1
|
Song S, Wang J, Ouyang X, Huang R, Wang F, Xie J, Chen Q, Hu D. Therapeutic connections between pyroptosis and paclitaxel in anti-tumor effects: an updated review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04036-8. [PMID: 40257490 DOI: 10.1007/s00210-025-04036-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/06/2025] [Indexed: 04/22/2025]
Abstract
As a form of inflammation-associated cell death, pyroptosis has gained widespread attention in recent years. Accumulating evidence indicates that pyroptosis regulates tumor growth and is associated with autoimmune disorders and inflammatory response. Paclitaxel, a traditional Chinese medicine, usually induces death of cancer cells as a chemotherapeutic agent. Previous studies have revealed that paclitaxel can exert an anti-tumor effect through a variety of cell death mechanisms, of which pyroptosis plays a pivotal role in inhibiting tumor growth and enhancing anti-tumor immunity. In this review, we summarize the current advances in therapeutic connections between pyroptosis and paclitaxel in anti-tumor effects.
Collapse
Affiliation(s)
- Shuxin Song
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jingbo Wang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaohu Ouyang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Renyin Huang
- Jingshan Union Hospital, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fang Wang
- Jingshan Union Hospital, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Junke Xie
- Jingshan Union Hospital, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qianyun Chen
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- China-Russia Medical Research Center for Stress Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
2
|
Giaccari C, Antonouli S, Anifandis G, Cecconi S, Di Nisio V. An Update on Physiopathological Roles of Akt in the ReprodAKTive Mammalian Ovary. Life (Basel) 2024; 14:722. [PMID: 38929705 PMCID: PMC11204812 DOI: 10.3390/life14060722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/19/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
The phosphoinositide 3-kinase (PI3K)/Akt pathway is a key signaling cascade responsible for the regulation of cell survival, proliferation, and metabolism in the ovarian microenvironment. The optimal finetuning of this pathway is essential for physiological processes concerning oogenesis, folliculogenesis, oocyte maturation, and embryo development. The dysregulation of PI3K/Akt can impair molecular and structural mechanisms that will lead to follicle atresia, or the inability of embryos to reach later stages of development. Due to its pivotal role in the control of cell proliferation, apoptosis, and survival mechanisms, the dysregulation of this molecular pathway can trigger the onset of pathological conditions. Among these, we will focus on diseases that can harm female fertility, such as polycystic ovary syndrome and premature ovarian failure, or women's general health, such as ovarian cancer. In this review, we report the functions of the PI3K/Akt pathway in both its physiological and pathological roles, and we address the existing application of inhibitors and activators for the balancing of the molecular cascade in ovarian pathological environments.
Collapse
Affiliation(s)
- Carlo Giaccari
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Sevastiani Antonouli
- Department of Obstetrics and Gynaecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41334 Larisa, Greece; (S.A.); (G.A.)
| | - George Anifandis
- Department of Obstetrics and Gynaecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41334 Larisa, Greece; (S.A.); (G.A.)
| | - Sandra Cecconi
- Department of Life, Health, and Environmental Sciences, Università dell’Aquila, 67100 L’Aquila, Italy
| | - Valentina Di Nisio
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, SE-14186 Stockholm, Sweden;
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, SE-14186 Stockholm, Sweden
| |
Collapse
|
3
|
Gala K, Jain M, Shah P, Pandey A, Garg M, Khattar E. Role of p53 transcription factor in determining the efficacy of telomerase inhibitors in cancer treatment. Life Sci 2024; 339:122416. [PMID: 38216120 DOI: 10.1016/j.lfs.2024.122416] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
AIM Telomerase expression is unique to cancer cells, making it a promising target for therapy. However, a major drawback of telomerase inhibition is that it affects cancer cell proliferation only when telomeres shorten, creating a lag phase post-continuous drug treatment. Acute cytotoxicity of telomerase inhibitors is dependent on their ability to induce DNA damage. p53 senses DNA damage and is the primary effector required for sensitizing cells towards apoptosis. MAIN METHODS Isogenic p53+/+ and p53-/- ovarian cancer cell lines were generated using the CRISPR/Cas9 system and the anti-cancer effect of telomerase inhibitors MST-312 and BIBR1532 were determined. Flow cytometry, real-time PCR, and western blot were performed to study cell cycle, apoptosis, and gene expression. KEY FINDINGS We report that MST-312 exhibits p53-dependent cytotoxicity, while BIBR1532 exhibits p53-independent cytotoxicity. Colony-forming ability also confirms the p53-dependent effect of MST-312. Re-expression of p53 in p53-/- cells could rescue MST-312 sensitivity. In p53+/+ cells, MST-312 causes S phase arrest and activation of p53-dependent target genes like anti-apoptosis markers (Fas and Puma) and cell cycle markers (p21 and cyclinB). In p53-/- cells, MST-312 causes S/G2/M arrest. BIBR1532 induces S/G2/M phase cell cycle arrest irrespective of p53 status. This correlates with the expression of the DNA damage marker (γ-H2AX). Long-term continuous treatment with MST-312 or BIBR1532 results in p53-independent telomere shortening. SIGNIFICANCE In summary, we demonstrate that acute anti-cancer effects of MST-312 are dependent on p53 expression. Hence, it is important to consider the p53 expression status in cancer cells when selecting and administering telomerase inhibitors.
Collapse
Affiliation(s)
- Kavita Gala
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be) University, Vile Parle West, Mumbai 400056, India
| | - Meghna Jain
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be) University, Vile Parle West, Mumbai 400056, India
| | - Prachi Shah
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be) University, Vile Parle West, Mumbai 400056, India
| | - Amit Pandey
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar 382355, Gujarat, India
| | - Manoj Garg
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida 201313, India
| | - Ekta Khattar
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be) University, Vile Parle West, Mumbai 400056, India.
| |
Collapse
|
4
|
Li J, Tang Y, Lin TC, Zeng H, Mason JB, Liu Z. Tumor necrosis factor-α knockout mitigates intestinal inflammation and tumorigenesis in obese Apc 1638N mice. J Nutr Biochem 2023; 117:109355. [PMID: 37085057 DOI: 10.1016/j.jnutbio.2023.109355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
Strong evidence from observational studies shows that having body fatness is associated with an individual's risk of developing colorectal cancer (CRC), but the causality between obesity and CRC remains inadequately elucidated. Our previous studies have shown diet-induced obesity is associated with elevated TNF-α and enhanced activation of Wnt-signaling, yet the causal role of TNF-α on intestinal tumorigenesis has not been precisely studied. The present study aims to examine the functionality of TNF-α in the development of CRC associated with obesity. We first examined the extent to which diet-induced obesity elevates intestinal tumorigenesis by comparing Apc1638N mice fed a low fat diet (LFD, 10 kcal% fat) with those fed a high fat diet (HFD, 60 kcal% fat), and then investigated the degree that the genetic ablation of TNF-α attenuates the effect by crossing the TNF-α-/- mice with Apc1638N mice and feeding them with the same HFD (TNF-α KO HFD). After 16-weeks of feeding, the HFD significantly increased intestinal tumorigenesis, whereas the deletion of TNF-α attenuated the effect (p < 0.05). Accompanying the changes in macroscopic tumorigenesis, HFD significantly elevated intestinal inflammation and pro-carcinogenic Wnt-signaling, whereas abolishment of TNF-α mitigated the magnitude of these elevations (p < 0.05). In summary, our findings demonstrate that the knockout of TNF-α attenuates obesity-associated intestinal tumorigenesis by decreasing intestinal inflammation and thereby the Wnt-signaling, indicating that TNF-α signaling is a potential target that can be utilized to reduce the risk of CRC associated with obesity.
Collapse
Affiliation(s)
- Jinchao Li
- Nutrition and Cancer Prevention Laboratory, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Ying Tang
- Nutrition and Cancer Prevention Laboratory, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Ting-Chun Lin
- Nutrition and Cancer Prevention Laboratory, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Huawei Zeng
- Grand Forks Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Grand Forks, ND, 58203, USA
| | - Joel B Mason
- Vitamins and Carcinogenesis Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | - Zhenhua Liu
- Nutrition and Cancer Prevention Laboratory, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, 01003, USA; UMass Cancer Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
5
|
Zhao S, Tang Y, Wang R, Najafi M. Mechanisms of cancer cell death induction by paclitaxel: an updated review. Apoptosis 2022; 27:647-667. [PMID: 35849264 DOI: 10.1007/s10495-022-01750-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2022] [Indexed: 02/07/2023]
Abstract
Chemoresistance of cancer cells is a major problem in treating cancer. Knowledge of how cancer cells may die or resist cancer drugs is critical to providing certain strategies to overcome tumour resistance to treatment. Paclitaxel is known as a chemotherapy drug that can suppress the proliferation of cancer cells by inducing cell cycle arrest and induction of mitotic catastrophe. However, today, it is well known that paclitaxel can induce multiple kinds of cell death in cancers. Besides the induction of mitotic catastrophe that occurs during mitosis, paclitaxel has been shown to induce the expression of several pro-apoptosis mediators. It also can modulate the activity of anti-apoptosis mediators. However, certain cell-killing mechanisms such as senescence and autophagy can increase resistance to paclitaxel. This review focuses on the mechanisms of cell death, including apoptosis, mitotic catastrophe, senescence, autophagic cell death, pyroptosis, etc., following paclitaxel treatment. In addition, mechanisms of resistance to cell death due to exposure to paclitaxel and the use of combinations to overcome drug resistance will be discussed.
Collapse
Affiliation(s)
- Shuang Zhao
- School of Basic Medicine, Shaoyang University, Shaoyang, 422000, Hunan, China.
| | - Yufei Tang
- College of Medical Technology, Shaoyang University, Shaoyang, 422000, Hunan, China
| | - Ruohan Wang
- School of Nursing, Shaoyang University, Shaoyang, 422000, Hunan, China.
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
6
|
Rinne N, Christie EL, Ardasheva A, Kwok CH, Demchenko N, Low C, Tralau-Stewart C, Fotopoulou C, Cunnea P. Targeting the PI3K/AKT/mTOR pathway in epithelial ovarian cancer, therapeutic treatment options for platinum-resistant ovarian cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 4:573-595. [PMID: 35582310 PMCID: PMC9019160 DOI: 10.20517/cdr.2021.05] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/05/2021] [Accepted: 03/16/2021] [Indexed: 12/24/2022]
Abstract
The survival rates for women with ovarian cancer have shown scant improvement in recent years, with a 5-year survival rate of less than 40% for women diagnosed with advanced ovarian cancer. High-grade serous ovarian cancer (HGSOC) is the most lethal subtype where the majority of women develop recurrent disease and chemotherapy resistance, despite over 70%-80% of patients initially responding to platinum-based chemotherapy. The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway regulates many vital processes such as cell growth, survival and metabolism. However, this pathway is frequently dysregulated in cancers including different subtypes of ovarian cancer, through amplification or somatic mutations of phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), amplification of AKT isoforms, or deletion or inactivation of PTEN. Further evidence indicates a role for the PI3K/AKT/mTOR pathway in the development of chemotherapy resistance in ovarian cancer. Thus, targeting key nodes of the PI3K/AKT/mTOR pathway is a potential therapeutic prospect. In this review, we outline dysregulation of PI3K signaling in ovarian cancer, with a particular emphasis on HGSOC and platinum-resistant disease. We review pre-clinical evidence for inhibitors of the main components of the PI3K pathway and highlight past, current and upcoming trials in ovarian cancers for different inhibitors of the pathway. Whilst no inhibitors of the PI3K/AKT/mTOR pathway have thus far advanced to the clinic for the treatment of ovarian cancer, several promising compounds which have the potential to restore platinum sensitivity and improve clinical outcomes for patients are under evaluation and in various phases of clinical trials.
Collapse
Affiliation(s)
- Natasha Rinne
- Department of Surgery & Cancer, Imperial College London, Hammersmith campus, London W12 0NN, UK
| | | | - Anastasia Ardasheva
- Department of Surgery & Cancer, Imperial College London, Hammersmith campus, London W12 0NN, UK
| | - Chun Hei Kwok
- Department of Surgery & Cancer, Imperial College London, Hammersmith campus, London W12 0NN, UK
| | - Nikita Demchenko
- Department of Surgery & Cancer, Imperial College London, Hammersmith campus, London W12 0NN, UK
| | - Caroline Low
- Department of Metabolism Digestion & Reproduction, Imperial College London, London W12 0NN, UK
| | - Catherine Tralau-Stewart
- Takeda Academic Innovation, Center for External Innovation, Takeda California, San Diego, CA 92121, USA
| | - Christina Fotopoulou
- Department of Surgery & Cancer, Imperial College London, Hammersmith campus, London W12 0NN, UK
| | - Paula Cunnea
- Department of Surgery & Cancer, Imperial College London, Hammersmith campus, London W12 0NN, UK
| |
Collapse
|
7
|
Lim JS, Lee KW, Ko KP, Jeong SI, Ryu BK, Lee MG, Chi SG. XAF1 destabilizes estrogen receptor α through the assembly of a BRCA1-mediated destruction complex and promotes estrogen-induced apoptosis. Oncogene 2022; 41:2897-2908. [DOI: 10.1038/s41388-022-02315-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/09/2022]
|
8
|
Li T, Chen X, Wan J, Hu X, Chen W, Wang H. Akt inhibition improves the efficacy of cabazitaxel nanomedicine in preclinical taxane-resistant cancer models. Int J Pharm 2021; 607:121017. [PMID: 34416334 DOI: 10.1016/j.ijpharm.2021.121017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 07/18/2021] [Accepted: 08/15/2021] [Indexed: 12/20/2022]
Abstract
Drug resistance remains a major challenge in achieving cures in cancer patients. Cabazitaxel has shown the ability to overcome drug resistance induced by paclitaxel and docetaxel; however, substantially high toxicity has been observed in patients receiving this agent, which compromises its efficacy. We have previously demonstrated that a polymeric platform (termed cabazitaxel-NPs) encapsulating the oligolactide-cabazitaxel conjugate exhibits desired antitumor efficacy and improved in vivo tolerability. However, we found that upon cabazitaxel treatment, cancer cells adapted to activate Akt signaling, which potentially discounts the drug efficacy. We therefore hypothesized that combing cabazitaxel nanotherapeutics with a pan-Akt inhibitor MK-2206 would synergistically sensitize the resistant cancer. In this study, we confirmed that nanoparticle formulation reduced the systemic toxicity, with higher tolerance than solution-based free cabazitaxel agent in animals. Interestingly, the activation of Akt signaling in the resistant cancer was reversed by the addition of MK-2206. In particular, the collaboration of these two ingredients was demonstrated to maximize the efficacy in vitro and in a xenograft model bearing paclitaxel-resistant tumors. Mechanistically, Akt inhibition increased the microtubule-stabilizing effect of cabazitaxel nanomedicine. Collectively, this report introduced a binary platform composed of cytotoxic nanotherapeutics and inhibitors with certain targets to combat multidrug resistance, and such a combined regimen has the potential for the clinical treatment of patients with resistant cancer.
Collapse
Affiliation(s)
- Tongyu Li
- The First Affiliated Hospital, Zhejiang University School of Medicine; NHC Key Laboratory of Combined Multi-Organ Transplantation; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou 310003, PR China
| | - Xiaona Chen
- The First Affiliated Hospital, Zhejiang University School of Medicine; NHC Key Laboratory of Combined Multi-Organ Transplantation; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou 310003, PR China
| | - Jianqin Wan
- The First Affiliated Hospital, Zhejiang University School of Medicine; NHC Key Laboratory of Combined Multi-Organ Transplantation; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou 310003, PR China
| | - Xiaoxiao Hu
- The First Affiliated Hospital, Zhejiang University School of Medicine; NHC Key Laboratory of Combined Multi-Organ Transplantation; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou 310003, PR China
| | - Wanzhi Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310028, PR China
| | - Hangxiang Wang
- The First Affiliated Hospital, Zhejiang University School of Medicine; NHC Key Laboratory of Combined Multi-Organ Transplantation; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou 310003, PR China.
| |
Collapse
|
9
|
Shi Y, He R, Yang Y, He Y, Zhan L, Wei B. Potential relationship between Sirt3 and autophagy in ovarian cancer. Oncol Lett 2020; 20:162. [PMID: 32934730 PMCID: PMC7471650 DOI: 10.3892/ol.2020.12023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023] Open
Abstract
Sirtuin 3 (Sirt3) is an important member of the sirtuin protein family. It is a deacetylase that was previously reported to modulate the level of reactive oxygen species (ROS) production and limit the extent of oxidative damage in cellular components. As an important member of the class III type of histone deacetylases, Sirt3 has also been documented to mediate nuclear gene expression, metabolic control, neuroprotection, cell cycle and proliferation. In ovarian cancer (OC), Sirt3 has been reported to regulate cellular metabolism, apoptosis and autophagy. Sirt3 can regulate autophagy through a variety of different molecular signaling pathways, including the p62, 5'AMP-activated protein kinase and mitochondrial ROS-superoxide dismutase pathways. However, autophagy downstream of Sirt3 and its association with OC remains poorly understood. In the present review, the known characteristics of Sirt3 and autophagy were outlined, and their potential functional roles were discussed. Following a comprehensive analysis of the current literature, Sirt3 and autophagy may either serve positive or negative roles in the regulation of OC. Therefore, it is important to identify the appropriate expression level of Sirt3 to control the activation of autophagy in OC cells. This strategy may prove to be a novel therapeutic method to reduce the mortality of patients with OC. Finally, potential research directions into the association between Sirt3 and other signaling pathways were provided.
Collapse
Affiliation(s)
- Yuchuan Shi
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Runhua He
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Yu Yang
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Yu He
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Lei Zhan
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China.,Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Bing Wei
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| |
Collapse
|
10
|
Ediriweera MK, Tennekoon KH, Samarakoon SR. Role of the PI3K/AKT/mTOR signaling pathway in ovarian cancer: Biological and therapeutic significance. Semin Cancer Biol 2019; 59:147-160. [PMID: 31128298 DOI: 10.1016/j.semcancer.2019.05.012] [Citation(s) in RCA: 457] [Impact Index Per Article: 76.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/28/2019] [Accepted: 05/21/2019] [Indexed: 01/09/2023]
Abstract
Ovarian cancer (OC) is a lethal gynecological cancer. The phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway plays an important role in the regulation of cell survival, growth, and proliferation. Irregularities in the major components of the PI3K/AKT/mTOR signaling pathway are common in human cancers. Despite the availability of strong pre-clinical and clinical data of PI3K/AKT/mTOR pathway inhibitors in OC, there is no FDA approved inhibitor available for the treatment of OC. Here, we outline the importance of PI3K/AKT/mTOR signaling pathway in OC tumorigenesis, proliferation and progression, and pre-clinical and clinical experience with several PI3K/AKT/mTOR pathway inhibitors in OC.
Collapse
Affiliation(s)
- Meran Keshawa Ediriweera
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, 90, Cumaratunga Munidasa Mawatha, Colombo 03, Sri Lanka.
| | - Kamani Hemamala Tennekoon
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, 90, Cumaratunga Munidasa Mawatha, Colombo 03, Sri Lanka
| | - Sameera Ranganath Samarakoon
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, 90, Cumaratunga Munidasa Mawatha, Colombo 03, Sri Lanka
| |
Collapse
|
11
|
Li J, Frederick AM, Jin Y, Guo C, Xiao H, Wood RJ, Liu Z. The Prevention of a High Dose of Vitamin D or Its Combination with Sulforaphane on Intestinal Inflammation and Tumorigenesis in
Apc
1638N
Mice Fed a High‐Fat Diet. Mol Nutr Food Res 2018; 63:e1800824. [DOI: 10.1002/mnfr.201800824] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/10/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Jinchao Li
- Department of Nutrition School of Public Health and Health Sciences University of Massachusetts Amherst MA 01002 USA
| | - Armina‐Lyn M. Frederick
- Department of Nutrition School of Public Health and Health Sciences University of Massachusetts Amherst MA 01002 USA
| | - Yu Jin
- Department of Nutrition School of Public Health and Health Sciences University of Massachusetts Amherst MA 01002 USA
- Department of Gastroenterology Shengjing Hospital China Medical University Shenyang Liaoning 110004 China
| | - Chi Guo
- Department of Nutrition School of Public Health and Health Sciences University of Massachusetts Amherst MA 01002 USA
- Department of Molecular Medicine Hunan University Changsha Hunan 410006 China
| | - Hang Xiao
- Department of Food Science University of Massachusetts Amherst MA 01002 USA
| | - Richard J. Wood
- Department of Nutrition School of Public Health and Health Sciences University of Massachusetts Amherst MA 01002 USA
| | - Zhenhua Liu
- Department of Nutrition School of Public Health and Health Sciences University of Massachusetts Amherst MA 01002 USA
- Jean Mayer USDA Human Nutrition Research Center on Aging Tufts University Boston MA 02153 USA
| |
Collapse
|
12
|
Jeong SI, Kim JW, Ko KP, Ryu BK, Lee MG, Kim HJ, Chi SG. XAF1 forms a positive feedback loop with IRF-1 to drive apoptotic stress response and suppress tumorigenesis. Cell Death Dis 2018; 9:806. [PMID: 30042418 PMCID: PMC6057933 DOI: 10.1038/s41419-018-0867-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/18/2018] [Accepted: 07/11/2018] [Indexed: 12/30/2022]
Abstract
X-linked inhibitor of apoptosis (XIAP)-associated factor 1 (XAF1) is a proapoptotic tumor suppressor that is frequently inactivated in multiple human cancers. However, the molecular basis for the XAF1-mediated growth inhibition remains largely undefined. Here, we report that XAF1 forms a positive feedback loop with interferon regulatory factor-1 (IRF-1) and functions as a transcriptional coactivator of IRF-1 to suppress tumorigenesis. Under various stressful conditions, XAF1 transcription is activated by IRF-1, and elevated XAF1 stabilizes and activates IRF-1. Mechanistically, XAF1 binds to the multifunctional domain 2 of IRF-1 via the zinc finger domain 6, thereby hindering C-terminus of Hsc70-interacting protein (CHIP) interaction with and ubiquitination of IRF-1. Activation of the IRF-1−XAF1 loop greatly increases stress-induced apoptosis and decreases the invasive capability of tumor cells. Oncogenic Ras and growth factors interfere with the IRF-1−XAF1 interplay via Erk-mediated repression of XAF1 transcription. Furthermore, XAF1 enhances IRF-1-mediated transcription of proapoptotic genes via the XAF1-IRF-1 complex formation on these target promoters. Meanwhile, XAF1 inhibits NF-κB-mediated tumor cell malignancy by reinforcing IRF-1 binding to a subset of coregulated promoters. Expression levels of IRF-1 and XAF1 correlate tightly in both cancer cell lines and primary tumors, and XAF1-induced tumor regression is markedly attenuated in IRF-1-depleted tumors. Collectively, this study identifies a novel mechanism of XAF1-mediated tumor suppression, uncovering XAF1 as a feedback coactivator of IRF-1 under stressful conditions.
Collapse
Affiliation(s)
- Seong-In Jeong
- Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Jung-Wook Kim
- Department of Internal Medicine, Kyung Hee University Hospital, Seoul, 02447, Korea
| | - Kyung-Phil Ko
- Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Byung-Kyu Ryu
- Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Min-Goo Lee
- Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Hyo-Jong Kim
- Department of Internal Medicine, Kyung Hee University Hospital, Seoul, 02447, Korea
| | - Sung-Gil Chi
- Department of Life Sciences, Korea University, Seoul, 02841, Korea.
| |
Collapse
|
13
|
Zhu Y, Wang C, Zhou Y, Ma N, Zhou J. C6 ceramide motivates the anticancer sensibility induced by PKC412 in preclinical head and neck squamous cell carcinoma models. J Cell Physiol 2018; 233:9437-9446. [PMID: 29968910 DOI: 10.1002/jcp.26831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 05/10/2018] [Indexed: 01/09/2023]
Abstract
The purpose of this study was to evaluate the anti-head and neck squamous cell carcinoma (anti-HNSCC) cell activity by C6 ceramide and multikinase inhibitor PKC412. Experiments were performed on HNSCC cell lines (SQ20B and SCC-9) and primary human oral carcinoma cells. Results showed that PKC412 inhibited HNSCC cell proliferation without provoking apoptosis activation. Cotreatment of C6 ceramide significantly augmented PKC412-induced lethality in HNSCC cells. PKC412 decreased Akt-mammalian target of rapamycin (mTOR) activation in HNSCC cells, facilitated with cotreatment of C6 ceramide. In contrast, exogenous expression of a constitutively active Akt restored Akt-mTOR activation and attenuated lethality by the cotreatment. We propose that Mcl-1 is a primary resistance factor of PKC412. The cytotoxicity of PKC412 in HNSCC cells was potentiated with Mcl-1 short hairpin RNA knockdown, but was attenuated with Mcl-1 overexpression. Intriguingly, C6 ceramide downregulated Mcl-1 in HNSCC cells. In vivo, PKC412 oral administration inhibited SQ20B xenograft tumor growth in severe combined immunodeficient mice. The antitumor activity of PKC412 was further sensitized with coadministration of liposomal C6 ceramide. Together, we suggest that PKC412 could be further studied as a promising anti-HNSCC strategy, alone or in combination with C6 ceramide.
Collapse
Affiliation(s)
- Yanyan Zhu
- Department of Oncology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Chaojie Wang
- Department of Oncology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yun Zhou
- Department of Oncology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Ning Ma
- Department of Oncology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Jianwei Zhou
- Department of Oncology, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
14
|
Zhang J, Wang G, Zhou Y, Chen Y, Ouyang L, Liu B. Mechanisms of autophagy and relevant small-molecule compounds for targeted cancer therapy. Cell Mol Life Sci 2018; 75:1803-1826. [PMID: 29417176 PMCID: PMC11105210 DOI: 10.1007/s00018-018-2759-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/15/2018] [Accepted: 01/23/2018] [Indexed: 02/05/2023]
Abstract
Autophagy is an evolutionarily conserved, multi-step lysosomal degradation process for the clearance of damaged or superfluous proteins and organelles. Accumulating studies have recently revealed that autophagy is closely related to a variety of types of cancer; however, elucidation of its Janus role of either tumor-suppressive or tumor-promoting still remains to be discovered. In this review, we focus on summarizing the context-dependent role of autophagy and its complicated molecular mechanisms in different types of cancer. Moreover, we discuss a series of small-molecule compounds targeting autophagy-related proteins or the autophagic process for potential cancer therapy. Taken together, these findings would shed new light on exploiting the intricate mechanisms of autophagy and relevant small-molecule compounds as potential anti-cancer drugs to improve targeted cancer therapy.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Yuxin Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yi Chen
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
15
|
Chen MB, Liu YY, Cheng LB, Lu JW, Zeng P, Lu PH. AMPKα phosphatase Ppm1E upregulation in human gastric cancer is required for cell proliferation. Oncotarget 2018; 8:31288-31296. [PMID: 28423719 PMCID: PMC5458207 DOI: 10.18632/oncotarget.16126] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 02/15/2017] [Indexed: 12/21/2022] Open
Abstract
Activation of AMP-activated protein kinase (AMPK) is a valuable anti-cancer strategy. In the current study, we tested expression and potential function of Ca2+/calmodulin-dependent protein kinase phosphatase (Ppm1E), an AMPKα phosphatase, in human gastric cancers. Ppm1E expression was elevated in human gastric cancer tissues (vs. normal tissues), which was correlated with AMPK (p-AMPKα, Thr-172) dephosphorylation and mTOR complex 1 (mTORC1) activation. Ppm1E upregulation, AMPK inhibition and mTORC1 activation were also observed in human gastric cancer cell lines (AGS, HGC-27, and SNU601). Intriguingly, Ppm1E knockdown by shRNA induced AMPK activation, mTORC1 inactivation, and proliferation inhibition in AGS cells. On the other hand, forced over-expression of Ppm1E induced further AMPK inhibition and mTORC1 activation to enhance AGS cell proliferation. Remarkably, microRNA-135b-5p (“miR-135b-5p”), an anti-Ppm1E microRNA, was downregulated in both human gastric cancer tissues and cells. Reversely, miR-135b-5p exogenous expression caused Ppm1E depletion, AMPK activation, and AGC cell proliferation inhibition. Together, Ppm1E upregulation in human gastric cancer is important for cell proliferation, possible via regulating AMPK-mTOR signaling.
Collapse
Affiliation(s)
- Min-Bin Chen
- Department of Radiotherapy and Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, China
| | - Yuan-Yuan Liu
- Department of Radiotherapy and Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, China
| | - Li-Bo Cheng
- Department of Ophthalmology, Wuxi Second Hospital, Nanjing Medical University, Wu'xi, China
| | - Jian-Wei Lu
- Department of Oncology, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Ping Zeng
- Department of Radiotherapy and Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, China
| | - Pei-Hua Lu
- Department of Radiotherapy and Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| |
Collapse
|
16
|
Li ZW, Zhu YR, Zhou XZ, Zhuo BB, Wang XD. microRNA-135b expression silences Ppm1e to provoke AMPK activation and inhibit osteoblastoma cell proliferation. Oncotarget 2018; 8:26424-26433. [PMID: 28460435 PMCID: PMC5432269 DOI: 10.18632/oncotarget.15477] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 02/08/2017] [Indexed: 12/25/2022] Open
Abstract
Forced-activation of AMP-activated protein kinase (AMPK) can possibly inhibit osteoblastoma cells. Here, we aim to provoke AMPK activation via microRNA silencing its phosphatase Ppm1e (protein phosphatase Mg2+/Mn2+-dependent 1e). We showed that microRNA-135b-5p (“miR-135b-5p”), the anti-Ppm1e microRNA, was significantly downregulated in human osteoblastoma tissues. It was correlated with Ppm1e upregulation and AMPKα1 de-phosphorylation. Forced-expression of miR-135b-5p in human osteoblastoma cells (MG-63 and U2OS lines) silenced Ppm1e, and induced a profound AMPKα1 phosphorylation (at Thr-172). Osteoblastoma cell proliferation was inhibited after miR-135b-5p expression. Intriguingly, Ppm1e shRNA knockdown similarly induced AMPKα1 phosphorylation, causing osteoblastoma cell proliferation. Reversely, AMPKα1 shRNA knockdown or dominant negative mutation almost abolished miR-135b-5p's actions in osteoblastoma cells. Further in vivo studies demonstrated that U2OS tumor growth in mice was dramatically inhibited after expressing miR-135b-5p or Ppm1e shRNA. Together, our results suggest that miR-135b-induced Ppm1e silence induces AMPK activation to inhibit osteoblastoma cell proliferation.
Collapse
Affiliation(s)
- Zheng-Wei Li
- The Center of Diagnosis and Treatment for Children's Bone Diseases, The Children's Hospital Affiliated to Soochow University, Suzhou, China
| | - Yun-Rong Zhu
- Department of Orthopedics, The Affiliated Jiangyin Hospital of Medical College of Southeast University, Jiangyin City, China
| | - Xiao-Zhong Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Department of Orthopedics, The First People's Hospital of SuQian, SuQian, China
| | - Bao-Biao Zhuo
- The Center of Diagnosis and Treatment for Children's Bone Diseases, The Children's Hospital Affiliated to Soochow University, Suzhou, China
| | - Xiao-Dong Wang
- The Center of Diagnosis and Treatment for Children's Bone Diseases, The Children's Hospital Affiliated to Soochow University, Suzhou, China
| |
Collapse
|
17
|
Lu PH, Chen MB, Ji C, Li WT, Wei MX, Wu MH. Aqueous Oldenlandia diffusa extracts inhibits colorectal cancer cells via activating AMP-activated protein kinase signalings. Oncotarget 2018; 7:45889-45900. [PMID: 27322552 PMCID: PMC5216768 DOI: 10.18632/oncotarget.9969] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/03/2016] [Indexed: 11/25/2022] Open
Abstract
Here we evaluated the anti-cancer activity of aqueous Oldenlandia diffusa (OD) extracts (ODE) in colorectal cancer (CRC) cells. We showed that ODE exerted potent anti-proliferative, cytotoxic and pro-apoptotic activities against a panel of established CRC lines (HCT-116, DLD-1, HT-29 and Lovo) and primary (patient-derived) human CRC cells. ODE activated AMP-activated protein kinase (AMPK) signaling, which led to subsequent mTORC1 inhibition and Bcl-2/HIF-1α downregulation in CRC cells. In ODE-treated CRC cells, AMPKα1 formed a complex with p53. This might be important for p53 activation and subsequent cancer cell apoptosis. Inhibition of AMPK signaling, though dominant negative (dn) mutation or shRNA/siRNA knockdown of AMPKα1 attenuated ODE-exerted CRC cytotoxicity. In vivo, i.p. administration of ODE inhibited HCT-116 xenograft tumor growth in SCID mice. In addition, AMPK activation, mTORC1 inhibition and p53 activation were observed in ODE-treated HCT-116 xenograft tumors. These results suggest that ODE inhibits CRC cells in vitro and in vivo, possibly via activation of AMPK-dependent signalings.
Collapse
Affiliation(s)
- Pei-Hua Lu
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Department of Medical Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Min-Bin Chen
- Department of Medical Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, 215300, Jiangsu, China
| | - Chao Ji
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Wen-Ting Li
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mu-Xin Wei
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Mian-Hua Wu
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
18
|
Wong Te Fong AC, Thavasu P, Gagrica S, Swales KE, Leach MO, Cosulich SC, Chung YL, Banerji U. Evaluation of the combination of the dual m-TORC1/2 inhibitor vistusertib (AZD2014) and paclitaxel in ovarian cancer models. Oncotarget 2017; 8:113874-113884. [PMID: 29371953 PMCID: PMC5768370 DOI: 10.18632/oncotarget.23022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/14/2017] [Indexed: 01/02/2023] Open
Abstract
Activation of the PI3K/mTOR pathway has been shown to be correlated with resistance to chemotherapy in ovarian cancer. We aimed to investigate the effects of combining inhibition of mTORC1 and 2 using the mTOR kinase inhibitor vistusertib (AZD2014) with paclitaxel in in vitro and in vivo ovarian cancer models. The combination of vistusertib and paclitaxel on cell growth was additive in a majority of cell lines in the panel (n = 12) studied. A cisplatin- resistant model (A2780Cis) was studied in vitro and in vivo. We demonstrated inhibition of mTORC1 and mTORC2 by vistusertib and the combination by showing reduction in p-S6 and p-AKT levels, respectively. In the A2780CisR xenograft model compared to control, there was a significant reduction in tumor volumes (p = 0.03) caused by the combination and not paclitaxel or vistusertib alone. In vivo, we observed a significant increase in apoptosis (cleaved PARP measured by immunohistochemistry; p = 0.0003). Decreases in phospholipid and bioenergetic metabolites were studied using magnetic resonance spectroscopy and significant changes in phosphocholine (p = 0.01), and ATP (p = 0.04) were seen in tumors treated with the combination when compared to vehicle-control. Based on this data, a clinical trial evaluating the combination of paclitaxel and vistusertib has been initiated (NCT02193633). Interestingly, treatment of ovarian cancer patients with paclitaxel caused an increase in p-AKT levels in platelet-rich plasma and it was possible to abrogate this increase with the co-treatment with vistusertib in 4/5 patients: we believe this combination will benefit patients with ovarian cancer.
Collapse
Affiliation(s)
- Anne-Christine Wong Te Fong
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden, London, UK
| | - Parames Thavasu
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
- Division of Cancer Therapeutics and Division of Clinical Studies, The Institute of Cancer Research and The Royal Marsden, London, UK
| | - Sladjana Gagrica
- IMED Oncology, AstraZeneca, Cancer Research UK Cambridge Institute, Cambridge, UK
| | - Karen E. Swales
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
- Division of Cancer Therapeutics and Division of Clinical Studies, The Institute of Cancer Research and The Royal Marsden, London, UK
| | - Martin O. Leach
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden, London, UK
| | - Sabina C. Cosulich
- IMED Oncology, AstraZeneca, Cancer Research UK Cambridge Institute, Cambridge, UK
| | - Yuen-Li Chung
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden, London, UK
| | - Udai Banerji
- Division of Cancer Therapeutics and Division of Clinical Studies, The Institute of Cancer Research and The Royal Marsden, London, UK
| |
Collapse
|
19
|
Zhao Z, Feng L, Wang J, Cheng D, Liu M, Ling M, Xu W, Sun K. NPC-26 kills human colorectal cancer cells via activating AMPK signaling. Oncotarget 2017; 8:18312-18321. [PMID: 28407688 PMCID: PMC5392330 DOI: 10.18632/oncotarget.15436] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/11/2017] [Indexed: 12/25/2022] Open
Abstract
NPC-26 is novel mitochondrion-interfering compound. The current study tested its potential effect against colorectal cancer (CRC) cells. We demonstrated that NPC-26 induced potent anti-proliferative and cytotoxic activities against CRC cell lines (HCT-116, DLD-1 and HT-29). Activation of AMP-activated protein kinase (AMPK) signaling mediated NPC-26-induced CRC cell death. AMPKα1 shRNA knockdown or dominant negative mutation abolished NPC-26-induced AMPK activation and subsequent CRC cell death. NPC-26 disrupted mitochondrial function, causing mitochondrial permeability transition pore (mPTP) opening and reactive oxygen species (ROS) production. ROS scavengers (NAC or MnTBAP) and mPTP blockers (cyclosporin A or sanglifehrin A) blocked NPC-26-induced AMPK activation and attenuated CRC cell death. Significantly, intraperitoneal injection of NPC-26 potently inhibited HCT-116 tumor growth in severe combined immuno-deficient (SCID) mice. Yet, its anti-tumor activity was significantly weakened against AMPKα1-silenced HCT-116 tumors. Together, we conclude that NPC-26 kills CRC cells possibly via activating AMPK signaling.
Collapse
Affiliation(s)
- Zhen Zhao
- Clinical Laboratory, Minhang Hospital, Fudan University, Shanghai, China
| | - Li Feng
- Department of Gastroenterology, Minhang Hospital, Fudan University, Shanghai, China
| | - Jiqin Wang
- Emergency Department, Minhang Hospital, Fudan University, Shanghai, China
| | - Deshan Cheng
- Emergency Department, Minhang Hospital, Fudan University, Shanghai, China
| | - Mei Liu
- Emergency Department, Minhang Hospital, Fudan University, Shanghai, China
| | - Meirong Ling
- Emergency Department, Minhang Hospital, Fudan University, Shanghai, China
| | - Weiping Xu
- Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Keyu Sun
- Emergency Department, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Brasseur K, Gévry N, Asselin E. Chemoresistance and targeted therapies in ovarian and endometrial cancers. Oncotarget 2017; 8:4008-4042. [PMID: 28008141 PMCID: PMC5354810 DOI: 10.18632/oncotarget.14021] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/30/2016] [Indexed: 02/06/2023] Open
Abstract
Gynecological cancers are known for being very aggressive at their advanced stages. Indeed, the survival rate of both ovarian and endometrial cancers is very low when diagnosed lately and the success rate of current chemotherapy regimens is not very efficient. One of the main reasons for this low success rate is the acquired chemoresistance of these cancers during their progression. The mechanisms responsible for this acquired chemoresistance are numerous, including efflux pumps, repair mechanisms, survival pathways (PI3K/AKT, MAPK, EGFR, mTOR, estrogen signaling) and tumor suppressors (P53 and Par-4). To overcome these resistances, a new type of therapy has emerged named targeted therapy. The principle of targeted therapy is simple, taking advantage of changes acquired in malignant cancer cells (receptors, proteins, mechanisms) by using compounds specifically targeting these, thus limiting their action on healthy cells. Targeted therapies are emerging and many clinical trials targeting these pathways, frequently involved in chemoresistance, have been tested on gynecological cancers. Despite some targets being less efficient than expected as mono-therapies, the combination of compounds seems to be the promising avenue. For instance, we demonstrate using ChIP-seq analysis that estrogen downregulate tumor suppressor Par-4 in hormone-dependent cells by directly binding to its DNA regulatory elements and inhibiting estrogen signaling could reinstate Par-4 apoptosis-inducing abilities. This review will focus on the chemoresistance mechanisms and the clinical trials of targeted therapies associated with these, specifically for endometrial and ovarian cancers.
Collapse
Affiliation(s)
- Kevin Brasseur
- Research Group in Cellular Signaling, Department of Medical Biology, Canada Research Chair in Molecular Gyneco-Oncology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Nicolas Gévry
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Boulevard de l’Université, Sherbrooke, QC, Canada
| | - Eric Asselin
- Research Group in Cellular Signaling, Department of Medical Biology, Canada Research Chair in Molecular Gyneco-Oncology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| |
Collapse
|
21
|
Massihnia D, Avan A, Funel N, Maftouh M, van Krieken A, Granchi C, Raktoe R, Boggi U, Aicher B, Minutolo F, Russo A, Leon LG, Peters GJ, Giovannetti E. Phospho-Akt overexpression is prognostic and can be used to tailor the synergistic interaction of Akt inhibitors with gemcitabine in pancreatic cancer. J Hematol Oncol 2017; 10:9. [PMID: 28061880 PMCID: PMC5219723 DOI: 10.1186/s13045-016-0371-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 12/08/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND There is increasing evidence of a constitutive activation of Akt in pancreatic ductal adenocarcinoma (PDAC), associated with poor prognosis and chemoresistance. Therefore, we evaluated the expression of phospho-Akt in PDAC tissues and cells, and investigated molecular mechanisms influencing the therapeutic potential of Akt inhibition in combination with gemcitabine. METHODS Phospho-Akt expression was evaluated by immunohistochemistry in tissue microarrays (TMAs) with specimens tissue from radically-resected patients (n = 100). Data were analyzed by Fisher and log-rank test. In vitro studies were performed in 14 PDAC cells, including seven primary cultures, characterized for their Akt1 mRNA and phospho-Akt/Akt levels by quantitative-RT-PCR and immunocytochemistry. Growth inhibitory effects of Akt inhibitors and gemcitabine were evaluated by SRB assay, whereas modulation of Akt and phospho-Akt was investigated by Western blotting and ELISA. Cell cycle perturbation, apoptosis-induction, and anti-migratory behaviors were studied by flow cytometry, AnnexinV, membrane potential, and migration assay, while pharmacological interaction with gemcitabine was determined with combination index (CI) method. RESULTS Immunohistochemistry of TMAs revealed a correlation between phospho-Akt expression and worse outcome, particularly in patients with the highest phospho-Akt levels, who had significantly shorter overall and progression-free-survival. Similar expression levels were detected in LPC028 primary cells, while LPC006 were characterized by low phospho-Akt. Remarkably, Akt inhibitors reduced cancer cell growth in monolayers and spheroids and synergistically enhanced the antiproliferative activity of gemcitabine in LPC028, while this combination was antagonistic in LPC006 cells. The synergistic effect was paralleled by a reduced expression of ribonucleotide reductase, potentially facilitating gemcitabine cytotoxicity. Inhibition of Akt decreased cell migration and invasion, which was additionally reduced by the combination with gemcitabine. This combination significantly increased apoptosis, associated with induction of caspase-3/6/8/9, PARP and BAD, and inhibition of Bcl-2 and NF-kB in LPC028, but not in LPC006 cells. However, targeting the key glucose transporter Glut1 resulted in similar apoptosis induction in LPC006 cells. CONCLUSIONS These data support the analysis of phospho-Akt expression as both a prognostic and a predictive biomarker, for the rational development of new combination therapies targeting the Akt pathway in PDAC. Finally, inhibition of Glut1 might overcome resistance to these therapies and warrants further studies.
Collapse
Affiliation(s)
- Daniela Massihnia
- Department of Medical Oncology VU University Medical Center, Cancer Center Amsterdam, CCA room 1.52, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Amir Avan
- Metabolic syndrome Research center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niccola Funel
- Cancer Pharmacology Lab, AIRC Start Up Unit, University of Pisa, Pisa, Italy
| | - Mina Maftouh
- Department of Medical Oncology VU University Medical Center, Cancer Center Amsterdam, CCA room 1.52, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Anne van Krieken
- Department of Medical Oncology VU University Medical Center, Cancer Center Amsterdam, CCA room 1.52, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | | | - Rajiv Raktoe
- Department of Medical Oncology VU University Medical Center, Cancer Center Amsterdam, CCA room 1.52, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Ugo Boggi
- Department of Surgery, University of Pisa, Pisa, Italy
| | - Babette Aicher
- Æterna Zentaris GmbH, Frankfurt am Main, Frankfurt, Germany
| | | | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Leticia G Leon
- Cancer Pharmacology Lab, AIRC Start Up Unit, University of Pisa, Pisa, Italy
| | - Godefridus J Peters
- Department of Medical Oncology VU University Medical Center, Cancer Center Amsterdam, CCA room 1.52, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology VU University Medical Center, Cancer Center Amsterdam, CCA room 1.52, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
- Cancer Pharmacology Lab, AIRC Start Up Unit, University of Pisa, Pisa, Italy.
| |
Collapse
|
22
|
Nie J, Liu A, Tan Q, Zhao K, Hu K, Li Y, Yan B, Zhou L. AICAR activates ER stress-dependent apoptosis in gallbladder cancer cells. Biochem Biophys Res Commun 2016; 482:246-252. [PMID: 27847321 DOI: 10.1016/j.bbrc.2016.11.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 11/10/2016] [Indexed: 02/06/2023]
Abstract
AICAR (5-Aminoimidazole-4-carboxamide riboside or acadesine) is an AMP-activated protein kinase (AMPK) agonist, its activity in human gallbladder cancer cells was evaluated here. We show that AICAR provoked significant apoptosis in human gallbladder cancer cell lines (Mz-ChA-1, QBC939 and GBC-SD) and primary gallbladder cancer cells. AICAR-induced cytotoxicity in gallbladder cancer cells appears independent of AMPK activation. Inhibition of AMPK, via AMPKα shRNA knockdown or dominant negative mutation (T172A), failed to rescue GBC-SD cells from AICAR. Further, forced-activation of AMPK, by adding two other AMPK activators (A769662 and Compound 13), or expressing a constitutively-active mutant AMPKα (T172D), didn't induce GBC-SD cell death. Remarkably, AICAR treatment in gallbladder cancer cells induced endoplasmic reticulum (ER) stress activation, the latter was tested by caspase-12 activation, C/EBP homologous protein (CHOP) expression and IRE1/PERK phosphorylation. Contrarily, salubrinal (the ER stress inhibitor), z-ATAD-fmk (the caspase-12 inhibitor) or CHOP shRNAs significantly attenuated AICAR-induced gallbladder cancer cell apoptosis. Together, we conclude that AICAR-induced gallbladder cancer cell apoptosis requires ER stress activation, but is independent of AMPK.
Collapse
Affiliation(s)
- Jifeng Nie
- Department of Minimally Invasive Surgery, Integrated Chinese and Western Medicine Hospital of Zhejiang Province, Hangzhou, China
| | - Aidong Liu
- Department of Pathology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Qunya Tan
- Department of Minimally Invasive Surgery, Integrated Chinese and Western Medicine Hospital of Zhejiang Province, Hangzhou, China
| | - Kai Zhao
- Department of Minimally Invasive Surgery, Integrated Chinese and Western Medicine Hospital of Zhejiang Province, Hangzhou, China
| | - Kui Hu
- Department of Minimally Invasive Surgery, Integrated Chinese and Western Medicine Hospital of Zhejiang Province, Hangzhou, China
| | - Yong Li
- Department of Minimally Invasive Surgery, Integrated Chinese and Western Medicine Hospital of Zhejiang Province, Hangzhou, China
| | - Bin Yan
- Department of Minimally Invasive Surgery, Integrated Chinese and Western Medicine Hospital of Zhejiang Province, Hangzhou, China
| | - Lin Zhou
- Department of Minimally Invasive Surgery, Integrated Chinese and Western Medicine Hospital of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
23
|
Avan A, Narayan R, Giovannetti E, Peters GJ. Role of Akt signaling in resistance to DNA-targeted therapy. World J Clin Oncol 2016; 7:352-369. [PMID: 27777878 PMCID: PMC5056327 DOI: 10.5306/wjco.v7.i5.352] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/25/2016] [Accepted: 07/29/2016] [Indexed: 02/06/2023] Open
Abstract
The Akt signal transduction pathway controls most hallmarks of cancer. Activation of the Akt cascade promotes a malignant phenotype and is also widely implicated in drug resistance. Therefore, the modulation of Akt activity is regarded as an attractive strategy to enhance the efficacy of cancer therapy and irradiation. This pathway consists of phosphatidylinositol 3 kinase (PI3K), mammalian target of rapamycin, and the transforming serine-threonine kinase Akt protein isoforms, also known as protein kinase B. DNA-targeted agents, such as platinum agents, taxanes, and antimetabolites, as well as radiation have had a significant impact on cancer treatment by affecting DNA replication, which is aberrantly activated in malignancies. However, the caveat is that they may also trigger the activation of repairing mechanisms, such as upstream and downstream cascade of Akt survival pathway. Thus, each target can theoretically be inhibited in view of improving the potency of conventional treatment. Akt inhibitors, e.g., MK-2206 and perifosine, or PI3K modulators, e.g., LY294002 and Wortmannin, have shown some promising results in favor of sensitizing the cancer cells to the therapy in vitro and in vivo, which have provided the rationale for incorporation of these novel agents into multimodality treatment of different malignancies. Nevertheless, despite the acceptable safety profile of some of these agents in the clinical studies, with regard to the efficacy, the results are still too preliminary. Hence, we need to wait for the upcoming data from the ongoing trials before utilizing them into the standard care of cancer patients.
Collapse
|
24
|
Fang R, Zhu X, Zhu Y, Tong X, Li K, Bai H, Li X, Ben J, Zhang H, Yang Q, Chen Q. Miltefosine Suppresses Hepatic Steatosis by Activating AMPK Signal Pathway. PLoS One 2016; 11:e0163667. [PMID: 27681040 PMCID: PMC5040442 DOI: 10.1371/journal.pone.0163667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 09/12/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE It has been accepted that AMPK (Adenosine monophosphate-activated protein kinase) activation exhibits many beneficial effects on glucolipid metabolism. Lysophosphatidylcholine (LPC) is an important lysophospholipid which can improve blood glucose levels in diabetic mice and attenuate inflammation by activating AMPK signal pathway in macrophages. Synthetic alkylphospholipids (ALPs), such as miltefosine, is used as an alternate of LPC for the clinical application. Here, we investigated whether miltefosine could have an impact on hepatic steatosis and related metabolic disorders. EXPERIMENTAL APPROACH Mice were fed with high fat diet (HFD) for 16 weeks to generate an obese model. Next, the obese mice were randomly divided into three groups: saline-treated and miltefosine-treated (2.5 or 5 mg/kg/d) groups. Miltefosine was intraperitoneally administrated into mice for additional 4 weeks plus HFD treatment. KEY RESULTS It was shown that miltefosine treatment could substantially improve glucose metabolism, prevented hepatic lipid accumulation, and inhibited liver inflammation in HFD-fed mice by activating AMPK signal pathway. In vitro, miltefosine stimulated AMPKα phosphorylation both in time and dose dependent manner and decreased lipid accumulation in liver cells. When a specific AMPK inhibitor compound C was used to treat mice, the antagonistic effects of miltefosine on HFD-induced mouse hyperlipidaemia and liver steatosis were abolished. Treatment with miltefosine also dramatically inhibited the HFD-induced liver inflammation in mice. CONCLUSIONS AND IMPLICATIONS Here we demonstrated that miltefosine might be a new activator of AMPK signal pathway in vivo and in vitro and be useful for treatment of hepatic steatosis and related metabolic disorders.
Collapse
Affiliation(s)
- Ru Fang
- Atherosclerosis Research Center, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing 210029, People’s Republic of China
| | - Xudong Zhu
- Atherosclerosis Research Center, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing 210029, People’s Republic of China
| | - Yaqin Zhu
- Atherosclerosis Research Center, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing 210029, People’s Republic of China
| | - Xing Tong
- Atherosclerosis Research Center, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing 210029, People’s Republic of China
| | - Kexue Li
- Atherosclerosis Research Center, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing 210029, People’s Republic of China
| | - Hui Bai
- Atherosclerosis Research Center, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing 210029, People’s Republic of China
| | - Xiaoyu Li
- Atherosclerosis Research Center, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing 210029, People’s Republic of China
| | - Jingjing Ben
- Atherosclerosis Research Center, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing 210029, People’s Republic of China
| | - Hanwen Zhang
- Atherosclerosis Research Center, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing 210029, People’s Republic of China
| | - Qing Yang
- Atherosclerosis Research Center, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing 210029, People’s Republic of China
| | - Qi Chen
- Atherosclerosis Research Center, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing 210029, People’s Republic of China
- * E-mail:
| |
Collapse
|
25
|
Jiang F, Jin K, Huang S, Bao Q, Shao Z, Hu X, Ye J. Liposomal C6 Ceramide Activates Protein Phosphatase 1 to Inhibit Melanoma Cells. PLoS One 2016; 11:e0159849. [PMID: 27631768 PMCID: PMC5025141 DOI: 10.1371/journal.pone.0159849] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 07/09/2016] [Indexed: 02/02/2023] Open
Abstract
Melanoma is one common skin cancer. In the present study, the potential anti-melanoma activity by a liposomal C6 ceramide was tested in vitro. We showed that the liposomal C6 (ceramide) was cytotoxic and anti-proliferative against a panel of human melanoma cell lines (SK-Mel2, WM-266.4 and A-375 and WM-115). In addition, liposomal C6 induced caspase-dependent apoptotic death in the melanoma cells. Reversely, its cytotoxicity was attenuated by several caspase inhibitors. Intriguingly, liposomal C6 was non-cytotoxic to B10BR mouse melanocytes and primary human melanocytes. Molecularly, liposomal C6 activated protein phosphatase 1 (PP1) to inactivate Akt-mammalian target of rapamycin (mTOR) signaling in melanoma cells. On the other hand, PP1 shRNA knockdown or exogenous expression of constitutively activate Akt1 (CA-Akt1) restored Akt-mTOR activation and significantly attenuated liposomal C6-mediated cytotoxicity and apoptosis in melanoma cells. Our results suggest that liposomal C6 activates PP1 to inhibit melanoma cells.
Collapse
Affiliation(s)
- Fangzhen Jiang
- Department of Plastic and Reconstructive Surgery, the Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Kai Jin
- Department of Ophthalmology, the Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
- * E-mail:
| | - Shenyu Huang
- Department of Ophthalmology, the Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Qi Bao
- Department of Plastic and Reconstructive Surgery, the Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Zheren Shao
- Department of Plastic and Reconstructive Surgery, the Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Xueqing Hu
- Department of Plastic and Reconstructive Surgery, the Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Juan Ye
- Department of Ophthalmology, the Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| |
Collapse
|
26
|
Jiang H, Liu W, Zhan SK, Pan YX, Bian LG, Sun B, Sun QF, Pan SJ. GSK621 Targets Glioma Cells via Activating AMP-Activated Protein Kinase Signalings. PLoS One 2016; 11:e0161017. [PMID: 27532105 PMCID: PMC4988667 DOI: 10.1371/journal.pone.0161017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 07/28/2016] [Indexed: 01/03/2023] Open
Abstract
Here, we studied the anti-glioma cell activity by a novel AMP-activated protein kinase (AMPK) activator GSK621. We showed that GSK621 was cytotoxic to human glioma cells (U87MG and U251MG lines), possibly via provoking caspase-dependent apoptotic cell death. Its cytotoxicity was alleviated by caspase inhibitors. GSK621 activated AMPK to inhibit mammalian target of rapamycin (mTOR) and downregulate Tetraspanin 8 (Tspan8) in glioma cells. AMPK inhibition, through shRNA knockdown of AMPKα or introduction of a dominant negative (T172A) AMPKα, almost reversed GSK621-induced AMPK activation, mTOR inhibition and Tspan8 degradation. Consequently, GSK621’s cytotoxicity in glioma cells was also significantly attenuated by AMPKα knockdown or mutation. Further studies showed that GSK621, at a relatively low concentration, significantly potentiated temozolomide (TMZ)’s sensitivity and lethality against glioma cells. We summarized that GSK621 inhibits human glioma cells possibly via activating AMPK signaling. This novel AMPK activator could be a novel and promising anti-glioma cell agent.
Collapse
Affiliation(s)
- Hong Jiang
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200025, P.R. China
| | - Wei Liu
- Department of Stereotactic and Functional Neurosurgery, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200025, P.R. China
| | - Shi-Kun Zhan
- Department of Stereotactic and Functional Neurosurgery, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200025, P.R. China
| | - Yi-Xin Pan
- Department of Stereotactic and Functional Neurosurgery, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200025, P.R. China
| | - Liu-Guan Bian
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200025, P.R. China
| | - Bomin Sun
- Department of Stereotactic and Functional Neurosurgery, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200025, P.R. China
| | - Qing-Fang Sun
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200025, P.R. China
- * E-mail: (Q-FS); (S-JP)
| | - Si-Jian Pan
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200025, P.R. China
- * E-mail: (Q-FS); (S-JP)
| |
Collapse
|
27
|
Zou Y, Fan G, Wang X. Pre-clinical assessment of A-674563 as an anti-melanoma agent. Biochem Biophys Res Commun 2016; 477:1-8. [DOI: 10.1016/j.bbrc.2016.03.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/06/2016] [Indexed: 10/22/2022]
|
28
|
Lan AP, Xiong XJ, Chen J, Wang X, Chai ZF, Hu Y. AMPK Inhibition Enhances the Neurotoxicity of Cu(II) in SH-SY5Y Cells. Neurotox Res 2016; 30:499-509. [PMID: 27435481 DOI: 10.1007/s12640-016-9651-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 06/20/2016] [Accepted: 07/06/2016] [Indexed: 12/14/2022]
Abstract
The involvement of copper in the pathophysiology of neurodegenerative disorders has been documented but remains poorly understood. This study aimed at investigating the molecular mechanism underlying copper-induced neurotoxicity. Human neuroblastoma SH-SY5Y cells were treated with different concentrations of Cu(II) (25-800 μM). The relative levels of AMPKα, phosphorylated (p)-AMPKα were examined by western blotting. The results showed that copper reduced cell viability and enhanced apoptosis of SH-SY5Y cells. Pretreatment with N-acetyl-L-cysteine, a common ROS scavenger, decreased copper-induced cytotoxicity. Furthermore, the levels of p-AMPKα in SH-SY5Y cells were increased by a relatively low concentration of copper and decreased by a relatively high concentration of copper at 24 h. Moreover, inhibition of AMPK with compound C or RNA interference aggravated concentration-dependent cytotoxicity of Cu(II). Taken together, these results indicated that AMPK activity might be important for the neurotoxicity of Cu(II).
Collapse
Affiliation(s)
- Ai-Ping Lan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, China
| | - Xian-Jia Xiong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, China.,Department of Physiology, School of Medicine, Tianjin Medical University, Tianjin, 300070, China
| | - Jun Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, China
| | - Xi Wang
- Department of Physiology, School of Medicine, Tianjin Medical University, Tianjin, 300070, China
| | - Zhi-Fang Chai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, China
| | - Yi Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, China.
| |
Collapse
|
29
|
Lv H, Zhang Z, Wu X, Wang Y, Li C, Gong W, Gui L, Wang X. Preclinical Evaluation of Liposomal C8 Ceramide as a Potent anti-Hepatocellular Carcinoma Agent. PLoS One 2016; 11:e0145195. [PMID: 26727592 PMCID: PMC4699687 DOI: 10.1371/journal.pone.0145195] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 11/30/2015] [Indexed: 01/09/2023] Open
Abstract
Hepatocellular carcinoma (HCC) remains a global health threat. The search for novel anti-HCC agents is urgent. In the current study, we synthesized a liposomal C8 ceramide, and analyzed its anti-tumor activity in pre-clinical HCC models. The liposomal C8 (ceramide) potently inhibited HCC cell (HepG2, SMMC-7721 and Huh-7 lines) survival and proliferation, more efficiently than free C8 ceramide. Yet, non-cancerous HL7702 human hepatocytes were resistant to the liposomal C8 treatment. Liposomal C8 activated caspase-dependent apoptosis in HCC cells, and HCC cytotoxicity by liposomal C8 was significantly attenuated with co-treatment of caspase inhibitors. At the molecular level, we showed that liposomal C8 activated ASK1 (apoptosis signal-regulating kinase 1)-JNK (Jun N-terminal protein kinase) signaling in HCC cells. On the other hand, JNK pharmacological inhibition or dominant negative mutation, as well as ASK1 shRNA-knockdown remarkably inhibited liposomal C8-induced apoptosis in HCC cells. Further studies showed that liposomal C8 inhibited AKT-mTOR (mammalian target of rapamycin) activation in HCC cells. Restoring AKT-mTOR activation by introducing a constitutively-active AKT alleviated HepG2 cytotoxicity by liposomal C8. In vivo, intravenous (i.v.) injection of liposomal C8 significantly inhibited HepG2 xenograft growth in severe combined immuno-deficient (SCID) mice, and mice survival was significantly improved. These preclinical results suggest that liposomal C8 could be further studied as a valuable anti-HCC agent.
Collapse
Affiliation(s)
- Huiqing Lv
- Department of Hyperbaric Oxygen, Lin Yi People's Hospital, Lin Yi, China
| | - Zhongmin Zhang
- Department of Oncology, Lin Yi People's Hospital, Lin Yi, China
| | - Xiaoyu Wu
- Department of General Surgery, The Affiliated Hospital of Nanjing Medical University. Nanjing, China
| | - Yaoxia Wang
- Department of Oncology, Lin Yi People's Hospital, Lin Yi, China
| | - Chenglin Li
- Department of Oncology, Lin Yi People's Hospital, Lin Yi, China
| | - Weihong Gong
- Department of Oncology, Lin Yi People's Hospital, Lin Yi, China
| | - Liang Gui
- Department of General Surgery, The Affiliated Hospital of Nanjing Medical University. Nanjing, China
- * E-mail: (LG); (XW)
| | - Xin Wang
- Department of Oncology, Lin Yi People's Hospital, Lin Yi, China
- * E-mail: (LG); (XW)
| |
Collapse
|
30
|
AMPK Regulation of Cell Growth, Apoptosis, Autophagy, and Bioenergetics. EXPERIENTIA SUPPLEMENTUM (2012) 2016; 107:45-71. [PMID: 27812976 DOI: 10.1007/978-3-319-43589-3_3] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In eukaryotic cells, AMP-activated protein kinase (AMPK) generally promotes catabolic pathways that produce ATP and at the same time inhibits anabolic pathways involved in different processes that consume ATP. As an energy sensor, AMPK is involved in the main cellular functions implicated in cell fate, such as cell growth and autophagy.Recently, AMPK has been connected with apoptosis regulation, although the molecular mechanism by which AMPK induces and/or inhibits cell death is not clear.This chapter reviews the essential role of AMPK in signaling pathways that respond to cellular stress and damage, highlighting the complex and reciprocal regulation between AMPK and their targets and effectors. The therapeutic implications of the role of AMPK in different pathologies such as diabetes, cancer, or mitochondrial dysfunctions are still controversial, and it is necessary to further investigate the molecular mechanisms underlying AMPK activation.
Collapse
|
31
|
Zheng K, Lu H, Sheng Z, Li Y, Xu B. Low-concentration of perifosine surprisingly protects cardiomyocytes from oxygen glucose deprivation. Biochem Biophys Res Commun 2015; 469:753-60. [PMID: 26686418 DOI: 10.1016/j.bbrc.2015.12.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 12/02/2015] [Indexed: 12/25/2022]
Abstract
Here we found that low-concentration of perifosine, an Akt inhibitor, surprisingly protected cardiomyocytes from oxygen glucose deprivation (OGD)/re-oxygenation. In H9c2 cardiomyocytes, non-cytotoxic perifosine (0.1-0.5 μM) suppressed OGD/re-oxygenation-induced reactive oxygen species (ROS) production, p53 mitochondrial translocation and cyclophilin D complexation, as well as mitochondrial membrane potential (MMP) reduction. Molecularly, perifosine activated AMP-activated kinase (AMPK) signaling to increase intracellular NADPH (nicotinamide adenine dinucleotide phosphate) content in H9c2 cells. On the other hand, AMPK inhibition by AMPKα1 shRNA-knockdown in H9c2 cells significantly reduced perifosine-induced NADPH production, and alleviated perifosine-mediated anti-oxidant and cytoprotective activities against OGD/re-oxygenation. In primary murine cardiomyocytes, perifosine similarly activated AMPK signaling, and offered significant protection against OGD/re-oxygenation, which was largely attenuated with siRNA knockdown of AMPKα1. We demonstrate an unexpected function of perifosine (low-concentration) in protecting cardiomyocytes from OGD/re-oxygenation.
Collapse
Affiliation(s)
- Koulong Zheng
- Department of Cardiology, Drum Tower Clinical Medical Hospital, Nanjing Medical University, Nanjing, China; Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Huihe Lu
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Zhenqiang Sheng
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Yefei Li
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Biao Xu
- Department of Cardiology, Drum Tower Clinical Medical Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
32
|
Zhai L, Sun N, Han Z, Jin HC, Zhang B. Liposomal short-chain C6 ceramide induces potent anti-osteosarcoma activity in vitro and in vivo. Biochem Biophys Res Commun 2015; 468:274-80. [PMID: 26505795 DOI: 10.1016/j.bbrc.2015.10.113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 10/21/2015] [Indexed: 10/22/2022]
Abstract
Osteosarcoma (OS) remains one deadly disease for many affected patients. The search for novel and more efficient anti-OS agents is urgent. In the current study, we demonstrated that liposome-packed C6 ceramide exerted potent cytotoxic effect against established (U2OS and MG-63 lines) and primary human OS cells. Meanwhile, the liposomal C6 (ceramide) induced caspase-mediated apoptotic death in OS cells. Liposomal C6 was significantly more potent than conventional free C6 in inhibiting OS cells, yet it was safe to non-cancerous bone cells (primary murine osteoblasts or human MLO-Y4 osteocytic cells). At the signaling level, we showed that liposomal C6 potently inhibited Akt activation in OS cells. Further studies revealed that a low dose of liposomal C6 dramatically sensitized the in vitro anti-OS activity of two conventional chemodrugs: methotrexate (MTX) and doxorubicin. In vivo, intravenous injection of liposomal C6 inhibited Akt activation and suppressed U2OS xenograft growth in nude mice without causing apparent toxicities. Meanwhile, when given at a low-dose (5 mg/kg body weight), liposomal C6 dramatically sensitized MTX's anti-U2OS activity in vivo. Collectively, our data demonstrate that liposomal C6 exerts potent anti-tumor activity in preclinical OS models.
Collapse
Affiliation(s)
- Lei Zhai
- Department of Orthopaedic Surgery, The Affiliated Hospital of Logistics College of Chinese People's Armed Police Force, Tianjin, China
| | - Nan Sun
- Department of Nephropathy, The Affiliated Hospital of Logistics College of Chinese People's Armed Police Force, Tianjin, China
| | - Zhe Han
- Department of Orthopaedic Surgery, Tianjin Hospital, Tianjin, China
| | - Hai-chao Jin
- Department of Orthopaedic Surgery, The Affiliated Hospital of Logistics College of Chinese People's Armed Police Force, Tianjin, China
| | - Bo Zhang
- Department of Immunology, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
33
|
Zhang D, Xia H, Zhang W, Fang B. The anti-ovarian cancer activity by WYE-132, a mTORC1/2 dual inhibitor. Tumour Biol 2015; 37:1327-36. [PMID: 26293898 DOI: 10.1007/s13277-015-3922-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/11/2015] [Indexed: 11/24/2022] Open
Abstract
Epithelial ovarian cancer is the most common and lethal gynecological cancer in USA and around the world, causing major mortality annually. In the current study, we investigated the potential anti-ovarian cancer activity of WYE-132, a mammalian target of rapamycin (mTOR) complex 1/2 (mTORC1/2) dual inhibitor. Our results showed that WYE-132 potently inhibited proliferation of primary and established human ovarian cancer cells. Meanwhile, WYE-132 induced caspase-dependent apoptosis in ovarian cancer cells. At the molecular level, WYE-132 blocked mTORC1/2 activation and inhibited expression of mTOR-regulated genes (cyclin D1 and hypoxia-inducible factor 1α). Interestingly, introducing a constitutively active AKT (caAKT), which restored mTORC1/2 activation in WYE-132-treated ovarian cancer cells, only mitigated (but not abolished) WYE-132-mediated growth inhibition and apoptosis. Further studies showed that WYE-132 inhibited sphingosine kinase-1 (SphK1) activity, leading to pro-apoptotic ceramide production in ovarian cancer cells. Meanwhile, WYE-132-induced cytotoxicity against ovarian cancer cells was inhibited by sphingosine-1-phosphate (S1P) but was aggravated by SphK1 inhibitor SKI-II or C6 ceramide. In vivo, WYE-132 inhibited ovarian cancer cell growth, and its activity was further enhanced when co-administrated with paclitaxel (Taxol). These results demonstrate that WYE-132 inhibits ovarian cancer cell proliferation through mTOR-dependent and mTOR-independent mechanisms and indicate a potential value of WYE-132 in ovarian cancer treatment.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Obstetrics and Gynecology, Ruijin Hospital affiliated to Shanghai Jiaotong University, Shanghai, China.,Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Hexia Xia
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Wei Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Bo Fang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
34
|
Shen J, Hong Y, Zhao Q, Zhang JL. Preclinical evaluation of perifosine as a potential promising anti-rhabdomyosarcoma agent. Tumour Biol 2015; 37:1025-33. [PMID: 26269112 DOI: 10.1007/s13277-015-3740-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/30/2015] [Indexed: 11/24/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is a highly malignant and metastatic pediatric cancer that arises from the skeletal muscle. Recent studies have identified an important role of AKT signaling in RMS progression. In the current study, we investigated the activity of perifosine, an oral alkylphospholipid AKT inhibitor, against human RMS cells (RD and Rh-30 lines) both in vivo and in vitro, and studied the underlying mechanisms. We showed that perifosine significantly inhibited RMS cell growth in concentration- and time-dependent manners. Meanwhile, perifosine induced dramatic apoptosis in RMS cells. At the signaling level, perifosine blocked AKT activation, while inducing reactive oxygen species (ROS) production as well as JNK and P38 phosphorylations in RMS cells. Restoring AKT activation by introducing a constitutively active-AKT (CA-AKT) only alleviated (not abolished) perifosine-induced cytotoxicity in RD cells. Yet, the ROS scavenger N-acetyl cysteine (NAC) as well as pharmacological inhibitors against JNK (SP-600125) or P38 (SB-203580) suppressed perifosine-induced cytotoxicity in RMS cells. Thus, perifosine induces growth inhibition and apoptosis in RMS cells through mechanisms more than just blocking AKT. In vivo, oral administration of perifosine significantly inhibited growth of Rh-30 xenografts in severe combined immunodeficient (SCID) mice. Our data indicate that perifosine might be further investigated as a promising anti-RMS agent.
Collapse
Affiliation(s)
- Jie Shen
- Department of Respiratory Diseases, The First Affiliated Hospital of Zhejiang University, No. 79 Qing-chun Road, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Yue Hong
- Department of Respiratory Diseases, The First Affiliated Hospital of Zhejiang University, No. 79 Qing-chun Road, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Qiong Zhao
- Department of Thoracic Oncology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, 310003, People's Republic of China.
| | - Jian-Li Zhang
- Department of Respiratory Diseases, The First Affiliated Hospital of Zhejiang University, No. 79 Qing-chun Road, Hangzhou, Zhejiang, 310003, People's Republic of China.
| |
Collapse
|
35
|
Chen MB, Jiang Q, Liu YY, Zhang Y, He BS, Wei MX, Lu JW, Ji Y, Lu PH. C6 ceramide dramatically increases vincristine sensitivity both in vivo and in vitro, involving AMP-activated protein kinase-p53 signaling. Carcinogenesis 2015; 36:1061-70. [PMID: 26116623 DOI: 10.1093/carcin/bgv094] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 06/18/2015] [Indexed: 12/15/2022] Open
Abstract
Use of the conventional cancer chemotherapy (i.e. vincristine) is limited in tumor cells exhibiting pre-existing or acquired resistance. Here, we found that C6 ceramide (C6) dramatically sensitized vincristine's activity. In vitro, C6 and vincristine coadministration induced substantial necrosis and apoptosis in multiple human cancer cell lines, which were accompanied by a profound AMP-activated protein kinase (AMPK) activation, subsequent p53 activation, mTORC1 inactivation and Bcl-2/HIF-1α downregulation. Such synergistic effects were attenuated by AMPK inactivation through genetic mutation or short hairpin RNA silencing. Coadministration-activated p53 translocated to mitochondria, and formed a complex with cyclophilin-D, leading to mitochondrial permeability transition pore opening and cell necrosis. Disrupting p53-Cyp-D complexation through pharmacological or genetic means reduced costimulation-induced cytotoxicity. In vivo, a liposomal C6 was synthesized, which dramatically enhanced the antiproliferative activity of vincristine on HCT-116 or A2780 xenografts. Together, C6 sensitizes vincristine-induced anticancer activity in vivo and in vitro, involving activating AMPK-p53 signaling.
Collapse
Affiliation(s)
- Min-Bin Chen
- Department of Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, No.91, Qianjin Road, Kunshan, Jiangsu 215300, China, The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China, Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215021, China, Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China, Department of Traditional Chinese Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China, Department of Medical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Baiziting 42, Nanjing, Jiangsu 210009, China, Department of Thoracic Surgery and Department of Medical Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299, Qingyang Road, Wuxi, Jiangsu 214023, China and Department of Medical Oncology Center, Institute of Integrated Traditional and Western Medicine Affiliated to Nanjing Medical University, Nanjing 210029, China
| | - Qin Jiang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yuan-yuan Liu
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215021, China
| | - Yan Zhang
- Department of Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, No.91, Qianjin Road, Kunshan, Jiangsu 215300, China, The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China, Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215021, China, Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China, Department of Traditional Chinese Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China, Department of Medical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Baiziting 42, Nanjing, Jiangsu 210009, China, Department of Thoracic Surgery and Department of Medical Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299, Qingyang Road, Wuxi, Jiangsu 214023, China and Department of Medical Oncology Center, Institute of Integrated Traditional and Western Medicine Affiliated to Nanjing Medical University, Nanjing 210029, China
| | - Bang-shun He
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China
| | - Mu-Xin Wei
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jian-Wei Lu
- Department of Medical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Baiziting 42, Nanjing, Jiangsu 210009, China, Department of Thoracic Surgery and
| | - Yong Ji
- Department of Medical Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299, Qingyang Road, Wuxi, Jiangsu 214023, China and
| | - Pei-Hua Lu
- Department of Medical Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299, Qingyang Road, Wuxi, Jiangsu 214023, China and Department of Medical Oncology Center, Institute of Integrated Traditional and Western Medicine Affiliated to Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
36
|
Zhang J, Hong Y, Shen J. Combination treatment with perifosine and MEK-162 demonstrates synergism against lung cancer cells in vitro and in vivo. Tumour Biol 2015; 36:5699-706. [PMID: 25697899 DOI: 10.1007/s13277-015-3244-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/09/2015] [Indexed: 10/24/2022] Open
Abstract
Lung cancer is a global health problem. The search for new therapeutic approaches for the treatment of lung cancer is important. Here, we reported that the AKT inhibitor perifosine and the MEK\ERK inhibitor MEK-162 synergistically induced lung cancer cell (A549 and H460 lines) growth inhibition and apoptosis. The combined efficiency was significantly higher than either agent alone. For the molecular study, perifosine and MEK-162 worked together to concurrently block AKT, mammalian target of rapamycin (mTOR) complex 1 (mTORC1), and MEK-ERK signalings in lung cancer cells, while either agent alone only affected one or two signalings with lower efficiency. In vivo, MEK-162 and perifosine co-administration dramatically inhibited A549 lung cancer xenograft growth, without inducing apparent toxicities. The synergistic activity in vivo was again superior than either agent alone. Thus, perifosine and MEK-162 combination is biologically plausible by acting through effects on different proliferation and survival-related signaling pathways. Our in vitro and in vivo results support the feasibility of investigating the synergism regimen in clinical tests.
Collapse
Affiliation(s)
- Jianli Zhang
- Department of Respiratory Diseases, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | | | | |
Collapse
|
37
|
ROS-mediated EB1 phosphorylation through Akt/GSK3β pathway: implication in cancer cell response to microtubule-targeting agents. Oncotarget 2015; 5:3408-23. [PMID: 24930764 PMCID: PMC4102819 DOI: 10.18632/oncotarget.1982] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Microtubule-targeting agents (MTAs) are largely administered in adults and children cancers. Better deciphering their mechanism of action is of prime importance to develop more convenient therapy strategies. Here, we addressed the question of how reactive oxygen species (ROS) generation by mitochondria can be necessary for MTA efficacy. We showed for the first time that EB1 associates with microtubules in a phosphorylation-dependent manner, under control of ROS. By using phospho-defective mutants, we further characterized the Serine 155 residue as critical for EB1 accumulation at microtubule plus-ends, and both cancer cell migration and proliferation. Phosphorylation of EB1 on the Threonine 166 residue triggered opposite effects, and was identified as a requisite molecular switch in MTA activities. We then showed that GSK3β activation was responsible for MTA-triggered EB1 phosphorylation, resulting from ROS-mediated inhibition of upstream Akt. We thus disclosed here a novel pathway by which generation of mitochondrial ROS modulates microtubule dynamics through phosphorylation of EB1, improving our fundamental knowledge about this oncogenic protein, and pointing out the need to re-examine the current dogma of microtubule targeting by MTAs. The present work also provides a strong mechanistic rational to the promising therapeutic strategies that currently combine MTAs with anti-Akt targeted therapies.
Collapse
|
38
|
Sasano T, Mabuchi S, Kuroda H, Kawano M, Matsumoto Y, Takahashi R, Hisamatsu T, Sawada K, Hashimoto K, Isobe A, Testa JR, Kimura T. Preclinical Efficacy for AKT Targeting in Clear Cell Carcinoma of the Ovary. Mol Cancer Res 2014; 13:795-806. [PMID: 25519148 DOI: 10.1158/1541-7786.mcr-14-0314] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 12/07/2014] [Indexed: 12/20/2022]
Abstract
UNLABELLED The aim of this study was to determine the role of AKT as a therapeutic target in ovarian clear cell carcinoma (CCC), an aggressive, chemoresistant histologic subtype of ovarian cancer. AKT activation was assessed by immunohistochemistry (IHC) using human tissue microarrays of primary ovarian cancers, composed of both CCC and serous adenocarcinoma (SAC). The growth-inhibitory effect of AKT-specific targeting by the small-molecule inhibitor, perifosine, was examined using ovarian CCC cell lines in vitro and in vivo. Finally, the activity of perifosine was examined using in CCC-derived tumors that had acquired resistance to anti-VEGF or chemotherapeutics such as bevacizumab or cisplatin, respectively. Interestingly, AKT was frequently activated both in early-stage and advanced-stage CCCs. Treatment of CCC cells with perifosine attenuated the activity of AKT-mTORC1 signaling, inhibited proliferation, and induced apoptosis. The effect of perifosine was more profound under conditions of high AKT activity compared with low AKT activity. Increased AKT activation and enhanced sensitivity to perifosine were observed in the context of cisplatin-resistant CCC. Treatment with perifosine concurrently with cisplatin significantly enhanced the antitumor effect of cisplatin. Moreover, perifosine showed significant antitumor activity in CCC-derived tumors that had acquired resistance to bevacizumab or cisplatin. Collectively, these data reveal that AKT is frequently activated in ovarian CCCs and is a promising therapeutic target in aggressive forms of ovarian cancer. IMPLICATIONS AKT-targeted therapy has value in a first-line setting as well as a second-line treatment for recurrent disease developing after platinum-based chemotherapy or bevacizumab treatment.
Collapse
Affiliation(s)
- Tomoyuki Sasano
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Seiji Mabuchi
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Hiromasa Kuroda
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Mahiru Kawano
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuri Matsumoto
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ryoko Takahashi
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takeshi Hisamatsu
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kenjiro Sawada
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kae Hashimoto
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Aki Isobe
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Joseph R Testa
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
39
|
Silibinin activates AMP-activated protein kinase to protect neuronal cells from oxygen and glucose deprivation-re-oxygenation. Biochem Biophys Res Commun 2014; 454:313-9. [PMID: 25450395 DOI: 10.1016/j.bbrc.2014.10.080] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 10/15/2014] [Indexed: 12/25/2022]
Abstract
In this study, we explored the cytoprotective potential of silibinin against oxygen-glucose deprivation (OGD)-induced neuronal cell damages, and studied underling mechanisms. In vitro model of ischemic stroke was created by keeping neuronal cells (SH-SY5Y cells and primary mouse cortical neurons) in an OGD condition followed by re-oxygenation. Pre-treatment of silibinin significantly inhibited OGD/re-oxygenation-induced necrosis and apoptosis of neuronal cells. OGD/re-oxygenation-induced reactive oxygen species (ROS) production and mitochondrial membrane potential (MMP) reduction were also inhibited by silibinin. At the molecular level, silibinin treatment in SH-SY5Y cells and primary cortical neurons led to significant AMP-activated protein kinase (AMPK) signaling activation, detected by phosphorylations of AMPKα1, its upstream kinase liver kinase B1 (LKB1) and the downstream target acetyl-CoA Carboxylase (ACC). Pharmacological inhibition or genetic depletion of AMPK alleviated the neuroprotective ability of silibinin against OGD/re-oxygenation. Further, ROS scavenging ability by silibinin was abolished with AMPK inhibition or silencing. While A-769662, the AMPK activator, mimicked silibinin actions and suppressed ROS production and neuronal cell death following OGD/re-oxygenation. Together, these results show that silibinin-mediated neuroprotection requires activation of AMPK signaling.
Collapse
|
40
|
Cordycepin down-regulates multiple drug resistant (MDR)/HIF-1α through regulating AMPK/mTORC1 signaling in GBC-SD gallbladder cancer cells. Int J Mol Sci 2014; 15:12778-90. [PMID: 25046749 PMCID: PMC4139874 DOI: 10.3390/ijms150712778] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/13/2014] [Accepted: 07/04/2014] [Indexed: 12/12/2022] Open
Abstract
Gallbladder cancer is the most common malignancy of the bile duct, with low 5-year survival rate and poor prognosis. Novel effective treatments are urgently needed for the therapy of this disease. Here, we showed that cordycepin, the bioactive compound in genus Cordyceps, induced growth inhibition and apoptosis in cultured gallbladder cancer cells (Mz-ChA-1, QBC939 and GBC-SD lines). We found that cordycepin inhibited mTOR complex 1 (mTORC1) activation and down-regulated multiple drug resistant (MDR)/hypoxia-inducible factor 1α (HIF-1α) expression through activating of AMP-activated protein kinase (AMPK) signaling in gallbladder cancer GBC-SD cells. Contrarily, AMPKα1-shRNA depletion dramatically inhibited cordycepin-induced molecular changes as well as GBC-SD cell apoptosis. Further, our results showed that co-treatment with a low concentration cordycepin could remarkably enhance the chemosensitivity of GBC-SD cells to gemcitabine and 5-fluorouracil (5-FU), and the mechanism may be attributed to AMPK activation and MDR degradation. In summary, cordycepin induces growth inhibition and apoptosis in gallbladder cancer cells via activating AMPK signaling. Cordycepin could be a promising new drug or chemo-adjuvant for gallbladder cancer.
Collapse
|
41
|
Yu R, Zhang ZQ, Wang B, Jiang HX, Cheng L, Shen LM. Berberine-induced apoptotic and autophagic death of HepG2 cells requires AMPK activation. Cancer Cell Int 2014; 14:49. [PMID: 24991192 PMCID: PMC4079188 DOI: 10.1186/1475-2867-14-49] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 04/28/2014] [Indexed: 12/23/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC), the primary liver cancer, is one of the most malignant human tumors with extremely poor prognosis. The aim of this study was to investigate the anti-cancer effect of berberine in a human hepatocellular carcinoma cell line (HepG2), and to study the underlying mechanisms by focusing on the AMP-activated protein kinase (AMPK) signaling cascade. Results We found that berberine induced both apoptotic and autophagic death of HepG2 cells, which was associated with a significant activation of AMPK and an increased expression of the inactive form of acetyl-CoA carboxylase (ACC). Inhibition of AMPK by RNA interference (RNAi) or by its inhibitor compound C suppressed berberine-induced caspase-3 cleavage, apoptosis and autophagy in HepG2 cells, while AICAR, the AMPK activator, possessed strong cytotoxic effects. In HepG2 cells, mammalian target of rapamycin complex 1 (mTORC1) activation was important for cell survival, and berberine inhibited mTORC1 via AMPK activation. Conclusions Together, these results suggested that berberine-induced both apoptotic and autophagic death requires AMPK activation in HepG2 cells.
Collapse
Affiliation(s)
- Rong Yu
- Department of Oncology, Suzhou Municipal Hospital, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215000, China ; Department of Interventional Radiology, Suzhou Municipal Hospital, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215000, China
| | - Zhi-Qing Zhang
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, China
| | - Bin Wang
- Department of Oncology, Suzhou Municipal Hospital, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215000, China
| | - Hong-Xin Jiang
- Department of Oncology, Suzhou Municipal Hospital, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215000, China
| | - Lei Cheng
- Department of Interventional Radiology, Suzhou Municipal Hospital, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215000, China
| | - Li-Ming Shen
- Department of Interventional Radiology, Suzhou Municipal Hospital, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215000, China
| |
Collapse
|
42
|
Li J, Li J, Yue Y, Hu Y, Cheng W, Liu R, Pan X, Zhang P. Genistein suppresses tumor necrosis factor α-induced inflammation via modulating reactive oxygen species/Akt/nuclear factor κB and adenosine monophosphate-activated protein kinase signal pathways in human synoviocyte MH7A cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:315-23. [PMID: 24669186 PMCID: PMC3962316 DOI: 10.2147/dddt.s52354] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aims Genistein, an isoflavone derivative found in soy, is known as a promising treatment for rheumatoid arthritis (RA). However, the detailed molecular mechanism of genistein in suppression of proinflammatory cytokine production remains ambiguous. The aim of this work was to evaluate the signal pathway by which genistein modulates inflammatory cytokine expression. Materials and methods MH7A cells were stimulated with tumor necrosis factor (TNF)-α and incubated with genistein, and interleukin (IL)-1β, IL-6, and IL-8 production was measured by enzyme-linked immunosorbent assay. Nuclear translocation of nuclear factor (NF)-κB was measured by a confocal fluorescence microscopy. The intracellular accumulation of reactive oxygen species (ROS) was monitored using the fluorescent probe 5-6-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate. Signal-transduction protein expression was measured by Western blot. Results Genistein decreased the secretion of IL-1β, IL-6, and IL-8 from TNF-α-stimulated MH7A cells in a dose-dependent manner. Genistein prevented TNF-α-induced NF-κB translocation as well as phosphorylation of IκB kinase-α/β and IκBα, and also suppressed TNF-α-induced AMPK inhibition. The production of IL-1β, IL-6, and IL-8 induced by TNF-α was decreased by the phosphatidylinositol-3 kinase inhibitor LY294002, suggesting that inhibition of Akt activation might inhibit IL-1β, IL-6, and IL-8 production induced by TNF-α. In addition, we also found that pretreatment with the adenosine monophosphate-activated protein kinase (AMPK) agonist 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside obviously inhibited TNF-α-induced proinflammatory cytokine production. These observations suggest that the inhibitory effect of genistein on TNF-α-induced proinflammatory cytokine production is dependent on AMPK activation. Conclusion These findings indicate that genistein suppressed TNF-α-induced inflammation by inhibiting the ROS/Akt/NF-κB pathway and promoting AMPK activation in MH7A cells.
Collapse
Affiliation(s)
- Jinchao Li
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, People's Republic of China
| | - Jun Li
- Emergency Surgery Department, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
| | - Ye Yue
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, People's Republic of China
| | - Yiping Hu
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, People's Republic of China
| | - Wenxiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, People's Republic of China
| | - Ruoxi Liu
- Department of Orthopedics, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Xiaohua Pan
- Department of Orthopedics, Second Clinical Medical College, Jinan University, Shenzhen, People's Republic of China
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, People's Republic of China
| |
Collapse
|
43
|
Wang M, Yu T, Zhu C, Sun H, Qiu Y, Zhu X, Li J. Resveratrol triggers protective autophagy through the ceramide/Akt/mTOR pathway in melanoma B16 cells. Nutr Cancer 2014; 66:435-40. [PMID: 24579778 DOI: 10.1080/01635581.2013.878738] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Resveratrol (3,5,4'-trihydroxy-trans-stilbene, RSV), a natural polyphenolic compound, is known as a promising anti-cancer agent. In this study, we showed that RSV could inhibit the growth of B16 cells via induction of apoptosis. Moreover, our results showed for the first time that RSV induced autophagy in B16 cells, which might occur through ceramide accumulation and Akt/mTOR pathway inhibition. Inhibition of autophagy by an autophagic inhibitor 3-methyladenine (3-MA) or si-Beclin 1 enhanced RSV-induced cytotoxicity and apoptosis. Thus, autophagy inhibition represents a promising approach to improve the efficacy of RSV in the treatment of patients with melanoma.
Collapse
Affiliation(s)
- Meng Wang
- a Department of Oncology , Shandong Jining No.1 People's Hospital , Jining , China
| | | | | | | | | | | | | |
Collapse
|
44
|
Salmonella induce autophagy in melanoma by the downregulation of AKT/mTOR pathway. Gene Ther 2014; 21:309-16. [PMID: 24451116 DOI: 10.1038/gt.2013.86] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 11/15/2013] [Accepted: 12/16/2013] [Indexed: 12/19/2022]
Abstract
Salmonella have been demonstrated to inhibit tumor growth. However, the mechanism of Salmonella-induced tumor cell death is less defined. Autophagy is a cellular process that mediates the degradation of long-lived proteins and unwanted organelles in the cytosol. Tumor cells frequently display lower levels of basal autophagic activity than their normal counterparts and fail to increase autophagic activity in response to stresses. Autophagy is involved in the cell defense elimination of bacteria. The signaling pathways leading to activation of Salmonella-induced autophagy in tumor cells remain to be elucidated. We used autophagy inhibitor (3-Methyladenine) and apoptosis inhibitor (Z-VAD-FMK) to demonstrate that Salmonella may induce cell death via apoptosis and autophagic pathway. Meanwhile, we suggested that Salmonella induce autophagy in a dose- and time-dependent manner. The autophagic markers were increased after tumor cell infected with Salmonella. In addition, the protein express levels of phosph-protein kinase B (P-AKT), phosph-mammalian targets of rapamycin (P-mTOR), phosph-p70 ribosomal s6 kinase (P-p70s6K) in tumor cells were decreased by western analysis after Salmonella infection. In conclusion, our results point out that Salmonella induce the autophagic signaling pathway via downregulation of AKT/mTOR pathway. Herein, our findings that Salmonella in controlling tumor growth may induce autophagic signal pathway.
Collapse
|
45
|
Utsumi F, Kajiyama H, Nakamura K, Tanaka H, Mizuno M, Ishikawa K, Kondo H, Kano H, Hori M, Kikkawa F. Effect of indirect nonequilibrium atmospheric pressure plasma on anti-proliferative activity against chronic chemo-resistant ovarian cancer cells in vitro and in vivo. PLoS One 2013; 8:e81576. [PMID: 24367486 PMCID: PMC3867316 DOI: 10.1371/journal.pone.0081576] [Citation(s) in RCA: 221] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 10/15/2013] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Nonequilibrium atmospheric pressure plasma (NEAPP) therapy has recently been focused on as a novel medical practice. Using cells with acquired paclitaxel/cisplatin resistance, we elucidated effects of indirect NEAPP-activated medium (NEAPP-AM) exposure on cell viability and tumor growth in vitro and in vivo. METHODS Using chronic paclitaxel/cisplatin-resistant ovarian cancer cells, we applied indirect NEAPP-exposed medium to cells and xenografted tumors in a mouse model. Furthermore, we examined the role of reactive oxygen species (ROS) or their scavengers in the above-mentioned EOC cells. RESULTS We assessed the viability of NOS2 and NOS3 cells exposed to NEAPP-AM, which was prepared beforehand by irradiation with NEAPP for the indicated time. In NOS2 cells, viability decreased by approximately 30% after NEAPP-AM 120-sec treatment (P<0.01). The growth-inhibitory effects of NEAPP-AM were completely inhibited by N-acetyl cysteine treatment, while L-buthionine-[S, R]-sulfoximine, an inhibitor of the ROS scavenger used with NEAPP-AM, decreased cell viability by 85% after NEAPP-AM 60-sec treatment(P<0.05) and by 52% after 120 sec, compared to the control (P<0.01). In the murine subcutaneous tumor-formation model, NEAPP-AM injection resulted in an average inhibition of the NOS2 cell-inoculated tumor by 66% (P<0.05) and NOS2TR cell-inoculated tumor by 52% (P<0.05), as compared with the control. CONCLUSION We demonstrated that plasma-activated medium also had an anti-tumor effect on chemo-resistant cells in vitro and in vivo. Indirect plasma therapy is a promising treatment option for EOC and may contribute to a better patient prognosis in the future.
Collapse
Affiliation(s)
- Fumi Utsumi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
- * E-mail:
| | - Kae Nakamura
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Hiromasa Tanaka
- Department of Electrical Engineering and Computer Science, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Masaaki Mizuno
- Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Kenji Ishikawa
- Department of Electrical Engineering and Computer Science, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Hiroki Kondo
- Department of Electrical Engineering and Computer Science, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Hiroyuki Kano
- NU Eco-Engineering Co., Ltd., Miyoshi-shi, Aichi, Japan
| | - Masaru Hori
- Department of Electrical Engineering and Computer Science, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| |
Collapse
|
46
|
Yu T, Ji J, Guo YL. MST1 activation by curcumin mediates JNK activation, Foxo3a nuclear translocation and apoptosis in melanoma cells. Biochem Biophys Res Commun 2013; 441:53-8. [PMID: 24134840 DOI: 10.1016/j.bbrc.2013.10.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 10/04/2013] [Indexed: 12/20/2022]
Abstract
Different groups including ours have shown that curcumin induces melanoma cell apoptosis, here we focused the role of mammalian Sterile 20-like kinase 1 (MST1) in it. We observed that curcumin activated MST1-dependent apoptosis in cultured melanoma cells. MST1 silencing by RNA interference (RNAi) suppressed curcumin-induced cell apoptosis, while MST1 over-expressing increased curcumin sensitivity. Meanwhile, curcumin induced reactive oxygen species (ROS) production in melanoma cells, and the ROS scavenger, N-acetyl-cysteine (NAC), almost blocked MST1 activation to suggest that ROS might be required for MST1 activation by curcumin. c-Jun N-terminal protein kinase (JNK) activation by curcumin was dependent on MST1, since MST1 inhibition by RNAi or NAC largely inhibited curcumin-induced JNK activation. Further, curcumin induced Foxo3 nuclear translocation and Bim-1 (Foxo3 target gene) expression in melanoma cells, such an effect by curcumin was inhibited by MST1 RNAi. In conclusion, we suggested that MST1 activation by curcumin mediates JNK activation, Foxo3a nuclear translocation and apoptosis in melanoma cells.
Collapse
Affiliation(s)
- Teng Yu
- Department of Dermatology, Shandong Ji-ning No. 1 People's Hospital, Shandong Province 272011, PR China.
| | | | | |
Collapse
|
47
|
She C, Zhu LQ, Zhen YF, Wang XD, Dong QR. Activation of AMPK protects against hydrogen peroxide-induced osteoblast apoptosis through autophagy induction and NADPH maintenance: new implications for osteonecrosis treatment? Cell Signal 2013; 26:1-8. [PMID: 24080159 DOI: 10.1016/j.cellsig.2013.08.046] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 08/30/2013] [Indexed: 12/19/2022]
Abstract
Elevated hydrogen peroxide (H2O2) causes osteoblast dysfunction and apoptosis, serving as an important contributor to the development of osteonecrosis. Here we aimed to understand the role of AMP-activated protein kinase (AMPK) in the process. We observed a high level of AMPK activation in surgery isolated patients' osteonecrosis tissues. In cultured osteoblastoma MG63 cells, H2O2 stimulation induced significant AMPK activation, oxidative stress, cell death and apoptosis. Inhibition of AMPK by its inhibitor (compound C) or by shRNA-mediated knockdown dramatically enhanced H2O2-induced MG63 cell apoptosis, while over-expression of AMPK in HEK-293 cells alleviated H2O2-induced cell damage. These results confirmed that H2O2-activated AMPK is pro-cell survival. We observed that H2O2 induced protective autophagy in MG63 cells, and AMPK-dependent Ulk1 activation and mTORC1 (mTOR complex 1) inactivation might involve autophagy activation. Further, AMPK activation inhibited H2O2-induced oxidative stress, probably through inhibiting NADPH (nicotinamide adenine dinucleotide phosphate) depletion, since more NADPH depletion and oxidative stress were induced by H2O2 in AMPK deficient MG63 cells. Finally, we observed a significant AMPK activation in H2O2-treated primary cultured and transformed (MC3T3-E1) osteoblasts, and AMPK inhibitor compound C enhanced death by H2O2 in these cells. Based on these results, we concluded that H2O2-induced AMPK activation is pro-survival and anti-apoptosis in osteoblasts. Autophagy induction and NADPH maintenance are involved in AMPK-mediated pro-survival effects. AMPK might represent a novel molecular target for osteonecrosis treatment.
Collapse
Affiliation(s)
- Chang She
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | | | | | | | | |
Collapse
|
48
|
Qin LS, Yu ZQ, Zhang SM, Sun G, Zhu J, Xu J, Guo J, Fu LS. The short chain cell-permeable ceramide (C6) restores cell apoptosis and perifosine sensitivity in cultured glioblastoma cells. Mol Biol Rep 2013; 40:5645-55. [DOI: 10.1007/s11033-013-2666-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 09/14/2013] [Indexed: 12/26/2022]
|
49
|
Zhang CΗ, Awasthi N, Schwarz MA, Schwarz RE. The dual PI3K/mTOR inhibitor NVP-BEZ235 enhances nab-paclitaxel antitumor response in experimental gastric cancer. Int J Oncol 2013; 43:1627-35. [PMID: 24042258 PMCID: PMC4144025 DOI: 10.3892/ijo.2013.2099] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 08/05/2013] [Indexed: 12/16/2022] Open
Abstract
Gastric cancer is the second most common cause of cancer-related deaths worldwide. Taxanes have shown therapeutic effects against gastric cancer while also activating the PI3K/mTOR signaling pathway. We investigated the effects of NVP-BEZ235 (BEZ235), a novel dual PI3K/mTOR inhibitor, alone and in combination with nanoparticle albumin-bound (nab)-paclitaxel in experimental gastric cancer. Cell proliferation and protein expression were measured by WST-1 assay and immunoblotting. Tumor growth and survival studies were performed in murine xenografts. Phosphorylated mTOR and 4E-BP1 levels were elevated in gastric cancer cells and tumor tissues by nab-paclitaxel. BEZ235 effectively inhibited cell proliferation in vitro and provided additive effects in combination with nab-paclitaxel. Furthermore, BEZ235 blocked the activated PI3K/mTOR pathway either alone or in combination with nab-paclitaxel in gastric cancer cells. BEZ235 and nab-paclitaxel caused an increase in PARP-1 and caspase-3 cleavage. Net local tumor growth inhibition for the BEZ235, nab-paclitaxel and BEZ235+nab-paclitaxel groups was 45.1, 77.9 and 97% compared to controls. The effects of therapy on intratumoral proliferation and apoptosis corresponded with tumor growth inhibition data. BEZ235 also caused a decrease in phospho-mTOR and phospho-Akt in tumor tissue lysates. Median animal survival (controls, 23 days) was 26.5 days after BEZ235 (p=0.227), 90.5 days after nab-paclitaxel (p=0.001) and 97 days in the BEZ235+nab-paclitaxel combination treatment group (p=0.001). Our findings suggest that BEZ235 exerts some antitumor effects against gastric cancer and enhances effects of nab-paclitaxel through inhibition of cell proliferation and modulation of the PI3K/mTOR pathway. This approach may represent a promising combination targeted therapy for gastric cancer.
Collapse
Affiliation(s)
- Chang-Ηua Zhang
- Division of Surgical Oncology, Department of Surgery, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | | |
Collapse
|
50
|
Sanchez AM, Giorgione V, Viganò P, Papaleo E, Candiani M, Mangili G, Panina-Bordignon P. Treatment with anticancer agents induces dysregulation of specific Wnt signaling pathways in human ovarian luteinized granulosa cells in vitro. Toxicol Sci 2013; 136:183-92. [PMID: 23956100 DOI: 10.1093/toxsci/kft175] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chemotherapy has been associated with premature ovarian failure and infertility in women with cancer. It is well known that anticancer drugs reduce the primordial follicle pool and harm the ovarian blood vascularization leading to ovarian atrophy. However, their mechanism of injury still remains unclear. The aim of this study was to identify the cellular mechanisms involved in the toxicity of chemotherapy drugs belonging to different classes on human ovarian luteinized granulosa cells (LGCs). Treatment with doxorubicin (DXR), paclitaxel (PC), and cisplatin (CP) affected LGCs viability by inducing apoptosis and downregulating both estrogen receptor β and follicle-stimulating hormone receptor in a dose-dependent manner. Several members of the WNT signaling pathway are expressed in granulosa cells where they regulate follicle development, ovulation, and luteinization. Here we show that treatment with DXR, PC, and CP induced upregulation of WNT4 expression, whereas WNT3 expression was downregulated by DXR and PC and upregulated by CP. Analysis of the WNT3 downstream signaling pathway showed that total β-catenin protein levels were reduced upon treatment with DXR and PC. Additionally, restoration of β-catenin signaling by lithium chloride protected LGCs from the injury induced by chemotherapy. The in vitro LGC toxicity model described might represent a tool to identify components of specific signaling pathways, such as the Wnt pathway, that can be targeted in order to limit the follicular damage caused by chemotherapy.
Collapse
Affiliation(s)
- Ana Maria Sanchez
- * Reproductive Sciences Lab, Division of Genetics and Cell Biology, and
| | | | | | | | | | | | | |
Collapse
|