1
|
The antitumour drug ABTL0812 impairs neuroblastoma growth through endoplasmic reticulum stress-mediated autophagy and apoptosis. Cell Death Dis 2020; 11:773. [PMID: 32943619 PMCID: PMC7498451 DOI: 10.1038/s41419-020-02986-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023]
Abstract
Neuroblastoma is the leading cause of cancer death in children aged 1 to 4 years. Particularly, five-year overall survival for high-risk neuroblastoma is below 50% with no curative options when refractory or relapsed. Most of current therapies target cell division and proliferation, thereby inducing DNA damage and programmed cell death. However, aggressive tumours often present alterations of these processes and are resistant to therapy. Therefore, exploring alternative pathways to induce tumour cell death will provide new therapeutic opportunities for these patients. In this study we aimed at testing the therapeutic potential of ABTL0812, a novel anticancer drug that induces cytotoxic autophagy to eliminate cancer cells, which is currently in phase II clinical trials of adult tumours. Here, we show that ABTL0812 impaired the viability of clinical representative neuroblastoma cell lines regardless of genetic alterations associated to bad prognosis and resistance to therapy. Oral administration of ABTL0812 to mice bearing neuroblastoma xenografts impaired tumour growth. Furthermore, our findings revealed that, in neuroblastoma, ABTL0812 induced cancer cell death via induction of endoplasmic reticulum stress, activation of the unfolded protein response, autophagy and apoptosis. Remarkably, ABTL0812 potentiated the antitumour activity of chemotherapies and differentiating agents such as irinotecan and 13-cis-retinoic acid. In conclusion, ABTL0812 distinctive mechanism of action makes it standout to be used alone or in combination in high-risk neuroblastoma patients.
Collapse
|
2
|
In vitro vascular toxicity assessment of NitDOX, a novel NO-releasing doxorubicin. Eur J Pharmacol 2020; 880:173164. [PMID: 32437742 DOI: 10.1016/j.ejphar.2020.173164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/23/2020] [Accepted: 05/04/2020] [Indexed: 12/16/2022]
Abstract
The conjugation of doxorubicin (DOX) with nitric oxide (NO)-releasing groups gave rise to novel anthracyclines, such as nitrooxy-DOX (NitDOX), capable to overcome multidrug resistance. The widely described anthracycline cardiovascular toxicity, however, might limit their clinical use. This study aimed to investigate NitDOX-induced effects, as potential hazard, on vascular smooth muscle A7r5 and endothelial EA.hy926 cell viability, on the mechanical activity of freshly and cultured rat aorta rings, as well as on Cav1.2 channels of A7r5 cells. DOX was used as a reference compound. Although an increase in intracellular radicals and a reduction in mitochondrial potential occurred upon treatment with both drugs, A7r5 and EA.hy926 cells proved to be more sensitive to DOX than to NitDOX. Both compounds promoted comparable effects in A7r5 cells, whereas NitDOX was less active than DOX in inducing DNA damage and in eliciting apoptotic-mediated cell death revealed as an increase in sub-diploid-, DAPI- and annexin V-positive- EA.hy926 cell percentage. Moreover, in EA.hy926 cells, NitDOX doubled basal NO content, while preincubation with the NO-scavenger PTIO increased NitDOX-induced cytotoxicity. DOX exhibited a negligible contracturing effect in endothelium-intact rings, while NitDOX induced a significant ODQ-sensible, vasodilation in endothelium-denuded rings. In arteries cultured with both drugs for 7 days, NitDOX prevented either phenylephrine- or KCl-induced contraction at a concentration 10-fold higher than that of DOX. These results demonstrate that NitDOX displays a more favourable vascular toxicity profile than DOX. Taking into account its greater efficacy against drug-resistant cells, NitDOX is worth of further investigations in preclinical and clinical settings.
Collapse
|
3
|
Jeon YK, Kim CK, Koh J, Chung DH, Ha GH. Pellino-1 confers chemoresistance in lung cancer cells by upregulating cIAP2 through Lys63-mediated polyubiquitination. Oncotarget 2018; 7:41811-41824. [PMID: 27248820 PMCID: PMC5173098 DOI: 10.18632/oncotarget.9619] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 05/11/2016] [Indexed: 12/20/2022] Open
Abstract
Pellino-1 is an E3 ubiquitin ligase that mediates immune receptor signaling pathways. The role of Pellino-1 in oncogenesis of lung cancer was investigated in this study. Pellino-1 expression was increased in human lung cancer cell lines compared with non-neoplastic lung cell lines. Pellino-1 overexpression in human lung cancer cells, A549 and H1299 cells, increased the survival and colony forming ability. Pellino-1 overexpression in these cells also conferred resistance to cisplatin- or paclitaxel-induced apoptosis. In contrast, depletion of Pellino-1 decreased the survival of A549 and H1299 cells and sensitized these cells to cisplatin- and paclitaxel-induced apoptosis. Pellino-1 overexpression in A549 and H1299 cells upregulated the expression of inhibitor of apoptosis (IAP) proteins, including cIAP1 and cIAP2, while Pellino-1 depletion downregulated these molecules. Notably, Pellino-1 directly interacted with cIAP2 and stabilized cIAP2 through lysine63-mediated polyubiquitination via its E3 ligase activity. Pellino-1-mediated chemoresistance in lung cancer cells was dependent on the induction of cIAP2. Moreover, a strong positive correlation between Pellino-1 and the cIAP2 expression was observed in human lung adenocarcinoma tissues. Taken together, these results demonstrate that Pellino-1 contributes to lung oncogenesis through the overexpression of cIAP2 and promotion of cell survival and chemoresistance. Pellino-1 might be a novel oncogene and potential therapeutic target in lung cancer.
Collapse
Affiliation(s)
- Yoon Kyung Jeon
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Chung Kwon Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Jaemoon Koh
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Doo Hyun Chung
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Geun-Hyoung Ha
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Gyeonggi-do, Republic of Korea
| |
Collapse
|
4
|
Baranski Z, de Jong Y, Ilkova T, Peterse EF, Cleton-Jansen AM, van de Water B, Hogendoorn PC, Bovée JV, Danen EH. Pharmacological inhibition of Bcl-xL sensitizes osteosarcoma to doxorubicin. Oncotarget 2015; 6:36113-25. [PMID: 26416351 PMCID: PMC4742165 DOI: 10.18632/oncotarget.5333] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/14/2015] [Indexed: 12/15/2022] Open
Abstract
High-grade conventional osteosarcoma is the most common primary bone tumor. Prognosis for osteosarcoma patients is poor and resistance to chemotherapy is common. We performed an siRNA screen targeting members of the Bcl-2 family in human osteosarcoma cell lines to identify critical regulators of osteosarcoma cell survival. Silencing the anti-apoptotic family member Bcl-xL but also the pro-apoptotic member Bak using a SMARTpool of siRNAs as well as 4/4 individual siRNAs caused loss of viability. Loss of Bak impaired cell cycle progression and triggered autophagy. Instead, silencing Bcl-xL induced apoptotic cell death. Bcl-xL was expressed in clinical osteosarcoma samples but mRNA or protein levels did not significantly correlate with therapy response or survival. Nevertheless, pharmacological inhibition of a range of Bcl-2 family members showed that inhibitors targeting Bcl-xL synergistically enhanced the response to the chemotherapeutic agent, doxorubicin. Indeed, in osteosarcoma cells strongly expressing Bcl-xL, the Bcl-xL-selective BH3 mimetic, WEHI-539 potently enhanced apoptosis in the presence of low doses of doxorubicin. Our results identify Bcl-xL as a candidate drug target for sensitization to chemotherapy in patients with osteosarcoma.
Collapse
Affiliation(s)
- Zuzanna Baranski
- Division of Toxicology, Leiden/Academic Center for Drug Research, Leiden University, 2300 RA Leiden, The Netherlands
| | - Yvonne de Jong
- Department of Pathology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Trayana Ilkova
- Division of Toxicology, Leiden/Academic Center for Drug Research, Leiden University, 2300 RA Leiden, The Netherlands
| | - Elisabeth F.P. Peterse
- Department of Pathology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | | | - Bob van de Water
- Division of Toxicology, Leiden/Academic Center for Drug Research, Leiden University, 2300 RA Leiden, The Netherlands
| | | | - Judith V.M.G. Bovée
- Department of Pathology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Erik H.J. Danen
- Division of Toxicology, Leiden/Academic Center for Drug Research, Leiden University, 2300 RA Leiden, The Netherlands
| |
Collapse
|
5
|
Maugg D, Rothenaigner I, Schorpp K, Potukuchi HK, Korsching E, Baumhoer D, Hadian K, Smida J, Nathrath M. New small molecules targeting apoptosis and cell viability in osteosarcoma. PLoS One 2015; 10:e0129058. [PMID: 26039064 PMCID: PMC4454490 DOI: 10.1371/journal.pone.0129058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 05/04/2015] [Indexed: 01/20/2023] Open
Abstract
Despite the option of multimodal therapy in the treatment strategies of osteosarcoma (OS), the most common primary malignant bone tumor, the standard therapy has not changed over the last decades and still involves multidrug chemotherapy and radical surgery. Although successfully applied in many patients a large number of patients eventually develop recurrent or metastatic disease in which current therapeutic regimens often lack efficacy. Thus, new therapeutic strategies are urgently needed. In this study, we performed a phenotypic high-throughput screening campaign using a 25,000 small-molecule diversity library to identify new small molecules selectively targeting osteosarcoma cells. We could identify two new small molecules that specifically reduced cell viability in OS cell lines U2OS and HOS, but affected neither hepatocellular carcinoma cell line (HepG2) nor primary human osteoblasts (hOB). In addition, the two compounds induced caspase 3 and 7 activity in the U2OS cell line. Compared to conventional drugs generally used in OS treatment such as doxorubicin, we indeed observed a greater sensitivity of OS cell viability to the newly identified compounds compared to doxorubicin and staurosporine. The p53-negative OS cell line Saos-2 almost completely lacked sensitivity to compound treatment that could indicate a role of p53 in the drug response. Taken together, our data show potential implications for designing more efficient therapies in OS.
Collapse
Affiliation(s)
- Doris Maugg
- Clinical Cooperation Group Osteosarcoma, Institute of Radiation Biology, Helmholtz Zentrum München—National Research Centre for Environmental Health, Neuherberg, Germany
- Department of Pediatrics and Children´s Cancer Research Center, Technische Universität München, Munich, Germany
- * E-mail:
| | - Ina Rothenaigner
- Assay Development and Screening Platform, Institute for Molecular Toxicology and Pharmacology, Helmholtz Zentrum München—National Research Centre for Environmental Health, Neuherberg, Germany
| | - Kenji Schorpp
- Assay Development and Screening Platform, Institute for Molecular Toxicology and Pharmacology, Helmholtz Zentrum München—National Research Centre for Environmental Health, Neuherberg, Germany
| | - Harish Kumar Potukuchi
- Lehrstuhl für Organische Chemie I and Catalysis Research Center (CRC), Technische Universität München, Garching, Germany
- Institute of Structural Biology, Helmholtz Zentrum München—National Research Centre for Environmental Health, Neuherberg, Germany
| | | | - Daniel Baumhoer
- Clinical Cooperation Group Osteosarcoma, Institute of Radiation Biology, Helmholtz Zentrum München—National Research Centre for Environmental Health, Neuherberg, Germany
- Bone Tumor Reference Center at the Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Kamyar Hadian
- Assay Development and Screening Platform, Institute for Molecular Toxicology and Pharmacology, Helmholtz Zentrum München—National Research Centre for Environmental Health, Neuherberg, Germany
| | - Jan Smida
- Clinical Cooperation Group Osteosarcoma, Institute of Radiation Biology, Helmholtz Zentrum München—National Research Centre for Environmental Health, Neuherberg, Germany
- Department of Pediatrics and Children´s Cancer Research Center, Technische Universität München, Munich, Germany
| | - Michaela Nathrath
- Clinical Cooperation Group Osteosarcoma, Institute of Radiation Biology, Helmholtz Zentrum München—National Research Centre for Environmental Health, Neuherberg, Germany
- Department of Pediatrics and Children´s Cancer Research Center, Technische Universität München, Munich, Germany
- Department of Pediatric Oncology, Klinikum Kassel, Kassel, Germany
| |
Collapse
|
6
|
Anasamy T, Abdul AB, Sukari MA, Abdelwahab SI, Mohan S, Kamalidehghan B, Azid MZ, Muhammad Nadzri N, Andas ARJ, Kuan Beng N, Hadi AHA, Sulaiman Rahman H. A Phenylbutenoid Dimer, cis-3-(3',4'-Dimethoxyphenyl)-4-[(E)-3''',4'''-Dimethoxystyryl] Cyclohex-1-ene, Exhibits Apoptogenic Properties in T-Acute Lymphoblastic Leukemia Cells via Induction of p53-Independent Mitochondrial Signalling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:939810. [PMID: 23710242 PMCID: PMC3603377 DOI: 10.1155/2013/939810] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 01/23/2013] [Indexed: 12/03/2022]
Abstract
The current study was designed to evaluate the in vitro cytotoxicity effect of a phenylbutenoid dimer, cis-3-(3',4'-dimethoxyphenyl)-4-[(E)-3 (‴) ,4 (‴) -dimethoxystyryl]cyclohex-1-ene (ZC-B11) isolated from the rhizome of Zingiber cassumunar on various cancer cell line, and normal human blood mononuclear cells, and to further investigate the involvement of apoptosis-related proteins that leads, to the probable pathway in which apoptosis is triggered. Cytotoxicity test using MTT assay showed selective inhibition of ZC-B11 towards T-acute lymphoblastic leukemia cells, CEMss, with an IC50 value of 7.11 ± 0.240 μ g/mL, which did not reveal cytotoxic effects towards normal human blood mononuclear cells (IC50 > 50 μ g/mL). Morphology assessments demonstrated distinctive morphological changes corresponding to a typical apoptosis. ZC-B11 also arrested cell cycle progression at S phase and causes DNA fragmentation in CEMss cells. Decline of mitochondrial membrane potential was also determined qualitatively. In the apoptosis-related protein determination, ZC-B11 was found to significantly upregulate Bax, caspase 3/7, caspase 9, cytochrome c, and SMAC and downregulate Bcl-2, HSP70, and XIAP, but did not affect caspase 8, p53, and BID. These results demonstrated for the first time the apoptogenic property of ZC-B11 on CEMss cell line, leading to the programmed cell death via intrinsic mitochondrial pathway of apoptosis induction.
Collapse
Affiliation(s)
- Theebaa Anasamy
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Ahmad Bustamam Abdul
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohd Aspollah Sukari
- Department of Chemistry, Faculty of Science, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Siddig Ibrahim Abdelwahab
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Medical Research Center, Faculty of Medicine, Jazan University, Jazan, P.O. Box 114, Saudi Arabia
| | - Syam Mohan
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Behnam Kamalidehghan
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mohd Zulkhairi Azid
- Department of Chemistry, Faculty of Science, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Nabilah Muhammad Nadzri
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - A. Reenaa Joys Andas
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Ng Kuan Beng
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - A. Hamid A. Hadi
- Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Heshu Sulaiman Rahman
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Department of Microbiology and Pathology, Faculty of Veterinary Medicine, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|