1
|
Whiteley J, Waters LJ, Humphrey J, Mellor S. A thermodynamic investigation into protein-excipient interactions involving different grades of polysorbate 20 and 80. JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY 2024; 149:13941-13951. [PMID: 39633654 PMCID: PMC11611994 DOI: 10.1007/s10973-024-13533-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 07/25/2024] [Indexed: 12/07/2024]
Abstract
Developing stable biopharmaceutical formulations is of paramount importance and is typically achieved by incorporating surfactants as stabilising agents, such as polysorbate 20 and 80. However, little is known about the effect surfactant grade has on formulation stability. This study evaluates the effect of regular grade and Super-refined™ polysorbates 20 and 80 and their interaction with model proteins, namely β-lactoglobulin (β-Ig), human serum albumin (HSA) and immunoglobulin gamma (IgG), using isothermal titration calorimetry (ITC) and differential scanning calorimetry (DSC). ITC results indicated that all four polysorbates underwent binding interactions with β-Ig and HSA, yet no interaction was observed with IgG this is postulated to be a consequence of differences in secondary structure composition. Surfactant binding to β-Ig occurred at ratios of ~ 3:2 regardless of the surfactant used with dissociation constants ranging from 284 to 388 µM, whereas HSA bound at ratios of ~ 3:1 and dissociation constants ranging from 429 to 653 µM. Changes in enthalpy were larger for the surfactant interactions with HSA compared with β-Ig implying the former produced a greater binding interaction than the latter. DSC facilitated measurement of the temperature of unfolding of each protein with the presence of each polysorbate where results further confirmed interactions had occurred for β-Ig and HSA with an increased unfolding temperature between 4 and 6 K implying improved protein stability, yet again, no interaction was observed with IgG. This study thermodynamically characterised the role of polysorbates in protein stabilisation for biopharmaceutical formulations.
Collapse
Affiliation(s)
- Joseph Whiteley
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH UK
| | - Laura J. Waters
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH UK
| | - James Humphrey
- Croda Europe Ltd, Cowick Hall, Snaith, Goole DN14 9AA UK
| | - Steve Mellor
- Croda Europe Ltd, Cowick Hall, Snaith, Goole DN14 9AA UK
| |
Collapse
|
2
|
Susam MM, Sikking C, Hardebol L, Florack M, Crul M. Shock and Temperature Monitoring During Transport of Immunoglobulins from a Hospital to Patients' Homes: A Pilot Study. J Pharm Sci 2024; 113:2268-2273. [PMID: 38508341 DOI: 10.1016/j.xphs.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
Transport of biopharmaceuticals from a hospital to a patient's home is scarcely researched but it is essential to investigate the effects of such transport on the stability of the drug, before home-based care can take place. In this study, transport of biopharmaceuticals in vials that are marketed as ready-to-administer from a hospital pharmacy to patients' homes was investigated. Immunoglobulin packages were tracked with 10 G and 25 G shock indicators and temperature data loggers. In the control group, immunoglobulins were transported from the hospital pharmacy to the outpatient daycare unit. During the transport process to patients' homes (n = 39), almost half of the packages were shocked with 25 G and more than half of all packages exceeded the required temperature range. Fortunately, the results found do not affect the stability of the ready-to-administer vials with immunoglobulins. However, these results indicate that the transport of biopharmaceuticals should be better controlled as not all biopharmaceuticals or formulations are so stable. Therefore, results of this pilot study provide a basis for recommendations for home-based therapy.
Collapse
Affiliation(s)
- M Merve Susam
- Department of Clinical Pharmacology and Pharmacy, Amsterdam University Medical Center, location Vrije Universiteit, Amsterdam, the Netherlands
| | - Charlotte Sikking
- Department of Pharmacy, Albert Schweitzer Ziekenhuis, Dordrecht, the Netherlands
| | | | - Marlou Florack
- Department of Clinical Pharmacology and Pharmacy, Amsterdam University Medical Center, location Academic Medical Centre, Amsterdam, the Netherlands
| | - Mirjam Crul
- Department of Clinical Pharmacology and Pharmacy, Amsterdam University Medical Center, location Vrije Universiteit, Amsterdam, the Netherlands.
| |
Collapse
|
3
|
Bressler NM, Kaiser PK, Do DV, Nguyen QD, Park KH, Woo SJ, Sagong M, Bradvica M, Kim MY, Kim S, Sadda SR. Biosimilars of anti-vascular endothelial growth factor for ophthalmic diseases: A review. Surv Ophthalmol 2024; 69:521-538. [PMID: 38521423 DOI: 10.1016/j.survophthal.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
The development of intravitreally injected biologic medicines (biologics) acting against vascular endothelial growth factor (VEGF) substantially improved the clinical outcomes of patients with common VEGF-driven retinal diseases. The relatively high cost of branded agents, however, represents a financial burden for most healthcare systems and patients, likely resulting in impaired access to treatment and poorer clinical outcomes for some patients. Biosimilar medicines (biosimilars) are clinically equivalent, potentially economic alternatives to reference products. Biosimilars approved by leading health authorities have been demonstrated to be similar to the reference product in a comprehensive comparability exercise, generating the totality of evidence necessary to support analytical, pre-clinical, and clinical biosimilarity. Anti-VEGF biosimilars have been entering the field of ophthalmology in the US since 2022. We review regulatory and scientific concepts of biosimilars, the biosimilar development landscape in ophthalmology, with a specific focus on anti-VEGF biosimilars, and discuss opportunities and challenges facing the uptake of biosimilars.
Collapse
Affiliation(s)
- Neil M Bressler
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter K Kaiser
- Cole Eye Institute, 9500 Euclid Avenue, Desk i3, Cleveland, OH, USA
| | - Diana V Do
- Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Quan Dong Nguyen
- Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Kyu Hyung Park
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, the Republic of Korea
| | - Se Joon Woo
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, the Republic of Korea
| | - Min Sagong
- Department of Ophthalmology, Yeungnam University College of Medicine, Yeungnam Eye Center, Yeungnam University Hospital, Daegu, the Republic of Korea
| | - Mario Bradvica
- Department of Ophthalmology, Osijek University Hospital Centre, Osijek, Croatia
| | | | | | - SriniVas R Sadda
- Doheny Eye Institute, Pasadena, CA, USA; Department of Ophthalmology, University of California-Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Maiti R, Patel B, Patel N, Patel M, Patel A, Dhanesha N. Antibody drug conjugates as targeted cancer therapy: past development, present challenges and future opportunities. Arch Pharm Res 2023; 46:361-388. [PMID: 37071273 PMCID: PMC11345756 DOI: 10.1007/s12272-023-01447-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/26/2023] [Indexed: 04/19/2023]
Abstract
Antibody drug conjugates (ADCs) are promising cancer therapeutics with minimal toxicity as compared to small cytotoxic molecules alone and have shown the evidence to overcome resistance against tumor and prevent relapse of cancer. The ADC has a potential to change the paradigm of cancer chemotherapeutic treatment. At present, 13 ADCs have been approved by USFDA for the treatment of various types of solid tumor and haematological malignancies. This review covers the three structural components of an ADC-antibody, linker, and cytotoxic payload-along with their respective structure, chemistry, mechanism of action, and influence on the activity of ADCs. It covers comprehensive insight on structural role of linker towards efficacy, stability & toxicity of ADCs, different types of linkers & various conjugation techniques. A brief overview of various analytical techniques used for the qualitative and quantitative analysis of ADC is summarized. The current challenges of ADCs, such as heterogeneity, bystander effect, protein aggregation, inefficient internalization or poor penetration into tumor cells, narrow therapeutic index, emergence of resistance, etc., are outlined along with recent advances and future opportunities for the development of more promising next-generation ADCs.
Collapse
Affiliation(s)
- Ritwik Maiti
- Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India
| | - Bhumika Patel
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India.
| | - Nrupesh Patel
- Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India
| | - Mehul Patel
- Department of Pharmaceutical Chemistry and Analysis, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388421, Gujarat, India
| | - Alkesh Patel
- Department of Pharmacology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388421, Gujarat, India
| | - Nirav Dhanesha
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA.
| |
Collapse
|
5
|
Anakha J, Prasad YR, Sharma N, Pande AH. Human arginase I: a potential broad-spectrum anti-cancer agent. 3 Biotech 2023; 13:159. [PMID: 37152001 PMCID: PMC10156892 DOI: 10.1007/s13205-023-03590-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 04/23/2023] [Indexed: 05/09/2023] Open
Abstract
With high rates of morbidity and mortality, cancer continues to pose a serious threat to public health on a global scale. Considering the discrepancies in metabolism between cancer and normal cells, metabolism-based anti-cancer biopharmaceuticals are gaining importance. Normal cells can synthesize arginine, but they can also take up extracellular arginine, making it a semi-essential amino acid. Arginine auxotrophy occurs when a cancer cell has abnormalities in the enzymes involved in arginine metabolism and relies primarily on extracellular arginine to support its biological functions. Taking advantage of arginine auxotrophy in cancer cells, arginine deprivation, which can be induced by introducing recombinant human arginase I (rhArg I), is being developed as a broad-spectrum anti-cancer therapy. This has led to the development of various rhArg I variants, which have shown remarkable anti-cancer activity. This article discusses the importance of arginine auxotrophy in cancer and different arginine-hydrolyzing enzymes that are in various stages of clinical development and reviews the need for a novel rhArg I that mitigates the limitations of the existing therapies. Further, we have also analyzed the necessity as well as the significance of using rhArg I to treat various arginine-auxotrophic cancers while considering the importance of their genetic profiles, particularly urea cycle enzymes.
Collapse
Affiliation(s)
- J. Anakha
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062 Punjab India
| | - Yenisetti Rajendra Prasad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062 Punjab India
| | - Nisha Sharma
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062 Punjab India
| | - Abhay H. Pande
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062 Punjab India
| |
Collapse
|
6
|
Pereira P, Serra AC, Coelho JF. Vinyl Polymer-based technologies towards the efficient delivery of chemotherapeutic drugs. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Nagase K. Thermoresponsive interfaces obtained using poly(N-isopropylacrylamide)-based copolymer for bioseparation and tissue engineering applications. Adv Colloid Interface Sci 2021; 295:102487. [PMID: 34314989 DOI: 10.1016/j.cis.2021.102487] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 12/11/2022]
Abstract
Poly(N-isopropylacrylamide) (PNIPAAm) is the most well-known and widely used stimuli-responsive polymer in the biomedical field owing to its ability to undergo temperature-dependent hydration and dehydration with temperature variations, causing hydrophilic and hydrophobic alterations. This temperature-dependent property of PNIPAAm provides functionality to interfaces containing PNIPAAm. Notably, the hydrophilic and hydrophobic alterations caused by the change in the temperature-responsive property of PNIPAAm-modified interfaces induce temperature-modulated interactions with biomolecules, proteins, and cells. This intrinsic property of PNIPAAm can be effectively used in various biomedical applications, particularly in bioseparation and tissue engineering applications, owing to the functionality of PNIPAAm-modified interfaces based on the temperature modulation of the interaction between PNIPAAm-modified interfaces and biomolecules and cells. This review focuses on PNIPAAm-modified interfaces in terms of preparation method, properties, and their applications. Advances in PNIPAAm-modified interfaces for existing and developing applications are also summarized.
Collapse
Affiliation(s)
- Kenichi Nagase
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan.
| |
Collapse
|
8
|
Si Y, Zhang Y, Guan JS, Ngo HG, Totoro A, Singh AP, Chen K, Xu Y, Yang ES, Zhou L, Liu R, Liu X(M. Anti-CD47 Monoclonal Antibody-Drug Conjugate: A Targeted Therapy to Treat Triple-Negative Breast Cancers. Vaccines (Basel) 2021; 9:882. [PMID: 34452008 PMCID: PMC8402537 DOI: 10.3390/vaccines9080882] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/31/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022] Open
Abstract
Triple-negative breast cancers (TNBCs) are frequently recurrent due to the development of drug resistance post chemotherapy. Both the existing literature and our study found that surface receptor CD47 (cluster of differentiation 47) was upregulated in chemotherapy-treated TNBC cells. The goal of this study was to develop a monoclonal antibody (mAb)-based targeting strategy to treat TNBC after standard treatment. Specifically, a new mAb that targets the extracellular domain of receptor CD47 was developed using hybridoma technology and produced in fed-batch culture. Flow cytometry, confocal microscopy, and in vivo imaging system (IVIS) showed that the anti-CD47 mAb effectively targeted human and mouse TNBC cells and xenograft models with high specificity. The antibody-drug conjugate (ADC) carrying mertansine was constructed and demonstrated higher potency with reduced IC50 in TNBC cells than did the free drug and significantly inhibited tumor growth post gemcitabine treatment in MDA-MB-231 xenograft NSG model. Finally, whole blood analysis indicated that the anti-CD47 mAb had no general immune toxicity, flow cytometry analysis of lymph nodes revealed an increase of CD69+ NK, CD11c+ DC, and CD4+ T cells, and IHC staining showed tumoral infiltration of macrophage in the 4T1 xenograft BALB/cJ model. This study demonstrated that targeting CD47 with ADC has great potential to treat TNBCs as a targeted therapy.
Collapse
Affiliation(s)
- Yingnan Si
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (J.-S.G.); (H.G.N.); (A.T.); (A.P.S.); (K.C.); (L.Z.)
| | - Ya Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (J.-S.G.); (H.G.N.); (A.T.); (A.P.S.); (K.C.); (L.Z.)
| | - Jia-Shiung Guan
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (J.-S.G.); (H.G.N.); (A.T.); (A.P.S.); (K.C.); (L.Z.)
| | - Hanh Giai Ngo
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (J.-S.G.); (H.G.N.); (A.T.); (A.P.S.); (K.C.); (L.Z.)
| | - Angela Totoro
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (J.-S.G.); (H.G.N.); (A.T.); (A.P.S.); (K.C.); (L.Z.)
| | - Ajeet Pal Singh
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (J.-S.G.); (H.G.N.); (A.T.); (A.P.S.); (K.C.); (L.Z.)
| | - Kai Chen
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (J.-S.G.); (H.G.N.); (A.T.); (A.P.S.); (K.C.); (L.Z.)
| | - Yuanxin Xu
- Department of Medicine, University of Alabama at Birmingham (UAB), 703 19th Street South, Birmingham, AL 35294, USA;
| | - Eddy S. Yang
- Department of Radiation Oncology, University of Alabama at Birmingham (UAB), 1808 7th Avenue South, Birmingham, AL 35294, USA;
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham (UAB), 1824 6th Avenue South, Birmingham, AL 35233, USA
| | - Lufang Zhou
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (J.-S.G.); (H.G.N.); (A.T.); (A.P.S.); (K.C.); (L.Z.)
- Department of Medicine, University of Alabama at Birmingham (UAB), 703 19th Street South, Birmingham, AL 35294, USA;
| | - Runhua Liu
- Department of Genetics, University of Alabama at Birmingham (UAB), 702 20th St., Birmingham, AL 35233, USA;
| | - Xiaoguang (Margaret) Liu
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (J.-S.G.); (H.G.N.); (A.T.); (A.P.S.); (K.C.); (L.Z.)
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham (UAB), 1824 6th Avenue South, Birmingham, AL 35233, USA
| |
Collapse
|
9
|
Si Y, Kim S, Ou J, Lu Y, Ernst P, Chen K, Whitt J, Carter AM, Markert JM, Bibb JA, Chen H, Zhou L, Jaskula-Sztul R, Liu XM. Anti-SSTR2 antibody-drug conjugate for neuroendocrine tumor therapy. Cancer Gene Ther 2021; 28:799-812. [PMID: 32684623 PMCID: PMC7854894 DOI: 10.1038/s41417-020-0196-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/18/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022]
Abstract
Neuroendocrine (NE) tumors include a diverse spectrum of hormone-secreting neoplasms that arise from the endocrine and nervous systems. Current chemo- and radio-therapies have marginal curative benefits. The goal of this study was to develop an innovative antibody-drug conjugate (ADC) to effectively treat NE tumors (NETs). First, we confirmed that somatostatin receptor 2 (SSTR2) is an ideal cancer cell surface target by analyzing 38 patient-derived NET tissues, 33 normal organs, and three NET cell lines. Then, we developed a new monoclonal antibody (mAb, IgG1, and kappa) to target two extracellular domains of SSTR2, which showed strong and specific surface binding to NETs. The ADC was constructed by conjugating the anti-SSTR2 mAb and antimitotic monomethyl auristatin E. In vitro evaluations indicated that the ADC can effectively bind, internalize, release payload, and kill NET cells. Finally, the ADC was evaluated in vivo using a NET xenograft mouse model to assess cancer-specific targeting, tolerated dosage, pharmacokinetics, and antitumor efficacy. The anti-SSTR2 ADC exclusively targeted and killed NET cells with minimal toxicity and high stability in vivo. This study demonstrates that the anti-SSTR2 ADC has a high-therapeutic potential for NET therapy.
Collapse
Affiliation(s)
- Yingnan Si
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Seulhee Kim
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Jianfa Ou
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Yun Lu
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Patrick Ernst
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Kai Chen
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Jason Whitt
- Department of Surgery, UAB, 1808 7th Avenue South, Birmingham, AL, 35294, USA
| | - Angela M Carter
- Department of Surgery, UAB, 1808 7th Avenue South, Birmingham, AL, 35294, USA
| | - James M Markert
- Department of Neurosurgery, UAB, 510 20th Street South, Birmingham, AL, 35294, USA
- O'Neal Comprehensive Cancer Center, UAB, 1824 6th Avenue South, Birmingham, AL, 35233, USA
| | - James A Bibb
- Department of Surgery, UAB, 1808 7th Avenue South, Birmingham, AL, 35294, USA
- O'Neal Comprehensive Cancer Center, UAB, 1824 6th Avenue South, Birmingham, AL, 35233, USA
| | - Herbert Chen
- Department of Surgery, UAB, 1808 7th Avenue South, Birmingham, AL, 35294, USA
- O'Neal Comprehensive Cancer Center, UAB, 1824 6th Avenue South, Birmingham, AL, 35233, USA
| | - Lufang Zhou
- Department of Medicine, UAB, 703 19th Street South, Birmingham, AL, 35294, USA
| | - Renata Jaskula-Sztul
- Department of Surgery, UAB, 1808 7th Avenue South, Birmingham, AL, 35294, USA.
- O'Neal Comprehensive Cancer Center, UAB, 1824 6th Avenue South, Birmingham, AL, 35233, USA.
| | - Xiaoguang Margaret Liu
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL, 35294, USA.
- O'Neal Comprehensive Cancer Center, UAB, 1824 6th Avenue South, Birmingham, AL, 35233, USA.
| |
Collapse
|
10
|
Chen K, Si Y, Ou J, Guan JS, Kim S, Ernst P, Zhang Y, Zhou L, Han X, Liu X(M. Antibody-Drug Conjugate to Treat Meningiomas. Pharmaceuticals (Basel) 2021; 14:ph14050427. [PMID: 34063284 PMCID: PMC8147502 DOI: 10.3390/ph14050427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 12/16/2022] Open
Abstract
Meningiomas are primary tumors of the central nervous system with high recurrence. It has been reported that somatostatin receptor 2 (SSTR2) is highly expressed in most meningiomas, but there is no effective targeted therapy approved to control meningiomas. This study aimed to develop and evaluate an anti-SSTR2 antibody–drug conjugate (ADC) to target and treat meningiomas. The meningioma targeting, circulation stability, toxicity, and anti-tumor efficacy of SSTR2 ADC were evaluated using cell lines and/or an intracranial xenograft mouse model. The flow cytometry analysis showed that the anti-SSTR2 mAb had a high binding rate of >98% to meningioma CH157-MN cells but a low binding rate of <5% to the normal arachnoidal AC07 cells. The In Vivo Imaging System (IVIS) imaging demonstrated that the Cy5.5-labeled ADC targeted and accumulated in meningioma xenograft but not in normal organs. The pharmacokinetics study and histological analysis confirmed the stability and minimal toxicity. In vitro anti-cancer cytotoxicity indicated a high potency of ADC with an IC50 value of <10 nM. In vivo anti-tumor efficacy showed that the anti-SSTR2 ADC with doses of 8 and 16 mg/kg body weight effectively inhibited tumor growth. This study demonstrated that the anti-SSTR2 ADC can target meningioma and reduce the tumor growth.
Collapse
Affiliation(s)
- Kai Chen
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (K.C.); (Y.S.); (J.O.); (S.K.); (Y.Z.); (L.Z.)
| | - Yingnan Si
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (K.C.); (Y.S.); (J.O.); (S.K.); (Y.Z.); (L.Z.)
| | - Jianfa Ou
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (K.C.); (Y.S.); (J.O.); (S.K.); (Y.Z.); (L.Z.)
| | - Jia-Shiung Guan
- Department of Medicine, University of Alabama at Birmingham, 703 19th Street South, Birmingham, AL 35294, USA; (J.-S.G.); (P.E.)
| | - Seulhee Kim
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (K.C.); (Y.S.); (J.O.); (S.K.); (Y.Z.); (L.Z.)
| | - Patrick Ernst
- Department of Medicine, University of Alabama at Birmingham, 703 19th Street South, Birmingham, AL 35294, USA; (J.-S.G.); (P.E.)
| | - Ya Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (K.C.); (Y.S.); (J.O.); (S.K.); (Y.Z.); (L.Z.)
| | - Lufang Zhou
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (K.C.); (Y.S.); (J.O.); (S.K.); (Y.Z.); (L.Z.)
- Department of Medicine, University of Alabama at Birmingham, 703 19th Street South, Birmingham, AL 35294, USA; (J.-S.G.); (P.E.)
| | - Xiaosi Han
- Department of Neurology, University of Alabama at Birmingham, 1824 6th Avenue South, Birmingham, AL 35294, USA;
| | - Xiaoguang (Margaret) Liu
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (K.C.); (Y.S.); (J.O.); (S.K.); (Y.Z.); (L.Z.)
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, 1824 6th Avenue South, Birmingham, AL 35233, USA
- Correspondence: ; Tel.: +1-205-996-1042; Fax: +1-205-996-4701
| |
Collapse
|
11
|
Jindal M, Nagpal M, Singh M, Aggarwal G, Dhingra GA. Gold Nanoparticles- Boon in Cancer Theranostics. Curr Pharm Des 2021; 26:5134-5151. [PMID: 32611300 DOI: 10.2174/1381612826666200701151403] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/23/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Cancer is the world's second-largest cause of death, with an estimated 9.6 million fatalities in 2018. Malignant tumour (cancer) is caused by a mixture of genetic modifications due to the environmental variables that tend to activate or inactivate different genes, ultimately resulting in neoplastic transformations. Cancer is a multi-stage process that results from the conversion of the ordinary cells to tumour cells and progresses from a pre-cancer lesion to abnormal growth. METHODS Chemotherapy inhibits the ability of the cells to divide rapidly in an abnormal manner, but this treatment simultaneously affects the entire cellular network in the human body leading to cytotoxic effects. In this review article, the same issue has been addressed by discussing various aspects of the newer class of drugs in cancer therapeutics, i.e., Gold Nanoparticles (AuNPs) from metal nanoparticle (NP) class. RESULTS Metal NPs are advantageous over conventional chemotherapy as the adverse drug reactions are lesser. Additionally, ease of drug delivery, targeting and gene silencing are salient features of this treatment. Functionalized ligand-targeting metal NPs provide better energy deposition control in tumour. AuNPs are promising agents in the field of cancer treatment and are comprehensively studied as contrast agents, carriers of medicinal products, radiosensitizers and photothermal agents. For the targeted delivery of chemotherapeutic agents, AuNPs are used and also tend to enhance tumour imaging in vivo for a variety of cancer types and diseased organs. CONCLUSION The first part of the review focuses on various nano-carriers that are used for cancer therapy and deals with the progression of metal NPs in cancer therapy. The second part emphasizes the use of nanotechnology by considering the latest studies for diagnostic and therapeutic properties of AuNPs. AuNPs present the latest studies in the field of nanotechnology, which leads to the development of early-stage clinical trials. The next part of the review discusses the major features of five principal types of AuNPs: gold nanorods, gold nanoshells, gold nanospheres, gold nanocages, and gold nanostars that have their application in photothermal therapy (PTT).
Collapse
Affiliation(s)
- Mehak Jindal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manju Nagpal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Geeta Aggarwal
- Delhi Pharmaceutical Sciences and Research University, New Delhi-110017, India
| | | |
Collapse
|
12
|
Evans SE, Harrington T, Rodriguez Rivero MC, Rognin E, Tuladhar T, Daly R. 2D and 3D inkjet printing of biopharmaceuticals - A review of trends and future perspectives in research and manufacturing. Int J Pharm 2021; 599:120443. [PMID: 33675921 DOI: 10.1016/j.ijpharm.2021.120443] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
There is an ongoing global shift in pharmaceutical business models from small molecule drugs to biologics. This increase in complexity is in response to advancements in our diagnoses and understanding of diseases. With the more targeted approach coupled with its inherently more costly development and manufacturing, 2D and 3D printing are being explored as suitable techniques to deliver more personalised and affordable routes to drug discovery and manufacturing. In this review, we explore first the business context underlying this shift to biopharmaceuticals and provide an update on the latest work exploring discovery and pharmaceutics. We then draw on multiple disciplines to help reveal the shared challenges facing researchers and firms aiming to develop biopharmaceuticals, specifically when using the most commonly explored manufacturing routes of drop-on-demand inkjet printing and pneumatic extrusion. This includes separating out how to consider mechanical and chemical influences during manufacturing, the role of the chosen hardware and the challenges of aqueous formulation based on similar challenges being faced by the printing industry. Together, this provides a review of existing work and guidance for researchers and industry to help with the de-risking and rapid development of future biopharmaceutical products.
Collapse
Affiliation(s)
| | | | | | - Etienne Rognin
- Institute for Manufacturing, Department of Engineering, University of Cambridge (UK), UK
| | | | - Ronan Daly
- Institute for Manufacturing, Department of Engineering, University of Cambridge (UK), UK.
| |
Collapse
|
13
|
Silvestre ALP, Oshiro-Júnior JA, Garcia C, Turco BO, da Silva Leite JM, de Lima Damasceno BPG, Soares JCM, Chorilli M. Monoclonal Antibodies Carried in Drug Delivery Nanosystems as a Strategy for Cancer Treatment. Curr Med Chem 2021; 28:401-418. [PMID: 31965938 DOI: 10.2174/0929867327666200121121409] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/09/2019] [Accepted: 09/26/2019] [Indexed: 11/22/2022]
Abstract
Monoclonal antibodies carried in nanosystems have been extensively studied and reported as a promising tool for the treatment of various types of cancers. Monoclonal antibodies have great advantages for the treatment of cancer because their protein structure can bind to the target tissue; however, it has some challenges such as denaturation following heat exposure and extreme values of pH, temperature and solvents, the ability to undergo hydrolysis, oxidation and deamination and the formation of non-native aggregates, which compromise drug stability to a large extent. In addition to these characteristics, they suffer rapid elimination when in the blood, which results in a short half-life and the production of neutralizing antibodies, rendering the doses ineffective. These challenges are overcome with encapsulation in nanosystems (liposomes, polymer nanoparticles, cyclodextrins, solid lipid nanoparticles, nanostructured lipid carriers, dendrimers and micelles) due to the characteristics of improving solubility, permeability, and selectivity only with tumor tissue; with that, there is a decrease in side effects beyond controlled release, which is critical to improving the therapeutic efficacy of cancer treatment. The article was divided into different types of nanosystems, with a description of their definitions and applications in various types of cancers. Therefore, this review summarizes the use of monoclonal antibodies encapsulated in nanosystems and the description of clinical studies with biosimilars. Biosimilars are defined as products that are similar to monoclonal antibodies which are produced when the patent for the monoclonal antibodies expires.
Collapse
Affiliation(s)
- Amanda Letícia Polli Silvestre
- School of Pharmaceutical Sciences, UNESP-Sao Paulo State University, Rodovia Araraquara-Jau, km. 1, Araraquara, Sao Paulo 14800-903, Brazil
| | - Joáo Augusto Oshiro-Júnior
- Graduation Program in Pharmaceutical Sciences, State University of Paraiba, Campina Grande, Joao Pessoa, Brazil
| | - Camila Garcia
- School of Pharmaceutical Sciences, UNESP-Sao Paulo State University, Rodovia Araraquara-Jau, km. 1, Araraquara, Sao Paulo 14800-903, Brazil
| | - Bruna Ortolani Turco
- School of Pharmaceutical Sciences, UNESP-Sao Paulo State University, Rodovia Araraquara-Jau, km. 1, Araraquara, Sao Paulo 14800-903, Brazil
| | | | | | - Jonas Corsino Maduro Soares
- School of Pharmaceutical Sciences, UNESP-Sao Paulo State University, Rodovia Araraquara-Jau, km. 1, Araraquara, Sao Paulo 14800-903, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, UNESP-Sao Paulo State University, Rodovia Araraquara-Jau, km. 1, Araraquara, Sao Paulo 14800-903, Brazil
| |
Collapse
|
14
|
|
15
|
Si Y, Xu Y, Guan J, Chen K, Kim S, Yang ES, Zhou L, Liu XM. Anti-EGFR antibody-drug conjugate for triple-negative breast cancer therapy. Eng Life Sci 2021; 21:37-44. [PMID: 33531889 PMCID: PMC7837297 DOI: 10.1002/elsc.202000027] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
Triple-negative breast cancers (TNBCs) are highly aggressive, metastatic and recurrent. Cytotoxic chemotherapies with limited clinical benefits and severe side effects are the standard therapeutic strategies, but, to date, there is no efficacious targeted therapy. Literature and our data showed that epidermal growth factor receptor (EGFR) is overexpressed on TNBC cell surface and is a promising oncological target. The objective of this study was to develop an antibody-drug conjugate (ADC) to target EGFR+ TNBC and deliver high-potency drug. First, we constructed an ADC by conjugating anti-EGFR monoclonal antibody with mertansine which inhibits microtubule assembly via linker Sulfo-SMCC. Second, we confirmed the TNBC-targeting specificity of anti-EGFR ADC by evaluating its surface binding and internalization in MDA-MB-468 cells and targeting to TNBC xenograft in subcutaneous mouse mode. The live-cell and live-animal imaging with confocal laser scanning microscopy and In Vivo Imaging System (IVIS) confirmed the TNBC-targeting. Finally, both in vitro toxicity assay and in vivo anti-cancer efficacy study in TNBC xenograft models showed that the constructed ADC significantly inhibited TNBC growth, and the pharmacokinetics study indicated its high circulation stability. This study indicated that the anti-EGFR ADC has a great potential to against TNBC.
Collapse
Affiliation(s)
- Yingnan Si
- Department of Biomedical EngineeringUniversity of Alabama at Birmingham (UAB)BirminghamALUSA
| | - Yuanxin Xu
- Department of Biomedical EngineeringUniversity of Alabama at Birmingham (UAB)BirminghamALUSA
| | | | - Kai Chen
- Department of MedicineUABBirminghamALUSA
| | - Seulhee Kim
- Department of Biomedical EngineeringUniversity of Alabama at Birmingham (UAB)BirminghamALUSA
| | - Eddy S. Yang
- Department of Radiation OncologyO'Neal Comprehensive Cancer Center at UABBirminghamALUSA
| | | | - Xiaoguang Margaret Liu
- Department of Biomedical EngineeringUniversity of Alabama at Birmingham (UAB)BirminghamALUSA
| |
Collapse
|
16
|
Nagase K, Kanazawa H. Temperature-responsive chromatography for bioseparations: A review. Anal Chim Acta 2020; 1138:191-212. [DOI: 10.1016/j.aca.2020.07.075] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023]
|
17
|
Chu C, Su M, Zhu J, Li D, Cheng H, Chen X, Liu G. Metal-Organic Framework Nanoparticle-Based Biomineralization: A New Strategy toward Cancer Treatment. Theranostics 2019; 9:3134-3149. [PMID: 31244946 PMCID: PMC6567975 DOI: 10.7150/thno.33539] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 03/20/2019] [Indexed: 02/05/2023] Open
Abstract
Cancer treatment using functional proteins, DNA/RNA, or complex bio-entities is important in both preclinical and clinical studies. With the help of nano-delivery systems, these biomacromolecules can enrich cancer tissues to match the clinical requirements. Biomineralization via a self-assembly process has been widely applied to provide biomacromolecules exoskeletal-like protection for immune shielding and preservation of bioactivity. Advanced metal-organic framework nanoparticles (MOFs) are excellent supporting matrices due to the low toxicity of polycarboxylic acids and metals, high encapsulation efficiency, and moderate synthetic conditions. In this review, we study MOFs-based biomineralization for cancer treatment and summarize the unique properties of MOF hybrids. We also evaluate the outlook of potential cancer treatment applications for MOFs-based biomineralization. This strategy likely opens new research orientations for cancer theranostics.
Collapse
Affiliation(s)
- Chengchao Chu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health Xiamen, Xiamen University, Xiamen 361102, China
| | - Min Su
- State Key Laboratory of Physical Chemistry of Solid Surfaces & The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jing Zhu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health Xiamen, Xiamen University, Xiamen 361102, China
| | - Dongsheng Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health Xiamen, Xiamen University, Xiamen 361102, China
| | - Hongwei Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health Xiamen, Xiamen University, Xiamen 361102, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health Xiamen, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces & The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
18
|
|
19
|
Eke I, Makinde AY, Aryankalayil MJ, Reedy JL, Citrin DE, Chopra S, Ahmed MM, Coleman CN. Long-term Tumor Adaptation after Radiotherapy: Therapeutic Implications for Targeting Integrins in Prostate Cancer. Mol Cancer Res 2018; 16:1855-1864. [PMID: 30042176 PMCID: PMC6279542 DOI: 10.1158/1541-7786.mcr-18-0232] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/24/2018] [Accepted: 07/06/2018] [Indexed: 11/16/2022]
Abstract
Adaptation of tumor cells to radiotherapy induces changes that are actionable by molecular targeted agents and immunotherapy. This report demonstrates that radiation-induced changes in integrin expression can be targeted 2 months later. Integrins are transmembrane cell adhesion molecules that are essential for cancer cell survival and proliferation. To analyze the short- and long-term effects of radiation on the integrin expression, prostate cancer cells (DU145, PC3, and LNCaP) were cultured in a 3D extracellular matrix and irradiated with either a single dose of radiation (2-10 Gy) or a multifractionated regimen (2-10 fractions of 1 Gy). Whole human genome microarrays, immunoblotting, immunoprecipitation assays, and immunofluorescence staining of integrins were performed. The results were confirmed in a prostate cancer xenograft model system. Interestingly, β1 and β4 integrins (ITGB1 and ITGB4) were upregulated after radiation in vitro and in vivo. This overexpression lasted for more than 2 months and was dose dependent. Moreover, radiation-induced upregulation of β1 and β4 integrin resulted in significantly increased tumor cell death after treatment with inhibitory antibodies. Combined, these findings indicate that long-term tumor adaptation to radiation can result in an increased susceptibility of surviving cancer cells to molecular targeted therapy due to a radiation-induced overexpression of the target. IMPLICATIONS: Radiation induces dose- and schedule-dependent adaptive changes that are targetable for an extended time; thus suggesting radiotherapy as a unique strategy to orchestrate molecular processes, thereby providing new radiation-drug treatment options within precision cancer medicine.
Collapse
Affiliation(s)
- Iris Eke
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Adeola Y Makinde
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Molykutty J Aryankalayil
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jessica L Reedy
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Deborah E Citrin
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sunita Chopra
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Mansoor M Ahmed
- Radiation Research Program, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - C Norman Coleman
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
- Radiation Research Program, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| |
Collapse
|
20
|
Szabo R, Skropeta D. Advancement of Sialyltransferase Inhibitors: Therapeutic Challenges and Opportunities. Med Res Rev 2016; 37:219-270. [DOI: 10.1002/med.21407] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 07/14/2016] [Accepted: 08/03/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Rémi Szabo
- School of Chemistry; University of Wollongong; Wollongong NSW 2522 Australia
| | - Danielle Skropeta
- School of Chemistry; University of Wollongong; Wollongong NSW 2522 Australia
- Centre for Medical & Molecular Bioscience; University of Wollongong; Wollongong NSW 2522 Australia
| |
Collapse
|
21
|
Abstract
Good oral health is of major importance for general health and well-being. Several innovative drug delivery systems have been developed for the local treatment and prevention of various diseases in the oral cavity. However, there are currently few optimal systems and many therapeutic challenges still remain, including low drug efficacy and retention at targeted site of action. The present review provides an insight into the latest drug delivery strategies for the local treatment and prevention of the four most common oral pathologies, namely, dental caries, periodontitis, oral mucosal infections and oral cancer. The potential of bioadhesive formulations, nanoparticulate platforms, multifunctional systems and photodynamic methodologies to improve therapy and prophylaxis in future local applications for the oral cavity will be discussed.
Collapse
|
22
|
Liu M, Li Z, Yang J, Jiang Y, Chen Z, Ali Z, He N, Wang Z. Cell-specific biomarkers and targeted biopharmaceuticals for breast cancer treatment. Cell Prolif 2016; 49:409-20. [PMID: 27312135 PMCID: PMC6496337 DOI: 10.1111/cpr.12266] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 05/04/2016] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is the second leading cause of cancer death among women, and its related treatment has been attracting significant attention over the past decades. Among the various treatments, targeted therapy has shown great promise as a precision treatment, by binding to cancer cell-specific biomarkers. So far, great achievements have been made in targeted therapy of breast cancer. In this review, we first discuss cell-specific biomarkers, which are not only useful for classification of breast cancer subtyping but also can be utilized as goals for targeted therapy. Then, the innovative and generic-targeted biopharmaceuticals for breast cancer, including monoclonal antibodies, non-antibody proteins and small molecule drugs, are reviewed. Finally, we provide our outlook on future developments of biopharmaceuticals, and provide solutions to problems in this field.
Collapse
Affiliation(s)
- Mei Liu
- School of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Zhiyang Li
- School of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
- Department of Laboratory MedicineNanjing Drum Tower Hospital Clinical CollegeNanjing UniversityNanjingChina
| | - Jingjing Yang
- School of Chemistry and Chemical EngineeringSoutheast UniversityNanjingChina
| | - Yanyun Jiang
- School of Chemistry and Chemical EngineeringSoutheast UniversityNanjingChina
| | - Zhongsi Chen
- School of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Zeeshan Ali
- School of Chemistry and Chemical EngineeringSoutheast UniversityNanjingChina
| | - Nongyue He
- School of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Zhifei Wang
- School of Chemistry and Chemical EngineeringSoutheast UniversityNanjingChina
| |
Collapse
|
23
|
Franci G, Manfroni G, Cannalire R, Felicetti T, Tabarrini O, Salvato A, Barreca ML, Altucci L, Cecchetti V. Tumour cell population growth inhibition and cell death induction of functionalized 6-aminoquinolone derivatives. Cell Prolif 2016; 48:705-17. [PMID: 26597381 DOI: 10.1111/cpr.12224] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/17/2015] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES A number of previous studies has provided evidence that the well-known anti-bacterial quinolones may have potential as anti-cancer drugs. The aim of this study was to evaluate potential anti-tumour activity and selectivity of a set of 6-aminoquinolones showing some chemical similarity to naphthyridone derivative CX-5461, recently described as innovative anti-cancer agent. MATERIALS AND METHODS In-house quinolones 1-8 and ad hoc synthesized derivatives 9-13 were tested on Michigan Cancer Foundation-7 (MCF-7) breast cancer cells and mesenchymal progenitor (MePR2B) cell lines, analysing their effects on the cell cycle and cell death using FACS methodology. Activation of p53 was evaluated by western blotting. RESULTS Benzyl esters 4, 5 and their amide counterparts 12, 13 drastically modulated MCF-7 cell cycles inducing DNA fragmentation and cell death, thus proving to be potential anti-tumour compounds. When assayed in non-tumour MePR2B cells, compounds 4 and 5 were cytotoxic while 12 and 13 had a certain degree of selectivity, with compound 12 emerging as the most promising. Western blot analysis revealed that severe p53-K382ac activation was promoted by benzylester 5. In contrast, amide 12 exerted only a moderate effect which was, however, comparable to that of suberoylanilide hydoxamic acid (SAHA). CONCLUSIONS Taken together, these results further reinforce evidence that quinolones have potential as anti-cancer agents. Future work will be focused on understanding compound 12 mechanisms of action, and to obtain more potent and selective compounds.
Collapse
Affiliation(s)
- G Franci
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università degli Studi di Napoli, 80138, Napoli, Italy
| | - G Manfroni
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, 06123, Perugia, Italy
| | - R Cannalire
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, 06123, Perugia, Italy
| | - T Felicetti
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, 06123, Perugia, Italy
| | - O Tabarrini
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, 06123, Perugia, Italy
| | - A Salvato
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università degli Studi di Napoli, 80138, Napoli, Italy
| | - M L Barreca
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, 06123, Perugia, Italy
| | - L Altucci
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università degli Studi di Napoli, 80138, Napoli, Italy.,Istituto di Genetica e Biofisica, IGB, 'Adriano Buzzati Traverso' Via P. Castellino, 80131, Napoli, Italy
| | - V Cecchetti
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, 06123, Perugia, Italy
| |
Collapse
|
24
|
|
25
|
Yang IH, Shin JA, Kim LH, Kwon KH, Cho SD. The caspase 3-dependent apoptotic effect of pycnogenol in human oral squamous cell carcinoma HSC-3 cells. J Clin Biochem Nutr 2015; 58:40-7. [PMID: 26798196 PMCID: PMC4705010 DOI: 10.3164/jcbn.15-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 08/26/2015] [Indexed: 01/22/2023] Open
Abstract
In the present study, the apoptotic effect of pycnogenol and its molecular mechanism in human oral squamous cell carcinoma HSC-3 cells were investigated. Pycnogenol significantly inhibited the viability of HSC-3 cells and suppressed neoplastic cell transformation in HSC-3 cells and TPA-treated JB6 cells. It caused caspase-dependent apoptosis evidenced by the increase in cleaved poly (ADP-ribose) polymerase and caspase 3 in a dose-dependent manner. Pycnogenol increased Bak protein by enhancing its protein stability whereas other Bcl-2 family members were not altered. In addition, the treatment with pycnogenol led to the production of reactive oxygen species and N-acetyl-l-cysteine almost blocked pycnogenol-induced reactive oxygen species generation. Taken together, these findings suggest that pycnogenol may be a potential candidate for the chemoprevention or chemotherapy of human oral cancer.
Collapse
Affiliation(s)
- In-Hyoung Yang
- Department of Oral Pathology, School of Dentistry, and Institute of Oral Bioscience, Chonbuk National University, Jeonju 561-756, Korea
| | - Ji-Ae Shin
- Department of Oral Pathology, School of Dentistry, and Institute of Oral Bioscience, Chonbuk National University, Jeonju 561-756, Korea
| | - Lee-Han Kim
- Department of Oral Pathology, School of Dentistry, and Institute of Oral Bioscience, Chonbuk National University, Jeonju 561-756, Korea
| | - Ki Han Kwon
- Department of Food Science and Nutrition, College of Health, Welfare and Education, Gwangju University, Gwangju 503-703, Korea
| | - Sung-Dae Cho
- Department of Oral Pathology, School of Dentistry, and Institute of Oral Bioscience, Chonbuk National University, Jeonju 561-756, Korea
| |
Collapse
|
26
|
Eke I, Hehlgans S, Sandfort V, Cordes N. 3D matrix-based cell cultures: Automated analysis of tumor cell survival and proliferation. Int J Oncol 2015; 48:313-21. [PMID: 26549537 PMCID: PMC4734598 DOI: 10.3892/ijo.2015.3230] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/23/2015] [Indexed: 12/13/2022] Open
Abstract
Three-dimensional ex vivo cell cultures mimic physiological in vivo growth conditions thereby significantly contributing to our understanding of tumor cell growth and survival, therapy resistance and identification of novel potent cancer targets. In the present study, we describe advanced three-dimensional cell culture methodology for investigating cellular survival and proliferation in human carcinoma cells after cancer therapy including molecular therapeutics. Single cells are embedded into laminin-rich extracellular matrix and can be treated with cytotoxic drugs, ionizing or UV radiation or any other substance of interest when consolidated and approximating in vivo morphology. Subsequently, cells are allowed to grow for automated determination of clonogenic survival (colony number) or proliferation (colony size). The entire protocol of 3D cell plating takes ~1 h working time and pursues for ~7 days before evaluation. This newly developed method broadens the spectrum of exploration of malignant tumors and other diseases and enables the obtainment of more reliable data on cancer treatment efficacy.
Collapse
Affiliation(s)
- Iris Eke
- OncoRay-National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Stephanie Hehlgans
- OncoRay-National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Veit Sandfort
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nils Cordes
- OncoRay-National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| |
Collapse
|
27
|
Regan D, Guth A, Coy J, Dow S. Cancer immunotherapy in veterinary medicine: Current options and new developments. Vet J 2015; 207:20-28. [PMID: 26545847 DOI: 10.1016/j.tvjl.2015.10.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 09/24/2015] [Accepted: 10/04/2015] [Indexed: 12/12/2022]
Abstract
Excitement in the field of tumor immunotherapy is being driven by several remarkable breakthroughs in recent years. This review will cover recent advances in cancer immunotherapy, including the use of T cell checkpoint inhibitors, engineered T cells, cancer vaccines, and anti-B cell and T cell antibodies. Inhibition of T cell checkpoint molecules such as PD-1 and CTLA-4 using monoclonal antibodies has achieved notable success against advanced tumors in humans, including melanoma, renal cell carcinoma, and non-small cell lung cancer. Therapy with engineered T cells has also demonstrated remarkable tumor control and regression in human trials. Autologous cancer vaccines have recently demonstrated impressive prolongation of disease-free intervals and survival times in dogs with lymphoma. In addition, caninized monoclonal antibodies targeting CD20 and CD52 just recently received either full (CD20) or conditional (CD52) licensing by the United States Department of Agriculture for clinical use in the treatment of canine B-cell and T-cell lymphomas, respectively. Thus, immunotherapy for cancer is rapidly moving to the forefront of cancer treatment options in veterinary medicine as well as human medicine.
Collapse
Affiliation(s)
- Daniel Regan
- Animal Cancer Center, Department of Clinical Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Amanda Guth
- Animal Cancer Center, Department of Clinical Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Jonathan Coy
- Animal Cancer Center, Department of Clinical Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Steven Dow
- Animal Cancer Center, Department of Clinical Sciences, Colorado State University, Ft. Collins, CO 80523, USA.
| |
Collapse
|
28
|
Xu N, Ou J, Gilani AK, Zhou L, Liu M. High-level expression of recombinant IgG1 by CHO K1 platform. Front Chem Sci Eng 2015. [DOI: 10.1007/s11705-015-1531-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Hojjat-Farsangi M. Novel and emerging targeted-based cancer therapy agents and methods. Tumour Biol 2015; 36:543-56. [PMID: 25663495 DOI: 10.1007/s13277-015-3184-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 01/27/2015] [Indexed: 02/06/2023] Open
Abstract
After several decades of uncovering the cancer features and following the improvement of therapeutic agents, however cancer remains as one of the major reasons of mortality. Chemotherapy is one of the main treatment options and has significantly improved the overall survival of cancer patients, but chemotherapeutic agents are highly toxic for normal cells. Therefore, there is a great unmet medical need to develop new therapeutic principles and agents. Targeted-based cancer therapy (TBCT) agents and methods have revolutionized the cancer treatment efficacy. Monoclonal antibodies (mAbs) and small molecule inhibitors (SMIs) are among the most effective agents of TBCT. These drugs have improved the prognosis and survival of cancer patients; however, the therapeutic resistance has subdued the effects. Several mechanisms lead to drug resistance such as mutations in the drug targets, activation of compensatory pathways, and intrinsic or acquired resistance of cancer stem cells. Therefore, new modalities, improving current generation of inhibitors and mAbs, and optimizing the combinational therapy regimens are necessary to decrease the current obstacles in front of TBCT. Moreover, the success of new TBCT agents such as mAbs, SMIs, and immunomodulatory agents has sparked further therapeutic modalities with novel targets to inhibit. Due to the lack of cumulative information describing different agents and methods of TBCT, this review focuses on the most important agents and methods of TBCT that are currently under investigation.
Collapse
Affiliation(s)
- Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, Immune and Gene therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, SE-171 76, Stockholm, Sweden,
| |
Collapse
|