1
|
Ong JY, Abdusamad M, Ramirez I, Gholkar A, Zhang X, Gimeno TV, Torres JZ. Cul3 substrate adaptor SPOP targets Nup153 for degradation. Mol Biol Cell 2025; 36:ar24. [PMID: 39785820 PMCID: PMC11974958 DOI: 10.1091/mbc.e24-04-0198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/12/2025] Open
Abstract
SPOP is a Cul3 substrate adaptor responsible for the degradation of many proteins related to cell growth and proliferation. Because mutation or misregulation of SPOP drives cancer progression, understanding the suite of SPOP substrates is important to understanding the regulation of cell proliferation. Here, we identify Nup153, a component of the nuclear basket of the nuclear pore complex, as a novel substrate of SPOP. SPOP and Nup153 bind to each other and colocalize at the nuclear envelope and some nuclear foci in cells. The binding interaction between SPOP and Nup153 is complex and multivalent. Nup153 is ubiquitylated and degraded upon expression of SPOPWT but not its substrate binding-deficient mutant SPOPF102C. Depletion of SPOP via RNAi leads to Nup153 stabilization. Upon loss of SPOP activity, the nuclear envelope localization of spindle assembly checkpoint protein Mad1, which is tethered to the nuclear envelope by Nup153, is stronger. Altogether, our results demonstrate that SPOP regulates Nup153 levels and expands our understanding of the role of SPOP in protein and cellular homeostasis.
Collapse
Affiliation(s)
- Joseph Y. Ong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Mai Abdusamad
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Ivan Ramirez
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Ankur Gholkar
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Xiaoxuan Zhang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Thomas V. Gimeno
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Jorge Z. Torres
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
2
|
Dan W, Fan Y, Wang Y, Hou T, Wei Y, Liu B, Li M, Chen J, Fang Q, Que T, Lei Y, Guo C, Wang C, Gao Y, Zeng J, Li L. The Tumor Suppressor TPD52-Governed Endoplasmic Reticulum Stress is Modulated by APC Cdc20. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405441. [PMID: 39401430 PMCID: PMC11615746 DOI: 10.1002/advs.202405441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/25/2024] [Indexed: 12/06/2024]
Abstract
Aberrant regulation of unfolded protein response (UPR)/endoplasmic reticulum (ER) stress pathway is associated with cancer development, metastasis, and relapse, and the UPR signal transducer ATF6 has been proposed as a diagnostic and prognostic marker for many cancers. However, a causal molecular link between ATF6 activation and carcinogenesis is not established. Here, it is found that tumor protein D52 (TPD52) integrates ER stress and UPR signaling with the chaperone machinery by promoting S2P-mediated cleavage of ATF6. Although TPD52 has been generally considered as an oncogene, TPD52 is identified as a novel tumor suppressor in bladder cancer. Significantly, attenuation of the ER stress via depletion of TPD52 facilitated tumorigenesis in a subset of human carcinomas. Furthermore, the APCCdc20 E3 ligase is validated as the upstream regulator marking TPD52 for polyubiquitination-mediated proteolysis. In addition, inactivation of Cdc20 sensitized cancer cells to treatment with the ER stress inducer in a TPD52-dependent manner. Thus, the study suggests that TPD52 is a novel Cdc20 substrate that may modulate ER stress to prevent tumorigenesis.
Collapse
|
3
|
Xian F, Zhao C, Huang C, Bie J, Xu G. The potential role of CDC20 in tumorigenesis, cancer progression and therapy: A narrative review. Medicine (Baltimore) 2023; 102:e35038. [PMID: 37682144 PMCID: PMC10489547 DOI: 10.1097/md.0000000000035038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/11/2023] [Indexed: 09/09/2023] Open
Abstract
The cell division cycle 20 homologue (CDC20) is known to regulate the cell cycle. Many studies have suggested that dysregulation of CDC20 is associated with various pathological processes in malignant solid tumors, including tumorigenesis, progression, chemoradiotherapy resistance, and poor prognosis, providing a biomarker for cancer diagnosis and prognosis. Some researchers have demonstrated that CDC20 also regulates apoptosis, immune microenvironment, and tumor angiogenesis. In this review, we have systematically summarized the biological functions of CDC20 in solid cancers. Furthermore, we briefly synthesized multiple medicines that inhibited CDC20. We anticipate that CDC20 will be a promising and effective biomarker and therapeutic target for the treatment of human cancer.
Collapse
Affiliation(s)
- Feng Xian
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Oncology, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, China
| | - Caixia Zhao
- Department of Oncology, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, China
| | - Chun Huang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jun Bie
- Department of Oncology, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, China
| | - Guohui Xu
- Department of Interventional Radiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
4
|
Wu F, Wang M, Zhong T, Xiao C, Chen X, Huang Y, Wu M, Yu J, Chen D. Inhibition of CDC20 potentiates anti-tumor immunity through facilitating GSDME-mediated pyroptosis in prostate cancer. Exp Hematol Oncol 2023; 12:67. [PMID: 37528490 PMCID: PMC10391908 DOI: 10.1186/s40164-023-00428-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 07/19/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Increasing evidence suggests that immunotherapy, especially immune checkpoint inhibitors (ICIs), has the potential to facilitate long-term survival in various cancer besides prostate cancer. Emerging evidence indicated that pyroptosis, an immunogenic form of cell death, could trigger an anti-tumor immune microenvironment and enhance the effectiveness of immunotherapy. Nevertheless, the mechanism underlying the regulation of pyroptosis signaling in prostate cancer remains unclear. METHODS The differential expression of human E3 ligases in prostate cancer was integratedly analyzed from five independent public datasets. Moreover, the immunohistochemistry analysis of a tissue microarray derived from prostate cancer patients confirmed the results from the bioinformatic analysis. Furthermore, prostate cancer cell lines were evaluated via the next-generation RNA sequencing to assess transcriptomic profile upon CDC20 depletion. Next, qRT-PCR, Western blotting, cycloheximide assay, immunoprecipitation, and ubiquitination assay were employed to explore the correlation and interaction between CDC20 and GSDME. Both immune-deficient and immune-competent murine models were utilized to examine the anti-tumor efficacy of CDC20 inhibition with or without the anti-PD1 antibodies, respectively. To analyze the immune microenvironment of the xenografts, the tumor tissues were examined by immunohistochemistry and flow cytometry. RESULTS The analysis of multiple prostate cancer cohorts suggested that CDC20 was the most significantly over-expressed E3 ligase. In addition, CDC20 exerted a negative regulatory effect on the pyroptosis pathway by targeting GSDME for ubiquitination-mediated proteolysis in a degron-dependent manner. Knockdown of CDC20 leads to increased GSDME abundance and a transition from apoptosis to pyroptosis in response to death signals. Furthermore, in our syngeneic murine models, we found that depletion of CDC20 significantly enhances the anti-tumor immunity by promoting the infiltration of CD8+ T lymphocytes dependent on the existence of GSDME, as well as reducing myeloid immune cells. More importantly, Apcin, a small molecular inhibitor that targets CDC20, exhibited synergistic effects with anti-PD1-based immunotherapy in murine models of prostate cancer. CONCLUSIONS Overall, these findings provide new insights into the upstream regulation of GSDME-mediated pyroptosis by CDC20, which specifically interacts with GSDME and facilitates its ubiquitination in a degron-dependent manner. Importantly, our data highlight novel molecular pathways for targeting cellular pyroptosis and enhancing the effectiveness of anti-PD1-based immunotherapy.
Collapse
Affiliation(s)
- Fei Wu
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, No.440 Jiyan Road, Jinan, Shandong, People's Republic of China
| | - Minglei Wang
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, No.440 Jiyan Road, Jinan, Shandong, People's Republic of China
| | - Tao Zhong
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, No.440 Jiyan Road, Jinan, Shandong, People's Republic of China
| | - Changyan Xiao
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, No.440 Jiyan Road, Jinan, Shandong, People's Republic of China
| | - Xiaozheng Chen
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, No.440 Jiyan Road, Jinan, Shandong, People's Republic of China
| | - Yiheng Huang
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, No.440 Jiyan Road, Jinan, Shandong, People's Republic of China
| | - Meng Wu
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, No.440 Jiyan Road, Jinan, Shandong, People's Republic of China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, No.440 Jiyan Road, Jinan, Shandong, People's Republic of China.
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China.
| | - Dawei Chen
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, No.440 Jiyan Road, Jinan, Shandong, People's Republic of China.
| |
Collapse
|
5
|
Alebady ZAH, Azizyan M, Nakjang S, Lishman-Walker E, Al-Kharaif D, Walker S, Choo HX, Garnham R, Scott E, Johnson KL, Robson CN, Coffey K. CDC20 Is Regulated by the Histone Methyltransferase, KMT5A, in Castration-Resistant Prostate Cancer. Cancers (Basel) 2023; 15:3597. [PMID: 37509260 PMCID: PMC10377584 DOI: 10.3390/cancers15143597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The methyltransferase KMT5A has been proposed as an oncogene in prostate cancer and therefore represents a putative therapeutic target. To confirm this hypothesis, we have performed a microarray study on a prostate cancer cell line model of androgen independence following KMT5A knockdown in the presence of the transcriptionally active androgen receptor (AR) to understand which genes and cellular processes are regulated by KMT5A in the presence of an active AR. We observed that 301 genes were down-regulated whilst 408 were up-regulated when KMT5A expression was reduced. KEGG pathway and gene ontology analysis revealed that apoptosis and DNA damage signalling were up-regulated in response to KMT5A knockdown whilst protein folding and RNA splicing were down-regulated. Under these conditions, the top non-AR regulated gene was found to be CDC20, a key regulator of the spindle assembly checkpoint with an oncogenic role in several cancer types. Further investigation revealed that KMT5A regulates CDC20 in a methyltransferase-dependent manner to modulate histone H4K20 methylation within its promoter region and indirectly via the p53 signalling pathway. A positive correlation between KMT5A and CDC20 expression was also observed in clinical prostate cancer samples, further supporting this association. Therefore, we conclude that KMT5A is a valid therapeutic target for the treatment of prostate cancer and CDC20 could potentially be utilised as a biomarker for effective therapeutic targeting.
Collapse
Affiliation(s)
- Zainab A H Alebady
- Biosciences Institute, Newcastle Cancer Centre, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Department of Laboratory and Clinical Science, College of Pharmacy, University of AL-Qadisiyah, Al-Diwaniya 58002, Iraq
| | - Mahsa Azizyan
- Biosciences Institute, Newcastle Cancer Centre, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Sirintra Nakjang
- Bioinformatics Support Unit, Newcastle University, Newcastle NE2 4HH, UK
| | - Emma Lishman-Walker
- Biosciences Institute, Newcastle Cancer Centre, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Dhuha Al-Kharaif
- Medical Laboratory Technology Department, College of Health Sciences, Public Authority of Applied Education and Training, Safat 13092, Kuwait
| | - Scott Walker
- School of Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Hui Xian Choo
- Biosciences Institute, Newcastle Cancer Centre, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Rebecca Garnham
- Biosciences Institute, Newcastle Cancer Centre, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Emma Scott
- Biosciences Institute, Newcastle Cancer Centre, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Katya L Johnson
- Biosciences Institute, Newcastle Cancer Centre, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Craig N Robson
- Translational and Clinical Research Institute, Newcastle Cancer Centre, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Kelly Coffey
- Biosciences Institute, Newcastle Cancer Centre, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
6
|
Ong JY, Torres JZ. Cul3 substrate adaptor SPOP targets Nup153 for degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.13.540659. [PMID: 37293018 PMCID: PMC10245568 DOI: 10.1101/2023.05.13.540659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
SPOP is a Cul3 substrate adaptor responsible for degradation of many proteins related to cell growth and proliferation. Because mutation or misregulation of SPOP drives cancer progression, understanding the suite of SPOP substrates is important to understanding regulation of cell proliferation. Here, we identify Nup153, a component of the nuclear basket of the nuclear pore complex, as a novel substrate of SPOP. SPOP and Nup153 bind to each other and colocalize at the nuclear envelope and some nuclear foci in cells. The binding interaction between SPOP and Nup153 is complex and multivalent. Nup153 is ubiquitylated and degraded upon expression of SPOPWT but not its substrate binding-deficient mutant SPOPF102C. Depletion of SPOP via RNAi leads to Nup153 stabilization. Upon loss of SPOP, the nuclear envelope localization of spindle assembly checkpoint protein Mad1, which is tethered to the nuclear envelope by Nup153, is stronger. Altogether, our results demonstrate SPOP regulates Nup153 levels and expands our understanding of the role of SPOP in protein and cellular homeostasis.
Collapse
Affiliation(s)
- Joseph Y Ong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jorge Z Torres
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
7
|
Miller KJ, Henry I, Maylin Z, Smith C, Arunachalam E, Pandha H, Asim M. A compendium of Androgen Receptor Variant 7 target genes and their role in Castration Resistant Prostate Cancer. Front Oncol 2023; 13:1129140. [PMID: 36937454 PMCID: PMC10014620 DOI: 10.3389/fonc.2023.1129140] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Persistent androgen receptor (AR) signalling is the main driver of prostate cancer (PCa). Truncated isoforms of the AR called androgen receptor variants (AR-Vs) lacking the ligand binding domain often emerge during treatment resistance against AR pathway inhibitors such as Enzalutamide. This review discusses how AR-Vs drive a more aggressive form of PCa through the regulation of some of their target genes involved in oncogenic pathways, enabling disease progression. There is a pressing need for the development of a new generation of AR inhibitors which can repress the activity of both the full-length AR and AR-Vs, for which the knowledge of differentially expressed target genes will allow evaluation of inhibition efficacy. This review provides a detailed account of the most common variant, AR-V7, the AR-V7 regulated genes which have been experimentally validated, endeavours to understand their relevance in aggressive AR-V driven PCa and discusses the utility of the downstream protein products as potential drug targets for PCa treatment.
Collapse
Affiliation(s)
| | | | - Zoe Maylin
- *Correspondence: Zoe Maylin, ; Mohammad Asim,
| | | | | | | | | |
Collapse
|
8
|
Wu F, Chen J, Yao K, Fan D, Wang M, Liu Y, Xin S, Sun Z, Li S, Sun Y, Liu Q. The Infiltration of Neutrophil Granulocytes Due to Loss of PTEN Was Associated with Poor Response to Immunotherapy in Renal Cell Carcinoma. J Inflamm Res 2022; 15:6553-6567. [PMID: 36510494 PMCID: PMC9738981 DOI: 10.2147/jir.s388990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction A primary impediment to the efficacy of immune checkpoint inhibitors is the lack of biomarkers for therapeutic responses and prognosis. Although patients with clear cell renal cell carcinoma (ccRCC) could be precisely selected for targeted therapy based on somatic mutations, it remains controversial to choose the suitable patients with a high response rate to immune checkpoint inhibitors (ICIs). The immune-dependent roles of tumor suppressor PTEN in the formation of tumor immune microenvironment remain elusive. Methods We comprehensively analyzed the genomic and transcriptomic data from multiple ccRCC datasets, including bulk-RNA sequencing and single-cell RNA sequencing data. In vitro, immunoblotting, qRT-PCR, and RNA sequencing were conducted in ccRCC cell lines upon PTEN depletion. Gene ontology and gene set enrichment analysis were performed to screen the critical pathway and molecules in response to PTEN deletion. Immunohistochemistry staining and further bioinformatic analysis were used to validate our data. Results Based on multi-omics analysis of public datasets of renal cancer, the frequently mutated or deleted PTEN was found to be correlated with a suppressive tumor immune microenvironment in ccRCC. Furthermore, we depleted PTEN via CRISPR-Cas9 in Caki-1 cells, which led to the upregulation of multiple neutrophil chemokines, particularly CXCL1, CXCL2, CXCL5, CXCL6, and CXCL8. The roles of neutrophil chemokines and neutrophil markers were further validated and investigated for the association with prognosis in vitro, clinical samples, and the publicly available databases. The expression of CXCL1, CXCL8, and neutrophil markers, S100A9 and BCL2A1, were significantly associated with a poor immunotherapy-related prognosis in public dataset of renal cancer patients receiving ICIs treatment. Conclusion These results add a new layer to understanding the association between PTEN status and the role of neutrophil infiltration in ccRCC. Moreover, our findings propose low expression of PTEN as candidate factor of resistance to anti-PD-1-based immunotherapy in ccRCC.
Collapse
Affiliation(s)
- Fei Wu
- Department of Urology, the First Affiliated Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250014, People’s Republic of China,Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, People’s Republic of China,Department of Urology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, 250021, People’s Republic of China
| | - Jie Chen
- Department of Urology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250013, People’s Republic of China
| | - Kang Yao
- Department of Urology, the First Affiliated Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250014, People’s Republic of China
| | - Daming Fan
- Department of Pathology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250013, People’s Republic of China
| | - Minglei Wang
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, People’s Republic of China
| | - Yongjun Liu
- Department of Urology, the First Affiliated Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250014, People’s Republic of China
| | - Shouhu Xin
- Department of Urology, the First Affiliated Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250014, People’s Republic of China
| | - Zeqiang Sun
- Department of Urology, the First Affiliated Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250014, People’s Republic of China
| | - Shun Li
- Department of Urology, the First Affiliated Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250014, People’s Republic of China
| | - Yang Sun
- Department of Dermatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People’s Republic of China,Correspondence: Yang Sun; Qingyong Liu, Email ;
| | - Qingyong Liu
- Department of Urology, the First Affiliated Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250014, People’s Republic of China
| |
Collapse
|
9
|
Yang X, Zhu Q. SPOP in Cancer: Phenomena, Mechanisms and Its Role in Therapeutic Implications. Genes (Basel) 2022; 13:2051. [PMID: 36360288 PMCID: PMC9690554 DOI: 10.3390/genes13112051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/14/2022] [Accepted: 11/04/2022] [Indexed: 11/15/2023] Open
Abstract
Speckle-type POZ (pox virus and zinc finger protein) protein (SPOP) is a cullin 3-based E3 ubiquitin ligase adaptor protein that plays a crucial role in ubiquitin-mediated protein degradation. Recently, SPOP has attracted major research attention as it is frequently mutated in a range of cancers, highlighting pleiotropic tumorigenic effects and associations with treatment resistance. Structurally, SPOP contains a functionally critical N-terminal meprin and TRAF homology (MATH) domain for many SPOP substrates. SPOP has two other domains, including the internal Bric-a-brac-Tramtrack/Broad (BTB) domain, which is linked with SPOP dimerization and binding to cullin3, and a C-terminal nuclear localization sequence (NLS). The dysregulation of SPOP-mediated proteolysis is associated with the development and progression of different cancers since abnormalities in SPOP function dysregulate cellular signaling pathways by targeting oncoproteins or tumor suppressors in a tumor-specific manner. SPOP is also involved in genome stability through its role in the DNA damage response and DNA replication. More recently, studies have shown that the expression of SPOP can be modulated in various ways. In this review, we summarize the current understanding of SPOP's functions in cancer and discuss how to design a rational therapeutic target.
Collapse
Affiliation(s)
| | - Qing Zhu
- Department of Abdominal Oncology, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
10
|
Novel insights into the SPOP E3 ubiquitin ligase: From the regulation of molecular mechanisms to tumorigenesis. Biomed Pharmacother 2022; 149:112882. [PMID: 35364375 DOI: 10.1016/j.biopha.2022.112882] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/13/2022] [Accepted: 03/23/2022] [Indexed: 11/20/2022] Open
Abstract
Ubiquitin-mediated protein degradation is the primary biological process by which protein abundance is regulated and protein homeostasis is maintained in eukaryotic cells. Speckle-type pox virus and zinc finger (POZ) protein (SPOP) is a typical substrate adaptor of the Cullin 3-RING ligase (CRL3) family; it serves as a bridge between the Cullin 3 (Cul3) scaffold protein and its substrates. In recent years, SPOP has received increasing attention because of its versatility in its regulatory pathways and the diversity of tumor types involved. Mechanistically, SPOP substrates are involved in a wide range of biological processes, and abnormalities in SPOP function perturb downstream biological processes and promote tumorigenesis. Additionally, liquid-liquid phase separation (LLPS), a potential mechanism of membraneless organelle formation, was recently found to mediate the self-triggered colocalization of substrates with higher-order oligomers of SPOP. Herein, we summarize the structure of SPOP and the specific mechanisms by which it mediates the efficient ubiquitination of substrates. Additionally, we review the biological functions of SPOP, the regulation of SPOP expression, the role of SPOP in tumorigenesis and its therapeutic value.
Collapse
|
11
|
Bernasocchi T, Theurillat JPP. SPOP-mutant prostate cancer: Translating fundamental biology into patient care. Cancer Lett 2021; 529:11-18. [PMID: 34974131 DOI: 10.1016/j.canlet.2021.12.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 11/30/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023]
Abstract
Comprehensive cancer genome studies have revealed genetically-defined subtypes of prostate cancer with distinct truncal driver mutations. Because prostate cancer has been largely seen as a rather uniform disease, the clinical significance of this discovery remained largely obscure. However, recent findings imply distinct biological features and therapeutic vulnerabilities linked to specific truncal mutations. Here we review our current understanding of prostate cancers harboring recurrent point mutations in the ubiquitin ligase adaptor protein SPOP and discuss opportunities for future clinical translation. More specifically, activation of the androgen receptor (AR) signaling emerges as the key oncogenic pathway. SPOP-mutant prostate cancer patients respond to AR inhibition in various clinical settings. Molecular insights on how mutant SPOP promotes tumorigenesis may open more specific therapeutic avenues which, in combination with conventional AR-targeting agents, could improve the outcome of patients with SPOP-mutant prostate cancer.
Collapse
Affiliation(s)
- Tiziano Bernasocchi
- Institute of Oncology Research, Bellinzona, TI, 6500, Switzerland; Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, TI, 6900, Lugano, Switzerland
| | - Jean-Philippe P Theurillat
- Institute of Oncology Research, Bellinzona, TI, 6500, Switzerland; Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, TI, 6900, Lugano, Switzerland.
| |
Collapse
|
12
|
Huang P, Xu M, Han H, Zhao X, Li MD, Yang Z. Integrative Analysis of Epigenome and Transcriptome Data Reveals Aberrantly Methylated Promoters and Enhancers in Hepatocellular Carcinoma. Front Oncol 2021; 11:769390. [PMID: 34858848 PMCID: PMC8631276 DOI: 10.3389/fonc.2021.769390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022] Open
Abstract
DNA methylation is a key transcription regulator, whose aberration was ubiquitous and important in most cancers including hepatocellular carcinoma (HCC). Whole-genome bisulfite sequencing (WGBS) was conducted for comparison of DNA methylation in tumor and adjacent tissues from 33 HCC patients, accompanying RNA-seq to determine differentially methylated region-associated, differentially expressed genes (DMR-DEGs), which were independently replicated in the TCGA-LIHC cohort and experimentally validated via 5-aza-2-deoxycytidine (5-azadC) demethylation. A total of 9,867,700 CpG sites showed significantly differential methylation in HCC. Integrations of mRNA-seq, histone ChIP-seq, and WGBS data identified 611 high-confidence DMR-DEGs. Enrichment analysis demonstrated activation of multiple molecular pathways related to cell cycle and DNA repair, accompanying repression of several critical metabolism pathways such as tyrosine and monocarboxylic acid metabolism. In TCGA-LIHC, we replicated about 53% of identified DMR-DEGs and highlighted the prognostic significance of combinations of methylation and expression of nine DMR-DEGs, which were more efficient prognostic biomarkers than considering either type of data alone. Finally, we validated 22/23 (95.7%) DMR-DEGs in 5-azadC-treated LO2 and/or HepG2 cells. In conclusion, integration of epigenome and transcriptome data depicted activation of multiple pivotal cell cycle-related pathways and repression of several metabolic pathways triggered by aberrant DNA methylation of promoters and enhancers in HCC.
Collapse
Affiliation(s)
- Peng Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengxiang Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haijun Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyi Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
Ding Y, Zhang C, He L, Song X, Zheng C, Pan Y, Yu S. Apcin inhibits the growth and invasion of glioblastoma cells and improves glioma sensitivity to temozolomide. Bioengineered 2021; 12:10791-10798. [PMID: 34753395 PMCID: PMC8810058 DOI: 10.1080/21655979.2021.2003927] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Glioblastoma (GBM) is the most common malignant primary brain tumor, and GBM patients have a poor overall prognosis. CDC20 expression is increased in a variety of tumors and associated with temozolomide (TMZ) resistance in glioma cells. Apcin specifically binds to CDC20 to inhibit APC/C-CDC20 interaction and exhibits antitumor properties. The purpose of this article was to assess whether apcin inhibits tumor growth in glioma cell lines and increases the sensitivity of GBM to TMZ. In this study, a series of biochemical assays, such as Cell Counting Kit-8 (CCK-8), wound healing, apoptosis and colony formation assays, were performed to determine the antitumor properties of apcin in glioma cells. GBM cell apoptosis was detected by western blotting analysis of related proteins. Apcin increased the sensitivity of glioma to TMZ, as confirmed by CCK-8 and western blotting analysis. The results showed that apcin significantly inhibited the proliferation of glioma cells in a time- and dose-dependent manner. The migration decreased with increasing apcin concentrations. Increased Bim expression indicated that apcin promotes the apoptosis of glioma cells. Furthermore, apcin improved glioma sensitivity to TMZ. The results showed that apcin can effectively inhibit GBM growth and improve TMZ sensitivity. Apcin has the potential to treat GBM and is expected to provide new ideas for individualized treatment.
Collapse
Affiliation(s)
- Yiming Ding
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chuanbao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lei He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xinyu Song
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chengjun Zheng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuchu Pan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shuqing Yu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Luo M, Li Z, Li S, Lee TY. A representation and deep learning model for annotating ubiquitylation sentences stating E3 ligase - substrate interaction. BMC Bioinformatics 2021; 22:507. [PMID: 34663215 PMCID: PMC8524957 DOI: 10.1186/s12859-021-04435-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/04/2021] [Indexed: 01/01/2023] Open
Abstract
Background Ubiquitylation is an important post-translational modification of proteins that not only plays a central role in cellular coding, but is also closely associated with the development of a variety of diseases. The specific selection of substrate by ligase E3 is the key in ubiquitylation. As various high-throughput analytical techniques continue to be applied to the study of ubiquitylation, a large amount of ubiquitylation site data, and records of E3-substrate interactions continue to be generated. Biomedical literature is an important vehicle for information on E3-substrate interactions in ubiquitylation and related new discoveries, as well as an important channel for researchers to obtain such up to date data. The continuous explosion of ubiquitylation related literature poses a great challenge to researchers in acquiring and analyzing the information. Therefore, automatic annotation of these E3-substrate interaction sentences from the available literature is urgently needed. Results In this research, we proposed a model based on representation and attention mechanism based deep learning methods, to automatic annotate E3-substrate interaction sentences in biomedical literature. Focusing on the sentences with E3 protein inside, we applied several natural language processing methods and a Long Short-Term Memory (LSTM)-based deep learning classifier to train the model. Experimental results had proved the effectiveness of our proposed model. And also, the proposed attention mechanism deep learning method outperforms other statistical machine learning methods. We also created a manual corpus of E3-substrate interaction sentences, in which the E3 proteins and substrate proteins are also labeled, in order to construct our model. The corpus and model proposed by our research are definitely able to be very useful and valuable resource for advancement of ubiquitylation-related research. Conclusion Having the entire manual corpus of E3-substrate interaction sentences readily available in electronic form will greatly facilitate subsequent text mining and machine learning analyses. Automatic annotating ubiquitylation sentences stating E3 ligase-substrate interaction is significantly benefited from semantic representation and deep learning. The model enables rapid information accessing and can assist in further screening of key ubiquitylation ligase substrates for in-depth studies.
Collapse
Affiliation(s)
- Mengqi Luo
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, China.,School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Zhongyan Li
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Shangfu Li
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, China
| | - Tzong-Yi Lee
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, China. .,School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
15
|
Luo Z, Wang J, Zhu Y, Sun X, He C, Cai M, Ma J, Wang Y, Han S. SPOP promotes CDCA5 degradation to regulate prostate cancer progression via the AKT pathway. Neoplasia 2021; 23:1037-1047. [PMID: 34509929 PMCID: PMC8435818 DOI: 10.1016/j.neo.2021.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/21/2021] [Accepted: 08/11/2021] [Indexed: 12/02/2022]
Abstract
The E3 ubiquitin ligase adaptor Speckle-type POZ protein (SPOP) plays an important tumour suppressor role in prostate cancers (PCa), with mutation rate up to 15%. However, how SPOP mutations regulate prostate tumorigenesis remains elusive. Here, we report the identification of cell division cycle associated 5 (CDCA5) as a SPOP substrate. We found that SPOP interacts with CDCA5 and promotes its polyubiquitin degradation in a degron-dependent manner. This effect was greatly impaired by introducing PCa associated SPOP mutations. Importantly, we found that CDCA5 was essential for PCa cells to survive and proliferate. CDCA5 depletion in PCa cells led to cessation of proliferation, G2M arrest, severe sister chromatid aggregation disturbance, and apoptosis. we also found that CDCA5 knockdown decreased the protein expression of p-GSK3β, increased the activity of caspase-3, caspase-9, and the Bax/Bcl-2 ratio. Besides, we confirmed that CDCA5 interrupted cancer cell behavior via the AKT pathway. In contrast, silencing SPOP or overexpressing CDCA5 increased cell proliferation. Consistently, depleting SPOP along with CDCA5, or overexpressing CDCA5 along with SPOP also caused the growth of cells repressed. Consistent with the functional role of CDCA5, the mRNA and protein levels of CDCA5 were significantly increased in PCa, compared to normal tissues, and its high expression was associated with more severe lymph node metastasis, higher Gleason score, and poorer prognosis. Together, our data showed that SPOP plays a crucial role in inhibiting tumorigenesis and partly achieved this by promoting the degradation of oncoprotein CDCA5.
Collapse
Affiliation(s)
- Zhenzhen Luo
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jing Wang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yue Zhu
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiao Sun
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chenchen He
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mengjiao Cai
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jinlu Ma
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.
| | - Suxia Han
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
16
|
Wu F, Sun Y, Chen J, Li H, Yao K, Liu Y, Liu Q, Lu J. The Oncogenic Role of APC/C Activator Protein Cdc20 by an Integrated Pan-Cancer Analysis in Human Tumors. Front Oncol 2021; 11:721797. [PMID: 34527589 PMCID: PMC8435897 DOI: 10.3389/fonc.2021.721797] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/10/2021] [Indexed: 01/17/2023] Open
Abstract
The landscape of CDC20 gene expression and its biological impacts across different types of cancers remains largely unknown. Here, a pan-cancer analysis was performed to analyze the role of Cdc20 in various human cancers. Our results indicated that the expression levels of the CDC20 gene were significantly elevated in bladder cancer, breast cancer, colon cancer, rectum cancer, stomach cancer, esophageal cancer, head and neck cancer, kidney cancer, liver cancer, lung cancer, prostate cancer, pancreatic cancer, and uterine cancer. In addition, the expression of CDC20 was significantly and positively correlated with the increase of clinical stages in multiple cancer types, including breast cancer, kidney cancer, and lung cancer, et al. Among 33 cancer subtypes in the TCGA dataset, the high expression of CDC20 was correlated with poor prognosis in 10 cancer types. Furthermore, the abundance of phosphorylated Cdc20 in the primary tumor was elevated and correlated with increased tumor grade. Next, we sought to elucidate the oncogenic role by analyzing its association with immune infiltration. For most cancer types, the CDC20 expression was positively correlated with the infiltration of cancer-associated fibroblasts and myeloid-derived suppressor cells. To further understand its functional activity, we explored the classic Cdc20 downstream substrates, which were found to be mutually exclusive with the expression of Cdc20. Moreover, the pan-cancer analysis of the molecular function of Cdc20 indicated that BUB1, CCNA2, CCNB1, CDK1, MAD2L1, and PLK1 might play a critical role in interaction with Cdc20. The abundance of Cdc20 was further validated at transcriptional and translational levels with a publicly available dataset and clinical tumor tissues. The knockdown of Cdc20 dramatically inhibited tumor growth both in vivo and in vitro. Therefore, our studies delineated the oncogenic role of CDC20 and its prognostic significance at the pan-cancer level and proved its functional activity in Cdc20 high expression cancer types. Our studies will merits further molecular assays to understand the potential role of Cdc20 in tumorigenesis and provide the rationale for developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Fei Wu
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.,Department of Urology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Yang Sun
- Department of Dermatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Chen
- Department of Urology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hongyun Li
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Kang Yao
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Yongjun Liu
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Qingyong Liu
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Jiaju Lu
- Department of Urology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, China
| |
Collapse
|
17
|
Aliabadi F, Sohrabi B, Mostafavi E, Pazoki-Toroudi H, Webster TJ. Ubiquitin-proteasome system and the role of its inhibitors in cancer therapy. Open Biol 2021; 11:200390. [PMID: 33906413 PMCID: PMC8080017 DOI: 10.1098/rsob.200390] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite all the other cells that have the potential to prevent cancer development and metastasis through tumour suppressor proteins, cancer cells can upregulate the ubiquitin–proteasome system (UPS) by which they can degrade tumour suppressor proteins and avoid apoptosis. This system plays an extensive role in cell regulation organized in two steps. Each step has an important role in controlling cancer. This demonstrates the importance of understanding UPS inhibitors and improving these inhibitors to foster a new hope in cancer therapy. UPS inhibitors, as less invasive chemotherapy drugs, are increasingly used to alleviate symptoms of various cancers in malignant states. Despite their success in reducing the development of cancer with the lowest side effects, thus far, an appropriate inhibitor that can effectively inactivate this system with the least drug resistance has not yet been fully investigated. A fundamental understanding of the system is necessary to fully elucidate its role in causing/controlling cancer. In this review, we first comprehensively investigate this system, and then each step containing ubiquitination and protein degradation as well as their inhibitors are discussed. Ultimately, its advantages and disadvantages and some perspectives for improving the efficiency of these inhibitors are discussed.
Collapse
Affiliation(s)
- Fatemeh Aliabadi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Beheshteh Sohrabi
- Department of Chemistry, Surface Chemistry Research Laboratory, Iran University of Science and Technology, PO Box 16846-13114, Tehran, Iran
| | - Ebrahim Mostafavi
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.,Stanford Cardiovascular Institute, Stanford, CA, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
18
|
Wu L, Yu K, Cue Y, Zhu X, Yang Z, Ma J. [Speckle-type POZ protein up-regulates c-Jun protein expression and promotes proliferation and invasion of renal carcinoma cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:447-452. [PMID: 33849838 DOI: 10.12122/j.issn.1673-4254.2021.03.19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the effect of speckle-type POZ protein (SPOP) on proliferation, apoptosis, migration and invasion of renal cell carcinoma (RCC) and explore the potential mechanisms. OBJECTIVE Renal carcinoma cell lines (786-O, A704, and Caki-2) cultured in vitro were transfected with a SPOP-overexpressing plasmid, and the changes in proliferation of the cells were detected using colony formation and MTT assay; TUNEL assay was used to assess apoptosis of the cells. The changes in migration and invasion abilities of the cells were examined using wound healing assay and Transwell assay. The mRNA and protein levels of SPOP and c-Jun in the transfected cells were measured using real-time PCR and Western blotting. OBJECTIVE SPOP over-expression obviously promoted the proliferation, migration and invasion of 786-O, A704 and Caki-2 cells (P < 0.05). Compared with the control cells, 786-o and Caki-2 cells over-expressing SPOP exhibited significantly lowered apoptosis rates (P < 0.05). The results of real-time PCR demonstrated that the transfected cells did not show obvious changes in the mRNA level of c-Jun, but the protein expressions of SPOP and c-jun increased significantly as shown by Western blotting (P < 0.05). OBJECTIVE SPOP can promote proliferation, migration, and invasion and suppress apoptosis of renal carcinoma cells possibly by promoting the expression of c-Jun.
Collapse
Affiliation(s)
- L Wu
- Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu 233030, China
| | - K Yu
- Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu 233030, China
| | - Y Cue
- Department of Clinical Laboratory, Fuyang Women and Children's Hospital, Fuyang 236000, China
| | - X Zhu
- Department of Laboratory Medicine, Bengbu 233030, China
| | - Z Yang
- Department of Laboratory Medicine, Bengbu 233030, China
| | - J Ma
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu 233030, China
| |
Collapse
|
19
|
Synthesis of Novel Tryptamine Derivatives and Their Biological Activity as Antitumor Agents. Molecules 2021; 26:molecules26030683. [PMID: 33525621 PMCID: PMC7865355 DOI: 10.3390/molecules26030683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 12/29/2022] Open
Abstract
We synthesized five novel tryptamine derivatives characterized by the presence of an azelayl chain or of a 1,1,1-trichloroethyl group, in turn connected to another heterocyclic scaffold. The combination of tryptamin-, 1,1,1-trichloroethyl- and 2-aminopyrimidinyl- moieties produced compound 9 identified as the most active compound in hematological cancer cell lines (IC50 = 0.57-65.32 μM). Moreover, keeping constant the presence of the tryptaminic scaffold and binding it to the azelayl moiety, the compounds maintain biological activity. Compound 13 is still active against hematological cancer cell lines and shows a selective effect only on HT29 cells (IC50 = 0.006 µM) among solid tumor models. Compound 14 loses activity on all leukemic lines, while showing a high level of toxicity on all solid tumor lines tested (IC50 0.0015-0.469 µM).
Collapse
|
20
|
VanGenderen C, Harkness TAA, Arnason TG. The role of Anaphase Promoting Complex activation, inhibition and substrates in cancer development and progression. Aging (Albany NY) 2020; 12:15818-15855. [PMID: 32805721 PMCID: PMC7467358 DOI: 10.18632/aging.103792] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
The Anaphase Promoting Complex (APC), a multi-subunit ubiquitin ligase, facilitates mitotic and G1 progression, and is now recognized to play a role in maintaining genomic stability. Many APC substrates have been observed overexpressed in multiple cancer types, such as CDC20, the Aurora A and B kinases, and Forkhead box M1 (FOXM1), suggesting APC activity is important for cell health. We performed BioGRID analyses of the APC coactivators CDC20 and CDH1, which revealed that at least 69 proteins serve as APC substrates, with 60 of them identified as playing a role in tumor promotion and 9 involved in tumor suppression. While these substrates and their association with malignancies have been studied in isolation, the possibility exists that generalized APC dysfunction could result in the inappropriate stabilization of multiple APC targets, thereby changing tumor behavior and treatment responsiveness. It is also possible that the APC itself plays a crucial role in tumorigenesis through its regulation of mitotic progression. In this review the connections between APC activity and dysregulation will be discussed with regards to cell cycle dysfunction and chromosome instability in cancer, along with the individual roles that the accumulation of various APC substrates may play in cancer progression.
Collapse
Affiliation(s)
- Cordell VanGenderen
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Troy Anthony Alan Harkness
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Terra Gayle Arnason
- Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.,Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
21
|
Yuan D, Chen Y, Yang Z, Li G, Wu M, Jiang J, Li D, Yu Q. SPOP attenuates migration and invasion of choriocarcinoma cells by promoting DHX9 degradation. Am J Cancer Res 2020; 10:2428-2445. [PMID: 32905556 PMCID: PMC7471363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023] Open
Abstract
Speckle-type POZ protein (SPOP), a novel cancer- associated protein, was previously reported to function as a tumor suppressor or promoter in different malignant tumors. This research aims to investigate the biological functions and underlying molecular mechanisms of SPOP in choriocarcinoma. Our analysis of patient tissues and cell lines showed significantly decreased SPOP expression and highly expressed Nuclear DNA helicase II and RNA helicase A (DHX9), both of them are mainly located into the nucleus. Induction or depletion of endogenous SPOP with a lentivirus-based system correspondingly suppressed or promoted migration and invasion of choriocarcinoma cells. Mechanistically, we found that SPOP bound to DHX9 and induced the ubiquitination and degradation of DHX9 by recognizing a typical SPOP-binding motif in DHX9. SPOP-DHX9 interaction was demonstrated to play a critical role in regulating migration and invasion abilities of choriocarcinoma cells, the promotion of mobility ability in knocking down SPOP was partly counteracted by transfection with siRNA against DHX9. Taken together, our results suggest that SPOP suppresses migration and invasion of choriocarcinoma by promoting the ubiquitination and subsequent degradation of DHX9, which identifies the SPOP-DHX9 interaction may serve as a potential therapeutic target against choriocarcinoma.
Collapse
Affiliation(s)
- Dong Yuan
- Department of Gynecology, The Second Affiliated Hospital of Chongqing Medical UniversityChongqing 400010, P. R. China
- Molecular Medical Laboratory, Institute of Life Sciences, Chongqing Medical UniversityChongqing 400016, P. R. China
| | - Yiyu Chen
- Molecular Medical Laboratory, Institute of Life Sciences, Chongqing Medical UniversityChongqing 400016, P. R. China
| | - Zhu Yang
- Department of Gynecology, The Second Affiliated Hospital of Chongqing Medical UniversityChongqing 400010, P. R. China
- Molecular Medical Laboratory, Institute of Life Sciences, Chongqing Medical UniversityChongqing 400016, P. R. China
| | - Gang Li
- Molecular Medical Laboratory, Institute of Life Sciences, Chongqing Medical UniversityChongqing 400016, P. R. China
| | - Mingjun Wu
- Molecular Medical Laboratory, Institute of Life Sciences, Chongqing Medical UniversityChongqing 400016, P. R. China
| | - Jinyue Jiang
- Department of Respiratory, The First Affiliated Hospital of Chongqing Medical UniversityChongqing 400016, P. R. China
| | - Dan Li
- Molecular Medical Laboratory, Institute of Life Sciences, Chongqing Medical UniversityChongqing 400016, P. R. China
| | - Qiubo Yu
- Molecular Medical Laboratory, Institute of Life Sciences, Chongqing Medical UniversityChongqing 400016, P. R. China
| |
Collapse
|
22
|
Abstract
Multiple studies have confirmed that speckle-type pox virus and zinc finger (POZ) protein (SPOP) functions as a substrate adaptor of cullin 3-based E3 ligase and has a crucial role in various cellular processes via specific targeting of proteins for ubiquitination and subsequent proteasomal degradation. Dysregulation of SPOP-mediated proteolysis might be involved in the development and progression of human prostate and kidney cancers. In prostate cancer, SPOP seems to function as a tumour suppressor by targeting several proteins, including androgen receptor (AR), steroid receptor coactivator 3 (SRC3) and BRD4, for degradation, whereas it might function as an oncoprotein in kidney cancer, for example, by targeting phosphatase and tensin homologue (PTEN) for proteasomal degradation. In addition, nuclear SPOP targets AR for degradation and has a role as a tumour suppressor in prostate cancer; however, in kidney cancer, SPOP largely accumulates in the cytoplasm and fails to promote degradation of AR located in the nucleus, resulting in activation of AR-driven pathways and cancer progression. Owing to the context-dependent function of SPOP in human malignancies, further assessment of the molecular mechanisms involving SPOP in prostate and kidney cancers is needed to improve our understanding of its role in the development of these cancer types. Treatments that target SPOP might become therapeutic strategies in these malignancies in the future.
Collapse
|
23
|
APC/C ubiquitin ligase: Functions and mechanisms in tumorigenesis. Semin Cancer Biol 2020; 67:80-91. [PMID: 32165320 DOI: 10.1016/j.semcancer.2020.03.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/24/2020] [Accepted: 03/02/2020] [Indexed: 12/18/2022]
Abstract
The anaphase promoting complex/ cyclosome (APC/C), is an evolutionarily conserved protein complex essential for cellular division due to its role in regulating the mitotic transition from metaphase to anaphase. In this review, we highlight recent work that has shed light on our understanding of the role of APC/C coactivators, Cdh1 and Cdc20, in cancer initiation and development. We summarize the current state of knowledge regarding APC/C structure and function, as well as the distinct ways Cdh1 and Cdc20 are dysregulated in human cancer. We also discuss APC/C inhibitors, novel approaches for targeting the APC/C as a cancer therapy, and areas for future work.
Collapse
|
24
|
Clark A, Burleson M. SPOP and cancer: a systematic review. Am J Cancer Res 2020; 10:704-726. [PMID: 32266086 PMCID: PMC7136909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 02/27/2020] [Indexed: 06/11/2023] Open
Abstract
The initiation and progression of cancer is dependent on the acquisition of mutations in oncogenes or tumor suppressor genes that ultimately leads to the dysregulation of key regulatory pathways. Though these mutations often occur in direct regulators of such pathways, some may confer tumorigenic potential by indirectly targeting several pathways congruently thereby exerting pleiotropic effects. In recent years, the tumor suppressor gene Speckle Type POZ Protein (SPOP) has gained a lot of attention as it has been found to be altered in a variety of different cancers. SPOP appears to exert pleiotropic tumorigenic effects as multiple different regulatory pathways become dysregulated upon SPOP alterations. SPOP has been identified as an E3 ubiquitin ligase substrate binding subunit of the proteasome complex. Since protein degradation is critical in regulating proper cellular function it is not surprising that the proteasome pathway is often found to be disrupted in cancer. Many studies have now indicated that mutations or changes in the expression of SPOP are one of several underlying reasons of proteasome pathway disruption in different cancers. Ultimately, either SPOP downregulation or mutation promotes stabilization of direct SPOP targets which subsequently promotes cancer through the dysregulation of key regulatory pathways. In this review, we will discuss the current literature on cancer-specific SPOP alterations as well the SPOP targets that are stabilized, and the pathways that are dysregulated, as a result.
Collapse
Affiliation(s)
- Alison Clark
- Department of Biology, University of Texas at San AntonioSan Antonio, TX, USA
| | - Marieke Burleson
- Department of Biology, University of The Incarnate WordSan Antonio, TX, USA
| |
Collapse
|
25
|
Song Y, Xu Y, Pan C, Yan L, Wang ZW, Zhu X. The emerging role of SPOP protein in tumorigenesis and cancer therapy. Mol Cancer 2020; 19:2. [PMID: 31901237 DOI: 10.1186/s12943019-1124-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/23/2019] [Indexed: 05/26/2023] Open
Abstract
The nuclear speckle-type pox virus and zinc finger (POZ) protein (SPOP), a representative substrate-recognition subunit of the cullin-RING E3 ligase, has been characterized to play a dual role in tumorigenesis and cancer progression. Numerous studies have determined that SPOP suppresses tumorigenesis in a variety of human malignancies such as prostate, lung, colon, gastric, and liver cancers. However, several studies revealed that SPOP exhibited oncogenic function in kidney cancer, suggesting that SPOP could exert its biological function in a cancer type-specific manner. The role of SPOP in thyroid, cervical, ovarian, bone and neurologic cancers has yet to be determined. In this review article, we describe the structure and regulation of SPOP in human cancer. Moreover, we highlight the critical role of SPOP in tumorigenesis based on three major categories: physiological evidence (animal models), pathological evidence (human cancer specimens) and biochemical evidence (downstream ubiquitin substrates). Furthermore, we note that SPOP could be a promising therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Yizuo Song
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China
| | - Yichi Xu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China
| | - Chunyu Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China
| | - Linzhi Yan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China
| | - Zhi-Wei Wang
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China.
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
26
|
Song Y, Xu Y, Pan C, Yan L, Wang ZW, Zhu X. The emerging role of SPOP protein in tumorigenesis and cancer therapy. Mol Cancer 2020; 19:2. [PMID: 31901237 PMCID: PMC6942384 DOI: 10.1186/s12943-019-1124-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/23/2019] [Indexed: 12/24/2022] Open
Abstract
The nuclear speckle-type pox virus and zinc finger (POZ) protein (SPOP), a representative substrate-recognition subunit of the cullin-RING E3 ligase, has been characterized to play a dual role in tumorigenesis and cancer progression. Numerous studies have determined that SPOP suppresses tumorigenesis in a variety of human malignancies such as prostate, lung, colon, gastric, and liver cancers. However, several studies revealed that SPOP exhibited oncogenic function in kidney cancer, suggesting that SPOP could exert its biological function in a cancer type-specific manner. The role of SPOP in thyroid, cervical, ovarian, bone and neurologic cancers has yet to be determined. In this review article, we describe the structure and regulation of SPOP in human cancer. Moreover, we highlight the critical role of SPOP in tumorigenesis based on three major categories: physiological evidence (animal models), pathological evidence (human cancer specimens) and biochemical evidence (downstream ubiquitin substrates). Furthermore, we note that SPOP could be a promising therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Yizuo Song
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| | - Yichi Xu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| | - Chunyu Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| | - Linzhi Yan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| | - Zhi-wei Wang
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA USA
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| |
Collapse
|
27
|
Cuneo MJ, Mittag T. The ubiquitin ligase adaptor SPOP in cancer. FEBS J 2019; 286:3946-3958. [PMID: 31495053 DOI: 10.1111/febs.15056] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/20/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022]
Abstract
The dysregulation of ubiquitin-mediated proteasomal degradation has emerged as an important mechanism of pathogenesis in several cancers. The speckle-type POZ protein (SPOP) functions as a substrate adaptor for the cullin3-RING ubiquitin ligase and controls the cellular persistence of a diverse array of protein substrates in hormone signalling, epigenetic control and cell cycle regulation, to name a few. Mutations in SPOP and the resulting dysregulation of this proteostatic pathway play causative roles in the pathogenesis of prostate and endometrial cancers, whereas overexpression and mislocalization are associated with kidney cancer. Understanding the molecular mechanism of the normal function of SPOP as well as the cause of SPOP-mediated oncogenesis is thus critical for eventual therapeutic targeting of SPOP and other related pathways. Here, we will review SPOP structure, function and the molecular mechanism of how this function is achieved. We will then review how mutations and protein mislocalization contribute to cancer pathogenesis and will provide a perspective on how SPOP may be targeted therapeutically.
Collapse
Affiliation(s)
- Matthew J Cuneo
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Tanja Mittag
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
28
|
Hai L, Szwarc MM, He B, Lonard DM, Kommagani R, DeMayo FJ, Lydon JP. Uterine function in the mouse requires speckle-type poz protein. Biol Reprod 2019; 98:856-869. [PMID: 29546395 DOI: 10.1093/biolre/ioy060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/06/2018] [Indexed: 12/19/2022] Open
Abstract
Speckle-type poz protein (SPOP) is an E3-ubiquitin ligase adaptor for turnover of a diverse number of proteins involved in key cellular processes such as chromatin remodeling, transcriptional regulation, and cell signaling. Genomic analysis revealed that SPOP somatic mutations are found in a subset of endometrial cancers, suggesting that these mutations act as oncogenic drivers of this gynecologic malignancy. These studies also raise the question as to the role of wild-type SPOP in normal uterine function. To address this question, we generated a mouse model (Spopd/d) in which SPOP is ablated in uterine cells that express the PGR. Fertility studies demonstrated that SPOP is required for embryo implantation and for endometrial decidualization. Molecular analysis revealed that expression levels of the PGR at the protein and transcript level are significantly reduced in the Spopd/d uterus. While this result was unexpected, this finding explains in part the dysfunctional phenotype of the Spopd/d uterus. Moderate increased levels of the ESR1, GATA2, and SRC2 were detected in the Spopd/d uterus, suggesting that SPOP is required to maintain the proteome for normal uterine function. With age, the Spopd/d endometrium exhibits large glandular cysts with foci of epithelial proliferation, further supporting a role for SPOP in maintaining a healthy uterus. Collectively, studies on the Spopd/d mouse support an important role for SPOP in normal uterine function and suggest that this mouse model may prove useful to study the role of SPOP-loss-of-function mutations in the etiopathogenesis of endometrial cancer.
Collapse
Affiliation(s)
- Lan Hai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Maria M Szwarc
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Bin He
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - David M Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Ramakrishna Kommagani
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
29
|
Dong Y, Zhang D, Cai M, Luo Z, Zhu Y, Gong L, Lei Y, Tan X, Zhu Q, Han S. SPOP regulates the DNA damage response and lung adenocarcinoma cell response to radiation. Am J Cancer Res 2019; 9:1469-1483. [PMID: 31392082 PMCID: PMC6682716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/20/2019] [Indexed: 06/10/2023] Open
Abstract
Speckle-type POZ protein (SPOP) plays an important role in maintaining genome stability. Disability or mutation of the SPOP gene has been reported to contribute to prostate cancer incidence and prognosis. However, the functions of SPOP in lung cancer remain poorly understood, especially in lung adenocarcinoma (LUAD). Here, we found that SPOP affects the LUAD cell response to radiation by regulating the DNA damage response (DDR) pathway. SPOP is widely expressed in lung cancer cell lines, and SPOP protein levels are upregulated when cells experience DNA damage. SPOP knockdown affects DDR repair kinetics, apoptosis and cell cycle checkpoints that are induced by IR (ionizing radiation). Furthermore, we found that SPOP positively regulates the expression of DDR factors Rad51 and Ku80. Taken together, these data indicate the essential roles of SPOP in the DDR signaling pathways and LUAD cell response to radiation.
Collapse
Affiliation(s)
- Yiping Dong
- Department of Oncology Radiotherapy, The First Affiliated Hospital, Medical School of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi, China
| | - Dan Zhang
- Department of Oncology Radiotherapy, The First Affiliated Hospital, Medical School of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi, China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science CenterXi’an 710061, Shaanxi, China
| | - Mengjiao Cai
- Department of Oncology Radiotherapy, The First Affiliated Hospital, Medical School of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi, China
| | - Zhenzhen Luo
- Department of Oncology Radiotherapy, The First Affiliated Hospital, Medical School of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi, China
| | - Yue Zhu
- Department of Oncology Radiotherapy, The First Affiliated Hospital, Medical School of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi, China
| | - Liuyun Gong
- Department of Oncology Radiotherapy, The First Affiliated Hospital, Medical School of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi, China
| | - Yutiantian Lei
- Department of Oncology Radiotherapy, The First Affiliated Hospital, Medical School of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi, China
| | - Xinyue Tan
- Department of Oncology Radiotherapy, The First Affiliated Hospital, Medical School of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi, China
| | - Qing Zhu
- Department of Abdominal Oncology, West China Hospital of Sichuan UniversityChengdu 610041, China
| | - Suxia Han
- Department of Oncology Radiotherapy, The First Affiliated Hospital, Medical School of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi, China
| |
Collapse
|
30
|
Curtis NL, Bolanos-Garcia VM. The Anaphase Promoting Complex/Cyclosome (APC/C): A Versatile E3 Ubiquitin Ligase. Subcell Biochem 2019; 93:539-623. [PMID: 31939164 DOI: 10.1007/978-3-030-28151-9_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
In the present chapter we discuss the essential roles of the human E3 ubiquitin ligase Anaphase Promoting Complex/Cyclosome (APC/C) in mitosis as well as the emerging evidence of important APC/C roles in cellular processes beyond cell division control such as regulation of genomic integrity and cell differentiation of the nervous system. We consider the potential incipient role of APC/C dysregulation in the pathophysiology of the neurological disorder Alzheimer's disease (AD). We also discuss how certain Deoxyribonucleic Acid (DNA) and Ribonucleic Acid (RNA) viruses take control of the host's cell division regulatory system through harnessing APC/C ubiquitin ligase activity and hypothesise the plausible molecular mechanisms underpinning virus manipulation of the APC/C. We also examine how defects in the function of this multisubunit protein assembly drive abnormal cell proliferation and lastly argue the potential of APC/C as a promising therapeutic target for the development of innovative therapies for the treatment of chronic malignancies such as cancer.
Collapse
Affiliation(s)
- Natalie L Curtis
- Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, England, UK
| | - Victor M Bolanos-Garcia
- Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, England, UK.
| |
Collapse
|
31
|
SPOP suppresses prostate cancer through regulation of CYCLIN E1 stability. Cell Death Differ 2018; 26:1156-1168. [PMID: 30237511 PMCID: PMC6748103 DOI: 10.1038/s41418-018-0198-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/25/2018] [Accepted: 08/27/2018] [Indexed: 11/18/2022] Open
Abstract
SPOP is one of the important subunits for CUL3/SPOP/RBX1 complex tightly connected with tumorigenesis. However, its exact roles in different cancers remain debatable. Here, we identify CYCLIN E1, as a novel substrate for SPOP. SPOP directly interacts with CYCLIN E1 and specific regulates its stability in prostate cancer cell lines. SPOP/CUL3/RBX1 complex regulates CYCLIN E1 stability through poly-ubiquitination. CDK2 competes with SPOP for CYCLIN E1 interaction, suggesting that SPOP probably regulates the stability of CDK2-free CYCLIN E1. CYCLIN E1 expression rescued proliferation, migration, and tumor formation of prostate cancer cell suppressed by SPOP. Furthermore, we found SPOP selectively regulates the substrates’ stability and signaling pathways in prostate cancer and CCRC cell lines, suggesting that complicated mechanisms exist for SPOP to regulate substrate specificity. Altogether, we have revealed a novel mechanism for SPOP in suppressing prostate cancer and provided evidence to show SPOP has dual functions in prostate cancer and CCRC.
Collapse
|
32
|
Wei X, Fried J, Li Y, Hu L, Gao M, Zhang S, Xu B. Functional roles of Speckle-Type Poz (SPOP) Protein in Genomic stability. J Cancer 2018; 9:3257-3262. [PMID: 30271484 PMCID: PMC6160670 DOI: 10.7150/jca.25930] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/27/2018] [Indexed: 12/27/2022] Open
Abstract
Understanding the functional significance of the essential elements in maintaining genomic stability provides insights into the process of tumor initiation and progression, and predicts therapeutic responses. One such element that has recently attracted significant attention is the Speckle-Type Poz Protein (SPOP), an E3 ubiquitin ligase adaptor protein. SPOP is frequently mutated or has altered expression in various cancers, including prostate, renal and endometrial. SPOP is involved in the regulation of proteasome-mediated degradation of several oncoproteins. Moreover, recent data also indicate SPOP's direct involvement in the DNA damage response. SPOP mutants induce alternations in the DNA damage repair pathway by promoting the error-prone Non-homologous end joining (NHEJ) pathway. SPOP has been linked with significant functions in cellular signaling pathways and cancer suppression. This mini-review will discuss recent findings regarding SPOP's role in genomic stability in the pathological setting.
Collapse
Affiliation(s)
- Xi Wei
- Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Joshua Fried
- Department of Oncology, Southern Research Institute and Cancer Cell Biology Program, University of Alabama at Birmingham Graduate School, Birmingham, AL, 35205.,Cancer Cell Biology Program, University of Alabama at Birmingham Comprehensive Cancer Center Birmingham, AL 35205, USA
| | - Ying Li
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Linfei Hu
- Department of Thyroid and Cervical Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Ming Gao
- Department of Thyroid and Cervical Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Sheng Zhang
- Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Bo Xu
- Department of Oncology, Southern Research Institute and Cancer Cell Biology Program, University of Alabama at Birmingham Graduate School, Birmingham, AL, 35205.,Cancer Cell Biology Program, University of Alabama at Birmingham Comprehensive Cancer Center Birmingham, AL 35205, USA.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
33
|
SPOP promotes ATF2 ubiquitination and degradation to suppress prostate cancer progression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:145. [PMID: 29996942 PMCID: PMC6042370 DOI: 10.1186/s13046-018-0809-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/25/2018] [Indexed: 11/24/2022]
Abstract
Background Next-generation sequencing of the exome and genome of prostate cancers has identified numerous genetic alterations. SPOP (Speckle-type POZ Protein) is one of the most frequently mutated genes in primary prostate cancer, suggesting that SPOP may be a potential driver of prostate cancer. The aim of this work was to investigate how SPOP mutations contribute to prostate cancer development and progression. Methods To identify molecular mediators of the tumor suppressive function of SPOP, we performed a yeast two-hybrid screen in a HeLa cDNA library using the full-length SPOP as bait. Immunoprecipitation and Western Blotting were used to analyze the interaction between SPOP and ATF2. Cell migration and invasion were determined by Transwell assays. Immunohistochemistry were used to analyze protein levels in patients’ tumor samples. Results Here we identified ATF2 as a bona fide substrate of the SPOP-CUL3-RBX1 E3 ubiquitin ligase complex. SPOP recognizes multiple Ser/Thr (S/T)-rich degrons in ATF2 and triggers ATF2 degradation via the ubiquitin-proteasome pathway. Strikingly, prostate cancer-associated mutants of SPOP are defective in promoting ATF2 degradation in prostate cancer cells and contribute to facilitating prostate cancer cell proliferation, migration and invasion. Conclusion SPOP promotes ATF2 ubiquitination and degradation, and ATF2 is an important mediator of SPOP inactivation-induced cell proliferation, migration and invasion. Electronic supplementary material The online version of this article (10.1186/s13046-018-0809-0) contains supplementary material, which is available to authorized users.
Collapse
|
34
|
Tan Y, Ci Y, Dai X, Wu F, Guo J, Liu D, North BJ, Huo J, Zhang J. Cullin 3SPOP ubiquitin E3 ligase promotes the poly-ubiquitination and degradation of HDAC6. Oncotarget 2018; 8:47890-47901. [PMID: 28599312 PMCID: PMC5564613 DOI: 10.18632/oncotarget.18141] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/15/2017] [Indexed: 01/02/2023] Open
Abstract
The histone deacetylase 6 (HDAC6) plays critical roles in human tumorigenesis and metastasis. As such, HDAC6-selective inhibitors have entered clinical trials for cancer therapy. However, the upstream regulator(s), especially ubiquitin E3 ligase(s), responsible for controlling the protein stability of HDAC6 remains largely undefined. Here, we report that Cullin 3SPOP earmarks HDAC6 for poly-ubiquitination and degradation. We found that the proteasome inhibitor MG132, or the Cullin-based E3 ligases inhibitor MLN4924, but not the autophagosome-lysosome inhibitor bafilomycin A1, stabilized endogenous HDAC6 protein in multiple cancer cell lines. Furthermore, we demonstrated that Cullin 3-based ubiquitin E3 ligase(s) primarily reduced the stability of HDAC6. Importantly, we identified SPOP, an adaptor protein of Cullin 3 family E3 ligases, specifically interacted with HDAC6, and promoted its poly-ubiquitination and subsequent degradation in cells. Notably, cancer-derived SPOP mutants disrupted their binding with HDAC6 and thereby failed to promote HDAC6 degradation. More importantly, increased cellular proliferation and migration in SPOP-depleted HCT116 colon cancer cells could be partly reversed by additional depletion of HDAC6, suggesting that HDAC6 is a key downstream effector for SPOP tumor suppressor function. Together, our data identify the tumor suppressor SPOP as an upstream negative regulator for HDAC6 stability, and SPOP loss-of-function mutations might lead to elevated levels of the HDAC6 oncoprotein to facilitate tumorigenesis and metastasis in various human cancers.
Collapse
Affiliation(s)
- Yuyong Tan
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha 410011, P.R. China.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Yanpeng Ci
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, P.R. China
| | - Xiangpeng Dai
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Fei Wu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jianping Guo
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Deliang Liu
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha 410011, P.R. China
| | - Brian J North
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jirong Huo
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha 410011, P.R. China
| | - Jinfang Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
35
|
Wu F, Lin Y, Cui P, Li H, Zhang L, Sun Z, Huang S, Li S, Huang S, Zhao Q, Liu Q. Cdc20/p55 mediates the resistance to docetaxel in castration-resistant prostate cancer in a Bim-dependent manner. Cancer Chemother Pharmacol 2018; 81:999-1006. [DOI: 10.1007/s00280-018-3578-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/28/2018] [Indexed: 12/19/2022]
|
36
|
Shang G, Ma X, Lv G. Cell division cycle 20 promotes cell proliferation and invasion and inhibits apoptosis in osteosarcoma cells. Cell Cycle 2017; 17:43-52. [PMID: 28980876 DOI: 10.1080/15384101.2017.1387700] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Cdc20 (cell division cycle 20 homologue) has been reported to exhibit an oncogenic role in human tumorigenesis. However, the function of Cdc20 in osteosarcoma (OS) has not been investigated. In the current study, we aim to explore the role of Cdc20 in human OS cells. Multiple approaches were used to measure cell growth, apoptosis, cell cycle, migration and invasion in OS cells after depletion of Cdc20 or overexpression of Cdc20. We found that down-regulation of Cdc20 inhibited cell growth, induced apoptosis and triggered cell cycle arrest in OS cells. Moreover, Cdc20 down-regulation let to inhibition of cell migration and invasion in OS cells. Consistently, overexpression of Cdc20 in OS cells promoted cell growth, inhibited apoptosis, enhanced cell migration and invasion. Mechanistically, our Western blotting results showed that overexpression of Cdc20 reduced the expression of Bim and p21, whereas depletion of Cdc20 upregulated Bim and p21 levels in OS cells. Altogether, our findings demonstrated that Cdc20 exerts its oncogenic role partly due to regulation of Bim and p21 in OS cells, suggesting that targeting Cdc20 could be useful for the treatment of OS.
Collapse
Affiliation(s)
- Guanning Shang
- a Department of Orthopaedics , The First Affiliated Hospital , China Medical University , Shenyang , Liaoning Province , PR China
| | - Xu Ma
- a Department of Orthopaedics , The First Affiliated Hospital , China Medical University , Shenyang , Liaoning Province , PR China
| | - Gang Lv
- a Department of Orthopaedics , The First Affiliated Hospital , China Medical University , Shenyang , Liaoning Province , PR China
| |
Collapse
|
37
|
Functional analysis of Cullin 3 E3 ligases in tumorigenesis. Biochim Biophys Acta Rev Cancer 2017; 1869:11-28. [PMID: 29128526 DOI: 10.1016/j.bbcan.2017.11.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 12/14/2022]
Abstract
Cullin 3-RING ligases (CRL3) play pivotal roles in the regulation of various physiological and pathological processes, including neoplastic events. The substrate adaptors of CRL3 typically contain a BTB domain that mediates the interaction between Cullin 3 and target substrates to promote their ubiquitination and subsequent degradation. The biological implications of CRL3 adaptor proteins have been well described where they have been found to play a role as either an oncogene, tumor suppressor, or can mediate either of these effects in a context-dependent manner. Among the extensively studied CRL3-based E3 ligases, the role of the adaptor protein SPOP (speckle type BTB/POZ protein) in tumorigenesis appears to be tissue or cellular context dependent. Specifically, SPOP acts as a tumor suppressor via destabilizing downstream oncoproteins in many malignancies, especially in prostate cancer. However, SPOP has largely an oncogenic role in kidney cancer. Keap1, another well-characterized CRL3 adaptor protein, likely serves as a tumor suppressor within diverse malignancies, mainly due to its specific turnover of its downstream oncogenic substrate, NRF2 (nuclear factor erythroid 2-related factor 2). In accordance with the physiological role the various CRL3 adaptors exhibit, several pharmacological agents have been developed to disrupt its E3 ligase activity, therefore blocking its potential oncogenic activity to mitigate tumorigenesis.
Collapse
|
38
|
Identification of SPOP related metabolic pathways in prostate cancer. Oncotarget 2017; 8:103032-103046. [PMID: 29262542 PMCID: PMC5732708 DOI: 10.18632/oncotarget.21460] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/18/2017] [Indexed: 11/25/2022] Open
Abstract
Speckle-type POZ protein (SPOP), as a cullin-based E3 ubiquitin ligase, has been identified as one of the most frequently mutated genes in prostate cancer (PCa). However, whether SPOP mutations contribute to metabolic reprogramming in PCa remains unknown. Here, integrated studies of transcriptomics and metabolomics as well as lipidomics were performed in matched PCa tumor (PCT) and adjacent non-tumor (ANT) tissues, followed by correlation analysis of SPOP mutations with altered metabolic pathways in SPOP-mutated PCa patients. Interestingly, transcriptomics profiling showed that all SPOP mutations (with 16.7% frequency, 11/66) occurred at the conserved residues in the substrate binding domain of meprin and TRAF homology (MATH). The results of integrated analysis indicated that three metabolic pathways, including tricarboxylic acid (TCA) cycle, fatty acid metabolism and glycerophospholipid metabolism, exhibited obvious upregulation in SPOP-mutated PCT tissues. Furthermore, both correlation analyses based on integrated data and cBioportal revealed that FH, ELOVL2 and ACADL genes might be involved in SPOP-mutation-related upregulation of these metabolic pathways. Taken together, our study provided new insights in understanding the relationship between metabolic pathways and SPOP mutations in PCa.
Collapse
|
39
|
Geng C, Kaochar S, Li M, Rajapakshe K, Fiskus W, Dong J, Foley C, Dong B, Zhang L, Kwon OJ, Shah SS, Bolaki M, Xin L, Ittmann M, O’Malley BW, Coarfa C, Mitsiades N. SPOP regulates prostate epithelial cell proliferation and promotes ubiquitination and turnover of c-MYC oncoprotein. Oncogene 2017; 36:4767-4777. [PMID: 28414305 PMCID: PMC5887163 DOI: 10.1038/onc.2017.80] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 01/16/2017] [Accepted: 02/26/2017] [Indexed: 12/13/2022]
Abstract
The E3 ubiquitin ligase adaptor speckle-type POZ protein (SPOP) is frequently dysregulated in prostate adenocarcinoma (PC), via either somatic mutations or mRNA downregulation, suggesting an important tumour suppressor function. To examine its physiologic role in the prostate epithelium in vivo, we generated mice with prostate-specific biallelic ablation of Spop. These mice exhibited increased prostate mass, prostate epithelial cell proliferation, and expression of c-MYC protein compared to littermate controls, and eventually developed prostatic intraepithelial neoplasia (PIN). We found that SPOPWT can physically interact with c-MYC protein and, upon exogenous expression in vitro, can promote c-MYC ubiquitination and degradation. This effect was attenuated in PC cells by introducing PC-associated SPOP mutants or upon knockdown of SPOP via short-hairpin-RNA, suggesting that SPOP inactivation directly increases c-MYC protein levels. Gene Set Enrichment Analysis revealed enrichment of Myc-induced genes in transcriptomic signatures associated with SPOPMT. Likewise, we observed strong inverse correlation between c-MYC activity and SPOP mRNA levels in two independent PC patient cohorts. The core SPOPMT;MYCHigh transcriptomic response, defined by the overlap between the SPOPMT and c-MYC transcriptomic programmes, was also associated with inferior clinical outcome in human PCs. Finally, the organoid-forming capacity of Spop-null murine prostate cells was more sensitive to c-MYC inhibition than that of Spop-WT cells, suggesting that c-MYC upregulation functionally contributes to the proliferative phenotype of Spop knock-out prostates. Taken together, our data highlight SPOP as an important regulator of luminal epithelial cell proliferation and c-MYC expression in prostate physiology, identify c-MYC as a novel bona fide SPOP substrate, and help explain the frequent inactivation of SPOP in human PC. We propose SPOPMT-induced stabilization of c-MYC protein as a novel mechanism that can increase total c-MYC levels in PC cells, in addition to amplification of c-MYC locus.
Collapse
Affiliation(s)
- Chuandong Geng
- Dept. of Medicine, Houston, TX 77030
- Dept. of Molecular and Cellular Biology, Houston, TX 77030
| | - Salma Kaochar
- Dept. of Medicine, Houston, TX 77030
- Dept. of Molecular and Cellular Biology, Houston, TX 77030
| | - Min Li
- Dept. of Medicine, Houston, TX 77030
- Dept. of Molecular and Cellular Biology, Houston, TX 77030
| | | | - Warren Fiskus
- Dept. of Medicine, Houston, TX 77030
- Dept. of Molecular and Cellular Biology, Houston, TX 77030
| | - Jianrong Dong
- Dept. of Molecular and Cellular Biology, Houston, TX 77030
| | - Christopher Foley
- Dept. of Medicine, Houston, TX 77030
- Dept. of Molecular and Cellular Biology, Houston, TX 77030
| | - Boming Dong
- Dept. of Medicine, Houston, TX 77030
- Dept. of Molecular and Cellular Biology, Houston, TX 77030
| | - Li Zhang
- Dept. of Molecular and Cellular Biology, Houston, TX 77030
| | - Oh-Joon Kwon
- Dept. of Molecular and Cellular Biology, Houston, TX 77030
| | - Shrijal S. Shah
- Dept. of Medicine, Houston, TX 77030
- Dept. of Molecular and Cellular Biology, Houston, TX 77030
| | - Menaka Bolaki
- Dept. of Medicine, Houston, TX 77030
- Dept. of Molecular and Cellular Biology, Houston, TX 77030
| | - Li Xin
- Dept. of Molecular and Cellular Biology, Houston, TX 77030
- Dan L. Duncan Cancer Center, Houston, TX 77030
| | - Michael Ittmann
- Dan L. Duncan Cancer Center, Houston, TX 77030
- Dept. of Pathology and Immunology and Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX 77030
| | | | - Cristian Coarfa
- Dept. of Molecular and Cellular Biology, Houston, TX 77030
- Dan L. Duncan Cancer Center, Houston, TX 77030
| | - Nicholas Mitsiades
- Dept. of Medicine, Houston, TX 77030
- Dept. of Molecular and Cellular Biology, Houston, TX 77030
- Dan L. Duncan Cancer Center, Houston, TX 77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
40
|
|