1
|
Frey WD, Anderson AY, Lee H, Nguyen JB, Cowles EL, Lu H, Jackson JG. Phosphoinositide species and filamentous actin formation mediate engulfment by senescent tumor cells. PLoS Biol 2022; 20:e3001858. [PMID: 36279312 PMCID: PMC9632905 DOI: 10.1371/journal.pbio.3001858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/03/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Cancer cells survive chemotherapy and cause lethal relapse by entering a senescent state that facilitates expression of many phagocytosis/macrophage-related genes that engender a novel cannibalism phenotype. We used biosensors and live-cell imaging to reveal the basic steps and mechanisms of engulfment by senescent human and mouse tumor cells. We show filamentous actin in predator cells was localized to the prey cell throughout the process of engulfment. Biosensors to various phosphoinositide (PI) species revealed increased concentration and distinct localization of predator PI(4) P and PI(4,5)P2 at the prey cell during early stages of engulfment, followed by a transient burst of PI(3) P before and following internalization. PIK3C2B, the kinase responsible for generating PI(3)P, was required for complete engulfment. Inhibition or knockdown of Clathrin, known to associate with PIK3C2B and PI(4,5)P2, severely impaired engulfment. In sum, our data reveal the most fundamental cellular processes of senescent cell engulfment, including the precise localizations and dynamics of actin and PI species throughout the entire process.
Collapse
Affiliation(s)
- Wesley D. Frey
- Tulane School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, Louisiana, United States of America
| | - Ashlyn Y. Anderson
- Tulane School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, Louisiana, United States of America
| | - Hyemin Lee
- Tulane School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, Louisiana, United States of America
| | - Julie B. Nguyen
- Tulane School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, Louisiana, United States of America
| | - Emma L. Cowles
- Tulane School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, Louisiana, United States of America
| | - Hua Lu
- Tulane School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, Louisiana, United States of America
| | - James G. Jackson
- Tulane School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, Louisiana, United States of America
| |
Collapse
|
2
|
Treffy RW, Rajan SG, Jiang X, Nacke LM, Malkana UA, Naiche LA, Bergey DE, Santana D, Rajagopalan V, Kitajewski JK, O'Bryan JP, Saxena A. Neuroblastoma differentiation in vivo excludes cranial tumors. Dev Cell 2021; 56:2752-2764.e6. [PMID: 34610330 PMCID: PMC10796072 DOI: 10.1016/j.devcel.2021.09.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/28/2021] [Accepted: 09/13/2021] [Indexed: 01/05/2023]
Abstract
Neuroblastoma (NB), the most common cancer in the first year of life, presents almost exclusively in the trunk. To understand why an early-onset cancer would have such a specific localization, we xenotransplanted human NB cells into discrete neural crest (NC) streams in zebrafish embryos. Here, we demonstrate that human NB cells remain in an undifferentiated, tumorigenic state when comigrating posteriorly with NC cells but, upon comigration into the head, differentiate into neurons and exhibit decreased survival. Furthermore, we demonstrate that this in vivo differentiation requires retinoic acid and brain-derived neurotrophic factor signaling from the microenvironment, as well as cell-autonomous intersectin-1-dependent phosphoinositide 3-kinase-mediated signaling, likely via Akt kinase activation. Our findings suggest a microenvironment-driven explanation for NB's trunk-biased localization and highlight the potential for induced differentiation to promote NB resolution in vivo.
Collapse
Affiliation(s)
- Randall W Treffy
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Sriivatsan G Rajan
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Xinghang Jiang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Lynne M Nacke
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Usama A Malkana
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - L A Naiche
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Dani E Bergey
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Dianicha Santana
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Vinodh Rajagopalan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jan K Kitajewski
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - John P O'Bryan
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA; Ralph H. Johnson VA Medical Center, Charleston, SC 29401, USA
| | - Ankur Saxena
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
3
|
Koch PA, Dornan GL, Hessenberger M, Haucke V. The molecular mechanisms mediating class II PI 3-kinase function in cell physiology. FEBS J 2021; 288:7025-7042. [PMID: 33387369 DOI: 10.1111/febs.15692] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/14/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022]
Abstract
The phosphoinositide 3-kinase (PI3K) family of lipid-modifying enzymes plays vital roles in cell signaling and membrane trafficking through the production of 3-phosphorylated phosphoinositides. Numerous studies have analyzed the structure and function of class I and class III PI3Ks. In contrast, we know comparably little about the structure and physiological functions of the class II enzymes. Only recent studies have begun to unravel their roles in development, endocytic and endolysosomal membrane dynamics, signal transduction, and cell migration, while the mechanisms that control their localization and enzymatic activity remain largely unknown. Here, we summarize our current knowledge of the class II PI3Ks and outline open questions related to their structure, enzymatic activity, and their physiological and pathophysiological functions.
Collapse
Affiliation(s)
- Philipp Alexander Koch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Faculty of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Germany
| | | | - Manuel Hessenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Faculty of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Germany
| |
Collapse
|
4
|
Gerasymchuk D, Hubiernatorova A, Domanskyi A. MicroRNAs Regulating Cytoskeleton Dynamics, Endocytosis, and Cell Motility-A Link Between Neurodegeneration and Cancer? Front Neurol 2020; 11:549006. [PMID: 33240194 PMCID: PMC7680873 DOI: 10.3389/fneur.2020.549006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022] Open
Abstract
The cytoskeleton is one of the most mobile and complex cell structures. It is involved in cellular transport, cell division, cell shape formation and adaptation in response to extra- and intracellular stimuli, endo- and exocytosis, migration, and invasion. These processes are crucial for normal cellular physiology and are affected in several pathological processes, including neurodegenerative diseases, and cancer. Some proteins, participating in clathrin-mediated endocytosis (CME), play an important role in actin cytoskeleton reorganization, and formation of invadopodia in cancer cells and are also deregulated in neurodegenerative disorders. However, there is still limited information about the factors contributing to the regulation of their expression. MicroRNAs are potent negative regulators of gene expression mediating crosstalk between different cellular pathways in cellular homeostasis and stress responses. These molecules regulate numerous genes involved in neuronal differentiation, plasticity, and degeneration. Growing evidence suggests the role of microRNAs in the regulation of endocytosis, cell motility, and invasiveness. By modulating the levels of such microRNAs, it may be possible to interfere with CME or other processes to normalize their function. In malignancy, the role of microRNAs is undoubtful, and therefore changing their levels can attenuate the carcinogenic process. Here we review the current advances in our understanding of microRNAs regulating actin cytoskeleton dynamics, CME and cell motility with a special focus on neurodegenerative diseases, and cancer. We investigate whether current literature provides an evidence that microRNA-mediated regulation of essential cellular processes, such as CME and cell motility, is conserved in neurons, and cancer cells. We argue that more research effort should be addressed to study the neuron-specific functions on microRNAs. Disease-associated microRNAs affecting essential cellular processes deserve special attention both from the view of fundamental science and as future neurorestorative or anti-cancer therapies.
Collapse
Affiliation(s)
- Dmytro Gerasymchuk
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | | | - Andrii Domanskyi
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Li J, Zhou J, Kai S, Wang C, Wang D, Jiang J. Functional and Clinical Characterization of Tumor-Infiltrating T Cell Subpopulations in Hepatocellular Carcinoma. Front Genet 2020; 11:586415. [PMID: 33133170 PMCID: PMC7561438 DOI: 10.3389/fgene.2020.586415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022] Open
Abstract
Tumor-infiltrating T-lymphocytes are defined as T-lymphocytes that infiltrated into tumor tissues; however, their composition, clinical significance, and underlying mechanism in hepatocellular carcinoma (HCC) and adjacent non-tumor tissues are still not completely understood. Herein, we collected marker genes of T cell subpopulations from a previous study and estimated their relative infiltrating levels in HCC and adjacent non-tumor tissues. Specifically, the infiltrating levels of all the T cells were significantly reduced in HCC as compared with non-tumor tissues. Unsupervised clustering of the HCC samples by the T cell infiltrating levels revealed that the HCC samples could be clearly classified into two groups. The driver genes, including PTK2B, ATM, PIK3C2B, and KIT, and several CNAs were observed to be associated with reduced T cell infiltrating levels. Particularly, deletion of TP53 more frequently occurred in low T cell infiltration HCC samples and resulted in its downregulation and cell cycle progression, indicating that cell cycle progression was closely associated with reduced T cell infiltration. In contrast, for the samples with high infiltration T cells, its immune evasion might be regulated by the immune checkpoint regulators, such as PD-1/PD-L1 and CTLA4. Moreover, Olaparib, one of the PARP inhibitors, and immune checkpoint inhibitors might be therapeutic candidates for the samples from the two T cell infiltrating clusters. Clinically, the tumor-infiltrating levels of cytotoxic CD4 cell, Mucosal associated invariant T (MAIT) cell, and exhausted CD8+ T cell might be used as predictors for vascular invasion, recurrence, and overall survival. Collectively, we systematically evaluated the clinical significance and potential molecular mechanisms of tumor-infiltrating T cell subpopulations in hepatocellular carcinoma, which might broaden our insights into the immunological features of HCC and provide potential immunotherapeutic targets.
Collapse
Affiliation(s)
- Jianguo Li
- Schools of Medicine and Pharmacy, Weifang Medical University, Weifang, China
| | - Jin Zhou
- Schools of Medicine and Pharmacy, Weifang Medical University, Weifang, China
| | - Shuangshuang Kai
- Schools of Medicine and Pharmacy, Weifang Medical University, Weifang, China
| | - Can Wang
- Schools of Medicine and Pharmacy, Weifang Medical University, Weifang, China
| | - Daijun Wang
- Schools of Medicine and Pharmacy, Weifang Medical University, Weifang, China
| | - Jiying Jiang
- Schools of Medicine and Pharmacy, Weifang Medical University, Weifang, China
| |
Collapse
|
6
|
Li S, Lu G, Wang D, He JL, Zuo L, Wang H, Gu ZT, Zhou JS, Yan FL, Deng QW. MicroRNA-4443 regulates monocyte activation by targeting tumor necrosis factor receptor associated factor 4 in stroke-induced immunosuppression. Eur J Neurol 2020; 27:1625-1637. [PMID: 32337817 DOI: 10.1111/ene.14282] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND PURPOSE MicroRNAs (miRNAs) have been demonstrated to play crucial roles in the early stage of acute ischaemic stroke (AIS). The purpose of this study was to investigate the expression patterns of miRNAs in peripheral blood mononuclear cells (PBMCs) from AIS patients and further explore related molecular mechanisms in stroke-induced immunodeficiency syndrome (SIDS). METHODS The miRNA expression patterns of PBMCs were detected by miRNA microarray and validated by quantitative real-time polymerase chain reaction (qRT-PCR) in AIS patients and healthy controls. Bioinformatics methods and luciferase reporter assays were used to detect the downstream target genes. Following stimulation with lipopolysaccharide and interleukin-4, the expression of miR-4443, tumor necrosis factor receptor associated factor 4 (TRAF4) and the nuclear factor kappa B (NF-κB) pathway were evaluated. Furthermore, transfection with miR-4443 mimic or inhibitor in the monocytes was carried out to gain insight into the mechanisms in SIDS. RESULTS Interleukin-10 in AIS patients was significantly higher than that of healthy controls. The miRNA microarray analysis and qRTPCR validation showed that only miR-4443 was upregulated expressed in PBMCs from AIS patients, especially in monocytes. miR-4443 was shown to directly interact with the 3' untranslated regions of TRAF4, resulting in suppression of TRAF4 protein expression. Furthermore, the expression of miR-4443 and TRAF4 was regulated by stimulation with lipopolysaccharide or interleukin-4. Additionally, overexpression of miR-4443 suppressed the TRAF4/Iκα/NF-κB signaling pathway to activate the expression of anti-inflammatory cytokines in monocytes. CONCLUSIONS The increased expression of miR-4443 induced monocyte dysfunction by targeting TRAF4, which may function as a crucial mediator in SIDS.
Collapse
Affiliation(s)
- S Li
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - G Lu
- Department of Neurology, Dezhou People's Hospital, Dezhou, China
| | - D Wang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - J L He
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - L Zuo
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - H Wang
- Department of Respiratory, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Z T Gu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - J S Zhou
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - F L Yan
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Q W Deng
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Bheemanaboina RR. Isoform-Selective PI3K Inhibitors for Various Diseases. Curr Top Med Chem 2020; 20:1074-1092. [DOI: 10.2174/1568026620666200106141717] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 11/29/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022]
Abstract
Phosphoinositide 3-kinases (PI3Ks) are a family of ubiquitously distributed lipid kinases that
control a wide variety of intracellular signaling pathways. Over the years, PI3K has emerged as an attractive
target for the development of novel pharmaceuticals to treat cancer and various other diseases.
In the last five years, four of the PI3K inhibitors viz. Idelalisib, Copanlisib, Duvelisib, and Alpelisib
were approved by the FDA for the treatment of different types of cancer and several other PI3K inhibitors
are currently under active clinical development. So far clinical candidates are non-selective kinase
inhibitors with various off-target liabilities due to cross-reactivities. Hence, there is a need for the discovery
of isoform-selective inhibitors with improved efficacy and fewer side-effects. The development
of isoform-selective inhibitors is essential to reveal the unique functions of each isoform and its corresponding
therapeutic potential. Although the clinical effect and relative benefit of pan and isoformselective
inhibition will ultimately be determined, with the development of drug resistance and the demand
for next-generation inhibitors, it will continue to be of great significance to understand the potential
mechanism of isoform-selectivity. Because of the important role of type I PI3K family members in
various pathophysiological processes, isoform-selective PI3K inhibitors may ultimately have considerable
efficacy in a wide range of human diseases. This review summarizes the progress of isoformselective
PI3K inhibitors in preclinical and early clinical studies for anticancer and other various diseases.
Collapse
Affiliation(s)
- Rammohan R.Y. Bheemanaboina
- Department of Chemistry and Biochemistry, Sokol Institute for Pharmaceutical Life Sciences, Montclair State University, Montclair, NJ 07043, United States
| |
Collapse
|
8
|
Qin S, Predescu DN, Patel M, Drazkowski P, Ganesh B, Predescu SA. Sex differences in the proliferation of pulmonary artery endothelial cells: implications for plexiform arteriopathy. J Cell Sci 2020; 133:133/9/jcs237776. [PMID: 32409569 DOI: 10.1242/jcs.237776] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 03/13/2020] [Indexed: 12/14/2022] Open
Abstract
The sex-biased disease pulmonary arterial hypertension (PAH) is characterized by the proliferation and overgrowth of dysfunctional pulmonary artery endothelial cells (PAECs). During inflammation associated with PAH, granzyme B cleaves intersectin-1 to produce N-terminal (EHITSN) and C-terminal (SH3A-EITSN) protein fragments. In a murine model of PAH, EHITSN triggers plexiform arteriopathy via p38-ELK1-c-Fos signaling. The SH3A-EITSN fragment also influences signaling, having dominant-negative effects on ERK1 and ERK2 (also known as MAPK3 and MAPK1, respectively). Using PAECs engineered to express tagged versions of EHITSN and SH3A-EITSN, we demonstrate that the two ITSN fragments increase both p38-ELK1 activation and the ratio of p38 to ERK1 and ERK2 activity, leading to PAEC proliferation, with female cells being more responsive than male cells. Furthermore, expression of EHITSN substantially upregulates the expression and activity of the long non-coding RNA Xist in female PAECs, which in turn upregulates the X-linked gene ELK1 and represses expression of krüppel-like factor 2 (KLF2). These events are recapitulated by the PAECs of female idiopathic PAH patients, and may account for their proliferative phenotype. Thus, upregulation of Xist could be an important factor in explaining sexual dimorphism in the proliferative response of PAECs and the imbalanced sex ratio of PAH.
Collapse
Affiliation(s)
- Shanshan Qin
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Dan N Predescu
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Monal Patel
- Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Patrick Drazkowski
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Balaji Ganesh
- Division of Bioanalytics, Biophysics and Cytomics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sanda A Predescu
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
9
|
Gozzelino L, De Santis MC, Gulluni F, Hirsch E, Martini M. PI(3,4)P2 Signaling in Cancer and Metabolism. Front Oncol 2020; 10:360. [PMID: 32296634 PMCID: PMC7136497 DOI: 10.3389/fonc.2020.00360] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/02/2020] [Indexed: 12/19/2022] Open
Abstract
The phosphatidylinositide 3 kinases (PI3Ks) and their downstream mediators AKT and mammalian target of rapamycin (mTOR) are central regulators of glycolysis, cancer metabolism, and cancer cell proliferation. At the molecular level, PI3K signaling involves the generation of the second messenger lipids phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] and phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2]. There is increasing evidence that PI(3,4)P2 is not only the waste product for the removal of PI(3,4,5)P3 but can also act as a signaling molecule. The selective cellular functions for PI(3,4)P2 independent of PI(3,4,5)P3 have been recently described, including clathrin-mediated endocytosis and mTOR regulation. However, the specific spatiotemporal dynamics and signaling role of PI3K minor lipid messenger PI(3,4)P2 are not well-understood. This review aims at highlighting the biological functions of this lipid downstream of phosphoinositide kinases and phosphatases and its implication in cancer metabolism.
Collapse
Affiliation(s)
- Luca Gozzelino
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Maria Chiara De Santis
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Federico Gulluni
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Miriam Martini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| |
Collapse
|
10
|
Malakooti N, Pritchard MA, Chen F, Yu Y, Sgambelloni C, Adlard PA, Finkelstein DI. The Long Isoform of Intersectin-1 Has a Role in Learning and Memory. Front Behav Neurosci 2020; 14:24. [PMID: 32161523 PMCID: PMC7052523 DOI: 10.3389/fnbeh.2020.00024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/03/2020] [Indexed: 01/15/2023] Open
Abstract
Down syndrome is caused by partial or total trisomy of chromosome 21 and is characterized by intellectual disability and other disorders. Although it is difficult to determine which of the genes over-expressed on the supernumerary chromosome contribute to a specific abnormality, one approach is to study each gene in isolation. This can be accomplished either by using an over-expression model to study increased gene dosage or a gene-deficiency model to study the biological function of the gene. Here, we extend our examination of the function of the chromosome 21 gene, ITSN1. We used mice in which the long isoform of intersectin-1 was knocked out (ITSN1-LKO) to understand how a lack of the long isoform of ITSN1 affects brain function. We examined cognitive and locomotor behavior as well as long term potentiation (LTP) and the mitogen-activated protein kinase (MAPK) and 3'-kinase-C2β-AKT (AKT) cell signaling pathways. We also examined the density of dendritic spines on hippocampal pyramidal neurons. We observed that ITSN1-LKO mice had deficits in learning and long term spatial memory. They also exhibited impaired LTP, and no changes in the levels of the phosphorylated extracellular signal-regulated kinase (ERK) 1/2. The amount of phosphorylated AKT was reduced in the ITSN1-LKO hippocampus and there was a decrease in the number of apical dendritic spines in hippocampal neurons. Our data suggest that the long isoform of ITSN1 plays a part in normal learning and memory.
Collapse
Affiliation(s)
- Nakisa Malakooti
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Melanie A Pritchard
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, VIC, Australia
| | - Feng Chen
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Yong Yu
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, VIC, Australia
| | - Charlotte Sgambelloni
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Paul A Adlard
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - David I Finkelstein
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
11
|
Downregulation of class II phosphoinositide 3-kinase PI3K-C2β delays cell division and potentiates the effect of docetaxel on cancer cell growth. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:472. [PMID: 31752944 PMCID: PMC6873561 DOI: 10.1186/s13046-019-1472-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023]
Abstract
Background Alteration of signalling pathways regulating cell cycle progression is a common feature of cancer cells. Several drugs targeting distinct phases of the cell cycle have been developed but the inability of many of them to discriminate between normal and cancer cells has strongly limited their clinical potential because of their reduced efficacy at the concentrations used to limit adverse side effects. Mechanisms of resistance have also been described, further affecting their efficacy. Identification of novel targets that can potentiate the effect of these drugs or overcome drug resistance can provide a useful strategy to exploit the anti-cancer properties of these agents to their fullest. Methods The class II PI3K isoform PI3K-C2β was downregulated in prostate cancer PC3 cells and cervical cancer HeLa cells using selective siRNAs and the effect on cell growth was determined in the absence or presence of the microtubule-stabilizing agent/anti-cancer drug docetaxel. Mitosis progression was monitored by time-lapse microscopy. Clonogenic assays were performed to determine the ability of PC3 and HeLa cells to form colonies upon PI3K-C2β downregulation in the absence or presence of docetaxel. Cell multi-nucleation was assessed by immunofluorescence. Tumour growth in vivo was assessed using a xenograft model of PC3 cells upon PI3K-C2β downregulation and in combination with docetaxel. Results Downregulation of PI3K-C2β delays mitosis progression in PC3 and HeLa cells, resulting in reduced ability to form colonies in clonogenic assays in vitro. Compared to control cells, PC3 cells lacking PI3K-C2β form smaller and more compact colonies in vitro and they form tumours more slowly in vivo in the first weeks after cells implant. Stable and transient PI3K-C2β downregulation potentiates the effect of low concentrations of docetaxel on cancer cell growth. Combination of PI3K-C2β downregulation and docetaxel almost completely prevents colonies formation in clonogenic assays in vitro and strongly inhibits tumour growth in vivo. Conclusions These data reveal a novel role for the class II PI3K PI3K-C2β during mitosis progression. Furthermore, data indicate that blockade of PI3K-C2β might represent a novel strategy to potentiate the effect of docetaxel on cancer cell growth.
Collapse
|
12
|
Novel susceptibility genes were found in a targeted sequencing of stroke patients with or without depression in the Chinese Han population. J Affect Disord 2019; 255:1-9. [PMID: 31121388 DOI: 10.1016/j.jad.2019.05.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/29/2019] [Accepted: 05/12/2019] [Indexed: 01/30/2023]
Abstract
BACKGROUND Both stroke and depression are multi-factorial diseases, with both genetic and environmental factors likely to participate in their pathogenesis. Post stroke depression (PSD) is a common complication after stroke leading to poor functional outcome, increased physical disability and mortality. Although several genes have been associated with PSD, the genetic basis of PSD remains poorly understood. METHOD A 2-stage candidate gene study by targeted sequencing was conducted involving stroke patients with or without depression and health controls. In the discovery stage (121 PSD, 131 non-PSD and 639 HC), logistic regression was used to test associations respectively in PSD and non-PSD groups. In the replication stage (200 PSD, 218 non-PSD and 983 HC), 54 selected SNPs were again genotyped in an independent cohort. Fixed-effects inverse variance-weighted meta-analysis was used in the combined samples. RESULTS The study identified 2 novel genes associated with PSD [HTR3D (rs55674402, p = 0.002512, odds ratio (OR) = 0.7431); NEUROG3 (rs144643855, p = 0.00325, OR = 0.6523)] and 3 risk SNPs in one risk gene associated with non-PSD [PIK3C2B (rs17406271, p = 0.0006801, OR = 1.446; rs2271419, p = 0.0005836, OR = 1.497; rs2271420, p = 0.001031, OR = 1.431)] in the Chinese sample. NEUROG3 shows highest expression level in hippocampus. Functional enrichment analysis shows that susceptibility genes for PSD are mostly enriched in chemical synaptic transmission and regulation of lipid synthetic process. LIMITATIONS The sample size was not sufficient to reach a genome-wide p value level. To overcome this shortage, some unique strategies were applied during the selection of SNPs for replication. Secondly, the age, gender composition and depressive severity between two stages were not well-matched. Different sample sources should be blamed, and to minimizing the influence, gender was corrected as co-variant in logistic regression. CONCLUSION This study identified that HTR3D and NEUROG3 were linked with the susceptibility of PSD and PIK3C2B with stroke in the Chinese Han population. Further replication of these findings in a larger and better matched sample is warranted. Functional analysis suggests that the pathogenesis of PSD may be implicated in 5-HT synaptic transmission, neural plasticity and lipid metabolism, and therapeutic interventions targeting these pathways may be effective approaches for PSD treatment.
Collapse
|
13
|
Jeong KH, Kim JS, Woo JT, Rhee SY, Lee YH, Kim YG, Moon JY, Kim SK, Kang SW, Lee SH, Kim YH. Genome-wide association study identifies new susceptibility loci for diabetic nephropathy in Korean patients with type 2 diabetes mellitus. Clin Genet 2019; 96:35-42. [PMID: 30883692 DOI: 10.1111/cge.13538] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/26/2019] [Accepted: 03/14/2019] [Indexed: 12/11/2022]
Abstract
Genetic factors are considered to be important in the pathogenesis of diabetic nephropathy (DN). Despite several genome-wide association studies (GWASs) demonstrating that specific polymorphisms of candidate genes were associated with DN, there were some limitations in previous studies. We conducted a GWAS using customized DNA chips to identify novel susceptibility loci for DN in Korean. We analyzed a total of 414 DN cases and 474 normoalbuminuric diabetic hyper-controls across two stages using customized DNA chips containing 98 667 single nucleotide polymorphisms (SNPs). We explored the associations between SNPs and DN in samples from 87 DN cases, mostly confirmed by renal biopsy, and 104 diabetic hyper-controls, and replicated these associations in independent cohort samples with 327 DN cases and 370 diabetic hyper-controls. The top significant SNPs from the discovery samples were selected for replication in the independent cohort. rs3765156 in PIK3C2B was significantly associated with DN in the replication cohort after multiple test. The SNPs identified in our study provide new insights into the pathogenesis of DN in the Korean population. Additional studies are needed to determine biological effects and clinical utility of our findings.
Collapse
Affiliation(s)
- Kyung H Jeong
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Jin S Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Jeong-Taek Woo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Sang Y Rhee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Yu H Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Yang G Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Ju-Young Moon
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Su K Kim
- Department of Biomedical Laboratory Science, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Sun W Kang
- Division of Nephrology, School of Medicine, Inje University, Busan, Republic of Korea
| | - Sang H Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Yeong H Kim
- Division of Nephrology, School of Medicine, Inje University, Busan, Republic of Korea
| | | |
Collapse
|
14
|
Asnaghi L, Tripathy A, Yang Q, Kaur H, Hanaford A, Yu W, Eberhart CG. Targeting Notch signaling as a novel therapy for retinoblastoma. Oncotarget 2018; 7:70028-70044. [PMID: 27661116 PMCID: PMC5342532 DOI: 10.18632/oncotarget.12142] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 09/14/2016] [Indexed: 01/15/2023] Open
Abstract
Retinoblastoma is the most common intraocular malignancy of childhood. Notch plays a key role in retinal cells from which retinoblastomas arise, and we therefore studied the role of Notch signaling in promoting retinoblastoma proliferation. Moderate or strong nuclear expression of Hes1 was found in 10 of 11 human retinoblastoma samples analyzed immunohistochemically, supporting a role for Notch in retinoblastoma growth. Notch pathway components were present in WERI Rb1 and Y79 retinoblastoma lines, with Jag2 and DLL4 more highly expressed than other ligands, and Notch1 and Notch2 more abundant than Notch3. The cleaved/active form of Notch1 was detectable in both lines. Inhibition of the pathway, achieved using a γ-secretase inhibitor (GSI) or by downregulating Jag2, DLL4 or CBF1 using short hairpin RNA, potently reduced growth, proliferation and clonogenicity in both lines. Upregulation of CXCR4 and CXCR7 and downregulation of PI3KC2β were identified by microarray upon Jag2 suppression. The functional importance of PI3KC2β was confirmed using shRNA. Synergy was found by combining GSI with Melphalan at their IC50. These findings indicate that Notch pathway is active in WERI Rb1 and Y79, and in most human retinoblastoma samples, and suggest that Notch antagonists may represent a new approach to more effectively treat retinoblastoma.
Collapse
Affiliation(s)
- Laura Asnaghi
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Arushi Tripathy
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Qian Yang
- Department of Ophthalmology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Harpreet Kaur
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Allison Hanaford
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Wayne Yu
- Microarray Core Facility, Sidney Kimmel Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Charles G Eberhart
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.,Department of Ophthalmology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| |
Collapse
|
15
|
Abstract
Neuroblastoma accounts for 15% of all pediatric cancer deaths. Intersectin 1 (ITSN1), a scaffold protein involved in phosphoinositide 3-kinase (PI3K) signaling, regulates neuroblastoma cells independent of MYCN status. We hypothesize that by silencing ITSN1 in neuroblastoma cells, tumor growth will be decreased in an orthotopic mouse tumor model. SK-N-AS neuroblastoma cells transfected with empty vector (pSR), vectors expressing scrambled shRNA (pSCR), or shRNAs targeting ITSN1 (sh#1 and sh#2) were used to create orthotopic neuroblastoma tumors in mice. Volume was monitored weekly with ultrasound. End-point was tumor volume >1000 mm. Tumor cell lysates were analyzed with anti-ITSN1 antibody by Western blot. Orthotopic tumors were created in all cell lines. Twenty-five days post injection, pSR tumor size was 917.6±247.7 mm, pSCR was 1180±159.9 mm, sh#1 was 526.3±212.8 mm, and sh#2 was 589.2±74.91 mm. sh#1-tumors and sh#2-tumors were smaller than pSCR (P=0.02), no difference between sh#1 and sh#2. Survival was superior in sh#2-tumors (P=0.02), trended towards improved survival in sh#1-tumors (P=0.09), compared with pSCR-tumors, no difference in pSR tumors. Western blot showed decreased ITSN1 expression in sh#1 and sh#2 compared with pSR and pSCR. Silencing ITSN1 in neuroblastoma cells led to decreased tumor growth in an orthotopic mouse model. Orthotopic animal models can provide insight into the role of ITSN1 pathways in neuroblastoma tumorigenesis.
Collapse
|
16
|
Kind M, Klukowska-Rötzler J, Berezowska S, Arcaro A, Charles RP. Questioning the role of selected somatic PIK3C2B mutations in squamous non-small cell lung cancer oncogenesis. PLoS One 2017; 12:e0187308. [PMID: 29088297 PMCID: PMC5663493 DOI: 10.1371/journal.pone.0187308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 10/17/2017] [Indexed: 12/11/2022] Open
Abstract
PI3K signaling is frequently dysregulated in NSCLC-SQCC. In contrast to well characterized components of the PI3K signaling network contributing to the formation of SQCC, potential oncogenic effects of alterations in PIK3C2B are poorly understood. Here, a large cohort (n = 362) of NSCLC-SQCC was selectively screened for four reported somatic mutations in PIK3C2B via Sanger sequencing. In addition, two mutations leading to an amino acid exchange in the kinase domain (C1181, H1208R) were examined on a functional level. None of the mutations were identified in the cohort while well characterized hotspot PIK3CA mutations were observed at the expected frequency. Ultimately, kinase domain mutations in PI3KC2β were found to have no altering effect on downstream signaling. A set of SQCC tumors sequenced by The Cancer Genome Atlas (TCGA) equally indicates a lack of oncogenic potential of the kinase domain mutations or PIK3C2B in general. Taken together, this study suggests that PIK3C2B might only have a minor role in SQCC oncogenesis.
Collapse
Affiliation(s)
- Marcus Kind
- University Children’s Hospital Bern, Freiburgstrasse 31, Bern, Switzerland
| | - Jolanta Klukowska-Rötzler
- University Children’s Hospital Bern, Freiburgstrasse 31, Bern, Switzerland
- Department of Emergency Medicine, University Hospital Bern, Freiburgstrasse 16c, Bern, Switzerland
| | - Sabina Berezowska
- Institute of Pathology, University of Bern, Murtenstrasse 31,Bern, Switzerland
| | - Alexandre Arcaro
- University Children’s Hospital Bern, Freiburgstrasse 31, Bern, Switzerland
| | - Roch-Philippe Charles
- Institute of Biochemistry and Molecular Medicine, and Swiss National Center of Competence in Research (NCCR) TransCure, University of Bern, Bühlstrasse 28, Bern, Switzerland
| |
Collapse
|
17
|
Depreeuw J, Stelloo E, Osse EM, Creutzberg CL, Nout RA, Moisse M, Garcia-Dios DA, Dewaele M, Willekens K, Marine JC, Matias-Guiu X, Amant F, Lambrechts D, Bosse T. Amplification of 1q32.1 Refines the Molecular Classification of Endometrial Carcinoma. Clin Cancer Res 2017; 23:7232-7241. [PMID: 28939739 DOI: 10.1158/1078-0432.ccr-17-0566] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 07/13/2017] [Accepted: 09/15/2017] [Indexed: 01/02/2023]
Abstract
Purpose: Molecular classification of endometrial cancer identified distinct molecular subgroups. However, the largest subset of endometrial cancers remains poorly characterized and is referred to as the "nonspecific molecular profile" (NSMP) subgroup. Here, we aimed at refining the classification of this subgroup by profiling somatic copy-number aberrations (SCNAs).Experimental Design: SCNAs were analyzed in 141 endometrial cancers using whole-genome SNP arrays and pooled with 361 endometrial cancers from The Cancer Genome Atlas. Genomic Identification of Significant Targets in Cancer (GISTIC) identified statistically enriched SCNAs and penalized Cox regression assessed survival effects. The prognostic significance of relevant SCNAs was validated using multiplex ligation-dependent probe amplification in 840 endometrial cancers from the PORTEC-1/2 trials. Copy-number status of genes was correlated with gene expression to identify potential cancer drivers. One plausible oncogene was validated in vitro using antisense oligonucleotide-based strategy.Results: SCNAs affecting chromosome 1q32.1 significantly correlated with worse relapse-free survival (RFS) in the NSMP subgroup (HR, 2.12; 95% CI, 1.26-3.59; P = 0.005). This effect was replicated in NSMP endometrial cancers from PORTEC-1/2 (HR, 2.34; 95% CI, 1.17-4.70; P = 0.017). A new molecular classification including the 1q32.1 amplification improved risk prediction of recurrence. MDM4 gene expression strongly correlated with 1q32.1 amplification. Silencing MDM4 inhibited cell growth in cell lines carrying 1q32.1 amplification, but not in those without MDM4 amplification. Vice versa, increasing MDM4 expression in nonamplified cell lines stimulated cell proliferation.Conclusions: 1q32.1 amplification was identified as a prognostic marker for poorly characterized NSMP endometrial cancers, refining the molecular classification of this subgroup. We functionally validated MDM4 as a potential oncogenic driver in the 1q32.1 region. Clin Cancer Res; 23(23); 7232-41. ©2017 AACR.
Collapse
Affiliation(s)
- Jeroen Depreeuw
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, KU Leuven (University of Leuven), University Hospitals Leuven, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Laboratory for Translational Genetics, Leuven, Belgium.,VIB, VIB Center for Cancer Biology, Laboratory for Translational Genetics, Leuven, Belgium
| | - Ellen Stelloo
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Elisabeth M Osse
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Carien L Creutzberg
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Remi A Nout
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Matthieu Moisse
- Department of Human Genetics, KU Leuven, Laboratory for Translational Genetics, Leuven, Belgium.,VIB, VIB Center for Cancer Biology, Laboratory for Translational Genetics, Leuven, Belgium
| | - Diego A Garcia-Dios
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, KU Leuven (University of Leuven), University Hospitals Leuven, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Laboratory for Translational Genetics, Leuven, Belgium.,VIB, VIB Center for Cancer Biology, Laboratory for Translational Genetics, Leuven, Belgium
| | - Michael Dewaele
- Department of Oncology, KU Leuven, Laboratory for Molecular Cancer Biology, Leuven, Belgium.,VIB, VIB Center for Cancer Biology, Laboratory for Molecular Cancer Biology, Leuven, Belgium
| | - Karen Willekens
- Department of Oncology, KU Leuven, Laboratory for Molecular Cancer Biology, Leuven, Belgium.,VIB, VIB Center for Cancer Biology, Laboratory for Molecular Cancer Biology, Leuven, Belgium
| | - Jean-Christophe Marine
- Department of Oncology, KU Leuven, Laboratory for Molecular Cancer Biology, Leuven, Belgium.,VIB, VIB Center for Cancer Biology, Laboratory for Molecular Cancer Biology, Leuven, Belgium
| | - Xavier Matias-Guiu
- Pathology and Molecular Genetics, Institut de Recerca Biomedica de Lleida, Lleida, Spain
| | - Frédéric Amant
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, KU Leuven (University of Leuven), University Hospitals Leuven, Leuven, Belgium.,Center for Gynaecologic Oncology Amsterdam (CGOA), Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Diether Lambrechts
- Department of Human Genetics, KU Leuven, Laboratory for Translational Genetics, Leuven, Belgium.,VIB, VIB Center for Cancer Biology, Laboratory for Translational Genetics, Leuven, Belgium
| | - Tjalling Bosse
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
18
|
Giacoppo S, Iori R, Rollin P, Bramanti P, Mazzon E. Moringa isothiocyanate complexed with α-cyclodextrin: a new perspective in neuroblastoma treatment. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:362. [PMID: 28705212 PMCID: PMC5513314 DOI: 10.1186/s12906-017-1876-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/09/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND Several lines of evidence suggest the consume of natural products for cancer prevention or treatment. In particular, isothiocyanates (ITCs) exerting anti-cancer properties, have received great interest as potential chemotherapeutic agents. This study was designed to assess the anti-proliferative activities of a new preparation of Moringa oleifera-derived 4-(α-L-rhamnopyranosyloxy)benzyl ITC (moringin) complexed with alpha-cyclodextrin (moringin + α-CD; MAC) on SH-SY5Y human neuroblastoma cells. This new formulation arises in the attempt to overcome the poor solubility and stability of moringin alone in aqueous media. METHODS SH-SY5Y cells were cultured and exposed to increasing concentrations of MAC (1.0, 2.5 and 5.0 μg). Cell proliferation was examined by MTT and cell count assays. The cytotoxic activity of the MAC complex was assessed by lactate dehydrogenase (LDH) assay and trypan blue exclusion test. In addition, western blotting analyses for the main apoptosis-related proteins were performed. RESULTS Treatment of SH-SY5Y cells with the MAC complex reduced cell growth in concentration dependent manner. Specifically, MAC exhibited a potent action in inhibiting the PI3K/Akt/mTOR pathway, whose aberrant activation was found in many types of cancer. MAC was also found to induce the nuclear factor-κB (NF-κB) p65 activation by phosphorylation and its translocation into the nucleus. Moreover, treatment with MAC was able to down-regulate MAPK pathway (results focused on JNK and p38 expression). Finally, MAC was found to trigger apoptotic death pathway (based on expression levels of cleaved-caspase 3, Bax/Bcl-2 balance, p53 and p21). CONCLUSION These findings suggest that use of MAC complex may open novel perspectives to improve the poor prognosis of patients with neuroblastoma.
Collapse
Affiliation(s)
- Sabrina Giacoppo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124, Messina, Italy
| | - Renato Iori
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di ricerca Agricoltura e Ambiente (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
| | - Patrick Rollin
- Université d'Orléans et CNRS, ICOA, UMR 7311, BP 6759, F-45067, Orléans, France
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124, Messina, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124, Messina, Italy.
| |
Collapse
|
19
|
Chikh A, Ferro R, Abbott JJ, Piñeiro R, Buus R, Iezzi M, Ricci F, Bergamaschi D, Ostano P, Chiorino G, Lattanzio R, Broggini M, Piantelli M, Maffucci T, Falasca M. Class II phosphoinositide 3-kinase C2β regulates a novel signaling pathway involved in breast cancer progression. Oncotarget 2017; 7:18325-45. [PMID: 26934321 PMCID: PMC4951291 DOI: 10.18632/oncotarget.7761] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 02/11/2016] [Indexed: 12/15/2022] Open
Abstract
It is now well established that the enzymes phosphoinositide 3-kinases (PI3Ks) have a key role in the development and progression of many cancer types and indeed PI3Ks inhibitors are currently being tested in clinical trials. Although eight distinct PI3K isoforms exist, grouped into three classes, most of the evidence currently available are focused on one specific isoform with very little known about the potential role of the other members of this family in cancer. Here we demonstrate that the class II enzyme PI3K-C2β is overexpressed in several human breast cancer cell lines and in human breast cancer specimens. Our data indicate that PI3K-C2β regulates breast cancer cell growth in vitro and in vivo and that PI3K-C2β expression in breast tissues is correlated with the proliferative status of the tumor. Specifically we show that downregulation of PI3K-C2β in breast cancer cell lines reduces colony formation, induces cell cycle arrest and inhibits tumor growth, in particular in an estrogen-dependent in vivo xenograft. Investigation of the mechanism of the PI3K-C2β-dependent regulation of cell cycle progression and cell growth revealed that PI3K-C2β regulates cyclin B1 protein levels through modulation of microRNA miR-449a levels. Our data further demonstrate that downregulation of PI3K-C2β inhibits breast cancer cell invasion in vitro and breast cancer metastasis in vivo. Consistent with this, PI3K-C2β is highly expressed in lymph-nodes metastases compared to matching primary tumors. These data demonstrate that PI3K-C2β plays a pivotal role in breast cancer progression and in metastasis development. Our data indicate that PI3K-C2β may represent a key molecular switch that regulates a rate-limiting step in breast tumor progression and therefore it may be targeted to limit breast cancer spread.
Collapse
Affiliation(s)
- Anissa Chikh
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Cell Biology and Cutaneous Research, London, UK
| | - Riccardo Ferro
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Cell Biology and Cutaneous Research, London, UK
| | - Jonathan J Abbott
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Cell Biology and Cutaneous Research, London, UK
| | - Roberto Piñeiro
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Cell Biology and Cutaneous Research, London, UK
| | - Richard Buus
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Cell Biology and Cutaneous Research, London, UK
| | - Manuela Iezzi
- Aging Research Centre (Ce.S.I.), Foundation University "G. d'Annunzio", Chieti, Italy
| | - Francesca Ricci
- Laboratory of Molecular Pharmacology IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Daniele Bergamaschi
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Cell Biology and Cutaneous Research, London, UK
| | - Paola Ostano
- Cancer Genomics Laboratory, Fondazione Edo and Elvo Tempia, Biella, Italy
| | - Giovanna Chiorino
- Cancer Genomics Laboratory, Fondazione Edo and Elvo Tempia, Biella, Italy
| | - Rossano Lattanzio
- Aging Research Centre (Ce.S.I.), Foundation University "G. d'Annunzio", Chieti, Italy.,Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti, Italy
| | - Massimo Broggini
- Laboratory of Molecular Pharmacology IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Mauro Piantelli
- Aging Research Centre (Ce.S.I.), Foundation University "G. d'Annunzio", Chieti, Italy.,Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti, Italy
| | - Tania Maffucci
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Cell Biology and Cutaneous Research, London, UK
| | - Marco Falasca
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Cell Biology and Cutaneous Research, London, UK.,Metabolic Signalling Group, School of Biomedical Sciences, CHIRI Biosciences, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
20
|
Falasca M, Hamilton JR, Selvadurai M, Sundaram K, Adamska A, Thompson PE. Class II Phosphoinositide 3-Kinases as Novel Drug Targets. J Med Chem 2016; 60:47-65. [DOI: 10.1021/acs.jmedchem.6b00963] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Marco Falasca
- Metabolic
Signalling Group, School of Biomedical Sciences, CHIRI Biosciences, Curtin University, Perth, Western Australia 6845, Australia
| | - Justin R. Hamilton
- Australian
Centre for Blood Diseases and Department of Clinical Haematology, Monash University, 99 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Maria Selvadurai
- Australian
Centre for Blood Diseases and Department of Clinical Haematology, Monash University, 99 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Krithika Sundaram
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Aleksandra Adamska
- Metabolic
Signalling Group, School of Biomedical Sciences, CHIRI Biosciences, Curtin University, Perth, Western Australia 6845, Australia
| | - Philip E. Thompson
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
21
|
Herrero-Garcia E, O'Bryan JP. Intersectin scaffold proteins and their role in cell signaling and endocytosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:23-30. [PMID: 27746143 DOI: 10.1016/j.bbamcr.2016.10.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/08/2016] [Indexed: 11/29/2022]
Abstract
Intersectins (ITSNs) are a family of multi-domain proteins involved in regulation of diverse cellular pathways. These scaffold proteins are well known for regulating endocytosis but also play important roles in cell signaling pathways including kinase regulation and Ras activation. ITSNs participate in several human cancers, such as neuroblastomas and glioblastomas, while their downregulation is associated with lung injury. Alterations in ITSN expression have been found in neurodegenerative diseases such as Down Syndrome and Alzheimer's disease. Binding proteins for ITSNs include endocytic regulatory factors, cytoskeleton related proteins (i.e. actin or dynamin), signaling proteins as well as herpes virus proteins. This review will summarize recent studies on ITSNs, highlighting the importance of these scaffold proteins in the aforementioned processes.
Collapse
Affiliation(s)
- Erika Herrero-Garcia
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - John P O'Bryan
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
22
|
Sabha N, Volpatti JR, Gonorazky H, Reifler A, Davidson AE, Li X, Eltayeb NM, Dall'Armi C, Di Paolo G, Brooks SV, Buj-Bello A, Feldman EL, Dowling JJ. PIK3C2B inhibition improves function and prolongs survival in myotubular myopathy animal models. J Clin Invest 2016; 126:3613-25. [PMID: 27548528 DOI: 10.1172/jci86841] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/19/2016] [Indexed: 11/17/2022] Open
Abstract
Myotubular myopathy (MTM) is a devastating pediatric neuromuscular disorder of phosphoinositide (PIP) metabolism resulting from mutations of the PIP phosphatase MTM1 for which there are no treatments. We have previously shown phosphatidylinositol-3-phosphate (PI3P) accumulation in animal models of MTM. Here, we tested the hypothesis that lowering PI3P levels may prevent or reverse the MTM disease process. To test this, we targeted class II and III PI3 kinases (PI3Ks) in an MTM1-deficient mouse model. Muscle-specific ablation of Pik3c2b, but not Pik3c3, resulted in complete prevention of the MTM phenotype, and postsymptomatic targeting promoted a striking rescue of disease. We confirmed this genetic interaction in zebrafish, and additionally showed that certain PI3K inhibitors prevented development of the zebrafish mtm phenotype. Finally, the PI3K inhibitor wortmannin improved motor function and prolonged lifespan of the Mtm1-deficient mice. In all, we have identified Pik3c2b as a genetic modifier of Mtm1 mutation and demonstrated that PIK3C2B inhibition is a potential treatment strategy for MTM. In addition, we set the groundwork for similar reciprocal inhibition approaches for treating other PIP metabolic disorders and highlight the importance of modifier gene pathways as therapeutic targets.
Collapse
|
23
|
Novel roles for class II Phosphoinositide 3-Kinase C2β in signalling pathways involved in prostate cancer cell invasion. Sci Rep 2016; 6:23277. [PMID: 26983806 PMCID: PMC4794650 DOI: 10.1038/srep23277] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 03/03/2016] [Indexed: 12/14/2022] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) regulate several cellular functions such as proliferation, growth, survival and migration. The eight PI3K isoforms are grouped into three classes and the three enzymes belonging to the class II subfamily (PI3K-C2α, β and γ) are the least investigated amongst all PI3Ks. Interest on these isoforms has been recently fuelled by the identification of specific physiological roles for class II PI3Ks and by accumulating evidence indicating their involvement in human diseases. While it is now established that these isoforms can regulate distinct cellular functions compared to other PI3Ks, there is still a limited understanding of the signalling pathways that can be specifically regulated by class II PI3Ks. Here we show that PI3K-C2β regulates mitogen-activated protein kinase kinase (MEK1/2) and extracellular signal-regulated kinase (ERK1/2) activation in prostate cancer (PCa) cells. We further demonstrate that MEK/ERK and PI3K-C2β are required for PCa cell invasion but not proliferation. In addition we show that PI3K-C2β but not MEK/ERK regulates PCa cell migration as well as expression of the transcription factor Slug. These data identify novel signalling pathways specifically regulated by PI3K-C2β and they further identify this enzyme as a key regulator of PCa cell migration and invasion.
Collapse
|
24
|
Gómez-Villafuertes R, García-Huerta P, Díaz-Hernández JI, Miras-Portugal MT. PI3K/Akt signaling pathway triggers P2X7 receptor expression as a pro-survival factor of neuroblastoma cells under limiting growth conditions. Sci Rep 2015; 5:18417. [PMID: 26687764 PMCID: PMC4685307 DOI: 10.1038/srep18417] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/17/2015] [Indexed: 12/19/2022] Open
Abstract
The expression of purinergic P2X7 receptor (P2X7R) in neuroblastoma cells is associated to accelerated growth rate, angiogenesis, metastasis and poor prognosis. Noticeably, P2X7R allows the survival of neuroblastoma cells under restrictive conditions, including serum and glucose deprivation. Previously we identified specificity protein 1 (Sp1) as the main factor involved in the transcriptional regulation of P2rx7 gene, reporting that serum withdrawal triggers the expression of P2X7R in Neuro-2a (N2a) neuroblastoma cell line. Here we demonstrate that PI3K/Akt pathway is crucial for the upregulation of P2X7R expression in serum-deprived neuroblastoma cells, circumstance that facilitates cell proliferation in the absence of trophic support. The effect exerted by PI3K/Akt is independent of both mTOR and GSK3, but requires the activation of EGF receptor (EGFR). Nuclear levels of Sp1 are strongly reduced by inhibition of PI3K/Akt pathway, and blockade of Sp1-dependent transcription with mithramycin A prevents upregulation of P2rx7 gene expression following serum withdrawal. Furthermore, atypical PKCζ plays a key role in the regulation of P2X7R expression by preventing phosphorylation and, consequently, activation of Akt. Altogether, these data indicate that activation of EGFR enhanced the expression of P2X7R in neuroblastoma cells lacking trophic support, being PI3K/Akt/PKCζ signaling pathway and Sp1 mediating this pro-survival outcome.
Collapse
Affiliation(s)
- Rosa Gómez-Villafuertes
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Paula García-Huerta
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Juan Ignacio Díaz-Hernández
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Mª Teresa Miras-Portugal
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|