1
|
Zhang H, Gong L, Yu L, Xian C, Ma Z, Wang X, Xia R. Emerging roles of non-coding RNA derived from extracellular vesicles in regulating PD-1/PD-L1 pathway: insights into cancer immunotherapy and clinical applications. Cancer Cell Int 2025; 25:188. [PMID: 40410719 PMCID: PMC12103061 DOI: 10.1186/s12935-025-03809-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 05/05/2025] [Indexed: 05/25/2025] Open
Abstract
Numerous studies have demonstrated that extracellular vesicles (EVs) carry a variety of noncoding RNAs (ncRNAs), which can be taken up by neighboring cells or transported to distant sites via bodily fluids, thereby facilitating intercellular communication and regulating multiple cellular functions. Within the tumor microenvironment, EV-ncRNA, on the one hand, regulate the expression of PD-L1, thereby influencing tumor immune evasion, promoting tumor cell proliferation, and enhancing tumor growth, invasion, and metastasis in vivo. On the other hand, these specific EV-ncRNAs can also modulate the functions of immune cells (such as CD8 + T cells, macrophages, and NK cells) through various molecular mechanisms, inducing an immunosuppressive microenvironment and promoting resistance to anti-PD-1 therapy. Therefore, delving into the molecular mechanisms underlying EV-ncRNA regulation of immune checkpoints presents compelling therapeutic prospects for strategies that selectively target EV-ncRNAs. In this review, we elaborate on the cutting-edge research progress related to EV-ncRNAs in the context of cancer and dissect their pivotal roles in the PD-1/PD-L1 immune checkpoint pathway. We also highlight the promising clinical applications of EV-ncRNAs in anti-PD-1/PD-L1 immunotherapy, bridging basic research with practical clinical applications.
Collapse
Affiliation(s)
- Haixia Zhang
- Health Science Center, Yangtze University, Nanhuan Road 1, Jingzhou, 434023, Hubei, China
| | - Lianfeng Gong
- Health Science Center, Yangtze University, Nanhuan Road 1, Jingzhou, 434023, Hubei, China
| | - Li Yu
- Health Science Center, Yangtze University, Nanhuan Road 1, Jingzhou, 434023, Hubei, China
- Department of Urology, General Hospital of The Yangtze River Shipping, Wuhan, 430010, China
| | - Chenge Xian
- Naidong District People's Hospital, Shannan, 856004, Tibet Autonomous Region, China
| | - Zhaowu Ma
- Health Science Center, Yangtze University, Nanhuan Road 1, Jingzhou, 434023, Hubei, China.
| | - Xianwang Wang
- Health Science Center, Yangtze University, Nanhuan Road 1, Jingzhou, 434023, Hubei, China.
- Shannan Maternal and Child Health Hospital, Shannan, 856099, Tibet Autonomous Region, China.
| | - Ruohan Xia
- Health Science Center, Yangtze University, Nanhuan Road 1, Jingzhou, 434023, Hubei, China.
| |
Collapse
|
2
|
Li S, Fu X, Ning D, Liu Q, Zhao J, Cheng Q, Chen X, Jiang L. Colon cancer exosome-associated HSP90B1 initiates pre-metastatic niche formation in the liver by polarizing M1 macrophage into M2 phenotype. Biol Direct 2025; 20:52. [PMID: 40234961 PMCID: PMC12001560 DOI: 10.1186/s13062-025-00623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/24/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) frequently metastasizes to the liver, worsening patient outcomes. The formation of a pre-metastatic niche (PMN) is essential for this process, but how the primary colon tumor orchestrates the PMN formation remains unclear. METHODS This study investigated the role of CRC-derived exosomes using CT-26 murine colon carcinoma cells. The effects of these exosomes on immune cells, specifically M1 macrophage polarization and CD8 + T cell viability, were assessed. HSP90B1 expression in CT-26-derived exosomes was analyzed to understand its contribution to PMN formation. HSP90B1 silencing experiments were conducted to evaluate its impact on immunosuppressive PMN creation and liver metastasis. Patient blood samples were also examined to correlate exosomal HSP90B1 levels with CRC progression. RESULTS Exosomes from CT-26 cells were found to polarize M1 macrophages into an M2 phenotype and decrease CD8 + T cell viability, promoting liver metastasis. High expression of HSP90B1 in CT-26 cell-derived exosomes was identified as a key factor in inducing M2 macrophage polarization and creating an immunosuppressive PMN. Silencing HSP90B1 significantly inhibited the exosome-mediated formation of the immunosuppressive PMN and reduced liver metastasis. Furthermore, elevated levels of HSP90B1 in patient-derived exosomes were associated with advanced CRC and poorer prognosis. CONCLUSIONS CRC-derived exosomes promote liver metastasis by forming an immunosuppressive PMN through HSP90B1. Targeting HSP90B1 in CRC exosomes may offer a new therapeutic strategy to prevent liver metastasis and improve patient outcomes.
Collapse
Affiliation(s)
- ShuJie Li
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430022, China
| | - Xue Fu
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430022, China
| | - Deng Ning
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - QiuMeng Liu
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430022, China
| | - JunFang Zhao
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430022, China
| | - Qi Cheng
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430022, China
| | - XiaoPing Chen
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430022, China
- Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Li Jiang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China.
| |
Collapse
|
3
|
Saadh MJ, Jasim NY, Ahmed MH, Ballal S, Kumar A, Atteri S, Vashishth R, Rizaev J, Alhili A, Jawad MJ, Yazdi F, Salajegheh A, Akhavan-Sigari R. Critical roles of miR-21 in promotions angiogenesis: friend or foe? Clin Exp Med 2025; 25:66. [PMID: 39998742 PMCID: PMC11861128 DOI: 10.1007/s10238-025-01600-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
MiRNAs are small RNA strands that are managed following transcription and are of substantial importance in blood vessel formation. It is essential to oversee the growth, differentiation, death, movement and construction of tubes by angiogenesis-affiliated cells. If miRNAs are not correctly regulated in regard to angiogenesis, it can deteriorate the health and lead to various illnesses, which include cancer, cardiovascular disorder, critical limb ischemia, Crohn's disease, ocular diseases, diabetic microvascular complications, and more. Consequently, it is vital to understand the crucial part that miRNAs play in the development of blood vessels, so we can develop reliable treatment plans for vascular diseases. This write-up will assess the critical role of miR-21/exosomal miR-21 in managing angiogenesis associated with bone growth, wound recovery, and other pathological conditions like tumor growth, ocular illnesses, diabetes, and other diseases connected to formation of blood vessels. Previous investigations have demonstrated that miR-21 is present at higher amounts in certain cancerous cells, and it influences a multitude of genes that moderate the increased creation of blood vessels. Furthermore, studies demonstrated that exosomal miR-21 has the capacity to interact with endothelial cells to foster tumor angiogenesis. For that reason, this review explains the critical importance of miR-21/exosomal miR-21 in managing both healthy and diseased states of angiogenesis.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Nisreen Yasir Jasim
- College of Nursing, National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | | | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Abhishek Kumar
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Pharmacy, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Shikha Atteri
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjheri, Mohali, Punjab, 140307, India
| | - Raghav Vashishth
- Department of Surgery, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Jasur Rizaev
- Department of Public Health and Healthcare Management, Rector, Samarkand State Medical University, 18, Amir Temur Street, Samarkand, Uzbekistan
| | - Ahmed Alhili
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | | - Farzaneh Yazdi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | | | - Reza Akhavan-Sigari
- Dr. Schneiderhan GmbH and ISAR Klinikum, Munich, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw, Management University Warsaw, Warsaw, Poland
| |
Collapse
|
4
|
Boussios S, Sheriff M, Ovsepian SV. Molecular Biology of Cancer-Interplay of Malignant Cells with Emerging Therapies. Int J Mol Sci 2024; 25:13090. [PMID: 39684799 DOI: 10.3390/ijms252313090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Cancer is currently one of the leading causes of death worldwide, and according to data from the World Health Organization reported in 2020, it ranks as the second leading cause of death globally, accounting for 10 million fatalities [...].
Collapse
Affiliation(s)
- Stergios Boussios
- Faculty of Medicine, Health and Social Care, Canterbury Christ Church University, Canterbury CT1 1QU, UK
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King's College London, Strand, London WC2R 2LS, UK
- Kent Medway Medical School, University of Kent, Canterbury CT2 7LX, UK
- AELIA Organization, 9th Km Thessaloniki-Thermi, 57001 Thessaloniki, Greece
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK
| | - Matin Sheriff
- Department of Urology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK
| | - Saak V Ovsepian
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Gillingham ME4 4AG, UK
- Faculty of Medicine, Tbilisi State University, Tbilisi 0179, Georgia
| |
Collapse
|
5
|
Tao R, Wang D, Pei W, Liu Y, Liu P, Li R, Xu J, Ye J, Zhao D. Highly Sensitive and Specific Panels of Plasma Exosomal microRNAs for Identification of Malignant Pulmonary Nodules. THE CLINICAL RESPIRATORY JOURNAL 2024; 18:e70034. [PMID: 39548655 PMCID: PMC11567941 DOI: 10.1111/crj.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 09/25/2024] [Accepted: 10/20/2024] [Indexed: 11/18/2024]
Abstract
OBJECTIVES With wide application of computed tomography (CT) in early lung cancer screening, solitary pulmonary nodules (SPNs) are frequently detected. Due to their high etiological diversity and potential for malignancy, rapid and accurate identification and malignant SPNs are crucial in the clinical management. In the present study, plasma exosomal microRNAs were identified and evaluated as sensitive and specific indicators for malignant SPNs. MATERIALS AND METHODS Exosomal miRNAs isolated from the plasmas of pathologically confirmed patients with SPN (four malignant and four benign, designated as the screening set) were subjected for high throughput sequencing and eight candidate miRNAs were selected. The pre-operation plasma levels of the candidate miRNAs in 77 patients with SPN (48 malignant and 29 benign, designated as the identification set) were detected by quantitative PCR, five miRNAs were identified as potential biomarkers for malignant SPNs, and the diagnostic values of the five miRNAs each alone or combined were then analyzed by AUROC analysis. The prediction values of the identified miRNAs were further evaluated in 95 patients with SPN (double blind, 74 malignant and 21 benign, designated as the validation set). RESULTS High-throughput sequencing identified 45 miRNAs with statistical differences between benign and malignant SPNs. Among the eight candidate miRNAs in the identification set, miR-1-3p alone had the best diagnostic value, with the sensitivities and specificities of 89.6% and 100% for malignant SPNs. Unexpectedly, when miR-1-3p was combined with miR-99a-5p, both the sensitivity and specificity reached 100% for malignant SPNs. miR-1-3p+miR-125b-5p and miR-1-3p+miR-218-5p were also good indicators of malignant SPNs with sensitivities of 95.8% and 97.9%, specificities of 100% and 96.6%. Further analysis of these microRNA combinations in the validation set indicated that the PPV were 91.4%, 97.4%, and 93.5% and the NPV were 100%, 100%, and 88.9% for miR-1-3p+miR-99a-5p, miR-1-3p+miR-218-5p, and miR-1-3p+miR-125b-5p, with the sensitivities were 100%, 100%, and 97.3% and the specificities were 66.7%, 90.5%, and 76.2% for miR-1-3p+miR-99a-5p, miR-1-3p+miR-218-5p, and miR-1-3p+miR-125b-5p, respectively. CONCLUSIONS Through high throughput sequencing, qPCR determination of plasma microRNAs and AUROC analysis, miR-1-3p combined with miR-99a-5p, miR-125b-5p, or miR-218-5p have been found to be sensitive and specific indicators of malignant SPNs in both the identification and validation sets. Our results indicate that the panels of plasma miRNAs can be used as diagnostic biomarkers for malignant SPNs.
Collapse
Affiliation(s)
- Rui Tao
- Department of Respiratory and Critical Care Medicine, the Second Affiliated HospitalAnhui Medical UniversityHefeiAnhui ProvinceChina
- Department of Immunology, School of Basic Medical SciencesAnhui Medical UniversityHefeiAnhui ProvinceChina
- Department of Respiratory and Critical Care Medicine, Anhui Chest HospitalThoracic Clinical College of Anhui Medical UniversityHefeiAnhui ProvinceChina
| | - Dandan Wang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated HospitalAnhui Medical UniversityHefeiAnhui ProvinceChina
| | - Wenjing Pei
- Department of Respiratory and Critical Care Medicine, the Second Affiliated HospitalAnhui Medical UniversityHefeiAnhui ProvinceChina
| | - Yanfei Liu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated HospitalAnhui Medical UniversityHefeiAnhui ProvinceChina
| | - Pengcheng Liu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated HospitalAnhui Medical UniversityHefeiAnhui ProvinceChina
| | - Renming Li
- Department of Respiratory and Critical Care Medicine, the Second Affiliated HospitalAnhui Medical UniversityHefeiAnhui ProvinceChina
| | - Jiegou Xu
- Department of Immunology, School of Basic Medical SciencesAnhui Medical UniversityHefeiAnhui ProvinceChina
| | - Jing Ye
- Department of Respiratory and Critical Care Medicine, the Second Affiliated HospitalAnhui Medical UniversityHefeiAnhui ProvinceChina
| | - Dahai Zhao
- Department of Respiratory and Critical Care Medicine, the Second Affiliated HospitalAnhui Medical UniversityHefeiAnhui ProvinceChina
| |
Collapse
|
6
|
Orooji N, Fadaee M, Kazemi T, Yousefi B. Exosome therapeutics for non-small cell lung cancer tumorigenesis. Cancer Cell Int 2024; 24:360. [PMID: 39478574 PMCID: PMC11523890 DOI: 10.1186/s12935-024-03544-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) remains an ongoing health concern, with poor treatment options and prognosis for many patients. Typically, individuals with lung cancer are detected at the middle and terminal stages, resulting in poor medical results due to lack of initial diagnosis and treatment. So, finding the initial specific and effective therapy options for lung cancer is necessary. In addition, exosomes are generally small lipid vesicles with a diameter in the nanometer range that are created and released by different cell types. Exosomes have therapeutic potential through delivering bioactive compounds including microRNAs, siRNAs, and therapeutic proteins to tumor cells, modifying the tumor microenvironment, and promoting anti-tumor immune responses. In recent years, exosome-based therapy has become known as an appropriate approach for NSCLC treatment. This review offers an overview of the possibility of exosome-based therapy for NSCLC, with an emphasis on mechanisms of action, preclinical research, and current clinical trials. Preclinical studies have shown that exosome-based therapy can decrease tumor growth, metastasis, and drug resistance in NSCLC models. Furthermore, ongoing clinical trials are looking at the safety and efficacy of exosome-based therapies in NSCLC patients, offering important insights into their translational prospects. Despite promising preclinical evidences, significant obstacles remain, including optimizing exosome isolation and purification techniques, standardizing production strategies, and developing scalable manufacturing processes. Overall, exosome-based therapy shows significant promise as a novel and various methods for treating NSCLC, with the potential to enhance patient outcomes and evolution cancer treatment.
Collapse
Affiliation(s)
- Niloufar Orooji
- Department of Immunology, School of Medicine, Semnan University of Medical Science, Semnan, Iran
| | - Manouchehr Fadaee
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
| | - Tohid Kazemi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Department of Immunology, School of Medicine, Semnan University of Medical Science, Semnan, Iran.
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
7
|
Hassanin AAI, Ramos KS. Modulation of the Oncogenic LINE-1 Regulatory Network in Non-Small Cell Lung Cancer by Exosomal miRNAs. Int J Mol Sci 2024; 25:10674. [PMID: 39409003 PMCID: PMC11477113 DOI: 10.3390/ijms251910674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Several microRNAs (miRNAs), including miR-221-5p, Let-7b-5p, miR-21-5p, miR-9-5p, miR-126-3p, and miR-222-3p, were recently found to be enriched in circulating exosomes of patients with non-small cell lung cancers (NSCLCs). These miRNAs distinguished cancer cases from controls with high precision and were predicted to modulate the expression of genes within the oncogenic LINE-1 regulatory network. To test this hypothesis, plasma exosomes from controls, early, and late-stage NSCLC patients were co-cultured with non-tumorigenic lung epithelial cells for 72 h and processed for measurements of gene expression. Exosomes from late-stage NSCLC patients markedly increased the mRNA levels of LINE-1 ORF1 and ORF2, as well as the levels of target miRNAs in naïve recipient cells compared to saline or control exosomes. Late-stage exosomes also modulated the expression of oncogenic targets within the LINE-1 regulatory network, namely, ICAM1, AGL, RGS3, RGS13, VCAM1, and TGFβ1. In sharp contrast, exosomes from controls or early-stage NSCLC patients inhibited LINE-1 expression, along with many of the genetic targets within the LINE-1 regulatory network. Thus, late-stage NSCLC exosomes activate LINE-1 and miRNA-regulated oncogenic signaling in non-tumorigenic, recipient lung bronchial epithelial cells. These findings raise important questions regarding lung cancer progression and metastasis and open the door for the exploration of new therapeutic interventions.
Collapse
Affiliation(s)
- Abeer A. I. Hassanin
- Center for Genomic and Precision Medicine, Texas Medical Center, Texas A&M Institute of Biosciences and Technology, Houston, TX 77030, USA;
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Kenneth S. Ramos
- Center for Genomic and Precision Medicine, Texas Medical Center, Texas A&M Institute of Biosciences and Technology, Houston, TX 77030, USA;
| |
Collapse
|
8
|
Soltanmohammadi F, Gharehbaba AM, Zangi AR, Adibkia K, Javadzadeh Y. Current knowledge of hybrid nanoplatforms composed of exosomes and organic/inorganic nanoparticles for disease treatment and cell/tissue imaging. Biomed Pharmacother 2024; 178:117248. [PMID: 39098179 DOI: 10.1016/j.biopha.2024.117248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024] Open
Abstract
Exosome-nanoparticle hybrid nanoplatforms, can be prepared by combining exosomes with different types of nanoparticles. The main purpose of combining exosomes with nanoparticles is to overcome the limitations of using each of them as drug delivery systems. Using nanoparticles for drug delivery has some limitations, such as high immunogenicity, poor cellular uptake, low biocompatibility, cytotoxicity, low stability, and rapid clearance by immune cells. However, using exosomes as drug delivery systems also has its own drawbacks, such as poor encapsulation efficiency, low production yield, and the inability to load large molecules. These limitations can be addressed by utilizing hybrid nanoplatforms. Additionally, the use of exosomes allows for targeted delivery within the hybrid system. Exosome-inorganic/organic hybrid nanoparticles may be used for both therapy and diagnosis in the future. This may lead to the development of personalized medicine using hybrid nanoparticles. However, there are a few challenges associated with this. Surface modifications, adding functional groups, surface charge adjustments, and preparing nanoparticles with the desired size are crucial to the possibility of preparing exosome-nanoparticle hybrids. Additional challenges for the successful implementation of hybrid platforms in medical treatments and diagnostics include scaling up the manufacturing process and ensuring consistent quality and reproducibility across various batches. This review focuses on various types of exosome-nanoparticle hybrid systems and also discusses the preparation and loading methods for these hybrid nanoplatforms. Furthermore, the potential applications of these hybrid nanocarriers in drug/gene delivery, disease treatment and diagnosis, and cell/tissue imaging are explained.
Collapse
Affiliation(s)
- Fatemeh Soltanmohammadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Adel Mahmoudi Gharehbaba
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Rajabi Zangi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Javadzadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Lv J, Xiong X. Extracellular Vesicle microRNA: A Promising Biomarker and Therapeutic Target for Respiratory Diseases. Int J Mol Sci 2024; 25:9147. [PMID: 39273095 PMCID: PMC11395461 DOI: 10.3390/ijms25179147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Respiratory diseases, including chronic obstructive pulmonary disease (COPD), asthma, lung cancer, and coronavirus pneumonia, present a major global health challenge. Current diagnostic and therapeutic options for these diseases are limited, necessitating the urgent development of novel biomarkers and therapeutic strategies. In recent years, microRNAs (miRNAs) within extracellular vesicles (EVs) have received considerable attention due to their crucial role in intercellular communication and disease progression. EVs are membrane-bound structures released by cells into the extracellular environment, encapsulating a variety of biomolecules such as DNA, RNA, lipids, and proteins. Specifically, miRNAs within EVs, known as EV-miRNAs, facilitate intercellular communication by regulating gene expression. The expression levels of these miRNAs can reflect distinct disease states and significantly influence immune cell function, chronic airway inflammation, airway remodeling, cell proliferation, angiogenesis, epithelial-mesenchymal transition, and other pathological processes. Consequently, EV-miRNAs have a profound impact on the onset, progression, and therapeutic responses of respiratory diseases, with great potential for disease management. Synthesizing the current understanding of EV-miRNAs in respiratory diseases such as COPD, asthma, lung cancer, and novel coronavirus pneumonia, this review aims to explore the potential of EV-miRNAs as biomarkers and therapeutic targets and examine their prospects in the diagnosis and treatment of these respiratory diseases.
Collapse
Affiliation(s)
- Jiaxi Lv
- Department of Pulmonary and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Xianzhi Xiong
- Department of Pulmonary and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| |
Collapse
|
10
|
Xu C, Jiang C, Li Z, Gao H, Xian J, Guo W, He D, Peng X, Zhou D, Li D. Exosome nanovesicles: biomarkers and new strategies for treatment of human diseases. MedComm (Beijing) 2024; 5:e660. [PMID: 39015555 PMCID: PMC11247338 DOI: 10.1002/mco2.660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/18/2024] Open
Abstract
Exosomes are nanoscale vesicles of cellular origin. One of the main characteristics of exosomes is their ability to carry a wide range of biomolecules from their parental cells, which are important mediators of intercellular communication and play an important role in physiological and pathological processes. Exosomes have the advantages of biocompatibility, low immunogenicity, and wide biodistribution. As researchers' understanding of exosomes has increased, various strategies have been proposed for their use in diagnosing and treating diseases. Here, we provide an overview of the biogenesis and composition of exosomes, describe the relationship between exosomes and disease progression, and focus on the use of exosomes as biomarkers for early screening, disease monitoring, and guiding therapy in refractory diseases such as tumors and neurodegenerative diseases. We also summarize the current applications of exosomes, especially engineered exosomes, for efficient drug delivery, targeted therapies, gene therapies, and immune vaccines. Finally, the current challenges and potential research directions for the clinical application of exosomes are also discussed. In conclusion, exosomes, as an emerging molecule that can be used in the diagnosis and treatment of diseases, combined with multidisciplinary innovative solutions, will play an important role in clinical applications.
Collapse
Affiliation(s)
- Chuan Xu
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Chaoyang Jiang
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Zhihui Li
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Hui Gao
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Jing Xian
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Wenyan Guo
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Dan He
- Department of OncologyThe Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduSichuanChina
| | - Xingchen Peng
- Department of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Daijun Zhou
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Dong Li
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| |
Collapse
|
11
|
Padinharayil H, George A. Small extracellular vesicles: Multi-functional aspects in non-small cell lung carcinoma. Crit Rev Oncol Hematol 2024; 198:104341. [PMID: 38575042 DOI: 10.1016/j.critrevonc.2024.104341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 03/13/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024] Open
Abstract
Extracellular vesicles (EVs) impact normal and pathological cellular signaling through bidirectional trafficking. Exosomes, a subset of EVs possess biomolecules including proteins, lipids, DNA fragments and various RNA species reflecting a speculum of their parent cells. The involvement of exosomes in bidirectional communication and their biological constituents substantiate its role in regulating both physiology and pathology, including multiple cancers. Non-small cell lung cancer (NSCLC) is the most common lung cancers (85%) with high incidence, mortality and reduced overall survival. Lack of efficient early diagnostic and therapeutic tools hurdles the management of NSCLC. Interestingly, the exosomes from body fluids similarity with parent cells or tissue offers a potential future multicomponent tool for the early diagnosis of NSCLC. The structural twinning of exosomes with a cell/tissue and the competitive tumor derived exosomes in tumor microenvironment (TME) promotes the unpinning horizons of exosomes as a drug delivery, vaccine, and therapeutic agent. Exosomes in clinical point of view assist to trace: acquired resistance caused by various therapeutic agents, early diagnosis, progression, and surveillance. In an integrated approach, EV biomarkers offer potential cutting-edge techniques for the detection and diagnosis of cancer, though the purification, characterization, and biomarker identification processes for the translational research regarding EVs need further optimization.
Collapse
Affiliation(s)
- Hafiza Padinharayil
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur-05, Kerala, India
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur-05, Kerala, India.
| |
Collapse
|
12
|
Moghassemi S, Dadashzadeh A, Sousa MJ, Vlieghe H, Yang J, León-Félix CM, Amorim CA. Extracellular vesicles in nanomedicine and regenerative medicine: A review over the last decade. Bioact Mater 2024; 36:126-156. [PMID: 38450204 PMCID: PMC10915394 DOI: 10.1016/j.bioactmat.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
Small extracellular vesicles (sEVs) are known to be secreted by a vast majority of cells. These sEVs, specifically exosomes, induce specific cell-to-cell interactions and can activate signaling pathways in recipient cells through fusion or interaction. These nanovesicles possess several desirable properties, making them ideal for regenerative medicine and nanomedicine applications. These properties include exceptional stability, biocompatibility, wide biodistribution, and minimal immunogenicity. However, the practical utilization of sEVs, particularly in clinical settings and at a large scale, is hindered by the expensive procedures required for their isolation, limited circulation lifetime, and suboptimal targeting capacity. Despite these challenges, sEVs have demonstrated a remarkable ability to accommodate various cargoes and have found extensive applications in the biomedical sciences. To overcome the limitations of sEVs and broaden their potential applications, researchers should strive to deepen their understanding of current isolation, loading, and characterization techniques. Additionally, acquiring fundamental knowledge about sEVs origins and employing state-of-the-art methodologies in nanomedicine and regenerative medicine can expand the sEVs research scope. This review provides a comprehensive overview of state-of-the-art exosome-based strategies in diverse nanomedicine domains, encompassing cancer therapy, immunotherapy, and biomarker applications. Furthermore, we emphasize the immense potential of exosomes in regenerative medicine.
Collapse
Affiliation(s)
- Saeid Moghassemi
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Maria João Sousa
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Hanne Vlieghe
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Jie Yang
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Cecibel María León-Félix
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Christiani A. Amorim
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
13
|
He B, Shao B, Cheng C, Ye Z, Yang Y, Fan B, Xia H, Wu H, Liu Q, Zhang J. miR-21-Mediated Endothelial Senescence and Dysfunction Are Involved in Cigarette Smoke-Induced Pulmonary Hypertension through Activation of PI3K/AKT/mTOR Signaling. TOXICS 2024; 12:396. [PMID: 38922076 PMCID: PMC11209295 DOI: 10.3390/toxics12060396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024]
Abstract
Smoking is a pathogenic factor for pulmonary hypertension (PH). Our previous study showed that serum miR-21 levels are elevated in smokers. miR-21 is considered as engaged in the PH process; however, its mechanisms remain unclear. In this investigation, we found that in the lung tissue of smoking-induced PH patients, the levels of miR-21 and aging markers (p21 and p16) were upregulated, and the function of pulmonary vascular endothelial cells was also impaired. Exposure of mice to cigarette smoke (CS) for four months caused similar changes in lung tissues and increased pulmonary arterial pressure, which were attenuated by knockout of miR-21. Further, human umbilical vein endothelial cells (HUVECs) exposed to cigarette smoke extract (CSE) revealed upregulation of miR-21 levels, depression of PTEN, activation of PI3K/AKT/mTOR signaling, an increase in senescence indexes, and enhanced dysfunction. Inhibiting miR-21 overexpression reversed the PTEN-mTOR signaling pathway and prevented senescence and dysfunction of HUVECs. In sum, our data indicate that miR-21-mediated endothelial senescence and dysfunction are involved in CS-induced PH through the activation of PI3K/AKT/mTOR signaling, which suggests that selective miR-21 inhibition offers the potential to attenuate PH.
Collapse
Affiliation(s)
- Bin He
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; (B.H.); (H.W.)
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (B.S.); (C.C.); (Z.Y.); (Y.Y.); (B.F.); (H.X.)
| | - Binxia Shao
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (B.S.); (C.C.); (Z.Y.); (Y.Y.); (B.F.); (H.X.)
- Department of Emergency, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School of Nanjing University, Nanjing 210008, China
| | - Cheng Cheng
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (B.S.); (C.C.); (Z.Y.); (Y.Y.); (B.F.); (H.X.)
| | - Zitong Ye
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (B.S.); (C.C.); (Z.Y.); (Y.Y.); (B.F.); (H.X.)
| | - Yi Yang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (B.S.); (C.C.); (Z.Y.); (Y.Y.); (B.F.); (H.X.)
| | - Bowen Fan
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (B.S.); (C.C.); (Z.Y.); (Y.Y.); (B.F.); (H.X.)
| | - Haibo Xia
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (B.S.); (C.C.); (Z.Y.); (Y.Y.); (B.F.); (H.X.)
| | - Hao Wu
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; (B.H.); (H.W.)
| | - Qizhan Liu
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (B.S.); (C.C.); (Z.Y.); (Y.Y.); (B.F.); (H.X.)
| | - Jinsong Zhang
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; (B.H.); (H.W.)
| |
Collapse
|
14
|
Lv X, Yang L, Xie Y, Momeni MR. Non-coding RNAs and exosomal non-coding RNAs in lung cancer: insights into their functions. Front Cell Dev Biol 2024; 12:1397788. [PMID: 38859962 PMCID: PMC11163066 DOI: 10.3389/fcell.2024.1397788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/02/2024] [Indexed: 06/12/2024] Open
Abstract
Lung cancer is the second most common form of cancer worldwide Research points to the pivotal role of non-coding RNAs (ncRNAs) in controlling and managing the pathology by controlling essential pathways. ncRNAs have all been identified as being either up- or downregulated among individuals suffering from lung cancer thus hinting that they may play a role in either promoting or suppressing the spread of the disease. Several ncRNAs could be effective non-invasive biomarkers to diagnose or even serve as effective treatment options for those with lung cancer, and several molecules have emerged as potential targets of interest. Given that ncRNAs are contained in exosomes and are implicated in the development and progression of the malady. Herein, we have summarized the role of ncRNAs in lung cancer. Moreover, we highlight the role of exosomal ncRNAs in lung cancer.
Collapse
Affiliation(s)
- Xiaolong Lv
- Department of Cardiothoracic Surgery, The People’s Hospital of Changshou, Chongqing, China
| | - Lei Yang
- Department of Cardiothoracic Surgery, The People’s Hospital of Tongliang District, Chongqing, China
| | - Yunbo Xie
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | |
Collapse
|
15
|
Alipoor SD, Elieh-Ali-Komi D. Significance of extracellular vesicles in orchestration of immune responses in Mycobacterium tuberculosis infection. Front Cell Infect Microbiol 2024; 14:1398077. [PMID: 38836056 PMCID: PMC11148335 DOI: 10.3389/fcimb.2024.1398077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/19/2024] [Indexed: 06/06/2024] Open
Abstract
Mycobacterium tuberculosis (M.tb), the causative agent of Tuberculosis, is an intracellular bacterium well known for its ability to subvert host energy and metabolic pathways to maintain its intracellular survival. For this purpose, the bacteria utilize various mechanisms of which extracellular vehicles (EVs) related mechanisms attracted more attention. EVs are nanosized particles that are released by almost all cell types containing active biomolecules from the cell of origin and can target bioactive pathways in the recipient cells upon uptake. It is hypothesized that M.tb dictates the processes of host EV biogenesis pathways, selectively incorporating its molecules into the host EV to direct immune responses in its favor. During infection with Mtb, both mycobacteria and host cells release EVs. The composition of these EVs varies over time, influenced by the physiological and nutritional state of the host environment. Additionally, different EV populations contribute differently to the pathogenesis of disease at various stages of illness participating in a complex interplay between host cells and pathogens. These interactions ultimately influence immune responses and disease outcomes. However, the precise mechanisms and roles of EVs in pathogenicity and disease outcomes remain to be fully elucidated. In this review, we explored the properties and function of EVs in the context of M.tb infection within the host microenvironment and discussed their capacity as a novel therapeutic strategy to combat tuberculosis.
Collapse
Affiliation(s)
- Shamila D. Alipoor
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Daniel Elieh-Ali-Komi
- Institute of Allergology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Immunology and Allergology, Berlin, Germany
| |
Collapse
|
16
|
Soliman AM, Kodous AS, Al-Sherif DA, Ghorab MM. Quinazoline sulfonamide derivatives targeting MicroRNA-34a/MDM4/p53 apoptotic axis with radiosensitizing activity. Future Med Chem 2024; 16:929-948. [PMID: 38661115 PMCID: PMC11221547 DOI: 10.4155/fmc-2023-0342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/15/2024] [Indexed: 04/26/2024] Open
Abstract
Aim: New quinazoline benzenesulfonamide hybrids 4a-n were synthesized to determine their cytotoxicity and effect on the miR-34a/MDM4/p53 apoptotic pathway. Materials & methods: Cytotoxicity against hepatic, breast, lung and colon cancer cell lines was estimated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results: Compound 4d was the most potent against HepG2 and MCF-7 cancer cells, with potential apoptotic activity verified by a significant upregulation of miR-34a and p53 gene expressions. The apoptotic effect of 4d was further investigated and showed downregulation of miR-21, VEGF, STAT3 and MDM4 gene expression. Conclusion: The anticancer and apoptotic activities of 4d were enhanced post irradiation by a single dose of 8 Gy γ-radiation. Docking analysis demonstrated a valuable affinity of 4d toward VEGFR2 and MDM4 active sites.
Collapse
Affiliation(s)
- Aiten M Soliman
- Drug Radiation Research Department, National Center for Radiation Research & Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt
| | - Ahmad S Kodous
- Radiation Biology Department, National Center for Radiation Research & Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt
| | - Diana A Al-Sherif
- Technology of Radiology and Medical Imaging, Faculty of Applied Medical Sciences, 6th of October University, Giza 12585, Egypt
| | - Mostafa M Ghorab
- Drug Radiation Research Department, National Center for Radiation Research & Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt
| |
Collapse
|
17
|
Liu Q, Zhang Y, Han B, Wang M, Hu H, Ning J, Hu W, Chen M, Pang Y, Chen Y, Bao L, Niu Y, Zhang R. circRNAs deregulation in exosomes derived from BEAS-2B cells is associated with vascular stiffness induced by PM 2.5. J Environ Sci (China) 2024; 137:527-539. [PMID: 37980036 DOI: 10.1016/j.jes.2023.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 11/20/2023]
Abstract
As an environmental pollutant, ambient fine particulate matter (PM2.5) was linked to cardiovascular diseases. The molecular mechanisms underlying PM2.5-induced extrapulmonary disease has not been elucidated clearly. In this study the ambient PM2.5 exposure mice model we established was to explore adverse effects of vessel and potential mechanisms. Long-term PM2.5 exposure caused reduced lung function and vascular stiffness in mice. And chronic PM2.5 induced migration and epithelial-mesenchymal transition (EMT) phenotype in BEAS-2B cells. After PM2.5 treatment, the circRNAs and mRNAs levels of exosomes released by BEAS-2B cells were detected by competing endogenous RNA (ceRNA) array, which contained 1664 differentially expressed circRNAs (DE-circRNAs) and 308 differentially expressed mRNAs (DE-mRNAs). By bioinformatics analysis on host genes of DE-circRNAs, vascular diseases and some pathways related to vascular diseases including focal adhesion, tight junction and adherens junction were enriched. Then, ceRNA network was constructed, and DE-mRNAs in ceRNA network were conducted functional enrichment analysis by Ingenuity Pathway Analysis, which indicated that hsa_circ_0012627, hsa_circ_0053261 and hsa_circ_0052810 were related to vascular endothelial dysfunction. Furthermore, it was verified experimentally that ExoPM2.5 could induce endothelial dysfunction by increased endothelial permeability and decreased relaxation in vitro. In present study, we investigated in-depth knowledge into the molecule events related to PM2.5 toxicity and pathogenesis of vascular diseases.
Collapse
Affiliation(s)
- Qingping Liu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Yaling Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Bin Han
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China; State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mengruo Wang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Huaifang Hu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Jie Ning
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Wentao Hu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Meiyu Chen
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Yaxian Pang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Yuanyuan Chen
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Lei Bao
- Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Yujie Niu
- Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Rong Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, China.
| |
Collapse
|
18
|
Yang Z, Zhang X, Bai X, Xi X, Liu W, Zhong W. Anti-angiogenesis in colorectal cancer therapy. Cancer Sci 2024; 115:734-751. [PMID: 38233340 PMCID: PMC10921012 DOI: 10.1111/cas.16063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/16/2023] [Accepted: 12/16/2023] [Indexed: 01/19/2024] Open
Abstract
The morbidity of colorectal cancer (CRC) has risen to third place among malignant tumors worldwide. In addition, CRC is a common cancer in China whose incidence increases annually. Angiogenesis plays an important role in the development of tumors because it can bring the nutrients that cancer cells need and take away metabolic waste. Various mechanisms are involved in the formation of neovascularization, and vascular endothelial growth factor is a key mediator. Meanwhile, angiogenesis inhibitors and drug resistance (DR) are challenges to consider when formulating treatment strategies for patients with different conditions. Thus, this review will discuss the molecules, signaling pathways, microenvironment, treatment, and DR of angiogenesis in CRC.
Collapse
Affiliation(s)
- Zhenni Yang
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
- Department of Gastroenterology and HepatologyXing'an League People's HospitalXing'an LeagueChina
| | - Xuqian Zhang
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
- Department of Gastroenterology and HepatologyChina Aerospace Science and Industry CorporationBeijingChina
| | - Xiaozhe Bai
- Department of Gastroenterology and HepatologyXing'an League People's HospitalXing'an LeagueChina
| | - Xiaonan Xi
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjinChina
| | - Wentian Liu
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
| | - Weilong Zhong
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
| |
Collapse
|
19
|
Khoushab S, Aghmiuni MH, Esfandiari N, Sarvandani MRR, Rashidi M, Taheriazam A, Entezari M, Hashemi M. Unlocking the potential of exosomes in cancer research: A paradigm shift in diagnosis, treatment, and prevention. Pathol Res Pract 2024; 255:155214. [PMID: 38430814 DOI: 10.1016/j.prp.2024.155214] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024]
Abstract
Exosomes, which are tiny particles released by cells, have the ability to transport various molecules, including proteins, lipids, and genetic material containing non-coding RNAs (ncRNAs). They are associated with processes like cancer metastasis, immunity, and tissue repair. Clinical trials have shown exosomes to be effective in treating cancer, inflammation, and chronic diseases. Mesenchymal stem cells (MSCs) and dendritic cells (DCs) are common sources of exosome production. Exosomes have therapeutic potential due to their ability to deliver cargo, modulate the immune system, and promote tissue regeneration. Bioengineered exosomes could revolutionize disease treatment. However, more research is needed to understand exosomes in tumor growth and develop new therapies. This paper provides an overview of exosome research, focusing on cancer and exosome-based therapies including chemotherapy, radiotherapy, and vaccines. It explores exosomes as a drug delivery system for cancer therapy, highlighting their advantages. The article discusses using exosomes for various therapeutic agents, including drugs, antigens, and RNAs. It also examines challenges with engineered exosomes. Analyzing exosomes for clinical purposes faces limitations in sensitivity, specificity, and purification. On the other hand, Nanotechnology offers solutions to overcome these challenges and unlock exosome potential in healthcare. Overall, the article emphasizes the potential of exosomes for personalized and targeted cancer therapy, while acknowledging the need for further research.
Collapse
Affiliation(s)
- Saloomeh Khoushab
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mina Hobabi Aghmiuni
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negin Esfandiari
- Department of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Mohsen Rashidi
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
20
|
Chatterjee B, Sarkar M, Bose S, Alam MT, Chaudhary AA, Dixit AK, Tripathi PP, Srivastava AK. MicroRNAs: Key modulators of inflammation-associated diseases. Semin Cell Dev Biol 2024; 154:364-373. [PMID: 36670037 DOI: 10.1016/j.semcdb.2023.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/06/2022] [Accepted: 01/11/2023] [Indexed: 01/20/2023]
Abstract
Inflammation is a multifaceted biological and pathophysiological response to injuries, infections, toxins, and inflammatory mechanisms that plays a central role in the progression of various diseases. MicroRNAs (miRNAs) are tiny, 19-25 nucleotides long, non-coding RNAs that regulate gene expression via post-transcriptional repression. In this review, we highlight the recent findings related to the significant roles of miRNAs in regulating various inflammatory cascades and immunological processes in the context of many lifestyle-related diseases such as diabetes, cardiovascular diseases, cancer, etc. We also converse on how miRNAs can have a dual impact on inflammatory responses, suggesting that regulation of their functions for therapeutic purposes may be disease-specific.
Collapse
Affiliation(s)
- Bilash Chatterjee
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mrinmoy Sarkar
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India
| | - Subhankar Bose
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Md Tanjim Alam
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSUI), Riyadh, Saudi Arabia
| | | | - Prem Prakash Tripathi
- Cell Biology & Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amit Kumar Srivastava
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
21
|
Niu L, Wang Q, Feng F, Yang W, Xie Z, Zheng G, Zhou W, Duan L, Du K, Li Y, Tian Y, Chen J, Xie Q, Fan A, Dan H, Liu J, Fan D, Hong L, Zhang J, Zheng J. Small extracellular vesicles-mediated cellular interactions between tumor cells and tumor-associated macrophages: Implication for immunotherapy. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166917. [PMID: 37820821 DOI: 10.1016/j.bbadis.2023.166917] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/14/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
The tumor microenvironment consists of cancer cells and various stromal cells, including macrophages, which exhibit diverse phenotypes with either pro-inflammatory (M1) or anti-inflammatory (M2) effects. The interaction between cancer cells and macrophages plays a crucial role in tumor progression. Small extracellular vesicles (sEVs), which facilitate intercellular communication, are known to play a vital role in this process. This review provides a comprehensive summary of how sEVs derived from cancer cells, containing miRNAs, lncRNAs, proteins, and lipids, can influence macrophage polarization. Additionally, we discuss the impact of macrophage-secreted sEVs on tumor malignant transformation, including effects on proliferation, metastasis, angiogenesis, chemoresistance, and immune escape. Furthermore, we address the therapeutic advancements and current challenges associated with macrophage-associated sEVs, along with potential solutions.
Collapse
Affiliation(s)
- Liaoran Niu
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qi Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Fan Feng
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wanli Yang
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhenyu Xie
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Gaozan Zheng
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wei Zhou
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lili Duan
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kunli Du
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yiding Li
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ye Tian
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Junfeng Chen
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qibin Xie
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Aqiang Fan
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hanjun Dan
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jinqiang Liu
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Liu Hong
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Jian Zhang
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Jianyong Zheng
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; Department of Aviation Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
22
|
Zhang C, Qin C, Dewanjee S, Bhattacharya H, Chakraborty P, Jha NK, Gangopadhyay M, Jha SK, Liu Q. Tumor-derived small extracellular vesicles in cancer invasion and metastasis: molecular mechanisms, and clinical significance. Mol Cancer 2024; 23:18. [PMID: 38243280 PMCID: PMC10797874 DOI: 10.1186/s12943-024-01932-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/02/2024] [Indexed: 01/21/2024] Open
Abstract
The production and release of tumor-derived small extracellular vesicles (TDSEVs) from cancerous cells play a pivotal role in the propagation of cancer, through genetic and biological communication with healthy cells. TDSEVs are known to orchestrate the invasion-metastasis cascade via diverse pathways. Regulation of early metastasis processes, pre-metastatic niche formation, immune system regulation, angiogenesis initiation, extracellular matrix (ECM) remodeling, immune modulation, and epithelial-mesenchymal transition (EMT) are among the pathways regulated by TDSEVs. MicroRNAs (miRs) carried within TDSEVs play a pivotal role as a double-edged sword and can either promote metastasis or inhibit cancer progression. TDSEVs can serve as excellent markers for early detection of tumors, and tumor metastases. From a therapeutic point of view, the risk of cancer metastasis may be reduced by limiting the production of TDSEVs from tumor cells. On the other hand, TDSEVs represent a promising approach for in vivo delivery of therapeutic cargo to tumor cells. The present review article discusses the recent developments and the current views of TDSEVs in the field of cancer research and clinical applications.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- The Institute of Skull Base Surgery and Neuro-Oncology at Hunan Province, Changsha, 410008, China
| | - Chaoying Qin
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- The Institute of Skull Base Surgery and Neuro-Oncology at Hunan Province, Changsha, 410008, China
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India.
| | - Hiranmoy Bhattacharya
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Niraj Kumar Jha
- Centre of Research Impact and Outreach, Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India
| | - Moumita Gangopadhyay
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat, Kolkata, 700126, West Bengal, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, New Delhi, Delhi, 110008, India.
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
- The Institute of Skull Base Surgery and Neuro-Oncology at Hunan Province, Changsha, 410008, China.
| |
Collapse
|
23
|
Zhao K, Jia C, Wang J, Shi W, Wang X, Song Y, Peng C. Exosomal hsa-miR-151a-3p and hsa-miR-877-5p are potential novel biomarkers for predicting bone metastasis in lung cancer. Aging (Albany NY) 2023; 15:14864-14888. [PMID: 38180107 PMCID: PMC10781484 DOI: 10.18632/aging.205314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/08/2023] [Indexed: 01/06/2024]
Abstract
Exosomal miRNAs (exo-miRNAs) have arisen as novel diagnostic biomarkers for various cancers. However, few reports on exo-miRNAs related to bone metastasis (BM) in lung cancer exist. This study aims to screen out key exo-miRNAs and estimate their prognostic values for predicting BM in lung cancer. The differentially expressed exo-miRNAs between the highly-metastatic (95D) and lowly-metastatic (A549) human lung cancer cell lines were comprehensively analyzed using high-throughput sequencing followed by bioinformatic analyses. 29 candidate exo-miRNAs were identified, and 101 BM-related target genes were predicted. Enrichment analysis revealed that these target genes were mainly involved in regulating transcription and pathways in cancer. An exosomal miRNA-mRNA regulatory network consisting of 7 key miRNAs and 10 hub genes was constructed. Further function analysis indicated that these 10 hub genes were mainly enriched in regulating cancer's apoptosis and central carbon metabolism. The survival analysis indicated that 7 of 10 hub genes were closely related to prognosis. Mutation analysis showed that lung cancer patients presented certain genetic alterations in the 7 real hub genes. GSEA for a single hub gene suggested that 6 of 7 real hub genes had close associations with lung cancer development. Finally, ROC analysis revealed that hsa-miR-151a-3p and hsa-miR-877-5p provided high diagnostic accuracy in discriminating patients with bone metastasis (BM+) from patients without bone metastasis (BM-). These findings provided a comprehensive analysis of exo-miRNAs and target genes in the regulatory network of BM in lung cancer. In particular, hsa-miR-151a-3p and hsa-miR-877-5p may be novel biomarkers for predicting BM in lung cancer.
Collapse
Affiliation(s)
- Kun Zhao
- Department of Spinal Surgery, The Second Hospital of Shandong University, Jinan 250033, China
| | - Changji Jia
- Department of Spinal Surgery, The Second Hospital of Shandong University, Jinan 250033, China
| | - Jin Wang
- Department of Spinal Surgery, The Second Hospital of Shandong University, Jinan 250033, China
| | - Weiye Shi
- Department of Spinal Surgery, The Second Hospital of Shandong University, Jinan 250033, China
| | - Xiaoying Wang
- Department of Pathology, The Second Hospital of Shandong University, Jinan 250033, China
| | - Yan Song
- Department of Nephrology, The Second Hospital of Shandong University, Jinan 250033, China
| | - Changliang Peng
- Department of Spinal Surgery, The Second Hospital of Shandong University, Jinan 250033, China
| |
Collapse
|
24
|
Monti P, Solazzo G, Bollati V. Effect of environmental exposures on cancer risk: Emerging role of non-coding RNA shuttled by extracellular vesicles. ENVIRONMENT INTERNATIONAL 2023; 181:108255. [PMID: 37839267 DOI: 10.1016/j.envint.2023.108255] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/11/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
Environmental and lifestyle exposures have a huge impact on cancer risk; nevertheless, the biological mechanisms underlying this association remain poorly understood. Extracellular vesicles (EVs) are membrane-enclosed particles actively released by all living cells, which play a key role in intercellular communication. EVs transport a variegate cargo of biomolecules, including non-coding RNA (ncRNA), which are well-known regulators of gene expression. Once delivered to recipient cells, EV-borne ncRNAs modulate a plethora of cancer-related biological processes, including cell proliferation, differentiation, and motility. In addition, the ncRNA content of EVs can be altered in response to outer stimuli. Such changes can occur either as an active attempt to adapt to the changing environment or as an uncontrolled consequence of cell homeostasis loss. In either case, such environmentally-driven alterations in EV ncRNA might affect the complex crosstalk between malignant cells and the tumor microenvironment, thus modulating the risk of cancer initiation and progression. In this review, we summarize the current knowledge about EV ncRNAs at the interface between environmental and lifestyle determinants and cancer. In particular, we focus on the effect of smoking, air and water pollution, diet, exercise, and electromagnetic radiation. In addition, we have conducted a bioinformatic analysis to investigate the biological functions of the genes targeted by environmentally-regulated EV microRNAs. Overall, we draw a comprehensive picture of the role of EV ncRNA at the interface between external factors and cancer, which could be of great interest to the development of novel strategies for cancer prevention, diagnosis, and therapy.
Collapse
Affiliation(s)
- Paola Monti
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giulia Solazzo
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Valentina Bollati
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; CRC, Center for Environmental Health, University of Milan, Milan, Italy; Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
25
|
Zheng S, Liao J, Sun M, Liu R, Lv J. Extracellular shuttling miR-21 contributes to esophageal cancers and human umbilical vein endothelial cell communication in the tumor microenvironment and promotes tumor angiogenesis by targeting phosphatase and tensinhomolog. Thorac Cancer 2023; 14:3119-3132. [PMID: 37726969 PMCID: PMC10626251 DOI: 10.1111/1759-7714.15103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Cell-cell communication by carcinoma-derived exosomes can influence the tumor microenvironment (TME) and regulate cancer progression. Based on the overexpression of microRNA-21-5p (miR-21) in plasma from patients diagnosed with esophageal squamous cell carcinoma (ESCC) and exosomes from ESCC cell lines identified earlier, this study aimed to explore the influence of exosomal miR-21 within the TME. METHOD ScRNA-Seq and Bulk RNA-Seq were integrated to elucidate the communication between cancer and endothelial cells. The functionality and mechanisms by which exo-miR-21 derived from carcinoma regulate endothelial cell-mediated angiogenesis were assessed using a cocultivation model of EC9706 cells and recipient human umbilical vein endothelial cells (HUVECs), through blood vessel formation experiments, luciferase reporter assays, RT-qPCR, and western blot analysis. RESULT A total of 3842 endothelial cells were extracted from the scRNA-seq data of ESCC samples and reclustered into five cell subtype. Cell-cell communication analysis revealed cancer cells presented a strong interaction with angiogenesis-like endothelial cells in secreted signaling. MiR-21 was unregulated in ESCC and the carcinoma-derived exo-miR-21 was significantly raised in HUVECs. The exo-miR-21 promoted the proliferation and migration of HUVECs while also enhancing, closed mesh count, and junction number in HUVECs. Mechanistically, dual-luciferase reporter assay revealed that PTEN was the target of miR-21. Meanwhile, p-Akt was significantly increased and suppressed by inhibition of miR-21 and PI3K inhibitor LY294002. CONCLUSION Exo-miR-21-mediated communication between endothelial and cancer cells plays a pivotal role in promoting the angiogenesis of ESCC. Therefore, controlling exo-miR-21 could serve as a novel therapeutic strategy for ESCC by targeting angiogenesis.
Collapse
Affiliation(s)
- Shanbo Zheng
- Department of Thoracic Surgery and State Key Laboratory of Genetic EngineeringFudan University Shanghai Cancer CenterShanghaiPeople's Republic of China
- Institute of Thoracic OncologyFudan UniversityShanghaiPeople's Republic of China
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiPeople's Republic of China
| | - Juan Liao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public HealthSoutheast UniversityNanjingPeople's Republic of China
- Department of Science and Education, Affiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouPeople's Republic of China
| | - Mingjun Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public HealthSoutheast UniversityNanjingPeople's Republic of China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public HealthSoutheast UniversityNanjingPeople's Republic of China
| | - Junjie Lv
- Department of Thoracic Surgery and State Key Laboratory of Genetic EngineeringFudan University Shanghai Cancer CenterShanghaiPeople's Republic of China
- Institute of Thoracic OncologyFudan UniversityShanghaiPeople's Republic of China
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiPeople's Republic of China
| |
Collapse
|
26
|
Jalil AT, Jehad MT, Al-Ameer LR, Khallawi AQ, Essa IM, Merza MS, Zabibah RS, Al-Hili F. Revolutionizing treatment for triple-negative breast cancer: Harnessing the power of exosomal miRNAs for targeted therapy. Pathol Res Pract 2023; 250:154825. [PMID: 37769396 DOI: 10.1016/j.prp.2023.154825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023]
Abstract
Triple-negative breast cancer (TNBC) represents a challenging and aggressive form of breast cancer associated with limited treatment options and poor prognosis. Although chemotherapy is a primary therapeutic approach, drug resistance often hinders treatment success. However, the expanding knowledge of TNBC subtypes and molecular biology has paved the way for targeted therapies. Notably, exosomes (extracellular vesicles) have emerged as crucial carriers of tumorigenic factors involved in oncogenesis and drug resistance, facilitating cell-to-cell communication and offering potential as self-delivery systems. Among the cargo carried by exosomes, microRNAs (miRNAs) have gained attention due to their ability to mediate epigenetic changes in recipient cells upon transfer. Research has confirmed dysregulation of exosomal miRNAs in breast cancer cells compared to healthy cells, establishing them as promising biomarkers for cancer diagnosis and prognosis. In this comprehensive review, we summarize the latest research findings that underscore the diagnostic and prognostic significance of exosomal miRNAs in TNBC treatment. Furthermore, we explore contemporary therapeutic approaches utilizing these exosomal miRNAs for the benefit of TNBC patients, shedding light on potential breakthroughs in TNBC management.
Collapse
Affiliation(s)
| | | | | | - Anwar Qasim Khallawi
- College of Health and Medical Technologies, Medical Laboratory Department, National University of Science and Technology, Dhi Qar, Iraq
| | - Israa M Essa
- University of Basrah, College of Veterinary Medicine, Department of Veterinary Parasitology, Iraq
| | - Muna S Merza
- Prosthetic Dental Techniques Department, Al-Mustaqbal, University College, Hillah, Babylon, Iraq
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Farah Al-Hili
- Medical technical college, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
27
|
Holme JA, Vondráček J, Machala M, Lagadic-Gossmann D, Vogel CFA, Le Ferrec E, Sparfel L, Øvrevik J. Lung cancer associated with combustion particles and fine particulate matter (PM 2.5) - The roles of polycyclic aromatic hydrocarbons (PAHs) and the aryl hydrocarbon receptor (AhR). Biochem Pharmacol 2023; 216:115801. [PMID: 37696458 PMCID: PMC10543654 DOI: 10.1016/j.bcp.2023.115801] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Air pollution is the leading cause of lung cancer after tobacco smoking, contributing to 20% of all lung cancer deaths. Increased risk associated with living near trafficked roads, occupational exposure to diesel exhaust, indoor coal combustion and cigarette smoking, suggest that combustion components in ambient fine particulate matter (PM2.5), such as polycyclic aromatic hydrocarbons (PAHs), may be central drivers of lung cancer. Activation of the aryl hydrocarbon receptor (AhR) induces expression of xenobiotic-metabolizing enzymes (XMEs) and increase PAH metabolism, formation of reactive metabolites, oxidative stress, DNA damage and mutagenesis. Lung cancer tissues from smokers and workers exposed to high combustion PM levels contain mutagenic signatures derived from PAHs. However, recent findings suggest that ambient air PM2.5 exposure primarily induces lung cancer development through tumor promotion of cells harboring naturally acquired oncogenic mutations, thus lacking typical PAH-induced mutations. On this background, we discuss the role of AhR and PAHs in lung cancer development caused by air pollution focusing on the tumor promoting properties including metabolism, immune system, cell proliferation and survival, tumor microenvironment, cell-to-cell communication, tumor growth and metastasis. We suggest that the dichotomy in lung cancer patterns observed between smoking and outdoor air PM2.5 represent the two ends of a dose-response continuum of combustion PM exposure, where tumor promotion in the peripheral lung appears to be the driving factor at the relatively low-dose exposures from ambient air PM2.5, whereas genotoxicity in the central airways becomes increasingly more important at the higher combustion PM levels encountered through smoking and occupational exposure.
Collapse
Affiliation(s)
- Jørn A Holme
- Department of Air Quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box PO Box 222 Skøyen, 0213 Oslo, Norway
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 61265 Brno, Czech Republic
| | - Miroslav Machala
- Department of Pharmacology and Toxicology, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Christoph F A Vogel
- Department of Environmental Toxicology and Center for Health and the Environment, University of California, Davis, CA 95616, USA
| | - Eric Le Ferrec
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Lydie Sparfel
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Johan Øvrevik
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, PO Box 1066 Blindern, 0316 Oslo, Norway; Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, 0213 Oslo, Norway.
| |
Collapse
|
28
|
Palumbo C, Sisi F, Checchi M. CAM Model: Intriguing Natural Bioreactor for Sustainable Research and Reliable/Versatile Testing. BIOLOGY 2023; 12:1219. [PMID: 37759618 PMCID: PMC10525291 DOI: 10.3390/biology12091219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
We are witnessing the revival of the CAM model, which has already used been in the past by several researchers studying angiogenesis and anti-cancer drugs and now offers a refined model to fill, in the translational meaning, the gap between in vitro and in vivo studies. It can be used for a wide range of purposes, from testing cytotoxicity, pharmacokinetics, tumorigenesis, and invasion to the action mechanisms of molecules and validation of new materials from tissue engineering research. The CAM model is easy to use, with a fast outcome, and makes experimental research more sustainable since it allows us to replace, reduce, and refine pre-clinical experimentation ("3Rs" rules). This review aims to highlight some unique potential that the CAM-assay presents; in particular, the authors intend to use the CAM model in the future to verify, in a microenvironment comparable to in vivo conditions, albeit simplified, the angiogenic ability of functionalized 3D constructs to be used in regenerative medicine strategies in the recovery of skeletal injuries of critical size (CSD) that do not repair spontaneously. For this purpose, organotypic cultures will be planned on several CAMs set up in temporal sequences, and a sort of organ model for assessing CSD will be utilized in the CAM bioreactor rather than in vivo.
Collapse
Affiliation(s)
| | | | - Marta Checchi
- Department of Biomedical, Metabolic and Neural Sciences, Section of Human Morphology, University of Modena and Reggio Emilia—Largo del Pozzo, 41124 Modena, Italy
| |
Collapse
|
29
|
Liang H, Zhang L, Rong J. Potential roles of exosomes in the initiation and metastatic progression of lung cancer. Biomed Pharmacother 2023; 165:115222. [PMID: 37549459 DOI: 10.1016/j.biopha.2023.115222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 08/09/2023] Open
Abstract
Lung cancer (LC) incidence and mortality continue to increase annually worldwide. LC is insidious and readily metastasizes and relapses. Except for its early diagnosis and surgical resection, there is no effective cure for advanced metastatic LC, and the prognosis remains dismal. Exosomes, a class of nano-sized extracellular vesicles produced by healthy or diseased cells, are coated with a bilayer lipid membrane and contain various functional molecules such as proteins, lipids, and nucleic acids. They can be used for intracellular or intercellular signaling or the transportation of biological substances. A growing body of evidence supports that exosomes play multiple crucial roles in the occurrence and metastatic progression of many malignancies, including LC. The elucidation of the potential roles of exosomes in the initiation, invasion, and metastasis of LC and their underlying molecular mechanisms may contribute to improved early diagnosis and treatment.
Collapse
Affiliation(s)
- Hongyuan Liang
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang 110004, PR China
| | - Lingyun Zhang
- Department of Medical Oncology, the First Hospital of China Medical University, No. 210 Baita Street, Hunnan District, Shenyang 110001, PR China.
| | - Jian Rong
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang 110004, PR China.
| |
Collapse
|
30
|
Khan NA, Asim M, Biswas KH, Alansari AN, Saman H, Sarwar MZ, Osmonaliev K, Uddin S. Exosome nanovesicles as potential biomarkers and immune checkpoint signaling modulators in lung cancer microenvironment: recent advances and emerging concepts. J Exp Clin Cancer Res 2023; 42:221. [PMID: 37641132 PMCID: PMC10463467 DOI: 10.1186/s13046-023-02753-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/08/2023] [Indexed: 08/31/2023] Open
Abstract
Lung cancer remains the leading cause of cancer-related deaths globally, and the survival rate remains low despite advances in diagnosis and treatment. The progression of lung cancer is a multifaceted and dynamic phenomenon that encompasses interplays among cancerous cells and their microenvironment, which incorporates immune cells. Exosomes, which are small membrane-bound vesicles, are released by numerous cell types in normal and stressful situations to allow communication between cells. Tumor-derived exosomes (TEXs) possess diverse neo-antigens and cargoes such as proteins, RNA, and DNA and have a unique molecular makeup reflecting tumor genetic complexity. TEXs contain both immunosuppressive and immunostimulatory factors and may play a role in immunomodulation by influencing innate and adaptive immune components. Moreover, they transmit signals that contribute to the progression of lung cancer by promoting metastasis, epithelial-mesenchymal transition (EMT), angiogenesis, and immunosuppression. This makes them a valuable resource for investigating the immune environment of tumors, which could pave the way for the development of non-invasive biomarkers that could aid in the prognosis, diagnosis, and immunotherapy of lung cancer. While immune checkpoint inhibitor (ICI) immunotherapy has shown promising results in treating initial-stage cancers, most patients eventually develop adaptive resistance over time. Emerging evidence demonstrates that TEXs could serve as a prognostic biomarker for immunotherapeutic response and have a significant impact on both systemic immune suppression and tumor advancement. Therefore, understanding TEXs and their role in lung cancer tumorigenesis and their response to immunotherapies is an exciting research area and needs further investigation. This review highlights the role of TEXs as key contributors to the advancement of lung cancer and their clinical significance in lung immune-oncology, including their possible use as biomarkers for monitoring disease progression and prognosis, as well as emerging shreds of evidence regarding the possibility of using exosomes as targets to improve lung cancer therapy.
Collapse
Affiliation(s)
- Naushad Ahmad Khan
- Department of Surgery, Trauma and Vascular Surgery Clinical Research, Hamad General Hospital, 3050, Doha, Qatar.
- Faculty of Medical Sciences, Ala-Too International University, Bishkek, Kyrgyzstan.
| | - Mohammad Asim
- Department of Surgery, Trauma and Vascular Surgery Clinical Research, Hamad General Hospital, 3050, Doha, Qatar
| | - Kabir H Biswas
- Division of Biological and Biomedical Sciences, College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Amani N Alansari
- Department of Surgery, Trauma and Vascular Surgery Clinical Research, Hamad General Hospital, 3050, Doha, Qatar
| | - Harman Saman
- Department of Medicine, Hazm Maubrairek Hospital, Al-Rayyan, Doha, 3050, Qatar
| | | | | | - Shahab Uddin
- Translational Research Institute & Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar.
- Department of Biosciences, Integral University, Lucknow, 226026, UP, India.
| |
Collapse
|
31
|
Zhu XY, Li J. Potential targets of natural medicines: preventing lung cancer pre-metastatic niche formation by regulating exosomes. Front Oncol 2023; 13:1137007. [PMID: 37700835 PMCID: PMC10493872 DOI: 10.3389/fonc.2023.1137007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/11/2023] [Indexed: 09/14/2023] Open
Abstract
Lung cancer is one of the most devastating diseases worldwide with high incidence and mortality, and the incidence continues to rise. Metastasis is the leading cause of death in lung cancer patients, yet the molecular effectors underlying tumor dissemination remain poorly defined. Research findings in recent years confirmed primed microenvironment of future metastatic sites, called the pre-metastatic niche, is a prerequisite for overt metastasis. Exosomes have recently emerged as important players in pre-metastatic niche formation. Natural medicines have traditionally been rich sources of drug discovery. Some of them exhibit favorable anti-lung cancer activity. The review focused on the latest advances in the regulation of the pre-metastatic niche formation in lung cancer by the contents of exosomes of representative natural medicines. Additionally, the mechanism of natural medicines was summarized in detail, which would provide new insights for anti-cancer new drug development.
Collapse
Affiliation(s)
| | - Jie Li
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
32
|
Wang Z, Tan W, Li B, Zou J, Li Y, Xiao Y, He Y, Yoshida S, Zhou Y. Exosomal non-coding RNAs in angiogenesis: Functions, mechanisms and potential clinical applications. Heliyon 2023; 9:e18626. [PMID: 37560684 PMCID: PMC10407155 DOI: 10.1016/j.heliyon.2023.e18626] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 08/11/2023] Open
Abstract
Exosomes are extracellular vesicles that can be produced by most cells. Exosomes act as important intermediaries in intercellular communication, and participate in a variety of biological activities between cells. Non-coding RNAs (ncRNAs) usually refer to RNAs that do not encode proteins. Although ncRNAs have no protein-coding capacity, they are able to regulate gene expression at multiple levels. Angiogenesis is the formation of new blood vessels from pre-existing vessels, which is an important physiological process. However, abnormal angiogenesis could induce many diseases such as atherosclerosis, diabetic retinopathy and cancer. Many studies have shown that ncRNAs can stably exist in exosomes and play a wide range of physiological and pathological roles including regulation of angiogenesis. In brief, some specific ncRNAs can be enriched in exosomes secreted by cells and absorbed by recipient cells through the exosome pathway, thus activating relevant signaling pathways in target cells and playing a role in regulating angiogenesis. In this review, we describe the physiological and pathological functions of exosomal ncRNAs in angiogenesis, summarize their role in angiogenesis-related diseases, and illustrate potential clinical applications like novel drug therapy strategies and diagnostic markers in exosome research as inspiration for future investigations.
Collapse
Affiliation(s)
- Zicong Wang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Wei Tan
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jingling Zou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yun Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yangyan Xiao
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yan He
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Fukuoka, 830-0011, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
33
|
Li Y, Ye J, Xu S, Wang J. Circulating noncoding RNAs: promising biomarkers in liquid biopsy for the diagnosis, prognosis, and therapy of NSCLC. Discov Oncol 2023; 14:142. [PMID: 37526759 PMCID: PMC10393935 DOI: 10.1007/s12672-023-00686-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/11/2023] [Indexed: 08/02/2023] Open
Abstract
As the second most common malignant tumor in the world, lung cancer is a great threat to human health. In the past several decades, the role and mechanism of ncRNAs in lung cancer as a class of regulatory RNAs have been studied intensively. In particular, ncRNAs in body fluids have attracted increasing attention as biomarkers for lung cancer diagnosis and prognosis and for the evaluation of lung cancer treatment due to their low invasiveness and accessibility. As emerging tumor biomarkers in lung cancer, circulating ncRNAs are easy to obtain, independent of tissue specimens, and can well reflect the occurrence and progression of tumors due to their correlation with some biological processes in tumors. Circulating ncRNAs have a very high potential to serve as biomarkers and hold promise for the development of ncRNA-based therapeutics. In the current study, there has been extensive evidence that circulating ncRNA has clinical significance and value as a biomarker. In this review, we summarize how ncRNAs are generated and enter the circulation, remaining stable for subsequent detection. The feasibility of circulating ncRNAs as biomarkers in the diagnosis and prognosis of non-small cell lung cancer is also summarized. In the current systematic treatment of non-small cell lung cancer, circulating ncRNAs can also predict drug resistance, adverse reactions, and other events in targeted therapy, chemotherapy, immunotherapy, and radiotherapy and have promising potential to guide the systematic treatment of non-small cell lung cancer.
Collapse
Affiliation(s)
- Yilin Li
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, 110002, China
| | - Jun Ye
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, 110002, China
| | - Shun Xu
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, 110002, China.
| | - Jiajun Wang
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, 110002, China.
| |
Collapse
|
34
|
Geissler M, Jia W, Kiraz EN, Kulacz I, Liu X, Rombach A, Prinz V, Jussen D, Kokkaliaris KD, Medyouf H, Sevenich L, Czabanka M, Broggini T. The Brain Pre-Metastatic Niche: Biological and Technical Advancements. Int J Mol Sci 2023; 24:10055. [PMID: 37373202 DOI: 10.3390/ijms241210055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Metastasis, particularly brain metastasis, continues to puzzle researchers to this day, and exploring its molecular basis promises to break ground in developing new strategies for combatting this deadly cancer. In recent years, the research focus has shifted toward the earliest steps in the formation of metastasis. In this regard, significant progress has been achieved in understanding how the primary tumor affects distant organ sites before the arrival of tumor cells. The term pre-metastatic niche was introduced for this concept and encompasses all influences on sites of future metastases, ranging from immunological modulation and ECM remodeling to the softening of the blood-brain barrier. The mechanisms governing the spread of metastasis to the brain remain elusive. However, we begin to understand these processes by looking at the earliest steps in the formation of metastasis. This review aims to present recent findings on the brain pre-metastatic niche and to discuss existing and emerging methods to further explore the field. We begin by giving an overview of the pre-metastatic and metastatic niches in general before focusing on their manifestations in the brain. To conclude, we reflect on the methods usually employed in this field of research and discuss novel approaches in imaging and sequencing.
Collapse
Affiliation(s)
- Maximilian Geissler
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Weiyi Jia
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Emine Nisanur Kiraz
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Ida Kulacz
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Xiao Liu
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Adrian Rombach
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Vincent Prinz
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Daniel Jussen
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Konstantinos D Kokkaliaris
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, 60528 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, 60528 Frankfurt am Main, Germany
| | - Hind Medyouf
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60528 Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Lisa Sevenich
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60528 Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marcus Czabanka
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, 60528 Frankfurt am Main, Germany
| | - Thomas Broggini
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, 60528 Frankfurt am Main, Germany
| |
Collapse
|
35
|
Bukkuri A, Adler FR. Biomarkers or biotargets? Using competition to lure cancer cells into evolutionary traps. Evol Med Public Health 2023; 11:264-276. [PMID: 37599857 PMCID: PMC10439788 DOI: 10.1093/emph/eoad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/23/2023] [Indexed: 08/22/2023] Open
Abstract
Background and Objectives Cancer biomarkers provide information on the characteristics and extent of cancer progression and help inform clinical decision-making. However, they can also play functional roles in oncogenesis, from enabling metastases and inducing angiogenesis to promoting resistance to chemotherapy. The resulting evolution could bias estimates of cancer progression and lead to suboptimal treatment decisions. Methodology We create an evolutionary game theoretic model of cell-cell competition among cancer cells with different levels of biomarker production. We design and simulate therapies on top of this pre-existing game and examine population and biomarker dynamics. Results Using total biomarker as a proxy for population size generally underestimates chemotherapy efficacy and overestimates targeted therapy efficacy. If biomarker production promotes resistance and a targeted therapy against the biomarker exists, this dynamic can be used to set an evolutionary trap. After chemotherapy selects for a high biomarker-producing cancer cell population, targeted therapy could be highly effective for cancer extinction. Rather than using the most effective therapy given the cancer's current biomarker level and population size, it is more effective to 'overshoot' and utilize an evolutionary trap when the aim is extinction. Increasing cell-cell competition, as influenced by biomarker levels, can help prime and set these traps. Conclusion and Implications Evolution of functional biomarkers amplify the limitations of using total biomarker levels as a measure of tumor size when designing therapeutic protocols. Evolutionarily enlightened therapeutic strategies may be highly effective, assuming a targeted therapy against the biomarker is available.
Collapse
Affiliation(s)
- Anuraag Bukkuri
- Tissue Development and Evolution Research Group, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Cancer Biology and Evolution Program and Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Frederick R Adler
- Department of Mathematics, University of Utah, Salt Lake City, UT, USA
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
36
|
Orozco-García E, van Meurs DJ, Calderón JC, Narvaez-Sanchez R, Harmsen MC. Endothelial plasticity across PTEN and Hippo pathways: A complex hormetic rheostat modulated by extracellular vesicles. Transl Oncol 2023; 31:101633. [PMID: 36905871 PMCID: PMC10020115 DOI: 10.1016/j.tranon.2023.101633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/20/2022] [Accepted: 01/25/2023] [Indexed: 03/11/2023] Open
Abstract
Vascularization is a multifactorial and spatiotemporally regulated process, essential for cell and tissue survival. Vascular alterations have repercussions on the development and progression of diseases such as cancer, cardiovascular diseases, and diabetes, which are the leading causes of death worldwide. Additionally, vascularization continues to be a challenge for tissue engineering and regenerative medicine. Hence, vascularization is the center of interest for physiology, pathophysiology, and therapeutic processes. Within vascularization, phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and Hippo signaling have pivotal roles in the development and homeostasis of the vascular system. Their suppression is related to several pathologies, including developmental defects and cancer. Non-coding RNAs (ncRNAs) are among the regulators of PTEN and/or Hippo pathways during development and disease. The purpose of this paper is to review and discuss the mechanisms by which exosome-derived ncRNAs modulate endothelial cell plasticity during physiological and pathological angiogenesis, through the regulation of PTEN and Hippo pathways, aiming to establish new perspectives on cellular communication during tumoral and regenerative vascularization.
Collapse
Affiliation(s)
- Elizabeth Orozco-García
- Physiology and biochemistry research group - PHYSIS, Faculty of Medicine, University of Antioquia, Colombia; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1 (EA11), Groningen 9713 GZ, The Netherlands
| | - D J van Meurs
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1 (EA11), Groningen 9713 GZ, The Netherlands
| | - J C Calderón
- Physiology and biochemistry research group - PHYSIS, Faculty of Medicine, University of Antioquia, Colombia
| | - Raul Narvaez-Sanchez
- Physiology and biochemistry research group - PHYSIS, Faculty of Medicine, University of Antioquia, Colombia
| | - M C Harmsen
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1 (EA11), Groningen 9713 GZ, The Netherlands.
| |
Collapse
|
37
|
Pan Y, Liu Y, Wei W, Yang X, Wang Z, Xin W. Extracellular Vesicles as Delivery Shippers for Noncoding RNA-Based Modulation of Angiogenesis: Insights from Ischemic Stroke and Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205739. [PMID: 36592424 DOI: 10.1002/smll.202205739] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Ischemic stroke and systemic cancer are two of the leading causes of mortality. Hypoxia is a central pathophysiological component in ischemic stroke and cancer, representing a joint medical function. This function includes angiogenesis regulation. Vascular remodeling coupled with axonal outgrowth following cerebral ischemia is critical in improving poststroke neurological functional recovery. Antiangiogenic strategies can inhibit cancer vascularization and play a vital role in impeding cancer growth, invasion, and metastasis. Although there are significant differences in the cause of angiogenesis across both pathophysiological conditions, emerging evidence states that common signaling structures, such as extracellular vesicles (EVs) and noncoding RNAs (ncRNAs), are involved in this context. EVs, heterogeneous membrane vesicles encapsulating proteomic genetic information from parental cells, act as multifunctional regulators of intercellular communication. Among the multifaceted roles in modulating biological responses, exhaustive evidence shows that ncRNAs are selectively sorted into EVs, modulating common specific aspects of cancer development and stroke prognosis, namely, angiogenesis. This review will discuss recent advancements in the EV-facilitated/inhibited progression of specific elements of angiogenesis with a particular concern about ncRNAs within these vesicles. The review is concluded by underlining the clinical opportunities of EV-derived ncRNAs as diagnostic, prognostic, and therapeutic agents.
Collapse
Affiliation(s)
- Yongli Pan
- Department of Neurology, University Medical Center of Göttingen, Georg-August-University of Göttingen, 37075, Göttingen, Lower Saxony, Germany
- Department of Neurology, Weifang Medical University, Weifang, Shandong, 261053, China
| | - Yuheng Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Neurological Institute, Tianjin, 300052, China
| | - Wei Wei
- Department of Neurology, University Medical Center of Göttingen, Georg-August-University of Göttingen, 37075, Göttingen, Lower Saxony, Germany
- Department of Neurology, Mianyang Central Hospital, Mianyang, Sichuan, 621000, China
| | - Xinyu Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Neurological Institute, Tianjin, 300052, China
| | - Zengguang Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Neurological Institute, Tianjin, 300052, China
| | - Wenqiang Xin
- Department of Neurology, University Medical Center of Göttingen, Georg-August-University of Göttingen, 37075, Göttingen, Lower Saxony, Germany
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Neurological Institute, Tianjin, 300052, China
| |
Collapse
|
38
|
Alipoor SD, Chang H. Exosomal miRNAs in the Tumor Microenvironment of Multiple Myeloma. Cells 2023; 12:cells12071030. [PMID: 37048103 PMCID: PMC10092980 DOI: 10.3390/cells12071030] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Multiple myeloma (MM) is a malignancy of plasma cells in the bone marrow and is characterized by the clonal proliferation of B-cells producing defective monoclonal immunoglobulins. Despite the latest developments in treatment, drug resistance remains one of the major challenges in the therapy of MM. The crosstalk between MM cells and other components within the bone marrow microenvironment (BME) is the major determinant of disease phenotypes. Exosomes have emerged as the critical drivers of this crosstalk by allowing the delivery of informational cargo comprising multiple components from miniature peptides to nucleic acids. Such material transfers have now been shown to perpetuate drug-resistance development and disease progression in MM. MicroRNAs(miRNAs) specifically play a crucial role in this communication considering their small size that allows them to be readily packed within the exosomes and widespread potency that impacts the developmental trajectory of the disease inside the tumor microenvironment (TME). In this review, we aim to provide an overview of the current understanding of the role of exosomal miRNAs in the epigenetic modifications inside the TME and its pathogenic influence on the developmental phenotypes and prognosis of MM.
Collapse
Affiliation(s)
- Shamila D. Alipoor
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran P5X9+7F9, Iran
| | - Hong Chang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Laboratory Hematology, Laboratory Medicine Program, University Health Network, Toronto, ON M5G 2M9, Canada
- Correspondence:
| |
Collapse
|
39
|
Niu R, Pan P, Li C, Luo B, Ma H, Hao H, Zhao Z, Yang H, Ma S, Zhu F, Chen J. Bone mesenchymal stromal cell-derived small extracellular vesicles inhibit inflammation and ameliorate sepsis via delivery of microRNA-21a-5p. Cytotherapy 2023; 25:625-639. [PMID: 36868991 DOI: 10.1016/j.jcyt.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/17/2023] [Accepted: 02/04/2023] [Indexed: 03/05/2023]
Abstract
BACKGROUND AIMS Sepsis is a potentially life-threatening disease that results from a severe systemic inflammatory response due to infection. Mesenchymal stromal cell-derived small extracellular vesicles (MSC sEVs) are able to transfer bioactive molecules and have been demonstrated to play an important role in the pathophysiological process of sepsis. Herein the authors aimed to investigate the potential role and downstream molecular mechanism of MSC sEVs in sepsis. METHODS MSC sEVs were acquired by ultracentrifugation and then injected into a cecal ligation and puncture mouse model. The efficacy of MSC sEVs in both in vitro and in vivo models of sepsis was evaluated. RESULTS MSC sEV therapy improved survival, reduced sepsis-induced inflammation, attenuated pulmonary capillary permeability and improved liver and kidney function in septic mice. In addition, the authors found that microRNA-21a-5p (miR-21a-5p) was highly enriched in MSC sEVs, could be transferred to recipient cells, inhibited inflammation and increased survival in septic mice. Furthermore, the authors demonstrated that MSC sEV miR-21a-5p suppressed inflammation by targeting toll-like receptor 4 and programmed cell death 4. The therapeutic efficacy of MSC sEVs was partially abrogated by transfection with miR-21a-5p inhibitors. CONCLUSIONS Collectively, the authors' data suggest that miR-21a-5p-bearing MSC sEVs may be a prospective and effective sepsis therapeutic strategy.
Collapse
Affiliation(s)
- Ruichao Niu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Department of Respiratory Medicine, Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China; Department of Hepatobiliary Surgery, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Medical College, Beijing, China
| | - Pinhua Pan
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Department of Respiratory Medicine, Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Chonghui Li
- Institute of Hepatobiliary Surgery, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Medical College, Beijing, China
| | - Baihua Luo
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Hua Ma
- Department of Infectious Disease, People's Hospital of Liuyang City, Liuyang, China
| | - Haojie Hao
- Institute of Basic Medicine Science, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Medical College, Beijing, China
| | - Zhigang Zhao
- Center of Pulmonary and Critical Care Medicine, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Medical College, Beijing, China
| | - Hang Yang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Department of Respiratory Medicine, Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Shiyang Ma
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Department of Respiratory Medicine, Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Fei Zhu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Department of Respiratory Medicine, Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jie Chen
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Department of Respiratory Medicine, Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China.
| |
Collapse
|
40
|
Shirvaliloo M. LncRNA H19 promotes tumor angiogenesis in smokers by targeting anti-angiogenic miRNAs. Epigenomics 2023; 15:61-73. [PMID: 36802727 DOI: 10.2217/epi-2022-0145] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
A key concept in drug discovery is the identification of candidate therapeutic targets such as long noncoding RNAs (lncRNAs) because of their extensive involvement in neoplasms, and impressionability by smoking. Induced by exposure to cigarette smoke, lncRNA H19 targets and inactivates miR-29, miR-30a, miR-107, miR-140, miR-148b, miR-199a and miR-200, which control the rate of angiogenesis by inhibiting BiP, DLL4, FGF7, HIF1A, HIF1B, HIF2A, PDGFB, PDGFRA, VEGFA, VEGFB, VEGFC, VEGFR1, VEGFR2 and VEGFR3. Nevertheless, these miRNAs are often dysregulated in bladder cancer, breast cancer, colorectal cancer, glioma, gastric adenocarcinoma, hepatocellular carcinoma, meningioma, non-small-cell lung carcinoma, oral squamous cell carcinoma, ovarian cancer, prostate adenocarcinoma and renal cell carcinoma. As such, the present perspective article seeks to establish an evidence-based hypothetical model of how a smoking-related lncRNA known as H19 might aggravate angiogenesis by interfering with miRNAs that would otherwise regulate angiogenesis in a nonsmoking individual.
Collapse
Affiliation(s)
- Milad Shirvaliloo
- Infectious & Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 15731, Iran.,Future Science Group, Unitec House, 2 Albert Place, London, N3 1QB, UK
| |
Collapse
|
41
|
Initial and ongoing tobacco smoking elicits vascular damage and distinct inflammatory response linked to neurodegeneration. Brain Behav Immun Health 2023; 28:100597. [PMID: 36817509 PMCID: PMC9931921 DOI: 10.1016/j.bbih.2023.100597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/07/2022] [Accepted: 01/21/2023] [Indexed: 01/30/2023] Open
Abstract
Tobacco smoking is strongly linked to vascular damage contributing to the development of hypertension, atherosclerosis, as well as increasing the risk for neurodegeneration. Still, the involvement of the innate immune system in the development of vascular damage upon chronic tobacco use before the onset of clinical symptoms is not fully characterized. Our data provide evidence that a single acute exposure to tobacco elicits the secretion of extracellular vesicles expressing CD105 and CD49e from endothelial cells, granting further recognition of early preclinical biomarkers of vascular damage. Furthermore, we investigated the effects of smoking on the immune system of healthy asymptomatic chronic smokers compared to never-smokers, focusing on the innate immune system. Our data reveal a distinct immune landscape representative for early stages of vascular damage in clinically asymptomatic chronic smokers, before tobacco smoking related diseases develop. These results indicate a dysregulated immuno-vascular axis in chronic tobacco smokers that are otherwise considered as healthy individuals. The distinct alterations are characterized by increased CD36 expression by the blood monocyte subsets, neutrophilia and increased plasma IL-18 and reduced levels of IL-33, IL-10 and IL-8. Additionally, reduced levels of circulating BDNF and elevated sTREM2, which are associated with neurodegeneration, suggest a considerable impact of tobacco smoking on CNS function in clinically healthy individuals. These findings provide profound insight into the initial and ongoing effects of tobacco smoking and the potential vascular damage contributing to neurodegenerative disorders, specifically cerebrovascular dysfunction and dementia.
Collapse
|
42
|
Ge Y, Ye T, Fu S, Jiang X, Song H, Liu B, Wang G, Wang J. Research progress of extracellular vesicles as biomarkers in immunotherapy for non-small cell lung cancer. Front Immunol 2023; 14:1114041. [PMID: 37153619 PMCID: PMC10162406 DOI: 10.3389/fimmu.2023.1114041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/07/2023] [Indexed: 05/10/2023] Open
Abstract
Lung cancer is one of the most severe forms of malignancy and a leading cause of cancer-related death worldwide, of which non-small cell lung cancer (NSCLC) is the most primary type observed in the clinic. NSCLC is mainly treated with surgery, radiotherapy, and chemotherapy. Additionally, targeted therapy and immunotherapy have also shown promising results. Several immunotherapies, including immune checkpoint inhibitors, have been developed for clinical use and have benefited patients with NSCLC. However, immunotherapy faces several challenges like poor response and unknown effective population. It is essential to identify novel predictive markers to further advance precision immunotherapy for NSCLC. Extracellular vesicles (EVs) present an important research direction. In this review, we focus on the role of EVs as a biomarker in NSCLC immunotherapy considering various perspectives, including the definition and properties of EVs, their role as biomarkers in current NSCLC immunotherapy, and different EV components as biomarkers in NSCLC immunotherapy research. We describe the cross-talk between the role of EVs as biomarkers and novel technical approaches or research concepts in NSCLC immunotherapy, such as neoadjuvants, multi-omics analysis, and the tumour microenvironment. This review will provide a reference for future research to improve the benefits of immunotherapy for patients with NSCLC.
Collapse
Affiliation(s)
- Yang Ge
- Graduate School, Anhui University of Chinese Medicine, Hefei, China
| | - Ting Ye
- Graduate School, Anhui University of Chinese Medicine, Hefei, China
| | - Siyun Fu
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Xiaoying Jiang
- Department of Science and Technology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Hang Song
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Bin Liu
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
- *Correspondence: Bin Liu, ; Guoquan Wang, ; Jinghui Wang,
| | - Guoquan Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- *Correspondence: Bin Liu, ; Guoquan Wang, ; Jinghui Wang,
| | - Jinghui Wang
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
- *Correspondence: Bin Liu, ; Guoquan Wang, ; Jinghui Wang,
| |
Collapse
|
43
|
He J, Yang L, Zhou N, Zu L, Xu S. The role and underlying mechanisms of tumour-derived exosomes in lung cancer metastasis. Curr Opin Oncol 2023; 35:46-53. [PMID: 36321569 DOI: 10.1097/cco.0000000000000913] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Lung cancer is one of the most common malignant tumours worldwide. Metastasis is a serious influencing factor for poor treatment effect and shortened survival in lung cancer. But the complicated underlying molecular mechanisms of tumour metastasis remain unclear. In this review, we aim to further summarize and explore the underlying mechanisms of tumour-derived exosomes (TDEs) in lung cancer metastasis. RECENT FINDINGS TDEs are actively produced and released by tumour cells and carry messages from tumour cells to normal or abnormal cells residing at close or distant sites. Many studies have shown that TDEs promote lung cancer metastasis and development through multiple mechanisms, including epithelial-mesenchymal transition, immunosuppression and the formation of a premetastatic niche. TDEs regulate these mechanisms to promote metastasis by carrying DNA, proteins, miRNA, mRNA, lncRNA and ceRNA. Further exploring TDEs related to metastasis may be a promising treatment strategy and deserve further investigation. SUMMARY Overall, TDEs play a critical role in metastatic of lung cancer. Further studies are needed to explore the underlying mechanisms of TDEs in lung cancer metastasis.
Collapse
Affiliation(s)
- Jinling He
- Department of Lung Cancer Surgery
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Lingqi Yang
- Department of Lung Cancer Surgery
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Ning Zhou
- Department of Lung Cancer Surgery
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Lingling Zu
- Department of Lung Cancer Surgery
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Song Xu
- Department of Lung Cancer Surgery
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
44
|
Wu S, Mu C, Sun JJ, Hu XR, Yao YH. Role of Exosomal Non-Coding RNA in the Tumour Microenvironment of Genitourinary System Tumours. Technol Cancer Res Treat 2023; 22:15330338231198348. [PMID: 37981789 PMCID: PMC10664451 DOI: 10.1177/15330338231198348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 11/21/2023] Open
Abstract
In recent years, genitourinary system tumors are common in people of all ages, seriously affecting the quality of life of patients, the pathogenesis and treatment of these diseases are constantly being updated and improved. Exosomes, with a lipid bilayer that enable delivery of their contents into body fluids or other cells. Exosomes can regulate the tumor microenvironment, and play an important role in tumor development. In turn, cellular and non-cellular components of tumor microenvironment also affect the occurrence, progression, invasion and metastasis of tumor. Non-coding RNAs have been shown to be able to be ingested and released by exosomes, and are seen as a potential tool in cancer diagnosis and treatment. Here, we summarize the effect of non-coding RNAs of exosome contents on the tumor microenvironment of genitourinary system tumor, expound the significance of non-coding RNAs of exosome in the occurrence, development, diagnosis and treatment of cancers.
Collapse
Affiliation(s)
- Shuang Wu
- Basic Medical College, Department of Pathology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Chao Mu
- Basic Medical College, Department of Pathology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jia-jia Sun
- Basic Medical College, Department of Pathology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Xin-rong Hu
- Basic Medical College, Department of Pathology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Yun-hong Yao
- Professor in Basic Medical College, Department of Pathology, Guangdong Medical University, Dongguan, Guangdong, China
| |
Collapse
|
45
|
Zhang Q, Wang C, Li R, Liu J, Wang J, Wang T, Wang B. The BAP31/miR-181a-5p/RECK axis promotes angiogenesis in colorectal cancer via fibroblast activation. Front Oncol 2023; 13:1056903. [PMID: 36895489 PMCID: PMC9989165 DOI: 10.3389/fonc.2023.1056903] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
Background B-cell receptor-associated protein 31 (BAP31) has been recognized as a tumor-associated protein and has largely been shown to promote metastasis in a variety of cancers. Cancer metastasis arises through multistep pathways, and the induction of angiogenesis is shown to be a rate-limiting step in the process of tumor metastasis. Methods and results This study explored the effect of BAP31 on colorectal cancer (CRC) angiogenesis by regulating the tumor microenvironment. First, exosomes from BAP31-regulated CRCs affected the transition of normal fibroblasts to proangiogenic cancer-associated fibroblasts (CAFs) in vivo and in vitro. Next, microRNA sequencing was performed to analyze the microRNA expression profile of exosomes secreted from BAP31- overexpressing CRCs. The results indicated that the expression of BAP31 in CRCs significantly altered the levels of exosomal microRNAs, such as miR-181a- 5p. Meanwhile, an in vitro tube formation assay showed that fibroblasts with high levels of miR-181a-5p significantly promoted endothelial cell angiogenesis. Critically, we first identified that miR-181a-5p directly targeted the 3'-untranslated region (3'UTR) of reversion-inducing cysteine-rich protein with kazal motifs (RECK) using the dual-luciferase activity assay, which drove fibroblast transformation into proangiogenic CAFs by upregulating matrix metalloproteinase-9 (MMP-9) and phosphorylation of mothers against decapentaplegic homolog 2/Mothers against decapentaplegic homolog 3 (Smad2/3). Conclusion Exosomes from BAP31-overexpressing/BAP31-knockdown CRCs are found to manipulate the transition of fibroblasts into proangiogenic CAFs by the miR-181a-5p/RECK axis.
Collapse
Affiliation(s)
- Qi Zhang
- College of Life Science and Health, Northeastern University, Shenyang, Liaoning, China
| | - Changli Wang
- College of Life Science and Health, Northeastern University, Shenyang, Liaoning, China
| | - Ruijia Li
- College of Life Science and Health, Northeastern University, Shenyang, Liaoning, China
| | - Jingjing Liu
- College of Life Science and Health, Northeastern University, Shenyang, Liaoning, China
| | - Jiyu Wang
- College of Life Science and Health, Northeastern University, Shenyang, Liaoning, China
| | - Tianyi Wang
- College of Life Science and Health, Northeastern University, Shenyang, Liaoning, China
| | - Bing Wang
- College of Life Science and Health, Northeastern University, Shenyang, Liaoning, China
| |
Collapse
|
46
|
Extracellular Vesicles' Role in the Pathophysiology and as Biomarkers in Cystic Fibrosis and COPD. Int J Mol Sci 2022; 24:ijms24010228. [PMID: 36613669 PMCID: PMC9820204 DOI: 10.3390/ijms24010228] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/03/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
In keeping with the extraordinary interest and advancement of extracellular vesicles (EVs) in pathogenesis and diagnosis fields, we herein present an update to the knowledge about their role in cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD). Although CF and COPD stem from a different origin, one genetic and the other acquired, they share a similar pathophysiology, being the CF transmembrane conductance regulator (CFTR) protein implied in both disorders. Various subsets of EVs, comprised mainly of microvesicles (MVs) and exosomes (EXOs), are secreted by various cell types that are either resident or attracted in the airways during the onset and progression of CF and COPD lung disease, representing a vehicle for metabolites, proteins and RNAs (especially microRNAs), that in turn lead to events as such neutrophil influx, the overwhelming of proteases (elastase, metalloproteases), oxidative stress, myofibroblast activation and collagen deposition. Eventually, all of these pathomechanisms lead to chronic inflammation, mucus overproduction, remodeling of the airways, and fibrosis, thus operating a complex interplay among cells and tissues. The detection of MVs and EXOs in blood and biological fluids coming from the airways (bronchoalveolar lavage fluid and sputum) allows the consideration of EVs and their cargoes as promising biomarkers for CF and COPD, although clinical expectations have yet to be fulfilled.
Collapse
|
47
|
Liang ZF, Zhang Y, Guo W, Chen B, Fang S, Qian H. Gastric cancer stem cell-derived exosomes promoted tobacco smoke-triggered development of gastric cancer by inducing the expression of circ670. Med Oncol 2022; 40:24. [PMID: 36454423 DOI: 10.1007/s12032-022-01906-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
As one of the most common malignant cancers in the world, gastric cancer is caused by mang factors among which tobacco smoke is an important risk factor. Gastric cancer stem cells (GCSCs) and the derived exosomes play a key role in the occurrence and development of gastric cancer, and exosomal circRNA is considered as a new regulatory factor in the development of gastric cancer. However, it is unclear whether tobacco smoke can affect exosomes and their transport circRNAs to promote the development of gastric cancer. Herein, we provided a new insight into tobacco smoke promoting the progression of gastric cancer. In the present study, we demonstrated that tobacco smoke-induced exosomes promoted the spheroidizing ability, stemness genes expression, and epithelial-mesenchymal transition (EMT) process of GCSCs. We further found that hsa-circRNA-000670 (circ670) was up-regulated in tissues of gastric cancer patients with smoking history, tobacco smoke-induced GCSCs, and their exosomes. Functional assays have shown that circ670 knockdown inhibited the stemness and EMT process of GCSCs, whereas circ670 overexpression appeared to have an opposite effect. Our findings indicated that exosomal circ670 promotes the development of tobacco smoke-induced gastric cancer, which may provide insight into the mechanism of tobacco smoke promoting the progression of gastric cancer.
Collapse
Affiliation(s)
- Zhao Feng Liang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| | - Yue Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Wenhao Guo
- Department of Laboratory, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taichang, Suzhou, 215400, Jiangsu, People's Republic of China
| | - Bei Chen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
- Suzhou Science and Technology Town Hospital, Suzhou, 215153, Jiangsu, People's Republic of China
| | - Shikun Fang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| |
Collapse
|
48
|
Gao F, Yu B, Rao B, Sun Y, Yu J, Wang D, Cui G, Ren Z. The effect of the intratumoral microbiome on tumor occurrence, progression, prognosis and treatment. Front Immunol 2022; 13:1051987. [PMID: 36466871 PMCID: PMC9718533 DOI: 10.3389/fimmu.2022.1051987] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/03/2022] [Indexed: 10/26/2023] Open
Abstract
In the past few decades, great progress has been achieved in the understanding of microbiome-cancer interactions. However, most of the studies have focused on the gut microbiome, ignoring how other microbiomes interact with tumors. Emerging evidence suggests that in many types of cancers, such as lung cancer, pancreatic cancer, and colorectal cancer, the intratumoral microbiome plays a significant role. In addition, accumulating evidence suggests that intratumoral microbes have multiple effects on the biological behavior of tumors, for example, regulating tumor initiation and progression and altering the tumor response to chemotherapy and immunotherapy. However, to fully understand the role of the intratumoral microbiome in cancer, further investigation of the effects and mechanisms is still needed. This review discusses the role of intratumoral bacteria in tumorigenesis and tumor progression, recurrence and metastasis, as well as their effect on cancer prognosis and treatment outcome, and summarizes the relevant mechanisms.
Collapse
Affiliation(s)
- Feng Gao
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bo Yu
- Henan Key Laboratory of Ion-beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Benchen Rao
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jia Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Daming Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangying Cui
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
49
|
Xu Z, Chen Y, Ma L, Chen Y, Liu J, Guo Y, Yu T, Zhang L, Zhu L, Shu Y. Role of exosomal non-coding RNAs from tumor cells and tumor-associated macrophages in the tumor microenvironment. Mol Ther 2022; 30:3133-3154. [PMID: 35405312 PMCID: PMC9552915 DOI: 10.1016/j.ymthe.2022.01.046] [Citation(s) in RCA: 183] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/21/2021] [Accepted: 01/27/2022] [Indexed: 12/13/2022] Open
Abstract
Exosomes have a crucial role in intercellular communication and mediate interactions between tumor cells and tumor-associated macrophages (TAMs). Exosome-encapsulated non-coding RNAs (ncRNAs) are involved in various physiological processes. Tumor-derived exosomal ncRNAs induce M2 macrophage polarization through signaling pathway activation, signal transduction, and transcriptional and post-transcriptional regulation. Conversely, TAM-derived exosomal ncRNAs promote tumor proliferation, metastasis, angiogenesis, chemoresistance, and immunosuppression. MicroRNAs induce gene silencing by directly targeting mRNAs, whereas lncRNAs and circRNAs act as miRNA sponges to indirectly regulate protein expressions. The role of ncRNAs in tumor-host interactions is ubiquitous. Current research is increasingly focused on the tumor microenvironment. On the basis of the "cancer-immunity cycle" hypothesis, we discuss the effects of exosomal ncRNAs on immune cells to induce T cell exhaustion, overexpression of programmed cell death ligands, and create a tumor immunosuppressive microenvironment. Furthermore, we discuss potential applications and prospects of exosomal ncRNAs as clinical biomarkers and drug delivery systems.
Collapse
Affiliation(s)
- Zijie Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yi Chen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ling Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yizhang Chen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jingya Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yuchen Guo
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ting Yu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lianghui Zhang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lingjun Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; Department of Oncology, The Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 211112, China.
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
50
|
Eckhardt CM, Baccarelli AA, Wu H. Environmental Exposures and Extracellular Vesicles: Indicators of Systemic Effects and Human Disease. Curr Environ Health Rep 2022; 9:465-476. [PMID: 35449498 PMCID: PMC9395256 DOI: 10.1007/s40572-022-00357-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2022] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Environmental pollutants contribute to the pathogenesis of numerous diseases including chronic cardiovascular, respiratory, and neurodegenerative diseases, among others. Emerging evidence suggests that extracellular vesicles (EVs) may mediate the association of environmental exposures with chronic diseases. The purpose of this review is to describe the impact of common environmental exposures on EVs and their role in linking environmental pollutants to the pathogenesis of chronic systemic diseases. RECENT FINDINGS Common environmental pollutants including particulate matter, tobacco smoke, and chemical pollutants trigger the release of EVs from multiple systems in the body. Existing research has focused primarily on air pollutants, which alter EV production and release in the lungs and systemic circulation. Air pollutants also impact the selective loading of EV cargo including microRNA and proteins, which modify the cellular function in recipient cells. As a result, pollutant-induced EVs often contribute to a pro-inflammatory and pro-thrombotic milieu, which increases the risk of pollutant-related diseases including obstructive lung diseases, cardiovascular disease, neurodegenerative diseases, and lung cancer. Common environmental exposures are associated with multifaceted changes in EVs that lead to functional alterations in recipient cells and contribute to the pathogenesis of chronic systemic diseases. EVs may represent emerging targets for the prevention and treatment of diseases that stem from environmental exposures. However, novel research is required to expand our knowledge of the biological action of EV cargo, elucidate determinants of EV release, and fully understand the impact of environmental pollutants on human health.
Collapse
Affiliation(s)
- Christina M Eckhardt
- Division of Pulmonary, Allergy and Critical, Care Medicine, Department of Medicine, Columbia University Irving Medical Center, 630 West 168th Street, Floor 8, Suite 101, New York, NY, 10032, USA
| | - Andrea A Baccarelli
- Environmental Health Sciences Department, Columbia University Mailman School of Public Health, 630 West 168th Street, Room 16-416, New York, NY, 10032, USA
| | - Haotian Wu
- Environmental Health Sciences Department, Columbia University Mailman School of Public Health, 630 West 168th Street, Room 16-416, New York, NY, 10032, USA.
| |
Collapse
|