
- State Key Laboratory of Chemical Engineering Center for Chemistry of High-Performance & Novel Materials Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
- Department of Chemistry University of Utah Salt Lake City UT 84112 USA
| | - Bingbing Shi
- Department of Chemistry University of Utah Salt Lake City UT 84112 USA
| | - Fujing Ge
- College of Pharmaceutical Science Zhejiang University Hangzhou 310058 P. R. China
| | - Yuezhou Liu
- State Key Laboratory of Chemical Engineering Center for Chemistry of High-Performance & Novel Materials Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 P. R. China
| | - Hong Zhu
- College of Pharmaceutical Science Zhejiang University Hangzhou 310058 P. R. China
| | - Sheng Wang
- School of Life Sciences Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology Tianjin 300072 P. R. China
| | - Guocan Yu
- State Key Laboratory of Chemical Engineering Center for Chemistry of High-Performance & Novel Materials Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering Center for Chemistry of High-Performance & Novel Materials Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China
| | - Peter J. Stang
- Department of Chemistry University of Utah Salt Lake City UT 84112 USA
| |
Collapse
|
19
|
Wechman SL, Emdad L, Sarkar D, Das SK, Fisher PB. Vascular mimicry: Triggers, molecular interactions and in vivo models. Adv Cancer Res 2020; 148:27-67. [PMID: 32723566 DOI: 10.1016/bs.acr.2020.06.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Vascular mimicry is induced by a wide array of genes with functions related to cancer stemness, hypoxia, angiogenesis and autophagy. Vascular mimicry competent (VM-competent) cells that form de novo blood vessels are common in solid tumors facilitating tumor cell survival and metastasis. VM-competent cells display increased levels of vascular mimicry selecting for stem-like cells in an O2-gradient-dependent manner in deeply hypoxic tumor regions, while also aiding in maintaining tumor cell metabolism and stemness. Three of the principal drivers of vascular mimicry are EphA2, Nodal and HIF-1α, however, directly or indirectly many of these molecules affect VE-Cadherin (VE-Cad), which forms gap-junctions to bind angiogenic blood vessels together. During vascular mimicry, the endothelial-like functions of VM-competent cancer stem cells co-opt VE-Cad to bind cancer cells together to create cancer cell-derived blood conducting vessels. This process potentially compensates for the lack of access to blood and nutrient in avascular tumors, simultaneously providing nutrients and enhancing cancer invasion and metastasis. Current evidence also supports that vascular mimicry promotes cancer malignancy and metastasis due to the cooperation of oncogenic signaling molecules driving cancer stemness and autophagy. While a number of currently used cancer therapeutics are effective inhibitors of vascular mimicry, developing a new class of vascular mimicry specific inhibitors could allow for the treatment of angiogenesis-resistant tumors, inhibit cancer metastasis and improve patient survival. In this review, we describe the principal vascular mimicry pathways in addition to emphasizing the roles of hypoxia, autophagy and select proangiogenic oncogenes in this process.
Collapse
Affiliation(s)
- Stephen L Wechman
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
20
|
Chamseddine IM, Frieboes HB, Kokkolaras M. Multi-objective optimization of tumor response to drug release from vasculature-bound nanoparticles. Sci Rep 2020; 10:8294. [PMID: 32427977 PMCID: PMC7237449 DOI: 10.1038/s41598-020-65162-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/26/2020] [Indexed: 12/31/2022] Open
Abstract
The pharmacokinetics of nanoparticle-borne drugs targeting tumors depends critically on nanoparticle design. Empirical approaches to evaluate such designs in order to maximize treatment efficacy are time- and cost-intensive. We have recently proposed the use of computational modeling of nanoparticle-mediated drug delivery targeting tumor vasculature coupled with numerical optimization to pursue optimal nanoparticle targeting and tumor uptake. Here, we build upon these studies to evaluate the effect of tumor size on optimal nanoparticle design by considering a cohort of heterogeneously-sized tumor lesions, as would be clinically expected. The results indicate that smaller nanoparticles yield higher tumor targeting and lesion regression for larger-sized tumors. We then augment the nanoparticle design optimization problem by considering drug diffusivity, which yields a two-fold tumor size decrease compared to optimizing nanoparticles without this consideration. We quantify the tradeoff between tumor targeting and size decrease using bi-objective optimization, and generate five Pareto-optimal nanoparticle designs. The results provide a spectrum of treatment outcomes - considering tumor targeting vs. antitumor effect - with the goal to enable therapy customization based on clinical need. This approach could be extended to other nanoparticle-based cancer therapies, and support the development of personalized nanomedicine in the longer term.
Collapse
Affiliation(s)
- Ibrahim M Chamseddine
- Deparment of Integrated Mathematical Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville, Louisville, KY, USA.
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.
- Center for Predictive Medicine, University of Louisville, Louisville, KY, USA.
| | - Michael Kokkolaras
- Department of Mechanical Engineering, McGill University, Montreal, Quebec, Canada.
- GERAD - Group for Research in Decision Analysis, Montreal, Quebec, Canada.
| |
Collapse
|
21
|
[ 18F]-HX4 PET/CT hypoxia in patients with squamous cell carcinoma of the head and neck treated with chemoradiotherapy: Prognostic results from two prospective trials. Clin Transl Radiat Oncol 2020; 23:9-15. [PMID: 32368624 PMCID: PMC7184102 DOI: 10.1016/j.ctro.2020.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/06/2020] [Indexed: 11/20/2022] Open
Abstract
Introduction The presence of hypoxia in head-and-neck squamous cell carcinoma is a negative prognostic factor. PET imaging with [18F] HX4 can be used to visualize hypoxia, but it is currently unknown how this correlates with prognosis. We investigated the prognostic value of [18F] HX4 PET imaging in patients treated with definitive radio(chemo)therapy (RTx). Materials and methods We analyzed 34 patients included in two prospective clinical trials (NCT01347281, NCT01504815). Static [18F] HX4 PET-CT images were collected, both pre-treatment (median 4 days before start RTx, range 1-16), as well as during RTx (median 13 days after start RTx, range 3-17 days). Static uptake at both time points (n = 33 pretreatment, n = 28 during RTx) and measured changes in hypoxic fraction (HF) and hypoxic volume (HV) (n = 27 with 2 time points) were analyzed. Univariate cox analyses were done for local progression free survival (PFS) and overall survival (OS) at both timepoints. Change in uptake was analyzed by comparing outcome with Kaplan-Meier curves and log-rank test between patients with increased and decreased/stable hypoxia, similarly between patients with and without residual hypoxia (rHV = ratio week 2/baseline HV with cutoff 0.2). Voxelwise Spearman correlation coefficients were calculated between normalized [18F] HX4 PET uptake at baseline and week 2. Results Analyses of static images showed no prognostic value for [18F] HX4 uptake. Analysis of dynamic changes showed that both OS and local PFS were significantly shorter (log-rank P < 0.05) in patients with an increase in HV during RTx and OS was significantly shorter in patients with rHV, with no correlation to HPV-status. The voxel-based correlation to evaluate spatial distribution yielded a median Spearman correlation coefficient of 0.45 (range 0.11-0.65). Conclusion The change of [18F] HX4 uptake measured on [18F] HX4 PET early during treatment can be considered for implementation in predictive models. With these models patients with a worse prognosis can be selected for treatment intensification.
Collapse
|
22
|
The Effect of Carbogen Breathing on 18F-FDG Uptake in Non-Small-Cell Lung Cancer. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2920169. [PMID: 31886195 PMCID: PMC6893244 DOI: 10.1155/2019/2920169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 03/20/2019] [Accepted: 11/04/2019] [Indexed: 12/19/2022]
Abstract
It has been reported that 18F-FDG uptake is higher in hypoxic cancer cells than in well-oxygenated cells. We demonstrated that 18F-FDG uptake in lung cancer would be affected by high concentration oxygen breathing. Methods. Overnight fasted non-small-cell lung cancer A549 subcutaneous (s.c.) xenografts bearing mice (n = 10) underwent 18F-FDG micro-PET scans, animals breathed room air on day 1, and same animals breathed carbogen (95% O2 + 5% CO2) on the subsequent day. In separated studies, autoradiography and immunohistochemical staining visualization of frozen section of A549 s.c. tumors were applied, and to compare between carbogen-breathing mice and those with air breathing, a combination of 18F-FDG and hypoxia marker pimonidazole was injected 1 h before animal sacrifice, and 18F-FDG accumulation was compared with pimonidazole binding and glucose transporter 1 (GLUT-1) expression. Results. PET studies revealed that tumor 18F-FDG uptake was significantly decreased in carbogen-breathing mice than those with air breathing (P < 0.05). Ex vivo studies confirmed that carbogen breathing significantly decreased hypoxic fraction detected by pimonidazole staining, referring to GLUT-1 expression, and significantly decreased 18F-FDG accumulation in tumors. Conclusions. High concentration of O2 breathing during 18F-FDG uptake phase significantly decreases 18F-FDG uptake in non-small-cell lung cancer A549 xenografts growing in mice.
Collapse
|
23
|
Sjölander JJ, Sunnerhagen P. The fission yeast FHIT homolog affects checkpoint control of proliferation and is regulated by mitochondrial electron transport. Cell Biol Int 2019; 44:412-423. [PMID: 31538680 PMCID: PMC7003880 DOI: 10.1002/cbin.11241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/15/2019] [Indexed: 11/08/2022]
Abstract
Genetic analysis has strongly implicated human FHIT (Fragile Histidine Triad) as a tumor suppressor gene, being mutated in a large proportion of early‐stage cancers. The functions of the FHIT protein have, however, remained elusive. Here, we investigated aph1+, the fission yeast homolog of FHIT, for functions related to checkpoint control and oxidative metabolism. In sublethal concentrations of DNA damaging agents, aph1Δ mutants grew with a substantially shorter lag phase. In aph1Δ mutants carrying a hypomorphic allele of cds1 (the fission yeast homolog of Chk2), in addition, increased chromosome fragmentation and missegregation were found. We also found that under hypoxia or impaired electron transport function, the Aph1 protein level was strongly depressed. Previously, FHIT has been linked to regulation of the human 9‐1‐1 checkpoint complex constituted by Hus1, Rad1, and Rad9. In Schizosaccharomyces pombe, the levels of all three 9‐1‐1 proteins are all downregulated by hypoxia in similarity with Aph1. Moreover, deletion of the aph1+ gene reduced the Rad1 protein level, indicating a direct relationship between these two proteins. We conclude that the fission yeast FHIT homolog has a role in modulating DNA damage checkpoint function, possibly through an effect on the 9‐1‐1 complex, and that this effect may be critical under conditions of limiting oxidative metabolism and reoxygenation.
Collapse
Affiliation(s)
- Johanna J Sjölander
- Department of Chemistry and Molecular Biology, Lundberg Laboratory, University of Gothenburg, P.O. Box 462, Göteborg, SE-405 30, Sweden
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, Lundberg Laboratory, University of Gothenburg, P.O. Box 462, Göteborg, SE-405 30, Sweden
| |
Collapse
|
24
|
Shen B, Huang T, Sun Y, Jin Z, Li XF. Revisit 18F-fluorodeoxyglucose oncology positron emission tomography: "systems molecular imaging" of glucose metabolism. Oncotarget 2018; 8:43536-43542. [PMID: 28402949 PMCID: PMC5522167 DOI: 10.18632/oncotarget.16647] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/11/2017] [Indexed: 01/26/2023] Open
Abstract
18F-fluorodeoxyglucose (18F-FDG) positron emission tomography has become an important tool for detection, staging and management of many types of cancer. Oncology application of 18F-FDG bases on the knowledge that increase in glucose demand and utilization is a fundamental features of cancer. Pasteur effect, Warburg effect and reverse Warburg effect have been used to explain glucose metabolism in cancer. 18F-FDG accumulation in cancer is reportedly microenvironment-dependent, 18F-FDG avidly accumulates in poorly proliferating and hypoxic cancer cells, but low in well perfused (and proliferating) cancer cells. Cancer is a heterogeneous and complex “organ” containing multiple components, therefore, cancer needs to be investigated from systems biology point of view, we proposed the concept of “systems molecular imaging” for much better understanding systems biology of cancer. This article revisits 18F-FDG uptake mechanisms, its oncology applications and the role of 18F-FDG PET for “systems molecular imaging”.
Collapse
Affiliation(s)
- Baozhong Shen
- PET/CT/MRI Center, The Fourth Hospital of Harbin Medical University, Harbin, China.,Molecular Imaging Research Center, Harbin Medical University, Harbin, China
| | - Tao Huang
- Department of Radiology, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Yingying Sun
- PET/CT/MRI Center, The Fourth Hospital of Harbin Medical University, Harbin, China.,Molecular Imaging Research Center, Harbin Medical University, Harbin, China
| | - Zhongnan Jin
- PET/CT/MRI Center, The Fourth Hospital of Harbin Medical University, Harbin, China.,Molecular Imaging Research Center, Harbin Medical University, Harbin, China
| | - Xiao-Feng Li
- PET/CT/MRI Center, The Fourth Hospital of Harbin Medical University, Harbin, China.,Molecular Imaging Research Center, Harbin Medical University, Harbin, China
| |
Collapse
|
25
|
Eelen G, de Zeeuw P, Treps L, Harjes U, Wong BW, Carmeliet P. Endothelial Cell Metabolism. Physiol Rev 2018; 98:3-58. [PMID: 29167330 PMCID: PMC5866357 DOI: 10.1152/physrev.00001.2017] [Citation(s) in RCA: 377] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 06/19/2017] [Accepted: 06/22/2017] [Indexed: 02/06/2023] Open
Abstract
Endothelial cells (ECs) are more than inert blood vessel lining material. Instead, they are active players in the formation of new blood vessels (angiogenesis) both in health and (life-threatening) diseases. Recently, a new concept arose by which EC metabolism drives angiogenesis in parallel to well-established angiogenic growth factors (e.g., vascular endothelial growth factor). 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3-driven glycolysis generates energy to sustain competitive behavior of the ECs at the tip of a growing vessel sprout, whereas carnitine palmitoyltransferase 1a-controlled fatty acid oxidation regulates nucleotide synthesis and proliferation of ECs in the stalk of the sprout. To maintain vascular homeostasis, ECs rely on an intricate metabolic wiring characterized by intracellular compartmentalization, use metabolites for epigenetic regulation of EC subtype differentiation, crosstalk through metabolite release with other cell types, and exhibit EC subtype-specific metabolic traits. Importantly, maladaptation of EC metabolism contributes to vascular disorders, through EC dysfunction or excess angiogenesis, and presents new opportunities for anti-angiogenic strategies. Here we provide a comprehensive overview of established as well as newly uncovered aspects of EC metabolism.
Collapse
Affiliation(s)
- Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Pauline de Zeeuw
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Lucas Treps
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Ulrike Harjes
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Brian W Wong
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| |
Collapse
|
26
|
Quantitative [ 18F]FMISO PET Imaging Shows Reduction of Hypoxia Following Trastuzumab in a Murine Model of HER2+ Breast Cancer. Mol Imaging Biol 2017; 19:130-137. [PMID: 27506906 DOI: 10.1007/s11307-016-0994-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE Evaluation of [18F]fluoromisonidazole ([18F]FMISO)-positron emission tomography (PET) imaging as a metric for evaluating early response to trastuzumab therapy with histological validation in a murine model of HER2+ breast cancer. PROCEDURES Mice with BT474, HER2+ tumors, were imaged with [18F]FMISO-PET during trastuzumab therapy. Pimonidazole staining was used to confirm hypoxia from imaging. RESULTS [18F]FMISO-PET indicated significant decreases in hypoxia beginning on day 3 (P < 0.01) prior to changes in tumor size. These results were confirmed with pimonidazole staining on day 7 (P < 0.01); additionally, there was a significant positive linear correlation between histology and PET imaging (r 2 = 0.85). CONCLUSIONS [18F]FMISO-PET is a clinically relevant modality which provides the opportunity to (1) predict response to HER2+ therapy before changes in tumor size and (2) identify decreases in hypoxia which has the potential to guide subsequent therapy.
Collapse
|
27
|
Colby AH, Berry SM, Moran AM, Pasion KA, Liu R, Colson YL, Ruiz-Opazo N, Grinstaff MW, Herrera VLM. Highly Specific and Sensitive Fluorescent Nanoprobes for Image-Guided Resection of Sub-Millimeter Peritoneal Tumors. ACS NANO 2017; 11:1466-1477. [PMID: 28099801 PMCID: PMC5725964 DOI: 10.1021/acsnano.6b06777] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A current challenge in the treatment of peritoneal carcinomatosis is the inability to detect, visualize, and resect small or microscopic tumors of pancreatic, ovarian, or mesothelial origin. In these diseases, the completeness of primary tumor resection is directly correlated with patient survival, and hence, identifying small sub-millimeter tumors (i.e., disseminated disease) is critical. Thus, new imaging techniques and probes are needed to improve cytoreductive surgery and patient outcomes. Highly fluorescent rhodamine-labeled expansile nanoparticles (HFR-eNPs) are described for use as a visual aid during cytoreductive surgery of pancreatic carcinomatosis. The covalent incorporation of rhodamine into ∼30 nm eNPs increases the fluorescent signal compared to free rhodamine, thereby affording a brighter and more effective probe than would be achieved by a single rhodamine molecule. Using the intraperitoneal route of administration, HFR-eNPs localize to regions of large (∼1 cm), sub-centimeter, and sub-millimeter intraperitoneal tumor in three different animal models, including pancreatic, mesothelioma, and ovarian carcinoma. Tumoral localization of the HFR-eNPs depends on both the material property (i.e., eNP polymer) as well as the surface chemistry (anionic surfactant vs PEGylated noncharged surfactant). In a rat model of pancreatic carcinomatosis, HFR-eNP identification of tumor is validated against gold-standard histopathological analysis to reveal that HFR-eNPs possess high specificity (99%) and sensitivity (92%) for tumors, in particular, sub-centimeter and microscopic sub-millimeter tumors, with an overall accuracy of 95%. Finally, as a proof-of-concept, HFR-eNPs are used to guide the resection of pancreatic tumors in a rat model of peritoneal carcinomatosis.
Collapse
Affiliation(s)
- Aaron H. Colby
- Departments of Biomedical Engineering and Chemistry, Boston University, Boston, Massachusetts 02215, United States
- Division of Thoracic Surgery, Department of Surgery, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
| | - Samantha M. Berry
- Departments of Biomedical Engineering and Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Ann M. Moran
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - Kristine Amber Pasion
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - Rong Liu
- Division of Thoracic Surgery, Department of Surgery, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
| | - Yolonda L. Colson
- Division of Thoracic Surgery, Department of Surgery, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
| | - Nelson Ruiz-Opazo
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - Mark W. Grinstaff
- Departments of Biomedical Engineering and Chemistry, Boston University, Boston, Massachusetts 02215, United States
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118, United States
- Corresponding Authors: ,
| | - Victoria L. M. Herrera
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118, United States
- Corresponding Authors: ,
| |
Collapse
|
28
|
Colby AH, Oberlies NH, Pearce CJ, Herrera VLM, Colson YL, Grinstaff MW. Nanoparticle drug-delivery systems for peritoneal cancers: a case study of the design, characterization and development of the expansile nanoparticle. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9. [PMID: 28185434 DOI: 10.1002/wnan.1451] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/30/2016] [Accepted: 12/17/2016] [Indexed: 12/24/2022]
Abstract
Nanoparticle (NP)-based drug-delivery systems are frequently employed to improve the intravenous administration of chemotherapy; however, few reports explore their application as an intraperitoneal therapy. We developed a pH-responsive expansile nanoparticle (eNP) specifically designed to leverage the intraperitoneal route of administration to treat intraperitoneal malignancies, such as mesothelioma, ovarian, and pancreatic carcinomatoses. This review describes the design, evaluation, and evolution of the eNP technology and, specifically, a Materials-Based Targeting paradigm that is unique among the many active- and passive-targeting strategies currently employed by NP-delivery systems. pH-responsive eNP swelling is responsible for the extended residence at the target tumor site as well as the subsequent improvement in tumoral drug delivery and efficacy observed with paclitaxel-loaded eNPs (PTX-eNPs) compared to the standard clinical formulation of paclitaxel, Taxol®. Superior PTX-eNP efficacy is demonstrated in two different orthotopic models of peritoneal cancer-mesothelioma and ovarian cancer; in a third model-of pancreatic cancer-PTX-eNPs demonstrated comparable efficacy to Taxol with reduced toxicity. Furthermore, the unique structural and responsive characteristics of eNPs enable them to be used in three additional treatment paradigms, including: treatment of lymphatic metastases in breast cancer; use as a highly fluorescent probe to visually guide the resection of peritoneal implants; and, in a two-step delivery paradigm for concentrating separately administered NP and drug at a target site. This case study serves as an important example of using the targeted disease-state's pathophysiology to inform the NP design as well as the method of use of the delivery system. WIREs Nanomed Nanobiotechnol 2017, 9:e1451. doi: 10.1002/wnan.1451 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Aaron H Colby
- Departments of Biomedical Engineering and Chemistry, Boston University, Boston, MA, USA.,Division of Thoracic Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | | | - Victoria L M Herrera
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Yolonda L Colson
- Division of Thoracic Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Mark W Grinstaff
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston, MA, USA
| |
Collapse
|
29
|
Larue RTHM, Van De Voorde L, Berbée M, van Elmpt WJC, Dubois LJ, Panth KM, Peeters SGJA, Claessens A, Schreurs WMJ, Nap M, Warmerdam FARM, Erdkamp FLG, Sosef MN, Lambin P. A phase 1 'window-of-opportunity' trial testing evofosfamide (TH-302), a tumour-selective hypoxia-activated cytotoxic prodrug, with preoperative chemoradiotherapy in oesophageal adenocarcinoma patients. BMC Cancer 2016; 16:644. [PMID: 27535748 PMCID: PMC4989456 DOI: 10.1186/s12885-016-2709-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 08/11/2016] [Indexed: 01/03/2023] Open
Abstract
Background Neo-adjuvant chemoradiotherapy followed by surgery is the standard treatment with curative intent for oesophageal cancer patients, with 5-year overall survival rates up to 50 %. However, patients’ quality of life is severely compromised by oesophagectomy, and eventually many patients die due to metastatic disease. Most solid tumours, including oesophageal cancer, contain hypoxic regions that are more resistant to chemoradiotherapy. The hypoxia-activated prodrug evofosfamide works as a DNA-alkylating agent under these hypoxic conditions, which directly kills hypoxic cancer cells and potentially minimizes resistance to conventional therapy. This drug has shown promising results in several clinical studies when combined with chemotherapy. Therefore, in this phase I study we investigate the safety of evofosfamide added to the chemoradiotherapy treatment of oesophageal cancer. Methods/Design A phase I, non-randomized, single-centre, open-label, 3 + 3 trial with repeated hypoxia PET imaging, will test the safety of evofosfamide in combination with neo-adjuvant chemoradiotherapy in potentially resectable oesophageal adenocarcinoma patients. Investigated dose levels range from 120 mg/m2 to 340 mg/m2. Evofosfamide will be administered one week before the start of chemoradiotherapy (CROSS-regimen) and repeated weekly up to a total of six doses. PET/CT acquisitions with hypoxia tracer 18F-HX4 will be made before and after the first administration of evofosfamide, allowing early assessment of changes in hypoxia, accompanied with blood sampling to measure hypoxia blood biomarkers. Oesophagectomy will be performed according to standard clinical practice. Higher grade and uncommon non-haematological, haematological, and post-operative toxicities are the primary endpoints according to the CTCAEv4.0 and Clavien-Dindo classifications. Secondary endpoints are reduction in hypoxic fraction based on 18F-HX4 imaging, pathological complete response, histopathological negative circumferential resection margin (R0) rate, local and distant recurrence rate, and progression free and overall survival. Discussion This is the first clinical trial testing evofosfamide in combination with chemoradiotherapy. The primary objective is to determine the dose limiting toxicity of this combined treatment and herewith to define the maximum tolerated dose and recommended phase 2 dose for future clinical studies. The addition of non-invasive repeated hypoxia imaging (‘window-of-opportunity’) enables us to identify the biologically effective dose. We believe this approach could also be used for other hypoxia targeted drugs. Trial registration ClinicalTrials.gov Identifier: NCT02598687.
Collapse
Affiliation(s)
- Ruben T H M Larue
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Lien Van De Voorde
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.
| | - Maaike Berbée
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Wouter J C van Elmpt
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ludwig J Dubois
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Kranthi M Panth
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Sarah G J A Peeters
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,Cancer Research UK & Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Ann Claessens
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Wendy M J Schreurs
- Department of Nuclear Medicine, Zuyderland Medical Centre, Sittard-Geleen/Heerlen, The Netherlands
| | - Marius Nap
- Department of Pathology, Zuyderland Medical Centre, Sittard-Geleen/Heerlen, The Netherlands
| | - Fabiënne A R M Warmerdam
- Department of Medical Oncology, Zuyderland Medical Centre, Sittard-Geleen/Heerlen, The Netherlands
| | - Frans L G Erdkamp
- Department of Medical Oncology, Zuyderland Medical Centre, Sittard-Geleen/Heerlen, The Netherlands
| | - Meindert N Sosef
- Department of Surgery, Zuyderland Medical Centre, Sittard-Geleen/Heerlen, The Netherlands.,Surgical Collaborative Network Limburg, Limburg, The Netherlands
| | - Philippe Lambin
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
30
|
Jiwa LS, van Diest PJ, Hoefnagel LD, Wesseling J, Wesseling P, Moelans CB. Upregulation of Claudin-4, CAIX and GLUT-1 in distant breast cancer metastases. BMC Cancer 2014; 14:864. [PMID: 25417118 PMCID: PMC4247109 DOI: 10.1186/1471-2407-14-864] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 11/11/2014] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Several studies have shown that the immunophenotype of distant breast cancer metastases may differ significantly from that of the primary tumor, especially with regard to differences in the level of hormone receptor protein expression, a process known as receptor conversion. This study aimed to compare expression levels of several membrane proteins between primary breast tumors and their corresponding distant metastases in view of their potential applicability for molecular imaging and drug targeting. METHODS Expression of Claudin-4, EGFR, CAIX, GLUT-1 and IGF1R was assessed by immunohistochemistry on tissue microarrays composed of 97 paired primary breast tumors and their distant (non-bone) metastases. RESULTS In both the primary cancers and the metastases, Claudin-4 was most frequently expressed, followed by GLUT-1, CAIX and EGFR.From primary breast cancers to their distant metastases there was positive to negative conversion, e.g. protein expression in the primary tumor with no expression in its paired metastasis, in 6%, 19%, 12%, 38%, and 0% for Claudin-4 (n.s), GLUT-1 (n.s), CAIX (n.s), EGFR (n.s) and IGF1R (n.s) respectively. Negative to positive conversion was seen in 65%, 47%, 43%, 9% and 0% of cases for Claudin-4 (p = 0.049), GLUT-1 (p = 0.024), CAIX (p = 0.002), EGFR (n.s.) and IGF1R (n.s.) respectively. Negative to positive conversion of Claudin-4 in the metastasis was significantly associated with tumor size (p = 0.015), negative to positive conversion of EGFR with negative PR status (p = 0.046) and high MAI (p = 0.047) and GLUT-1 negative to positive conversion with (neo)adjuvant chemotherapy (p = 0.039) and time to metastasis formation (p = 0.034). CAIX and GLUT-1 expression in the primary tumor were significantly associated with high MAI (p = 0.008 and p = 0.038 respectively). CONCLUSION Claudin-4 is frequently expressed in primary breast cancers but especially in their metastases and is thereby an attractive membrane bound molecular imaging and drug target. Conversion in expression of the studied proteins from the primary tumor to metastases was fairly frequent, except for IGF1R, implying that the expression status of metastases cannot always be reliably predicted from the primary tumor, thereby necessitating biopsy for reliable assessment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Cathy B Moelans
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, PO Box 85500, Utrecht 3508GA, The Netherlands.
| |
Collapse
|
31
|
Li XF, Du Y, Ma Y, Postel GC, Civelek AC. (18)F-fluorodeoxyglucose uptake and tumor hypoxia: revisit (18)f-fluorodeoxyglucose in oncology application. Transl Oncol 2014; 7:240-7. [PMID: 24699008 PMCID: PMC4101348 DOI: 10.1016/j.tranon.2014.02.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/02/2014] [Accepted: 01/15/2014] [Indexed: 12/22/2022] Open
Abstract
This study revisited 18F-fluorodeoxyglucose (18F-FDG) uptake and its relationship to hypoxia in various tumor models. METHODS: We generated peritoneal carcinomatosis and subcutaneous xenografts of colorectal cancer HT29, breast cancer MDA-MB-231, and non–small cell lung cancer A549 cell lines in nude mice. The partial oxygen pressure (pO2) of ascites fluid was measured. 18F-FDG accumulation detected by digital autoradiography was related to tumor hypoxia visualized by pimonidazole binding and glucose transporter-1 (GLUT-1) in frozen tumor sections. RESULTS: Ascites pO2 was 0.90 ± 0.53 mm Hg. Single cancer cells and clusters suspended in ascites fluid as well as submillimeter serosal tumors stained positive for pimonidazole and GLUT-1 and had high 18F-FDG uptake. In contrast, 18F-FDG uptake was significantly lower in normoxic portion (little pimonidazole binding or GLUT-1 expression) of larger serosal tumors or subcutaneous xenografts, which was not statistically different from that in the liver. CONCLUSIONS: Glucose demand (18F-FDG uptake) in severely hypoxic ascites carcinomas and hypoxic portion of larger tumors is significantly higher than in normoxic cancer cells. Warburg effect originally obtained from Ehrlich ascites carcinoma may not apply to normoxic cancer cells. Our findings may benefit the better understanding of 18F-FDG PET in oncology application.
Collapse
Affiliation(s)
- Xiao-Feng Li
- Department of Diagnostic Radiology, School of Medicine, University of Louisville, Louisville, KY, USA; Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| | - Yang Du
- Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Ma
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Gregory C Postel
- Department of Diagnostic Radiology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - A Cahid Civelek
- Department of Diagnostic Radiology, School of Medicine, University of Louisville, Louisville, KY, USA
| |
Collapse
|
32
|
Combined Injection of (18)F-Fluorodeoxyglucose and 3'-Deoxy-3'-[(18)F]fluorothymidine PET Achieves More Complete Identification of Viable Lung Cancer Cells in Mice and Patients than Individual Radiopharmaceutical: A Proof-of-Concept Study. Transl Oncol 2013; 6:775-83. [PMID: 24466381 DOI: 10.1593/tlo.13577] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/21/2013] [Accepted: 11/22/2013] [Indexed: 01/27/2023] Open
Abstract
PURPOSE The objective is to validate the combination of 3'-deoxy-3'-[(18)F]fluorothymidine ((18)F-FLT) and (18)F-fluorodeoxyglucose ((18)F-FDG) as a "novel" positron emission tomography (PET) tracer for better visualization of cancer cell components in solid cancers than individual radiopharmaceutical. METHODS Nude mice with subcutaneous xenografts of human non-small cell lung cancer A549 and HTB177 cells and patients with lung cancer were included. In ex vivo study, intratumoral radioactivity of (18)F-FDG, (18)F-FLT, and the cocktail of (18)F-FDG and (18)F-FLT detected by autoradiography was compared with hypoxia (by pimonidazole) and proliferation (by bromodeoxyuridine) in tumor section. In in vivo study, first, (18)F-FDG PET and (18)F-FLT PET were conducted in the same subjects (mice and patients) 10 to 14 hours apart. Second, PET scan was also performed 1 hour after one tracer injection; subsequently, the other was administered and followed the second PET scan in the mouse. Finally, (18)F-FDG and (18)F-FLT cocktail PET scan was also performed in the mouse. RESULTS When injected individually, (18)F-FDG highly accumulated in hypoxic zones and high (18)F-FLT in proliferative cancer cells. In case of cocktail injection, high radioactivity correlated with hypoxic regions and highly proliferative and normoxic regions. PET detected that intratumoral distribution of (18)F-FDG and (18)F-FLT was generally mismatched in both rodents and patients. Combination of (18)F-FLT and (18)F-FDG appeared to map more cancer tissue than single-tracer PET. CONCLUSIONS Combination of (18)F-FDG and (18)F-FLT PET imaging would give a more accurate representation of total viable tumor tissue than either tracer alone and would be a powerful imaging strategy for cancer management.
Collapse
|
33
|
Abstract
Light can be a powerful therapeutic and diagnostic tool. Light-sensitive molecules can be used to develop locally targeted cancer therapeutics. This approach is known as photodynamic therapy (PDT). Similarly, it is possible to diagnose diseases and track the course of treatment in vivo using ligh-sensitive molecules. This methodology is referred to as photodynamic diagnosis (PDD). Despite the potential, many PDT and PDD agents have imperfect physiochemical properties for their successful clinical application. Nanotechnology may solve these issues by improving the viability of PDT and PDD. This review summarizes the current state of PDT and PDD development, the integration of nanotechnology in the field, and the prospective future applications, demonstrating the potential of PDT and PDD for improved cancer treatment and diagnosis.
Collapse
|
34
|
Adams A, van Brussel ASA, Vermeulen JF, Mali WPTM, van der Wall E, van Diest PJ, Elias SG. The potential of hypoxia markers as target for breast molecular imaging--a systematic review and meta-analysis of human marker expression. BMC Cancer 2013; 13:538. [PMID: 24206539 PMCID: PMC3903452 DOI: 10.1186/1471-2407-13-538] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 10/23/2013] [Indexed: 02/07/2023] Open
Abstract
Background Molecular imaging of breast cancer is a promising emerging technology, potentially able to improve clinical care. Valid imaging targets for molecular imaging tracer development are membrane-bound hypoxia-related proteins, expressed when tumor growth outpaces neo-angiogenesis. We performed a systematic literature review and meta-analysis of such hypoxia marker expression rates in human breast cancer to evaluate their potential as clinically relevant molecular imaging targets. Methods We searched MEDLINE and EMBASE for articles describing membrane-bound proteins that are related to hypoxia inducible factor 1α (HIF-1α), the key regulator of the hypoxia response. We extracted expression rates of carbonic anhydrase-IX (CAIX), glucose transporter-1 (GLUT1), C-X-C chemokine receptor type-4 (CXCR4), or insulin-like growth factor-1 receptor (IGF1R) in human breast disease, evaluated by immunohistochemistry. We pooled study results using random-effects models and applied meta-regression to identify associations with clinicopathological variables. Results Of 1,705 identified articles, 117 matched our selection criteria, totaling 30,216 immunohistochemistry results. We found substantial between-study variability in expression rates. Invasive cancer showed pooled expression rates of 35% for CAIX (95% confidence interval (CI): 26-46%), 51% for GLUT1 (CI: 40-61%), 46% for CXCR4 (CI: 33-59%), and 46% for IGF1R (CI: 35-70%). Expression rates increased with tumor grade for GLUT1, CAIX, and CXCR4 (all p < 0.001), but decreased for IGF1R (p < 0.001). GLUT1 showed the highest expression rate in grade III cancers with 58% (45-69%). CXCR4 showed the highest expression rate in small T1 tumors with 48% (CI: 28-69%), but associations with size were only significant for CAIX (p < 0.001; positive association) and IGF1R (p = 0.047; negative association). Although based on few studies, CAIX, GLUT1, and CXCR4 showed profound lower expression rates in normal breast tissue and benign breast disease (p < 0.001), and high rates in carcinoma in situ. Invasive lobular carcinoma consistently showed lower expression rates (p < 0.001). Conclusions Our results support the potential of hypoxia-related markers as breast cancer molecular imaging targets. Although specificity is promising, combining targets would be necessary for optimal sensitivity. These data could help guide the choice of imaging targets for tracer development depending on the envisioned clinical application.
Collapse
Affiliation(s)
- Arthur Adams
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
35
|
Lirdprapamongkol K, Sakurai H, Abdelhamed S, Yokoyama S, Maruyama T, Athikomkulchai S, Viriyaroj A, Awale S, Yagita H, Ruchirawat S, Svasti J, Saiki I. A flavonoid chrysin suppresses hypoxic survival and metastatic growth of mouse breast cancer cells. Oncol Rep 2013; 30:2357-64. [PMID: 23969634 DOI: 10.3892/or.2013.2667] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 07/15/2013] [Indexed: 11/06/2022] Open
Abstract
Tumor hypoxia commonly occurs in solid tumors, and correlates with metastasis. Current cancer therapies are inefficient in curing metastatic disease. Herein, we examined effect of Thai propolis extract and its major constituent, chrysin, on hypoxic survival of 4T1 mouse breast cancer cells in vitro, and investigated its underlying mechanism. In vivo effect of chrysin on metastatic progression of cancer cells was studied, both as a single agent and in combination with another antimetastatic agent, agonistic monoclonal antibody targeting the DR5 TRAIL receptor (DR5 mAb). Thai propolis extract and chrysin decreased survival of 4T1 cells after exposure to hypoxia (1% O2), for 2 days. Immunoblot analysis revealed that chrysin inhibited hypoxia-induced STAT3 phosphorylation without affecting HIF-1α protein level. Chrysin also abrogated hypoxia-induced VEGF gene expression as determined by qRT-PCR. The in vivo effect of chrysin was determined in a spontaneous metastasis mouse model of breast cancer, either alone or in combination with DR5 mAb. Daily oral administration of chrysin in Balb/c mice implanted with 4T1 cells significantly suppressed growth of lung metastatic colonies. Moreover, antimetastatic activity of DR5 mAb was enhanced when given in combination with chrysin. We demonstrate that chrysin has potential in controlling metastatic progression.
Collapse
|
36
|
van Brussel ASA, Adams A, Vermeulen JF, Oliveira S, van der Wall E, Mali WPTM, van Diest PJ, van Bergen en Henegouwen PMP. Molecular imaging with a fluorescent antibody targeting carbonic anhydrase IX can successfully detect hypoxic ductal carcinoma in situ of the breast. Breast Cancer Res Treat 2013; 140:263-72. [DOI: 10.1007/s10549-013-2635-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/07/2013] [Indexed: 01/14/2023]
|
37
|
Mitochondrial bioenergetics of metastatic breast cancer cells in response to dynamic changes in oxygen tension: effects of HIF-1α. PLoS One 2013; 8:e68348. [PMID: 23840849 PMCID: PMC3696014 DOI: 10.1371/journal.pone.0068348] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 05/28/2013] [Indexed: 11/19/2022] Open
Abstract
Solid tumors are characterized by regions of low oxygen tension (OT), which play a central role in tumor progression and resistance to therapy. Low OT affects mitochondrial function and for the cells to survive, mitochondria must functionally adapt to low OT to maintain the cellular bioenergetics. In this study, a novel experimental approach was developed to examine the real-time bioenergetic changes in breast cancer cells (BCCs) during adaptation to OT (from 20% to <1% oxygen) using sensitive extracellular flux technology. Oxygen was gradually removed from the medium, and the bioenergetics of metastatic BCCs (MDA-MB-231 and MCF10CA clones) was compared with non-tumorigenic (MCF10A) cells. BCCs, but not MCF10A, rapidly responded to low OT by stabilizing HIF-1α and increasing HIF-1α responsive gene expression and glucose uptake. BCCs also increased extracellular acidification rate (ECAR), which was markedly lower in MCF10A. Interestingly, BCCs exhibited a biphasic response in basal respiration as the OT was reduced from 20% to <1%. The initial stimulation of oxygen consumption is found to be due to increased mitochondrial respiration. This effect was HIF-1α-dependent, as silencing HIF-1α abolished the biphasic response. During hypoxia and reoxygenation, BCCs also maintained oxygen consumption rates at specific OT; however, HIF-1α silenced BCC were less responsive to changes in OT. Our results suggest that HIF-1α provides a high degree of bioenergetic flexibility under different OT which may confer an adaptive advantage for BCC survival in the tumor microenvironment and during invasion and metastasis. This study thus provides direct evidence for the cross-talk between HIF-1α and mitochondria during adaptation to low OT by BCCs and may be useful in identifying novel therapeutic agents that target the bioenergetics of BCCs in response to low OT.
Collapse
|
38
|
Huang T, Civelek AC, Zheng H, Ng CK, Duan X, Li J, Postel GC, Shen B, Li XF. (18)F-misonidazole PET imaging of hypoxia in micrometastases and macroscopic xenografts of human non-small cell lung cancer: a correlation with autoradiography and histological findings. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2013; 3:142-153. [PMID: 23526377 PMCID: PMC3601474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/28/2013] [Indexed: 06/02/2023]
Abstract
The objective of this study was to determine whether (18)F-misonidazole could detect hypoxia in macroscopic and microscopic tumors in mice. In nude mice, subcutaneous xenografts and peritoneal metastases were generated utilizing human non-small cell lung cancer A549 and HTB177 cells. Animals were co-injected with (18)F-misonidazole, pimonidazole and bromodeoxyuridine, and tumor perfusion was assessed by Hoechst 33342 injection. The intratumoral distribution of (18)F-misonidazole was determined by micro-PET scan and autoradiography. Pimonidazole, bromodeoxyuridine and Hoechst 33342 were detected by immunohistochemistry on the autoradiography sections. Submillimeter micrometastases found to be severely hypoxic. In both peritoneal metastases and subcutaneous xenografts models, PET images displayed significant (18)F-misonidazole uptake, and its distribution was non-uniform in these macroscopic subcutaneous tumors. In frozen sections, digital autoradiography and immunohistochemistry revealed similar distributions of (18)F-misonidazole, pimonidazole and glucose transporter-1, in both microscopic and macroscopic tumors. Bromodeoxyuridine stained-positive proliferative regions were well perfused, as judged by Hoechst 33342, and displayed low (18)F-misonidazole accumulation. (18)F-misonidazole uptake was low in tumor stroma and necrotic zones as well. Microscopic non-small cell lung cancer metastases are severely hypoxic. (18)F-misonidazole PET is capable to image hypoxia noninvasively not only in macroscopic tumors but also in micrometastases growing in mice. Accordingly, (18)F-misonidazole may be a promising agent to detect the burden of micrometastatic diseases.
Collapse
Affiliation(s)
- Tao Huang
- Department of Radiology, the 4 Hospital of Harbin Medical UniversityHarbin, Heilongjiang, China
- Key Laboratory of Molecular Imaging, College of Heilongjiang ProvinceHarbin, Heilongjiang, China
- Department of Diagnostic Radiology, University of Louisville School of MedicineLouisville, Kentucky USA
| | - A Cahid Civelek
- Division of Nuclear Medicine, University of Louisville School of MedicineLouisville, Kentucky USA
| | - Huaiyu Zheng
- Department of Diagnostic Radiology, University of Louisville School of MedicineLouisville, Kentucky USA
| | - Chin K Ng
- Department of Diagnostic Radiology, University of Louisville School of MedicineLouisville, Kentucky USA
| | - Xiaoxian Duan
- Department of Diagnostic Radiology, University of Louisville School of MedicineLouisville, Kentucky USA
| | - Junling Li
- Department of Diagnostic Radiology, University of Louisville School of MedicineLouisville, Kentucky USA
| | - Gregory C Postel
- Department of Diagnostic Radiology, University of Louisville School of MedicineLouisville, Kentucky USA
| | - Baozhong Shen
- Department of Radiology, the 4 Hospital of Harbin Medical UniversityHarbin, Heilongjiang, China
- Key Laboratory of Molecular Imaging, College of Heilongjiang ProvinceHarbin, Heilongjiang, China
| | - Xiao-Feng Li
- Department of Diagnostic Radiology, University of Louisville School of MedicineLouisville, Kentucky USA
| |
Collapse
|
39
|
Sieh S, Taubenberger AV, Rizzi SC, Sadowski M, Lehman ML, Rockstroh A, An J, Clements JA, Nelson CC, Hutmacher DW. Phenotypic characterization of prostate cancer LNCaP cells cultured within a bioengineered microenvironment. PLoS One 2012; 7:e40217. [PMID: 22957009 PMCID: PMC3434144 DOI: 10.1371/journal.pone.0040217] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 06/06/2012] [Indexed: 01/10/2023] Open
Abstract
Biophysical and biochemical properties of the microenvironment regulate cellular responses such as growth, differentiation, morphogenesis and migration in normal and cancer cells. Since two-dimensional (2D) cultures lack the essential characteristics of the native cellular microenvironment, three-dimensional (3D) cultures have been developed to better mimic the natural extracellular matrix. To date, 3D culture systems have relied mostly on collagen and Matrigel™ hydrogels, allowing only limited control over matrix stiffness, proteolytic degradability, and ligand density. In contrast, bioengineered hydrogels allow us to independently tune and systematically investigate the influence of these parameters on cell growth and differentiation. In this study, polyethylene glycol (PEG) hydrogels, functionalized with the Arginine-glycine-aspartic acid (RGD) motifs, common cell-binding motifs in extracellular matrix proteins, and matrix metalloproteinase (MMP) cleavage sites, were characterized regarding their stiffness, diffusive properties, and ability to support growth of androgen-dependent LNCaP prostate cancer cells. We found that the mechanical properties modulated the growth kinetics of LNCaP cells in the PEG hydrogel. At culture periods of 28 days, LNCaP cells underwent morphogenic changes, forming tumor-like structures in 3D culture, with hypoxic and apoptotic cores. We further compared protein and gene expression levels between 3D and 2D cultures upon stimulation with the synthetic androgen R1881. Interestingly, the kinetics of R1881 stimulated androgen receptor (AR) nuclear translocation differed between 2D and 3D cultures when observed by immunofluorescent staining. Furthermore, microarray studies revealed that changes in expression levels of androgen responsive genes upon R1881 treatment differed greatly between 2D and 3D cultures. Taken together, culturing LNCaP cells in the tunable PEG hydrogels reveals differences in the cellular responses to androgen stimulation between the 2D and 3D environments. Therefore, we suggest that the presented 3D culture system represents a powerful tool for high throughput prostate cancer drug testing that recapitulates tumor microenvironment.
Collapse
Affiliation(s)
- Shirly Sieh
- Regenerative Medicine and Cancer Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Huang T, Civelek AC, Li J, Jiang H, Ng CK, Postel GC, Shen B, Li XF. Tumor microenvironment-dependent 18F-FDG, 18F-fluorothymidine, and 18F-misonidazole uptake: a pilot study in mouse models of human non-small cell lung cancer. J Nucl Med 2012; 53:1262-8. [PMID: 22717978 DOI: 10.2967/jnumed.111.098087] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED (18)F-FDG, (18)F-fluorothymidine, and (18)F-misonidazole PET scans have emerged as important clinical tools in the management of cancer; however, none of them have demonstrated conclusive superiority. The aim of this study was to compare the intratumoral accumulation of (18)F-FDG, (18)F-fluorothymidine, and (18)F-misonidazole and relate this to specific components of the tumor microenvironment in mouse models of human non-small cell lung cancer (NSCLC). METHODS We used NSCLC A549 and HTB177 cells to generate subcutaneous and peritoneal xenografts in nude mice. Animals were coinjected with a PET radiotracer, pimonidazole (hypoxia marker), and bromodeoxyuridine (proliferation marker) intravenously 1 h before animal euthanasia. Tumor perfusion was assessed by Hoechst 33342 injection, given 1 min before sacrifice. The intratumoral distribution of PET radiotracers was visualized by digital autoradiography and related to microscopic visualization of proliferation, hypoxia, perfusion, stroma, and necrosis. RESULTS NSCLC xenografts had complex structures with intermingled regions of viable cancer cells, stroma, and necrosis. Cancer cells were either well oxygenated (staining negatively for pimonidazole) and highly proliferative (staining positively for bromodeoxyuridine) or hypoxic (pimonidazole-positive) and noncycling (little bromodeoxyuridine). Hypoxic cancer cells with a low proliferation rate had high(18)F-FDG and (18)F-misonidazole uptake but low (18)F-fluorothymidine accumulation. Well-oxygenated cancer cells with a high proliferation rate accumulated a high level of (18)F-fluorothymidine but low (18)F-FDG and(18)F-misonidazole. Tumor stroma and necrotic zones were always associated with low (18)F-FDG, (18)F-misonidazole, and (18)F-fluorothymidine activity. CONCLUSION In NSCLC A549 and HTB177 subcutaneously or intraperitoneally growing xenografts, (18)F-fluorothymidine accumulates in well-oxygenated and proliferative cancer cells, whereas (18)F-misonidazole and (18)F-FDG accumulate mostly in poorly proliferative and hypoxic cancer cells. (18)F-FDG and (18)F-misonidazole display similar intratumoral distribution patterns, and both mutually exclude (18)F-fluorothymidine.
Collapse
Affiliation(s)
- Tao Huang
- Department of Medical Imaging, the Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Liu Q, Sun JD, Wang J, Ahluwalia D, Baker AF, Cranmer LD, Ferraro D, Wang Y, Duan JX, Ammons WS, Curd JG, Matteucci MD, Hart CP. TH-302, a hypoxia-activated prodrug with broad in vivo preclinical combination therapy efficacy: optimization of dosing regimens and schedules. Cancer Chemother Pharmacol 2012; 69:1487-98. [PMID: 22382881 DOI: 10.1007/s00280-012-1852-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 02/13/2012] [Indexed: 01/12/2023]
Abstract
PURPOSE Subregional hypoxia is a common feature of tumors and is recognized as a limiting factor for the success of radiotherapy and chemotherapy. TH-302, a hypoxia-activated prodrug selectively targeting hypoxic regions of solid tumors, delivers a cytotoxic warhead to the tumor, while maintaining relatively low systemic toxicity. The antitumor activity, different dosing sequences, and dosing regimens of TH-302 in combination with commonly used conventional chemotherapeutics were investigated in human tumor xenograft models. METHODS Seven chemotherapeutic drugs (docetaxel, cisplatin, pemetrexed, irinotecan, doxorubicin, gemcitabine, and temozolomide) were tested in combination with TH-302 in eleven human xenograft models, including non-small cell lung cancer (NSCLC), colon cancer, prostate cancer, fibrosarcoma, melanoma, and pancreatic cancer. RESULTS The antitumor activity of docetaxel, cisplatin, pemetrexed, irinotecan, doxorubicin, gemcitabine, and temozolomide was increased when combined with TH-302 in nine out of eleven models tested. Administration of TH-302 2-8 h prior to the other chemotherapeutics yielded superior efficacy versus other sequences tested. Simultaneous administration of TH-302 and chemotherapeutics increased toxicity versus schedules with dosing separations. In a dosing optimization study, TH-302 administered daily at 50 mg/kg intraperitoneally for 5 days per week in the H460 NSCLC model showed the optimal response with minimal toxicity. CONCLUSIONS TH-302 enhances the activity of a wide range of conventional anti-neoplastic agents in a broad panel of in vivo xenograft models. These data highlight in vivo effects of schedule and order of drug administration in regimen efficacy and toxicity and have relevance to the design of human regimens incorporating TH-302.
Collapse
Affiliation(s)
- Qian Liu
- Threshold Pharmaceuticals, 170 Harbor Way, Suite 300, South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Down-regulation of MutS homolog 3 by hypoxia in human colorectal cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:889-99. [PMID: 22343000 DOI: 10.1016/j.bbamcr.2012.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 01/23/2012] [Accepted: 01/24/2012] [Indexed: 01/12/2023]
Abstract
Down-regulation of hMSH3 is associated with elevated microsatellite alterations at selected tetranucleotide repeats and low levels of microsatellite instability in colorectal cancer (CRC). However, the mechanism that down-regulates hMSH3 in CRC is not known. In this study, a significant association between over-expression of glucose transporter 1, a marker for hypoxia, and down-regulation of hMSH3 in CRC tissues was observed. Therefore, we examined the effect of hypoxia on the expression of hMSH3 in human cell lines. When cells with wild type p53 (wt-p53) were exposed to hypoxia, rapid down-regulation of both hMSH2 and hMSH3 occurred. In contrast, when null or mutated p53 (null/mut-p53) cells were exposed to hypoxia, only hMSH3 was down-regulated, and at slower rate than wt-p53 cells. Using a reporter assay, we found that disruption of the two putative hypoxia response elements (HREs) located within the promoter region of the hMSH3 abrogated the suppressive effect of hypoxia on reporter activity regardless of p53 status. In an EMSA, two different forms of HIF-1α complexes that specifically bind to these HREs were detected. A larger complex containing HIF-1α predominantly bound to the HREs in hypoxic null/mut-p53 cells whereas a smaller complex predominated in wt-p53 cells. Finally, HIF-1α knockdown by siRNA significantly inhibited down-regulation of hMSH3 by hypoxia in both wt-p53 and mut-p53 cells. Taken together, our results suggest that the binding of HIF-1α complexes to HRE sites is necessary for down-regulation of hMSH3 in both wt-p53 and mut-p53 cells.
Collapse
|
43
|
Pedersen EA, Shiozawa Y, Mishra A, Taichman RS. Structure and function of the solid tumor niche. Front Biosci (Schol Ed) 2012; 4:1-15. [PMID: 22202039 PMCID: PMC3594847 DOI: 10.2741/s247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Although the hematopoietic stem cell (HSC) niche has been an active area of study, the concept of the bone marrow microenvironment (BMM) harboring a niche for solid metastatic tumor cells has only recently been considered. The HSC niche and microenvironment that is thought to constitute the solid tumor niche share many of the same structural and functional components, suggesting the possibility that the HSC and tumor niche are one in the same. The osteoblast is a critical component for each of these niches, and is important for regulating cellular processes such homing and migration, growth and survival, and quiescence and dormancy. Current understanding of the HSC niche may provide more insight to better defining the solid tumor niche. As role of the niche in regulating these processes is better understood, new insights to the role of the BMM in metastatic disease may be gained, and provide more potential targets for therapy.
Collapse
Affiliation(s)
- Elisabeth A. Pedersen
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Yusuke Shiozawa
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Anjali Mishra
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Russell S. Taichman
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| |
Collapse
|
44
|
Bennewith KL, Dedhar S. Targeting hypoxic tumour cells to overcome metastasis. BMC Cancer 2011; 11:504. [PMID: 22128892 PMCID: PMC3247198 DOI: 10.1186/1471-2407-11-504] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 11/30/2011] [Indexed: 12/26/2022] Open
Abstract
The microenvironment within solid tumours can influence the metastatic dissemination of tumour cells, and recent evidence suggests that poorly oxygenated (hypoxic) cells in primary tumours can also affect the survival and proliferation of metastatic tumour cells in distant organs. Hypoxic tumour cells have been historically targeted during radiation therapy in attempts to improve loco-regional control rates of primary tumours since hypoxic cells are known to be resistant to ionizing radiation-induced DNA damage. There are, therefore, a number of therapeutic strategies to directly target hypoxic cells in primary (and metastatic) tumours, and several compounds are becoming available to functionally inhibit hypoxia-induced proteins that are known to promote metastasis. This mini-review summarizes several established and emerging experimental strategies to target hypoxic cells in primary tumours with potential clinical application to the treatment of patients with tumour metastases or patients at high risk of developing metastatic disease. Targeting hypoxic tumour cells to reduce metastatic disease represents an important advance in the way scientists and clinicians view the influence of tumour hypoxia on therapeutic outcome.
Collapse
Affiliation(s)
- Kevin L Bennewith
- Integrative Oncology Department, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | | |
Collapse
|
45
|
Shiozawa Y, Pienta KJ, Taichman RS. Hematopoietic stem cell niche is a potential therapeutic target for bone metastatic tumors. Clin Cancer Res 2011; 17:5553-8. [PMID: 21676926 DOI: 10.1158/1078-0432.ccr-10-2505] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite significant improvements in therapy, the prognosis for cancer with bone metastasis is generally poor. Therefore, there is a great need for new therapeutic approaches for metastatic disease. It has been appreciated that tumor cells metastasize to bone using mechanisms similar to those of hematopoietic stem cells (HSC) homing to bone marrow (e.g., CXCL12/CXCR4). It was recently found that prostate cancer cells target the bone marrow microenvironment for HSCs, or the HSC niche, during metastasis. Of importance, these disseminated prostate cancer cells can be mobilized out of the niche with the use of HSC mobilizing agents. These findings suggest that the bone marrow HSC niche is a potential therapeutic target for metastatic disease. Therefore, a hypothesis worth considering is that agents that can disrupt the interactions between tumor cells and the HSC niche may be efficacious when used in conjunction with standard chemotherapeutic agents. Although further understanding of the tumor-niche interactions is needed, the concept of targeting the niche in conjunction with chemotherapy could open up new possibilities to eradicate incurable metastatic diseases.
Collapse
Affiliation(s)
- Yusuke Shiozawa
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
46
|
Terraneo L, Bianciardi P, Caretti A, Ronchi R, Samaja M. Chronic systemic hypoxia promotes LNCaP prostate cancer growth in vivo. Prostate 2010; 70:1243-54. [PMID: 20333700 DOI: 10.1002/pros.21160] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Solid tumors contain underperfused regions where hypoxia-inducible factor-1alpha (HIF-1alpha) over-expression induces hypoxia adaptation and cell proliferation. We test the hypothesis that systemic hypoxia promotes prostate cancer growth in vivo and examine HIF-1alpha centrality in this effect. METHODS Male athymic mice were xenografted with 3 x 10(6) LNCaP cells per each flank and exposed for 28 days to either chronic hypoxia (CH, 10% O(2)) or CH with reoxygenation (CHReox, 3 times/week for 1 hr), with normoxia as control (n = 17, 9, and 20, respectively). At the end of the observation, mice were euthanized and tumors harvested for analyses. RESULTS The successful xenografts grew faster in CH and CHReox than in normoxia (first-order rate constants 0.15 +/- 0.01, 0.18 +/- 0.03, and 0.09 +/- 0.01 day(-1), P < 0.05, n = 18, 15, and 25, respectively). Furthermore, the tumor masses at the end were 4.09 +/- 0.58, 3.42 +/- 0.55, and 1.86 +/- 0.25 mg/g bw (P < 0.05), respectively. HIF-1alpha, assayed by Western blot and immunofluorescence, was slightly increased in CH with respect to normoxia, but markedly over-expressed (5-10 times) in CHReox (P < 0.001). The tumor hemoglobin content, higher in CH and CHReox than in normoxia, reflected the higher blood hemoglobin concentration, not neovascularization, as supported by similar expression levels of vascular endothelial growth factor (VEGF) in the three groups. By contrast, protein kinase B (Akt) was more phosphorylated in both hypoxic groups than in normoxia (P < 0.01). CONCLUSION In vivo systemic hypoxia promotes prostate cancer growth regardless of HIF-1alpha expression level and neovascularization, suggesting an important role for hypoxia-dependent pathways that do not involve HIF-1alpha, as the phosphatidyl inositol-3-phosphate signaling cascade.
Collapse
Affiliation(s)
- Laura Terraneo
- Department of Medicine, Surgery and Dentistry, San Paolo Hospital, University of Milan, Milan, Italy
| | | | | | | | | |
Collapse
|
47
|
Li XF, Ma Y, Sun X, Humm JL, Ling CC, O'Donoghue JA. High 18F-FDG uptake in microscopic peritoneal tumors requires physiologic hypoxia. J Nucl Med 2010; 51:632-8. [PMID: 20351353 PMCID: PMC2917184 DOI: 10.2967/jnumed.109.071233] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
UNLABELLED The objective of this study was to examine (18)F-FDG uptake in microscopic tumors grown intraperitoneally in nude mice and to relate this to physiologic hypoxia and glucose transporter-1 (GLUT-1) expression. METHODS Human colon cancer HT29 and HCT-8 cells were injected intraperitoneally into nude mice to generate disseminated tumors of varying sizes. After overnight fasting, animals, breathing either air or carbogen (95% O(2) + 5% CO(2)), were intravenously administered (18)F-FDG together with the hypoxia marker pimonidazole and cellular proliferation marker bromodeoxyuridine 1 h before sacrifice. Hoechst 33342, a perfusion marker, was administered 1 min before sacrifice. After sacrifice, the intratumoral distribution of (18)F-FDG was assessed by digital autoradiography of frozen tissue sections. Intratumoral distribution was compared with the distributions of pimonidazole, GLUT-1 expression, bromodeoxyuridine, and Hoechst 33342 as visualized by immunofluorescent microscopy. RESULTS Small tumors (diameter, <1 mm) had high (18)F-FDG accumulation and were severely hypoxic, with high GLUT-1 expression. Larger tumors (diameter, 1-4 mm) generally had low (18)F-FDG accumulation and were not significantly hypoxic, with low GLUT-1 expression. Carbogen breathing significantly decreased (18)F-FDG accumulation and tumor hypoxia in microscopic tumors but had little effect on GLUT-1 expression. CONCLUSION There was high (18)F-FDG uptake in microscopic tumors that was spatially associated with physiologic hypoxia and high GLUT-1 expression. This enhanced uptake was abrogated by carbogen breathing, indicating that in the absence of physiologic hypoxia, high GLUT-1 expression, by itself, was insufficient to ensure high (18)F-FDG uptake.
Collapse
Affiliation(s)
- Xiao-Feng Li
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Li XF, Sun X, Ma Y, Suehiro M, Zhang M, Russell J, Humm JL, Ling CC, O'Donoghue JA. Detection of hypoxia in microscopic tumors using 131I-labeled iodo-azomycin galactopyranoside (131I-IAZGP) digital autoradiography. Eur J Nucl Med Mol Imaging 2009; 37:339-48. [PMID: 19921184 DOI: 10.1007/s00259-009-1310-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 10/21/2009] [Indexed: 12/17/2022]
Abstract
PURPOSE Previous studies have shown that tumors less than 1 mm diameter derived from HT29 colorectal cancer cells are extremely hypoxic when grown intraperitoneally or intradermally in nude mice, whereas those of greater size (approximately 1-4 mm diameter) are not significantly hypoxic. The object of this study was to determine if digital autoradiography using the radiolabeled hypoxia imaging tracer iodo-azomycin galactopyranoside ((131)I-IAZGP) could detect hypoxia in this model. METHODS Microscopic HT29 tumors were grown as disseminated peritoneal disease and intradermally in nude mice. Tumors ranged in size from a few hundred microns to several millimeters in diameter. Animals were intravenously administered (131)I-IAZGP and pimonidazole 2 h before sacrifice. Following sacrifice, the intratumoral distribution of (131)I-IAZGP was assessed by digital autoradiography and compared with immunofluorescence microscopic images of pimonidazole binding and carbonic anhydrase IX (CAIX) expression. RESULTS The distributions of (131)I-IAZGP, pimonidazole, and CAIX expression were similar. Tumors less than 1 mm diameter displayed high (131)I-IAZGP uptake; these tumors also stained strongly for pimonidazole and CAIX. Larger tumors (approximately 1-4 mm diameter) were not significantly hypoxic and had low (131)I-IAZGP accumulation. CONCLUSION (131)I-IAZGP can detect hypoxia in microscopic tumors. Microscopic tumors are useful models for the validation of hypoxia radiotracers, and digital autoradiography is an appropriate technique for studying the distribution of hypoxia radiotracers in microscopic tumors.
Collapse
Affiliation(s)
- Xiao-Feng Li
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Krasny L, Shimony N, Tzukert K, Gorodetsky R, Lecht S, Nettelbeck DM, Haviv YS. An in-vitro tumour microenvironment model using adhesion to type I collagen reveals Akt-dependent radiation resistance in renal cancer cells. Nephrol Dial Transplant 2009; 25:373-80. [PMID: 19828461 DOI: 10.1093/ndt/gfp525] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Renal cell carcinoma (RCC) is considered resistant to ionizing radiation. Recently, the extracellular matrix (ECM) has been shown to play a role in both drug resistance and radiation resistance (RR). While fibronectin has been extensively investigated in the context of RR, the role of type I collagen [col(I)], a principal constituent of the ECM in tumour metastases, in RR of RCC is unknown. METHODS RCC cell adhesion to matrix was studied via pre-coating a variety of ECM glycoproteins onto plates. Cancer cell apoptosis and cell cycle were evaluated with flow cytometry using annexin V and propidium iodide stains, respectively. Activation of cellular survival signalling was analysed with western blots, and specific molecular inhibitors were correspondingly employed to block signalling. Hypoxia (<1%) was induced via N(2)/CO(2) gas flow in a specialized chamber. RESULTS While adherence to col(I) enhanced RCC cell proliferation in general, col(I) and fibronectin, but not fibrinogen, could confer specific anti-apoptotic RR to RCC cells. The radioprotective effect of col(I) was maintained during both hypoxia/reoxygenation and normoxia conditions. In contrast to intact col(I), micronized col(I), lacking the natural fibrillar structure, was not radioprotective. The effect of col(I) in RCC cells is mediated via attenuation of apoptosis rather than cell cycle redistribution, involving the PI3 kinase/Akt pathway but not the MAP kinase pathway. CONCLUSIONS Adherence to col(I) appears to be a relevant environmental cue enhancing RR in RCC cells, Akt dependently. Our results support inhibition of the PI3-kinase/Akt pathway as a radiosensitizing approach.
Collapse
Affiliation(s)
- Lina Krasny
- Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
50
|
Calvisi DF, Donninger H, Vos MD, Birrer MJ, Gordon L, Leaner V, Clark GJ. NORE1A tumor suppressor candidate modulates p21CIP1 via p53. Cancer Res 2009; 69:4629-37. [PMID: 19435914 PMCID: PMC6957251 DOI: 10.1158/0008-5472.can-08-3672] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
NORE1A (RASSF5) is a proapoptotic Ras effector that is frequently inactivated by promoter methylation in human tumors. It is structurally related to the RASSF1A tumor suppressor and is itself implicated as a tumor suppressor. In the presence of activated Ras, NORE1A is a potent inducer of apoptosis. However, when expressed at lower levels in the absence of activated Ras, NORE1A seems to promote cell cycle arrest rather than apoptosis. The mechanisms underlying NORE1A action are poorly understood. We have used microarray analysis of an inducible NORE1A system to screen for physiologic signaling targets of NORE1A action. Using this approach, we have identified several potential signaling pathways modulated by NORE1A. In particular, we identify the cyclin-dependent kinase inhibitor p21(CIP1) as a target for NORE1A activation and show that it is a vital component of NORE1A-mediated growth inhibition. In primary human hepatocellular carcinomas (HCC), loss of NORE1A expression is frequent and correlates tightly with loss of p21(CIP1) expression. NORE1A down-regulation in HCC also correlates with poor prognosis, enhanced proliferation, survival, and angiogenic tumor characteristics. Experimental inactivation of NORE1A results in the loss of p21(CIP1) expression and promotes proliferation. The best characterized activator of p21(CIP1) is the p53 master tumor suppressor. Further experiments showed that NORE1A activates p21(CIP1) via promoting p53 nuclear localization. Thus, we define the molecular basis of NORE1A-mediated growth inhibition and implicate NORE1A as a potential component of the ill-defined connection between Ras and p53.
Collapse
Affiliation(s)
- Diego F Calvisi
- Institut für Pathologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | | | | | | | | | | | | |
Collapse
|