1
|
Chaudhuri R, Dayal N, Kaiser J, Mohallem R, Brauer NR, Yeboah KS, Aryal UK, Sintim HO. Morpholino nicotinamide analogs of ponatinib, dual MNK, p70S6K inhibitors, display efficacy against lung and breast cancers. Bioorg Chem 2025; 159:108298. [PMID: 40081260 DOI: 10.1016/j.bioorg.2025.108298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 03/15/2025]
Abstract
Therapeutic options for aggressive cancer types such as breast and lung remain limited; disease relapse and death occur in 30-60% of non-small cell lung cancer (NSCLC) patients, whereas in triple-negative breast cancer or TNBC, recurrence-free survival occurs in less than 30% patients. The kinases, MNK and p70S6K have been proposed as targets for the potential treatment of breast cancer (BC) and lung cancer but currently, no drug that was purposely designed to inhibit these kinases have been approved by the FDA for the treatment of BC or NSCLC. In this study, we have identified HSND80 (a morpholino nicotinamide analog of ponatinib) as a potent MNK/p70S6K inhibitor that has excellent activity against TNBC and NSCLC cell lines. HSND80 has a longer target residence time (τ) of 45 mins and 58 mins against MNK1 and MNK2 respectively, compared to τ of eFT508 (tomivosertib) against MNK1 and MNK2 (τ = 1 min and 5 min, respectively). Molecular dynamics simulation was used to provide some insights into the binding of HSND80 to MNK and p70S6K kinases. Western blotting analysis and phosphoproteomics analysis of the TNBC cell line, MDA-MB-231, revealed that phosphorylations of elF4E (MNK target) and elF4B and S6 (p70S6K targets) were reduced upon compound treatment, which is in line with the proposed mechanism of action; dual MNK/p70S6K targeting. HSND80 could be dosed orally at 15 and 30 mg/kg and at such doses, could reduce tumor volume in a syngeneic NSCLC mouse model.
Collapse
Affiliation(s)
- Riddhi Chaudhuri
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA; Purdue Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA
| | - Neetu Dayal
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA; Purdue Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA
| | - Joshua Kaiser
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA; Purdue Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA
| | - Rodrigo Mohallem
- Department of Comparative Pathobiology, Purdue University, 1203 W State Street, West Lafayette, IN 47907, USA
| | - Nickolas R Brauer
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA; Purdue Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA
| | - Kofi Simpa Yeboah
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA; Purdue Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA
| | - Uma K Aryal
- Department of Comparative Pathobiology, Purdue University, 1203 W State Street, West Lafayette, IN 47907, USA; Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, 1203 W State Street, West Lafayette, IN 47907, USA
| | - Herman O Sintim
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA; Purdue Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA; Purdue Institute for Cancer Research, Purdue University, 201 S. University Street, West Lafayette, IN 47907, USA; Department of Chemistry and Biochemistry, University of Notre Dame, 305A McCourtney Hall, Notre Dame, IN 46556, USA; Mike and Josie Harper Cancer Research Institute, 1234 N. Notre Dame Avenue, South Bend, IN 46617, USA.
| |
Collapse
|
2
|
O'Rourke RL, Garner AL. Chemical Probes for Studying the Eukaryotic Translation Initiation Factor 4E (eIF4E)-Regulated Translatome in Cancer. ACS Pharmacol Transl Sci 2025; 8:621-635. [PMID: 40109752 PMCID: PMC11915038 DOI: 10.1021/acsptsci.4c00674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 03/22/2025]
Abstract
The dysregulation of translation is a hallmark of cancer that enables rapid changes in the cell proteome to shape oncogenic phenotypes that promote tumor survival. The predominant signaling pathways leading to dysregulation of translational control in cancer are the PI3K-AKT-mTORC1, RAS-RAF-MAPK, and MYC pathways, which all converge on eukaryotic translation initiation factor 4E (eIF4E), an RNA-binding protein that binds to the m7GpppX cap structure at the 5' end of mRNAs to initiate cap-dependent translation. eIF4E is the rate-limiting factor of translation initiation, and its overexpression is known to drive oncogenic transformation, progression, and chemoresistance across many cancers, establishing it as an attractive therapeutic target. Over the last several decades, significant efforts have been made to inhibit eIF4E through the development of mechanistically distinct small-molecule inhibitors that both directly and indirectly act on eIF4E to prevent cap-dependent translation initiation. These inhibitors can serve as powerful chemical tools to improve our understanding of the mechanisms of cap-dependent translation in cancer and to ultimately predict specific cancers that may benefit from eIF4E-targeted therapeutics. This review discusses the progress made in the development of different classes of small-molecule eIF4E inhibitors, the challenges that remain, and their potential as chemical probes to elucidate the complexities of cap-dependent translation in cancer.
Collapse
Affiliation(s)
- Rachel L O'Rourke
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Amanda L Garner
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
3
|
Vagadia PP, Izquierdo-Ferrer J, Mazewski C, Blyth G, Beauchamp EM, Clutter MR, Stern CL, Mishra RK, Nahotko D, Small S, Eckerdt F, Platanias LC, Schiltz GE. Discovery of Potent and Selective MNK Kinase Inhibitors for the Treatment of Leukemia. J Med Chem 2025; 68:5824-5844. [PMID: 40033556 DOI: 10.1021/acs.jmedchem.4c03158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
MNK activity is regulated by the p38 and Erk MAPK pathways. Phosphorylation of MNK leads to its activation and binding to the eIF4G/eIF4E complex. MNK then phosphorylates eIF4E at Ser209, whose activation is associated with oncogene translation, leading to tumorigenesis. Given this important role for eIF4E in tumorigenesis, MNK inhibition with novel small molecule inhibitors could be a promising strategy to combat AML, which continues to be an area of unmet medical need. Here, we report the medicinal optimization of a series of novel inhibitors and their evaluation of their effects on eIF4E and leukemia cell viability. We discovered a class of ether-containing compounds with a high MNK1/2 selectivity. These MNK inhibitors show good potency in reducing cell viability and colony formation and have desirable pharmacokinetic properties. X-ray cocrystallization was accomplished to confirm the binding mode of our inhibitors and aid in future optimization.
Collapse
Affiliation(s)
- Purav P Vagadia
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | | | - Candice Mazewski
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois 60611, United States
| | - Gavin Blyth
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois 60611, United States
| | - Elspeth M Beauchamp
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois 60611, United States
- Division of Hematology and Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612, United States
| | - Matthew R Clutter
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois 60611, United States
- High-Throughput Analysis Laboratory, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Charlotte L Stern
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- The Integrated Molecular Structure Education and Research Center (IMSERC), Northwestern University, Evanston, Illinois 60208, United States
| | - Rama K Mishra
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Dominik Nahotko
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois 60611, United States
| | - Sara Small
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois 60611, United States
- Division of Hematology and Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Frank Eckerdt
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois 60611, United States
- Division of Hematology and Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois 60611, United States
- Division of Hematology and Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612, United States
| | - Gary E Schiltz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois 60611, United States
- Department of Pharmacology, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
4
|
Kumar D, Kanchan R, Chaturvedi NK. Targeting protein synthesis pathways in MYC-amplified medulloblastoma. Discov Oncol 2025; 16:23. [PMID: 39779613 PMCID: PMC11711608 DOI: 10.1007/s12672-025-01761-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
MYC is one of the most deregulated oncogenic transcription factors in human cancers. MYC amplification/or overexpression is most common in Group 3 medulloblastoma and is positively associated with poor prognosis. MYC is known to regulate the transcription of major components of protein synthesis (translation) machinery, leading to promoted rates of protein synthesis and tumorigenesis. MTOR signaling-driven deregulated protein synthesis is widespread in various cancers, including medulloblastoma, which can promote the stabilization of MYC. Indeed, our previous studies demonstrate that the key components of protein synthesis machinery, including mTOR signaling and MYC targets, are overexpressed and activated in MYC-amplified medulloblastoma, confirming MYC-dependent addiction of enhanced protein synthesis in medulloblastoma. Further, targeting this enhanced protein synthesis pathway with combined inhibition of MYC transcription and mTOR translation by small-molecule inhibitors, demonstrates preclinical synergistic anti-tumor potential against MYC-driven medulloblastoma in vitro and in vivo. Thus, inhibiting enhanced protein synthesis by targeting the MYC indirectly and mTOR pathways together may present a highly appropriate strategy for treating MYC-driven medulloblastoma and other MYC-addicted cancers. Evidence strongly proposes that MYC/mTOR-driven tumorigenic signaling can predominantly control the translational machinery to elicit cooperative effects on increased cell proliferation, cell cycle progression, and genome dysregulation as a mechanism of cancer initiation. Several small molecule inhibitors of targeting MYC indirectly and mTOR signaling have been developed and used clinically with immunosuppressants and chemotherapy in multiple cancers. Only a few of them have been investigated as treatments for medulloblastoma and other pediatric tumors. This review explores concurrent targeting of MYC and mTOR signaling against MYC-driven medulloblastoma. Based on existing evidence, targeting of MYC and mTOR pathways together produces functional synergy that could be the basis for effective therapies against medulloblastoma.
Collapse
Affiliation(s)
- Devendra Kumar
- Department of Pediatrics, Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE, 986395, USA
| | - Ranjana Kanchan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nagendra K Chaturvedi
- Department of Pediatrics, Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE, 986395, USA.
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
5
|
Li Q, Chen X, Su M, Guo YW, Jin X. A patent review of mitogen-activated protein kinase-interacting kinases (MNKs) modulators (2019-present). Expert Opin Ther Pat 2024:1-14. [PMID: 39708134 DOI: 10.1080/13543776.2024.2446225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 12/23/2024]
Abstract
INTRODUCTION The mitogen-activated protein kinase interacting kinases (MNKs) modulate protein translation through the phosphorylation of eukaryotic initiation factor 4E (eIF4E) at serine 209, which is crucial for tumorigenesis but dispensable for normal development. MNKs are implicated in various pathological processes, including inflammation, obesity, cancer, etc. Thus, MNKs are considered as potential drug targets and the development of potent and selective MNK inhibitors is a current research focus. AREAS COVERED This review covers inhibitors of MNKs reported in patents published in the online databases of the World Intellectual Property Organization and European Patent Office from 2019 to 2024. This review provides a landscape of available inhibitors, including their chemical structures, activity, and stage of development. EXPERT OPINION In recent years, highly potent and selective inhibitors have been discovered and many of them show promising results in several preclinical cancer models. The majority of small-molecule inhibitors developed recently, similarly to the structure of eFT508 and ETC-206. Also, some new skeletons were disclosed and showed novel mechanisms, including non-traditional ATP competition and induced protein degradation by proteolysis targeting chimeras. Ongoing preclinical research and clinical trials will provide us more information on these new compounds and MNKs novel functions beyond cancer.
Collapse
Affiliation(s)
- Qiang Li
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
| | - Xiang Chen
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
- School of Pharmacy, Shandong Second Medical University, Weifang, China
| | - Mingzhi Su
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
| | - Yue-Wei Guo
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Xin Jin
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
| |
Collapse
|
6
|
Sun X, Wu Q, Bu H, Pei Y, Guan D, Guo S, Zhou J, Zhang H. Design, synthesis and biological evaluation of MNK-PROTACs. Mol Divers 2024; 28:3783-3800. [PMID: 38498082 DOI: 10.1007/s11030-023-10776-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/17/2023] [Indexed: 03/19/2024]
Abstract
Mitogen-activated protein kinase (MAPK)-interacting kinases (MNKs) can regulate cellular mRNA translation by controlling the phosphorylation of the eukaryotic translation initiation factor 4E (eIF4E), which plays an important role in tumor initiation, development, and metastasis. Although small-molecule MNK inhibitors have made significant breakthroughs in the treatment of various malignancies, their clinical application can be limited by drug resistance, target selectivity and other factors. The strategy of MNK-PROTACs which selectively degrades MNK kinases provides a new approach for developing small-molecule drugs for related diseases. In this study, DS33059, a small-molecule compound modified based on the ongoing clinical trials drug ETC-206, was chosen as the target protein ligand. A series of novel MNK-PROTACs were designed, synthesized and evaluated biological activity. Several compounds showed good inhibitory activities against MNK1/2. Besides, compounds exhibited moderate to excellent anti-proliferative activity in A549 and TMD-8 cells in vitro. In particular, compound II-5 significantly inhibited A549 (IC50 = 1.79 μM) and TMD-8 (IC50 = 1.07 μM) cells. The protein degradation assay showed that compound II-5 had good capability to degrade MNK1. The MNK-PROTACs strategy represents a new direction in treating tumors and deserves further exploration.
Collapse
Affiliation(s)
- Xue Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Qingyun Wu
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Hong Bu
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Yifeng Pei
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Dezhong Guan
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Shi Guo
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Jinpei Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.
| | - Huibin Zhang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.
| |
Collapse
|
7
|
Gupta I, Gaykalova DA. Unveiling the role of PIK3R1 in cancer: A comprehensive review of regulatory signaling and therapeutic implications. Semin Cancer Biol 2024; 106-107:58-86. [PMID: 39197810 DOI: 10.1016/j.semcancer.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/11/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
Phosphoinositide 3-kinase (PI3K) is responsible for phosphorylating phosphoinositides to generate secondary signaling molecules crucial for regulating various cellular processes, including cell growth, survival, and metabolism. The PI3K is a heterodimeric enzyme complex comprising of a catalytic subunit (p110α, p110β, or p110δ) and a regulatory subunit (p85). The binding of the regulatory subunit, p85, with the catalytic subunit, p110, forms an integral component of the PI3K enzyme. PIK3R1 (phosphoinositide-3-kinase regulatory subunit 1) belongs to class IA of the PI3K family. PIK3R1 exhibits structural complexity due to alternative splicing, giving rise to distinct isoforms, prominently p85α and p55α. While the primary p85α isoform comprises multiple domains, including Src homology 3 (SH3) domains, a Breakpoint Cluster Region Homology (BH) domain, and Src homology 2 (SH2) domains (iSH2 and nSH2), the shorter isoform, p55α, lacks certain domains present in p85α. In this review, we will highlight the intricate regulatory mechanisms governing PI3K signaling along with the impact of PIK3R1 alterations on cellular processes. We will further delve into the clinical significance of PIK3R1 mutations in various cancer types and their implications for prognosis and treatment outcomes. Additionally, we will discuss the evolving landscape of targeted therapies aimed at modulating PI3K-associated pathways. Overall, this review will provide insights into the dynamic interplay of PIK3R1 in cancer, fostering advancements in precision medicine and the development of targeted interventions.
Collapse
Affiliation(s)
- Ishita Gupta
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA
| | - Daria A Gaykalova
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
8
|
Yuan X, Guan D, Chen C, Guo S, Wu H, Bu H, Yang CY, Wang M, Zhou J, Zhang H. Development of an Imidazopyridazine-Based MNK1/2 Inhibitor for the Treatment of Lymphoma. J Med Chem 2024; 67:5437-5457. [PMID: 38564512 DOI: 10.1021/acs.jmedchem.3c02008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The mitogen-activated protein kinase-interacting protein kinases (MNKs) are the only kinases known to phosphorylate eukaryotic translation initiation factor 4E (eIF4E) at Ser209, which plays a significant role in cap-dependent translation. Dysregulation of the MNK/eIF4E axis has been found in various solid tumors and hematological malignancies, including diffuse large B-cell lymphoma (DLBCL). Herein, structure-activity relationship studies and docking models determined that 20j exhibits excellent MNK1/2 inhibitory activity, stability, and hERG safety. 20j exhibits strong and broad antiproliferative activity against different cancer cell lines, especially GCB-DLBCL DOHH2. 20j suppresses the phosphorylation of eIF4E in Hela cells (IC50 = 90.5 nM) and downregulates the phosphorylation of eIF4E and 4E-BP1 in A549 cells. In vivo studies first revealed that ibrutinib enhances the antitumor effect of 20j without side effects in a DOHH2 xenograft model. This study provided a solid foundation for the future development of a MNK inhibitor for GCB-DLBCL treatment.
Collapse
Affiliation(s)
- Xinrui Yuan
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38103, United States
| | - Dezhong Guan
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Chao Chen
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Shi Guo
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Hanshu Wu
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Hong Bu
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Chao-Yie Yang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38103, United States
| | - Mian Wang
- College of Life Science and Technology, Guangxi University, Nanning 530004, P. R. China
| | - Jinpei Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Huibin Zhang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| |
Collapse
|
9
|
Li Q, Ke L, Yu D, Xu H, Zhang Z, Yu R, Jiang T, Guo YW, Su M, Jin X. Discovery of D25, a Potent and Selective MNK Inhibitor for Sepsis-Associated Acute Spleen Injury. J Med Chem 2024; 67:3167-3189. [PMID: 38315032 DOI: 10.1021/acs.jmedchem.3c02441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Mitogen-activated protein kinase-interacting protein kinases (MNKs) and phosphorylate eukaryotic initiation factor 4E (p-eIF4E) play a critical role in regulating mRNA translation and protein synthesis associated with the development of cancer, metabolism, and inflammation. This study undertakes the modification of a 4-(3-(piperidin-4-yl)-1H-pyrazol-5-yl)pyridine structure, leading to the discovery of 4-(3-(piperidin-4-yl)-1H-pyrazol-5-yl)-1H-pyrrolo[2,3-b]pyridine (D25) as a potent and selective MNK inhibitor. D25 demonstrated inhibitory activity, with IC50 values of 120.6 nM for MNK1 and 134.7 nM for MNK2, showing exceptional selectivity. D25 inhibited the expression of pro-inflammation cytokines in RAW264.7 cells, such as inducible NO synthase, cyclooxygenase-2, and interleukin-6 (IL-6). In the lipopolysaccharide-induced sepsis mouse model, D25 significantly reduced p-eIF4E in spleen tissue and decreased the expression of tumor necrosis factor α, interleukin-1β, and IL-6, and it also reduced the production of reactive oxygen species, resulting in improved organ injury caused by inflammation. This suggests that D25 may provide a potential treatment for sepsis and sepsis-associated acute spleen injury.
Collapse
Affiliation(s)
- Qiang Li
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Linmao Ke
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Zhanjiang 524023, China
| | - Dandan Yu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Zhanjiang 524023, China
| | - Han Xu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
- School of Pharmacy, Yantai University, Yantai 264005, China
| | - Zixuan Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Rilei Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Tao Jiang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yue-Wei Guo
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Mingzhi Su
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Xin Jin
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| |
Collapse
|
10
|
Li S, Chen JS, Li X, Bai X, Shi D. MNK, mTOR or eIF4E-selecting the best anti-tumor target for blocking translation initiation. Eur J Med Chem 2023; 260:115781. [PMID: 37669595 DOI: 10.1016/j.ejmech.2023.115781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023]
Abstract
Overexpression of eIF4E is common in patients with various solid tumors and hematologic cancers. As a potential anti-cancer target, eIF4E has attracted extensive attention from researchers. At the same time, mTOR kinases inhibitors and MNK kinases inhibitors, which are directly related to regulation of eIF4E, have been rapidly developed. To explore the optimal anti-cancer targets among MNK, mTOR, and eIF4E, this review provides a detailed classification and description of the anti-cancer activities of promising compounds. In addition, the structures and activities of some dual-target inhibitors are briefly described. By analyzing the different characteristics of the inhibitors, it can be concluded that MNK1/2 and eIF4E/eIF4G interaction inhibitors are superior to mTOR inhibitors. Simultaneous inhibition of MNK and eIF4E/eIF4G interaction may be the most promising anti-cancer method for targeting translation initiation.
Collapse
Affiliation(s)
- Shuo Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China.
| | - Jia-Shu Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China.
| | - Xiangqian Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China.
| | - Xiaoyi Bai
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China.
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China.
| |
Collapse
|
11
|
Gao X, Jin Y, Zhu W, Wu X, Wang J, Guo C. Regulation of Eukaryotic Translation Initiation Factor 4E as a Potential Anticancer Strategy. J Med Chem 2023; 66:12678-12696. [PMID: 37725577 DOI: 10.1021/acs.jmedchem.3c00636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Eukaryotic translation initiation factors (eIFs) are highly expressed in cancer cells, especially eIF4E, the central regulatory node driving cancer cell growth and a potential target for anticancer drugs. eIF4E-targeting strategies primarily focus on inhibiting eIF4E synthesis, interfering with eIF4E/eIF4G interactions, and targeting eIF4E phosphorylation and peptide inhibitors. Although some small-molecule inhibitors are in clinical trials, no eIF4E inhibitors are available for clinical use. We provide an overview of the regulatory mechanisms of eIF4E and summarize the progress in developing and discovering eIF4E inhibitor strategies. We propose that interference with eIF4E/eIF4G interactions will provide a new perspective for the design of eIF4E inhibitors and may be a preferred strategy.
Collapse
Affiliation(s)
- Xintao Gao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yonglong Jin
- The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Wenyong Zhu
- Department of Thoracic Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, China
| | - Xiaochen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jing Wang
- Department of Biology Science and Technology, Baotou Teacher's College, Baotou 014030, China
| | - Chuanlong Guo
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
12
|
Fernandez A, Monsen PJ, Platanias LC, Schiltz GE. Medicinal chemistry approaches to target the MNK-eIF4E axis in cancer. RSC Med Chem 2023; 14:1060-1087. [PMID: 37360400 PMCID: PMC10285747 DOI: 10.1039/d3md00121k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/08/2023] [Indexed: 06/28/2023] Open
Abstract
Aberrant translation of proteins that promote cell proliferation is an essential factor that defines oncogenic processes and cancer. The process for ribosomal translation of proteins from mRNA requires an essential initiation step which is controlled by the protein eIF4E, which binds the RNA 5'-cap and forms the eIF4F complex that subsequently translates protein. Typically, eIF4E is activated by phosphorylation on Ser209 by MNK1 and MNK2 kinases. Substantial work has shown that eIF4E and MNK1/2 are dysregulated in many cancers and this axis has therefore become an active area of interest for developing new cancer therapeutics. This review summarizes and discusses recent work to develop small molecules that target different steps in the MNK-eIF4E axis as potential cancer therapeutics. The aim of this review is to cover the breadth of different molecular approaches being taken and the medicinal chemistry basis for their optimization and testing as new cancer therapeutics.
Collapse
Affiliation(s)
- Ann Fernandez
- Department of Chemistry, Northwestern University Evanston IL 60208 USA
| | - Paige J Monsen
- Department of Chemistry, Northwestern University Evanston IL 60208 USA
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center Chicago IL 60611 USA
- Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University Chicago IL 60611 USA
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center Chicago IL 60612 USA
| | - Gary E Schiltz
- Department of Chemistry, Northwestern University Evanston IL 60208 USA
- Robert H. Lurie Comprehensive Cancer Center Chicago IL 60611 USA
- Department of Pharmacology, Northwestern University Feinberg School of Medicine Chicago IL 60611 USA
| |
Collapse
|
13
|
Carrión-Marchante R, Pinto-Díez C, Klett-Mingo JI, Palacios E, Barragán-Usero M, Pérez-Morgado MI, Pascual-Mellado M, Alcalá S, Ruiz-Cañas L, Sainz B, González VM, Martín ME. An Aptamer against MNK1 for Non-Small Cell Lung Cancer Treatment. Pharmaceutics 2023; 15:pharmaceutics15041273. [PMID: 37111758 PMCID: PMC10146192 DOI: 10.3390/pharmaceutics15041273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. Its late diagnosis and consequently poor survival make necessary the search for new therapeutic targets. The mitogen-activated protein kinase (MAPK)-interacting kinase 1 (MNK1) is overexpressed in lung cancer and correlates with poor overall survival in non-small cell lung cancer (NSCLC) patients. The previously identified and optimized aptamer from our laboratory against MNK1, apMNKQ2, showed promising results as an antitumor drug in breast cancer in vitro and in vivo. Thus, the present study shows the antitumor potential of apMNKQ2 in another type of cancer where MNK1 plays a significant role, such as NSCLC. The effect of apMNKQ2 in lung cancer was studied with viability, toxicity, clonogenic, migration, invasion, and in vivo efficacy assays. Our results show that apMNKQ2 arrests the cell cycle and reduces viability, colony formation, migration, invasion, and epithelial-mesenchymal transition (EMT) processes in NSCLC cells. In addition, apMNKQ2 reduces tumor growth in an A549-cell line NSCLC xenograft model. In summary, targeting MNK1 with a specific aptamer may provide an innovative strategy for lung cancer treatment.
Collapse
Affiliation(s)
- Rebeca Carrión-Marchante
- Aptamer Group, Deparment Biochemistry-Research, IRYCIS-Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | | | - José Ignacio Klett-Mingo
- Aptamer Group, Deparment Biochemistry-Research, IRYCIS-Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Esther Palacios
- Aptamer Group, Deparment Biochemistry-Research, IRYCIS-Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Miriam Barragán-Usero
- Aptamer Group, Deparment Biochemistry-Research, IRYCIS-Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - M Isabel Pérez-Morgado
- Aptamer Group, Deparment Biochemistry-Research, IRYCIS-Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Manuel Pascual-Mellado
- Aptamer Group, Deparment Biochemistry-Research, IRYCIS-Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Sonia Alcalá
- Department of Cancer, Instituto de Investigaciones-Biomédicas "Alberto Sols" (IIBM), CSIC-UAM, 28034 Madrid, Spain
- Chronic Diseases and Cancer Area 3-Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Laura Ruiz-Cañas
- Department of Cancer, Instituto de Investigaciones-Biomédicas "Alberto Sols" (IIBM), CSIC-UAM, 28034 Madrid, Spain
- Chronic Diseases and Cancer Area 3-Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Bruno Sainz
- Department of Cancer, Instituto de Investigaciones-Biomédicas "Alberto Sols" (IIBM), CSIC-UAM, 28034 Madrid, Spain
- Chronic Diseases and Cancer Area 3-Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
- Centro de Investigación Biomédica en Red, Área Cáncer-CIBERONC, ISCIII, 28029 Madrid, Spain
| | - Víctor M González
- Aptamer Group, Deparment Biochemistry-Research, IRYCIS-Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - M Elena Martín
- Aptamer Group, Deparment Biochemistry-Research, IRYCIS-Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| |
Collapse
|
14
|
Shiers S, Sahn JJ, Price TJ. MNK1 and MNK2 Expression in the Human Dorsal Root and Trigeminal Ganglion. Neuroscience 2023; 515:96-107. [PMID: 36764601 DOI: 10.1016/j.neuroscience.2023.01.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023]
Abstract
Mitogen activated protein kinase interacting kinases (MNK) 1 and 2 are serine/threonine protein kinases that play an important role in translation of mRNAs through their phosphorylation of the RNA 5'-cap binding protein, eukaryotic translation initiation factor (eIF) 4E. These kinases are downstream targets for mitogen activated protein kinases (MAPKs), extracellular activity regulated protein kinase (ERK) and p38. MNKs have been implicated in the sensitization of peripheral nociceptors of the dorsal root and trigeminal ganglion (DRG and TG) using transgenic mouse lines and through the use of specific inhibitors of MNK1 and MNK2. While specific knockout of the Mknk1 gene suggests that it is the key isoform for regulation of nociceptor excitability and nociceptive behaviors in mice, both MKNK1 and MKNK2 genes are expressed in the DRG and TG of mice and humans based on RNA sequencing experiments. Single cell sequencing in mice suggests that Mknk1 and Mknk2 may be expressed in different populations of nociceptors. We sought to characterize mRNA expression in human DRG and TG (N = 3 ganglia for both DRG and TG) for both MNK1 and MNK2. Our results show that both genes are expressed by nearly all neurons in both human ganglia with expression in other cell types as well. Our findings provide evidence that MNK1 and MNK2 are expressed by human nociceptors of males and females and suggest that efforts to pharmacologically target MNKs for pain would likely be translatable due its conserved expression in both species.
Collapse
Affiliation(s)
- Stephanie Shiers
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | | | - Theodore J Price
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
15
|
Jin X, Qiu T, Xie J, Wei X, Wang X, Yu R, Proud C, Jiang T. Using Imidazo[2,1- b][1,3,4]thiadiazol Skeleton to Design and Synthesize Novel MNK Inhibitors. ACS Med Chem Lett 2023; 14:83-91. [PMID: 36655132 PMCID: PMC9841594 DOI: 10.1021/acsmedchemlett.2c00442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Mitogen-activated protein kinase-interacting protein kinases (MNKs) phosphorylate eukaryotic initiation factor 4E (eIF4E) and regulate the processes of cell proliferation, cell cycle, and migration and invasion of cancer cells. Selectively inhibiting the activity of MNKs could be effective in treating cancers. In this study, we report a series of novel MNK inhibitors with an imidazo[2,1-b][1,3,4]thiadiazol scaffold, from which, compound 18 inhibited the phosphorylation of eIF4E in various cancer cell lines potently. Compound 18 was more potent against MNK2 than MNK1, and decreased the levels of cyclin-B1, cyclin-D3, and MMP-3 in A549 and MDA-MB-231 cells, impaired cell growth and colony formation, arrested the cell cycle in the G0/G1 phase, and inhibited cell migration and the secretion of TNF-α, MCP-1, and IL-8 from A549 cells. It represents a starting compound to design further inhibitors that selectively target MNKs and apply in other diseases.
Collapse
Affiliation(s)
- Xin Jin
- School
of Medicine and Pharmacy, Ocean University
of China and Laboratory for Marine Drugs and Bioproducts, Qingdao
National Laboratory for Marine, Science and Technology, Qingdao 266237, China
- Lifelong
Health Theme, South Australian Health &
Medical Research Institute, North Terrace, Adelaide, South Australia 5000, Australia
- Shandong
Laboratory of Yantai Drug Discovery, Bohai
Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Tingting Qiu
- School
of Medicine and Pharmacy, Ocean University
of China and Laboratory for Marine Drugs and Bioproducts, Qingdao
National Laboratory for Marine, Science and Technology, Qingdao 266237, China
| | - Jianling Xie
- Lifelong
Health Theme, South Australian Health &
Medical Research Institute, North Terrace, Adelaide, South Australia 5000, Australia
| | - Xianfeng Wei
- School
of Medicine and Pharmacy, Ocean University
of China and Laboratory for Marine Drugs and Bioproducts, Qingdao
National Laboratory for Marine, Science and Technology, Qingdao 266237, China
| | - Xuemin Wang
- Lifelong
Health Theme, South Australian Health &
Medical Research Institute, North Terrace, Adelaide, South Australia 5000, Australia
- School
of Biomedical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Rilei Yu
- School
of Medicine and Pharmacy, Ocean University
of China and Laboratory for Marine Drugs and Bioproducts, Qingdao
National Laboratory for Marine, Science and Technology, Qingdao 266237, China
| | - Christopher Proud
- Lifelong
Health Theme, South Australian Health &
Medical Research Institute, North Terrace, Adelaide, South Australia 5000, Australia
- School
of Biomedical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Tao Jiang
- School
of Medicine and Pharmacy, Ocean University
of China and Laboratory for Marine Drugs and Bioproducts, Qingdao
National Laboratory for Marine, Science and Technology, Qingdao 266237, China
| |
Collapse
|
16
|
Shiers S, Sahn JJ, Price TJ. MNK1 and MNK2 expression in the human dorsal root and trigeminal ganglion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.04.522773. [PMID: 36711529 PMCID: PMC9881964 DOI: 10.1101/2023.01.04.522773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mitogen activated protein kinase interacting kinases (MNK) 1 and 2 are serine/threonine protein kinases that play an important role in translation of mRNAs through their phosphorylation of the RNA 5’-cap binding protein, eukaryotic translation initiation factor (eIF) 4E. These kinases are downstream targets for mitogen activated protein kinases (MAPKs), extracellular activity regulated protein kinase (ERK) and p38. MNKs have been implicated in the sensitization of peripheral nociceptors of the dorsal root and trigeminal ganglion (DRG and TG) using transgenic mouse lines and through the use of specific inhibitors of MNK1 and MNK2. While specific knockout of the Mknk1 gene suggests that it is the key isoform for regulation of nociceptor excitability and nociceptive behaviors in mice, both MKNK1 and MKNK2 genes are expressed in the DRG and TG of mice and humans based on RNA sequencing experiments. Single cell sequencing in mice suggests that Mknk1 and Mknk2 may be expressed in different populations of nociceptors. We sought to characterize mRNA expression in human DRG and TG for both MNK1 and MNK2. Our results show that both genes are expressed by nearly all neurons in both human ganglia with expression in other cell types as well. Our findings provide evidence that MNK1 and MNK2 are expressed by human nociceptors and suggest that efforts to pharmacologically target MNKs for pain would likely be translatable due its conserved expression in both species.
Collapse
Affiliation(s)
- Stephanie Shiers
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | | | - Theodore J. Price
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
17
|
Mazewski C, Platanias LC. MNK Proteins as Therapeutic Targets in Leukemia. Onco Targets Ther 2023; 16:283-295. [PMID: 37113687 PMCID: PMC10128080 DOI: 10.2147/ott.s370874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
In leukemia, resistance to therapy is a major concern for survival. MAPK-interacting kinases (MNKs) have been identified as important activators of oncogenic-related signaling and may be mediators of resistance. Recent studies in leukemia models, especially acute myeloid leukemia (AML), have focused on targeting MNKs together with other inhibitors or treating chemotherapy-resistant cells with MNK inhibitors. The preclinical demonstrations of the efficacy of MNK inhibitors in these combination formats would suggest a promising potential for use in clinical trials. Optimizing MNK inhibitors and testing in leukemia models is actively being pursued and may have important implications for the future. These studies are furthering the understanding of the mechanisms of MNKs in cancer which could translate to clinical studies.
Collapse
Affiliation(s)
- Candice Mazewski
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Division of Hematology–Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Correspondence: Candice Mazewski; Leonidas C Platanias, Email ;
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Division of Hematology–Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| |
Collapse
|
18
|
Wan W, Zhang X, Huang C, Chen L, Yang X, Bao K, Peng T. Preclinical anti-angiogenic and anti-cancer activities of BAY1143269 in glioblastoma via targeting oncogenic protein expression. Pharmacol Res Perspect 2022; 10:e00981. [PMID: 35796398 PMCID: PMC9260954 DOI: 10.1002/prp2.981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/06/2022] Open
Abstract
Glioblastoma angiogenesis is critical for tumor growth, making it an appealing target for treatment development. BAY1143269 is a novel inhibitor of mitogen-activated protein kinase interacting serine/threonine-protein kinase 1 (MKN1) and has potent anti-cancer activity. We identified BAY1143269 as an angiogenesis inhibitor, by in vitro and in vivo glioblastoma angiogenesis models. BAY1143269 inhibited the capillary network formation of glioblastoma microvascular endothelial cells (GMECs), particularly the early stage of tubular structure formation. It also inhibited migration and proliferation, and induced apoptosis of GMECs isolated from glioblastoma patients. We found that BAY1143269 acted on GMECs by suppressing the eukaryotic translation initiation factor 4E (eIF4E) and eIF4E-mediated expression of oncogenic proteins, including those involved in cell cycle, epithelial-mesenchymal transition (EMT), and pro-survival. In addition, BAY1143269 suppressed eIF4E phosphorylation, inhibited proliferation, and induced apoptosis of glioblastoma cells. Interestingly, it reduced vascular endothelial growth factor (VEGF) level in tumor cells and culturing medium, demonstrating the inhibitory effect of BAY1143269 on tumor proangiogenic microenvironment. We finally challenged BAY1143269 on the glioblastoma xenograft mice model and observed a significant tumor growth reduction without toxicity in mice receiving oral BAY1143269. Immunoblotting analysis demonstrated significantly less phosphorylated-eIF4E (p-eIF4E), cluster of differentiation 31 (CD31) (microvascular endothelial cell marker), and VEGF in tumors from drug-treated mice. In summary, the inhibition of glioblastoma angiogenesis with BAY1143269 may provide an alternative approach for anti-glioblastoma therapy.
Collapse
Affiliation(s)
- Weifeng Wan
- Department of NeurosurgeryAffiliated Hospital of Southwest Medical UniversityLuzhouChina
- Sichuan Clinical Research Center for NeurosurgeryLuzhouChina
- Academician (Expert) Workstation of Sichuan ProvinceLuzhouChina
- Neurological Diseases and Brain Function LaboratoryAffiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Xin Zhang
- Department of NeurosurgeryLuzhou People's HospitalLuzhouPeople's Republic of China
| | - Changren Huang
- Department of NeurosurgeryAffiliated Hospital of Southwest Medical UniversityLuzhouChina
- Sichuan Clinical Research Center for NeurosurgeryLuzhouChina
- Academician (Expert) Workstation of Sichuan ProvinceLuzhouChina
- Neurological Diseases and Brain Function LaboratoryAffiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Ligang Chen
- Department of NeurosurgeryAffiliated Hospital of Southwest Medical UniversityLuzhouChina
- Sichuan Clinical Research Center for NeurosurgeryLuzhouChina
- Academician (Expert) Workstation of Sichuan ProvinceLuzhouChina
- Neurological Diseases and Brain Function LaboratoryAffiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Xiaobo Yang
- Department of NeurosurgeryAffiliated Hospital of Southwest Medical UniversityLuzhouChina
- Sichuan Clinical Research Center for NeurosurgeryLuzhouChina
- Academician (Expert) Workstation of Sichuan ProvinceLuzhouChina
- Neurological Diseases and Brain Function LaboratoryAffiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Kunyang Bao
- Department of NeurosurgeryAffiliated Hospital of Southwest Medical UniversityLuzhouChina
- Sichuan Clinical Research Center for NeurosurgeryLuzhouChina
- Academician (Expert) Workstation of Sichuan ProvinceLuzhouChina
- Neurological Diseases and Brain Function LaboratoryAffiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Tangming Peng
- Department of NeurosurgeryAffiliated Hospital of Southwest Medical UniversityLuzhouChina
- Sichuan Clinical Research Center for NeurosurgeryLuzhouChina
- Academician (Expert) Workstation of Sichuan ProvinceLuzhouChina
- Neurological Diseases and Brain Function LaboratoryAffiliated Hospital of Southwest Medical UniversityLuzhouChina
| |
Collapse
|
19
|
Yang X, Liu Z, Yin X, Zeng Y, Guo G. Inhibition MNK-eIF4E-β-catenin preferentially sensitizes gastric cancer to chemotherapy. Fundam Clin Pharmacol 2022; 36:712-720. [PMID: 35048413 DOI: 10.1111/fcp.12759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/30/2021] [Accepted: 01/17/2022] [Indexed: 12/14/2022]
Abstract
Aberrant activation of eIF4E contributes to gastric cancer growth and resistance. MAPK-interacting kinases (MNKs) regulate eIF4E phosphorylation and activity in tumor but not normal cells and are potentially safe targets for the treatment of various cancers. Our work reveals that tomivosertib, a potent and highly selective dual MNK1/2 inhibitor, preferentially sensitizes gastric cancer to chemotherapy via suppressing MNK-eIF4E-β-catenin. We firstly demonstrate that tomivosertib displays higher efficacy than other MNK inhibitors in inhibiting gastric cancer cells. In addition, tomivosertib significantly augments the inhibitory effects of 5-FU and paclitaxel but not everolimus, suggesting that tomivosertib preferentially sensitizes gastric cancer to chemotherapy. We next show that eIF4E overexpression and phosphorylation coordinately regulate β-catenin signaling in gastric cancer. Rescue studies confirm that tomivosertib inhibits gastric cancer via targeting MNK- eIF4E-β-catenin. Finally, we demonstrate that the in vitro functional and mechanism observations are translatable to in vivo gastric cancer model in mice. Tomivosertib is now in Phase 2 clinical trials. Our study provides preclinical evidence to initialize clinical trials for gastric cancer using tomivosertib in combination with chemotherapy.
Collapse
Affiliation(s)
- Xiaolin Yang
- Department of Gastroenterology and Urology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhenyang Liu
- Department of Gastroenterology and Urology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xianli Yin
- Department of Gastroenterology and Urology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yidong Zeng
- Department of Gastroenterology and Urology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Geyang Guo
- Department of Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
20
|
Design, Synthesis and Evaluation of Novel Phorbazole C Derivatives as MNK Inhibitors through Virtual High-Throughput Screening. Mar Drugs 2022; 20:md20070429. [PMID: 35877722 PMCID: PMC9319845 DOI: 10.3390/md20070429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
MNKs (mitogen-activated protein kinase-interacting protein kinases) phosphorylate eIF4E at Ser209 to control the translation of certain mRNAs and regulate the process of cell proliferation, cell migration and invasion, etc. Development of MNK inhibitors would be an effective treatment for related diseases. We used the MarineChem3D database to identify hit compounds targeting the protein MNK1 and MNK2 through high-throughput screening. Compounds from the phorbazole family showed good interactions with MNK1, and phorbazole C was selected as our hit compound. By analyzing the binding mode, we designed and synthesized 29 derivatives and evaluated their activity against MNKs, of which, six compounds showed good inhibition to MNKs. We also confirmed three interactions between this kind of compound and MNK1, which are vital for the activity. In conclusion, we report series of novel MNK inhibitors inspired from marine natural products and their relative structure–activity relationship. This will provide important information for further developing MNK inhibitors based on this kind of structure.
Collapse
|
21
|
Bou-Petit E, Hümmer S, Alarcon H, Slobodnyuk K, Cano-Galietero M, Fuentes P, Guijarro PJ, Muñoz MJ, Suarez-Cabrera L, Santamaria A, Estrada-Tejedor R, Borrell JI, Ramón y Cajal S. Overcoming Paradoxical Kinase Priming by a Novel MNK1 Inhibitor. J Med Chem 2022; 65:6070-6087. [PMID: 35417652 PMCID: PMC9059116 DOI: 10.1021/acs.jmedchem.1c01941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Indexed: 12/23/2022]
Abstract
Targeting the kinases MNK1 and MNK2 has emerged as a valuable strategy in oncology. However, most of the advanced inhibitors are acting in an adenosine triphosphate (ATP)-competitive mode, precluding the evaluation of different binding modes in preclinical settings. Using rational design, we identified and validated the 4,6-diaryl-pyrazolo[3,4-b]pyridin-3-amine scaffold as the core for MNK inhibitors. Signaling pathway analysis confirmed a direct effect of the hit compound EB1 on MNKs, and in line with the reported function of these kinases, EB1 only affects the growth of tumor but not normal cells. Molecular modeling revealed the binding of EB1 to the inactive conformation of MNK1 and the interaction with the specific DFD motif. This novel mode of action appears to be superior to the ATP-competitive inhibitors, which render the protein in a pseudo-active state. Overcoming this paradoxical activation of MNKs by EB1 represents therefore a promising starting point for the development of a novel generation of MNK inhibitors.
Collapse
Affiliation(s)
- Elisabeth Bou-Petit
- Grup
de Química Farmacèutica, IQS School of Engineering, Universitat Ramon Llull, Via Augusta, 390, 08017 Barcelona, Spain
| | - Stefan Hümmer
- Translational
Molecular Pathology, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Psg. Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Spanish
Biomedical Research Network Centre in Oncology (CIBERONC), 28029 Madrid, Spain
| | - Helena Alarcon
- Grup
de Química Farmacèutica, IQS School of Engineering, Universitat Ramon Llull, Via Augusta, 390, 08017 Barcelona, Spain
| | - Konstantin Slobodnyuk
- Translational
Molecular Pathology, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Psg. Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Spanish
Biomedical Research Network Centre in Oncology (CIBERONC), 28029 Madrid, Spain
| | - Marta Cano-Galietero
- Translational
Molecular Pathology, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Psg. Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Spanish
Biomedical Research Network Centre in Oncology (CIBERONC), 28029 Madrid, Spain
| | - Pedro Fuentes
- Translational
Molecular Pathology, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Psg. Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Spanish
Biomedical Research Network Centre in Oncology (CIBERONC), 28029 Madrid, Spain
| | - Pedro J. Guijarro
- Translational
Molecular Pathology, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Psg. Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - María José Muñoz
- Translational
Molecular Pathology, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Psg. Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Spanish
Biomedical Research Network Centre in Oncology (CIBERONC), 28029 Madrid, Spain
| | - Leticia Suarez-Cabrera
- Cell
Cycle and Cancer Laboratory, Biomedical Research Group in Urology,
Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Psg. Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Anna Santamaria
- Cell
Cycle and Cancer Laboratory, Biomedical Research Group in Urology,
Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Psg. Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Roger Estrada-Tejedor
- Grup
de Química Farmacèutica, IQS School of Engineering, Universitat Ramon Llull, Via Augusta, 390, 08017 Barcelona, Spain
| | - José I. Borrell
- Grup
de Química Farmacèutica, IQS School of Engineering, Universitat Ramon Llull, Via Augusta, 390, 08017 Barcelona, Spain
| | - Santiago Ramón y Cajal
- Translational
Molecular Pathology, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Psg. Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Spanish
Biomedical Research Network Centre in Oncology (CIBERONC), 28029 Madrid, Spain
| |
Collapse
|
22
|
Rumienczyk I, Kulecka M, Statkiewicz M, Ostrowski J, Mikula M. Oncology Drug Repurposing for Sepsis Treatment. Biomedicines 2022; 10:biomedicines10040921. [PMID: 35453671 PMCID: PMC9030585 DOI: 10.3390/biomedicines10040921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/08/2022] [Accepted: 04/15/2022] [Indexed: 11/16/2022] Open
Abstract
Sepsis involves life-threatening organ dysfunction caused by a dysregulated host response to infection. Despite three decades of efforts and multiple clinical trials, no treatment, except antibiotics and supportive care, has been approved for this devastating syndrome. Simultaneously, numerous preclinical studies have shown the effectiveness of oncology-indicated drugs in ameliorating sepsis. Here we focus on cataloging these efforts with both oncology-approved and under-development drugs that have been repositioned to treat bacterial-induced sepsis models. In this context, we also envision the exciting prospect for further standard and oncology drug combination testing that could ultimately improve clinical outcomes in sepsis.
Collapse
Affiliation(s)
- Izabela Rumienczyk
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (I.R.); (M.K.); (M.S.); (J.O.)
| | - Maria Kulecka
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (I.R.); (M.K.); (M.S.); (J.O.)
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre for Postgraduate Medical Education, 01-813 Warsaw, Poland
| | - Małgorzata Statkiewicz
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (I.R.); (M.K.); (M.S.); (J.O.)
| | - Jerzy Ostrowski
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (I.R.); (M.K.); (M.S.); (J.O.)
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre for Postgraduate Medical Education, 01-813 Warsaw, Poland
| | - Michal Mikula
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (I.R.); (M.K.); (M.S.); (J.O.)
- Correspondence: ; Tel.: +48-22-546-26-55
| |
Collapse
|
23
|
Abstract
Mitogen-activated protein kinase (MAPK)-activated protein kinases (MAPKAPKs) are defined by their exclusive activation by MAPKs. They can be activated by classical and atypical MAPKs that have been stimulated by mitogens and various stresses. Genetic deletions of MAPKAPKs and availability of highly specific small-molecule inhibitors have continuously increased our functional understanding of these kinases. MAPKAPKs cooperate in the regulation of gene expression at the level of transcription; RNA processing, export, and stability; and protein synthesis. The diversity of stimuli for MAPK activation, the cross talk between the different MAPKs and MAPKAPKs, and the specific substrate pattern of MAPKAPKs orchestrate immediate-early and inflammatory responses in space and time and ensure proper control of cell growth, differentiation, and cell behavior. Hence, MAPKAPKs are promising targets for cancer therapy and treatments for conditions of acute and chronic inflammation, such as cytokine storms and rheumatoid arthritis. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Natalia Ronkina
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany;
| | - Matthias Gaestel
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany;
| |
Collapse
|
24
|
Xu W, Kannan S, Verma CS, Nacro K. Update on the Development of MNK Inhibitors as Therapeutic Agents. J Med Chem 2021; 65:983-1007. [PMID: 34533957 DOI: 10.1021/acs.jmedchem.1c00368] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mitogen-activated protein kinase-interacting kinases 1 and 2 (MNK1/2) represent a central class of enzymes that are activated by extracellular signal-regulated kinase (ERK) or p38 mitogen-activated protein (MAP) kinases. MNK1 and MNK2 coordinate cellular signaling, control production of inflammatory chemokines, and regulate cell proliferation and survival. MNK1/2 are referred to as serine/threonine kinases as they phosphorylate serine or threonine residues on their substrates. Upon activation, MNK1/2 phosphorylate eukaryotic translation initiation factor 4E (eIF4E) at Ser209, which in turn initiates ribosome assembly and protein translation. Deleterious overexpression of MNK1/2 and/or eIF4E have been reported in several diseases including cancers, neurological disorders, autism, and inflammation. Recently, there have been intense efforts toward the development of potent and selective inhibitors of MNK1/2 in both academia and industry. Herein, we review the current understanding of the structural and biological aspects of MNK1/2 and provide an update of pharmacological inhibitors of MNK1/2 including candidates in clinical trials.
Collapse
Affiliation(s)
- Weijun Xu
- Experimental Drug Development Centre (EDDC), A*STAR, 10 Biopolis Road, Chromos #05-01, 138670, Singapore
| | | | - Chandra S Verma
- Bioinformatics Institute (BII), A*STAR, 30 Biopolis Street, #07-01 Matrix, 138671, Singapore.,Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Kassoum Nacro
- Experimental Drug Development Centre (EDDC), A*STAR, 10 Biopolis Road, Chromos #05-01, 138670, Singapore
| |
Collapse
|
25
|
Inhibitory effects of Tomivosertib in acute myeloid leukemia. Oncotarget 2021; 12:955-966. [PMID: 34012509 PMCID: PMC8121614 DOI: 10.18632/oncotarget.27952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/19/2021] [Indexed: 12/26/2022] Open
Abstract
The MAPK-interacting kinases 1 and 2 (MNK1/2) have generated increasing interest as therapeutic targets for acute myeloid leukemia (AML). We evaluated the therapeutic potential of the highly-selective MNK1/2 inhibitor Tomivosertib on AML cells. Tomivosertib was highly effective at blocking eIF4E phosphorylation on serine 209 in AML cells. Such inhibitory effects correlated with dose-dependent suppression of cellular viability and leukemic progenitor colony formation. Moreover, combination of Tomivosertib and Venetoclax resulted in synergistic anti-leukemic responses in AML cell lines. Mass spectrometry studies identified novel putative MNK1/2 interactors, while in parallel studies we demonstrated that MNK2 - RAPTOR - mTOR complexes are not disrupted by Tomivosertib. Overall, these findings demonstrate that Tomivosertib exhibits potent anti-leukemic properties on AML cells and support the development of clinical translational efforts involving the use of this drug, alone or in combination with other therapies for the treatment of AML.
Collapse
|
26
|
Jin X, Yu R, Wang X, Proud CG, Jiang T. Progress in developing MNK inhibitors. Eur J Med Chem 2021; 219:113420. [PMID: 33892273 DOI: 10.1016/j.ejmech.2021.113420] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/19/2022]
Abstract
The MNKs (mitogen-activated protein kinase-interacting protein kinases) phosphorylate eIF4E (eukaryotic initiation factor 4 E) at serine 209; eIF4E plays an important role in the translation of cytoplasmic mRNAs, all of which possess a 5' 'cap' structure to which eIF4E binds. Elevated levels of eIF4E, p-eIF4E and/or the MNK protein kinases have been found in many types of cancer, including solid tumors and leukemia. MNKs also play a role in metabolic disease. Regulation of the activities of MNKs (MNK1 and MNK2), control the phosphorylation of eIF4E, which in turn has a close relationship with the processes of tumor development, cell migration and invasion, and energy metabolism. MNK knock-out mice display no adverse effects on normal cells or phenotypes suggesting that MNK may be a potentially safe targets for the treatment of various cancers. Several MNK inhibitors or 'degraders' have been identified. Initially, some of the inhibitors were developed from natural products or based on other protein kinase inhibitors which inhibit multiple kinases. Subsequently, more potent and selective inhibitors for MNK1/2 have been designed and synthesized. Currently, three inhibitors (BAY1143269, eFT508 and ETC-206) are in various stages of clinical trials for the treatment of solid cancers or leukemia, either alone or combined with inhibitors of other protein kinase. In this review, we summarize the diverse MNK inhibitors that have been reported in patents and other literature, including those with activities in vitro and/or in vivo.
Collapse
Affiliation(s)
- Xin Jin
- School of Medicine and Pharmacy, Ocean University of China and Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Rilei Yu
- School of Medicine and Pharmacy, Ocean University of China and Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xuemin Wang
- Lifelong Health, South Australian Health & Medical Research Institute, North Terrace, Adelaide, SA5000, Australia; School of Biomedical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Christopher G Proud
- Lifelong Health, South Australian Health & Medical Research Institute, North Terrace, Adelaide, SA5000, Australia; School of Biomedical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Tao Jiang
- School of Medicine and Pharmacy, Ocean University of China and Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
27
|
Abstract
The alteration of mRNA translation has a crucial role in defining the changes in cellular proteome. The phosphorylation of eukaryotic initiation factor 4E by mitogen-activated protein kinase-interacting kinases (Mnks) leads to the release and translation of mRNAs of specific oncogenic proteins. In recent years, the efforts made by the pharmaceutical industry to develop novel chemical skeletons to create potent and selective Mnk inhibitors have been fruitful. The pyridone-aminal scaffold has been utilized to generate several series of Mnk inhibitors presented in multiple patent applications and research articles. Tomivosertib (eFT508) is one of the molecules with such scaffold. It is one of the first two Mnk inhibitors that entered clinical trials, and has displayed momentous activity against several solid and hematological cancers. The present compilation provides a succinct review of the current state of development of pyridone-aminal-derived Mnk inhibitors through the analysis of relevant patent applications filed in the last 5 years.
Collapse
|
28
|
MNK1 and MNK2 enforce expression of E2F1, FOXM1, and WEE1 to drive soft tissue sarcoma. Oncogene 2021; 40:1851-1867. [PMID: 33564073 PMCID: PMC7946644 DOI: 10.1038/s41388-021-01661-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 12/25/2020] [Accepted: 01/15/2021] [Indexed: 01/31/2023]
Abstract
Soft tissue sarcoma (STS) is a heterogeneous disease that arises from connective tissues. Clinical outcome of patients with advanced tumors especially de-differentiated liposarcoma and uterine leiomyosarcoma remains unsatisfactory, despite intensive treatment regimens including maximal surgical resection, radiation, and chemotherapy. MAP kinase-interacting serine/threonine-protein kinase 1 and 2 (MNK1/2) have been shown to contribute to oncogenic translation via phosphorylation of eukaryotic translation initiation factor 4E (eIF4E). However, little is known about the role of MNK1/2 and their downstream targets in STS. In this study, we show that depletion of either MNK1 or MNK2 suppresses cell viability, anchorage-independent growth, and tumorigenicity of STS cells. We also identify a compelling antiproliferative efficacy of a novel, selective MNK inhibitor ETC-168. Cellular responsiveness of STS cells to ETC-168 correlates positively with that of phosphorylated ribosomal protein S6 (RPS6). Mirroring MNK1/2 silencing, ETC-168 treatment strongly blocks eIF4E phosphorylation and represses expression of sarcoma-driving onco-proteins including E2F1, FOXM1, and WEE1. Moreover, combination of ETC-168 and MCL1 inhibitor S63845 exerts a synergistic antiproliferative activity against STS cells. In summary, our study reveals crucial roles of MNK1/2 and their downstream targets in STS tumorigenesis. Our data encourage further clinical translation of MNK inhibitors for STS treatment.
Collapse
|
29
|
Dreas A, Kucwaj-Brysz K, Pyziak K, Kulesza U, Wincza E, Fabritius CH, Michalik K, Gabor-Worwa E, Gołas A, Milik M, Masiejczyk M, Majewska E, Pyśniak K, Wójcik-Trechcińska U, Sandowska-Markiewicz Z, Brzózka K, Ostrowski J, Rzymski T, Mikula M. Discovery of indazole-pyridinone derivatives as a novel class of potent and selective MNK1/2 kinase inhibitors that protecting against endotoxin-induced septic shock. Eur J Med Chem 2020; 213:113057. [PMID: 33303237 DOI: 10.1016/j.ejmech.2020.113057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/01/2022]
Abstract
The mitogen-activated protein kinase (MAPK)-interacting kinases 1 and 2 (MNKs 1/2) and their downstream target eIF4E, play a role in oncogenic transformation, progression and metastasis. These results provided rationale for development of first MNKs inhibitors, currently in clinical trials for cancer treatment. Inhibitors of the MNKs/eIF4E pathway are also proposed as treatment strategy for inflammatory conditions. Here we present results of optimization of indazole-pyridinone derived MNK1/2 inhibitors among which compounds 24 and 26, selective and metabolically stable derivatives. Both compounds decreased levels of eIF4E Ser206 phosphorylation (pSer209-eIF4E) in MOLM16 cell line. When administered in mice compounds 24 and 26 significantly improved survival rates of animals in the endotoxin lethal dose challenge model, with concomitant reduction of proinflammatory cytokine levels - TNFα and IL-6 in serum. Identified MNK1/2 inhibitors represent a novel class of immunomodulatory compounds with a potential for the treatment of inflammatory diseases including sepsis.
Collapse
Affiliation(s)
- Agnieszka Dreas
- Ryvu Therapeutics S.A., H. L. Sternbacha 2, 30-394, Kraków, Poland.
| | | | - Karolina Pyziak
- Ryvu Therapeutics S.A., H. L. Sternbacha 2, 30-394, Kraków, Poland
| | - Urszula Kulesza
- Ryvu Therapeutics S.A., H. L. Sternbacha 2, 30-394, Kraków, Poland
| | | | | | - Kinga Michalik
- Ryvu Therapeutics S.A., H. L. Sternbacha 2, 30-394, Kraków, Poland
| | | | - Aniela Gołas
- Ryvu Therapeutics S.A., H. L. Sternbacha 2, 30-394, Kraków, Poland
| | - Mariusz Milik
- Ryvu Therapeutics S.A., H. L. Sternbacha 2, 30-394, Kraków, Poland
| | | | - Eliza Majewska
- Ryvu Therapeutics S.A., H. L. Sternbacha 2, 30-394, Kraków, Poland
| | - Kazimiera Pyśniak
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781, Warsaw, Poland
| | - Urszula Wójcik-Trechcińska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781, Warsaw, Poland
| | | | | | - Jerzy Ostrowski
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781, Warsaw, Poland; Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781, Warsaw, Poland
| | - Tomasz Rzymski
- Ryvu Therapeutics S.A., H. L. Sternbacha 2, 30-394, Kraków, Poland
| | - Michal Mikula
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781, Warsaw, Poland.
| |
Collapse
|
30
|
Chen LC, Huang HL, HuangFu WC, Yen SC, Ngo ST, Wu YW, Lin TE, Sung TY, Lien ST, Tseng HJ, Pan SL, Huang WJ, Hsu KC. Biological Evaluation of Selected Flavonoids as Inhibitors of MNKs Targeting Acute Myeloid Leukemia. JOURNAL OF NATURAL PRODUCTS 2020; 83:2967-2975. [PMID: 33026809 DOI: 10.1021/acs.jnatprod.0c00516] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Excessive eIF4E phosphorylation by mitogen-activated protein kinase (MAPK)-interacting kinases 1 and 2 (MNK1 and MNK2; collectively, MNKs) has been associated with oncogenesis. The overexpression of eIF4E in acute myeloid leukemia (AML) is related to cancer cell growth and survival. Thus, the inhibition of MNKs and eIF4E phosphorylation are potential therapeutic strategies for AML. Herein, a structure-based virtual screening approach was performed to identify potential MNK inhibitors from natural products. Three flavonoids, apigenin, hispidulin, and luteolin, showed MNK2 inhibitory activity with IC50 values of 308, 252, and 579 nM, respectively. A structure-activity relationship analysis was performed to disclose the molecular interactions. Furthermore, luteolin exhibited substantial inhibitory efficacy against MNK1 (IC50 = 179 nM). Experimental results from cellular assays showed that hispidulin and luteolin inhibited the growth of MOLM-13 and MV4-11 AML cells by downregulating eIF4E phosphorylation and arresting the cell cycle at the G0/G1 phase. Therefore, hispidulin and luteolin showed promising results as lead compounds for the potential treatment for AML.
Collapse
Affiliation(s)
- Liang-Chieh Chen
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong (Shenzhen), Shenzhen, Guangdong, People's Republic of China
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Han-Li Huang
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan
| | - Wei-Chun HuangFu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Shih-Chung Yen
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong (Shenzhen), Shenzhen, Guangdong, People's Republic of China
| | - Sin-Ting Ngo
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yi-Wen Wu
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Tony Eight Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Ying Sung
- Institute of Bioinformatics and Systems Biology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Ssu-Ting Lien
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hui-Ju Tseng
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Shiow-Lin Pan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wei-Jan Huang
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy, Taipei, Taiwan
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
31
|
Prabhu SA, Moussa O, Miller WH, del Rincón SV. The MNK1/2-eIF4E Axis as a Potential Therapeutic Target in Melanoma. Int J Mol Sci 2020; 21:E4055. [PMID: 32517051 PMCID: PMC7312468 DOI: 10.3390/ijms21114055] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022] Open
Abstract
: Melanoma is a type of skin cancer that originates in the pigment-producing cells of the body known as melanocytes. Most genetic aberrations in melanoma result in hyperactivation of the mitogen activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) pathways. We and others have shown that a specific protein synthesis pathway known as the MNK1/2-eIF4E axis is often dysregulated in cancer. The MNK1/2-eIF4E axis is a point of convergence for these signaling pathways that are commonly constitutively activated in melanoma. In this review we consider the functional implications of aberrant mRNA translation in melanoma and other malignancies. Moreover, we discuss the consequences of inhibiting the MNK1/2-eIF4E axis on the tumor and tumor-associated cells, and we provide important avenues for the utilization of this treatment modality in combination with other targeted and immune-based therapies. The past decade has seen the increased development of selective inhibitors to block the action of the MNK1/2-eIF4E pathway, which are predicted to be an effective therapy regardless of the melanoma subtype (e.g., cutaneous, acral, and mucosal).
Collapse
Affiliation(s)
- Sathyen A. Prabhu
- Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; (S.A.P.); (O.M.); (W.H.M.J.)
- Lady Davis Institute, Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC H3T 1E2, Canada
| | - Omar Moussa
- Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; (S.A.P.); (O.M.); (W.H.M.J.)
- Lady Davis Institute, Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC H3T 1E2, Canada
| | - Wilson H. Miller
- Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; (S.A.P.); (O.M.); (W.H.M.J.)
- Lady Davis Institute, Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC H3T 1E2, Canada
- Department of Oncology, McGill University, 845 Sherbrooke St W, Montreal, QC H3A 0G4, Canada
- McGill Centre for Translational Research in Cancer (MCTRC), McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC H3T 1E2, Canada
- Rossy Cancer Network, McGill University, 1980 Sherbrooke Ouest, #1101, Montreal, QC H3H 1E8, Canada
| | - Sonia V. del Rincón
- Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; (S.A.P.); (O.M.); (W.H.M.J.)
- Lady Davis Institute, Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC H3T 1E2, Canada
- Department of Oncology, McGill University, 845 Sherbrooke St W, Montreal, QC H3A 0G4, Canada
- McGill Centre for Translational Research in Cancer (MCTRC), McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC H3T 1E2, Canada
| |
Collapse
|
32
|
Schmidt S, Denk S, Wiegering A. Targeting Protein Synthesis in Colorectal Cancer. Cancers (Basel) 2020; 12:cancers12051298. [PMID: 32455578 PMCID: PMC7281195 DOI: 10.3390/cancers12051298] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022] Open
Abstract
Under physiological conditions, protein synthesis controls cell growth and survival and is strictly regulated. Deregulation of protein synthesis is a frequent event in cancer. The majority of mutations found in colorectal cancer (CRC), including alterations in the WNT pathway as well as activation of RAS/MAPK and PI3K/AKT and, subsequently, mTOR signaling, lead to deregulation of the translational machinery. Besides mutations in upstream signaling pathways, deregulation of global protein synthesis occurs through additional mechanisms including altered expression or activity of initiation and elongation factors (e.g., eIF4F, eIF2α/eIF2B, eEF2) as well as upregulation of components involved in ribosome biogenesis and factors that control the adaptation of translation in response to stress (e.g., GCN2). Therefore, influencing mechanisms that control mRNA translation may open a therapeutic window for CRC. Over the last decade, several potential therapeutic strategies targeting these alterations have been investigated and have shown promising results in cell lines, intestinal organoids, and mouse models. Despite these encouraging in vitro results, patients have not clinically benefited from those advances so far. In this review, we outline the mechanisms that lead to deregulated mRNA translation in CRC and highlight recent progress that has been made in developing therapeutic strategies that target these mechanisms for tumor therapy.
Collapse
Affiliation(s)
- Stefanie Schmidt
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany; (S.S.); (S.D.)
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97074 Würzburg, Germany
| | - Sarah Denk
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany; (S.S.); (S.D.)
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97074 Würzburg, Germany
| | - Armin Wiegering
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany; (S.S.); (S.D.)
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97074 Würzburg, Germany
- Department of Biochemistry and Molecular Biology, Comprehensive Cancer Center Mainfranken, University of Würzburg, 97074 Würzburg, Germany
- Correspondence: ; Tel.: +49-931-20138714
| |
Collapse
|
33
|
Pinto-Díez C, Ferreras-Martín R, Carrión-Marchante R, González VM, Martín ME. Deeping in the Role of the MAP-Kinases Interacting Kinases (MNKs) in Cancer. Int J Mol Sci 2020; 21:ijms21082967. [PMID: 32340135 PMCID: PMC7215568 DOI: 10.3390/ijms21082967] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 02/05/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK)-interacting kinases (MNKs) are involved in oncogenic transformation and can promote metastasis and tumor progression. In human cells, there are four MNKs isoforms (MNK1a/b and MNK2a/b), derived from two genes by alternative splicing. These kinases play an important role controlling the expression of specific proteins involved in cell cycle, cell survival and cell motility via eukaryotic initiation factor 4E (eIF4E) regulation, but also through other substrates such as heterogeneous nuclear ribonucleoprotein A1, polypyrimidine tract-binding protein-associated splicing factor and Sprouty 2. In this review, we provide an overview of the role of MNK in human cancers, describing the studies conducted to date to elucidate the mechanism involved in the action of MNKs, as well as the development of MNK inhibitors in different hematological cancers and solid tumors.
Collapse
|
34
|
Abdelaziz AM, Diab S, Islam S, Basnet SKC, Noll B, Li P, Mekonnen LB, Lu J, Albrecht H, Milne RW, Gerber C, Yu M, Wang S. Discovery of N-Phenyl-4-(1H-pyrrol-3-yl)pyrimidin-2-amine Derivatives as Potent Mnk2 Inhibitors: Design, Synthesis, SAR Analysis, and Evaluation of in vitro Anti-leukaemic Activity. Med Chem 2019; 15:602-623. [PMID: 30569866 DOI: 10.2174/1573406415666181219111511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/03/2018] [Accepted: 12/11/2018] [Indexed: 01/25/2023]
Abstract
BACKGROUND Aberrant expression of eukaryotic translation initiation factor 4E (eIF4E) is common in many types of cancer including acute myeloid leukaemia (AML). Phosphorylation of eIF4E by MAPK-interacting kinases (Mnks) is essential for the eIF4E-mediated oncogenic activity. As such, the pharmacological inhibition of Mnks can be an effective strategy for the treatment of cancer. METHODS A series of N-phenyl-4-(1H-pyrrol-3-yl)pyrimidin-2-amine derivatives was designed and synthesised. The Mnk inhibitory activity of these derivatives as well as their anti-proliferative activity against MV4-11 AML cells was determined. RESULTS These compounds were identified as potent Mnk2 inhibitors. Most of them demonstrated potent anti-proliferative activity against MV4-11 AML cells. The cellular mechanistic studies of the representative inhibitors revealed that they reduced the level of phosphorylated eIF4E and induced apoptosis by down-regulating the anti-apoptotic protein myeloid cell leukaemia 1 (Mcl-1) and by cleaving poly(ADP-ribose)polymerase (PARP). The lead compound 7k possessed desirable pharmacokinetic properties and oral bioavailability. CONCLUSION This work proposes that exploration of the structural diversity in the context of Nphenyl- 4-(1H-pyrrol-3-yl)pyrimidin-2-amine would offer potent and selective Mnk inhibitors.
Collapse
Affiliation(s)
- Ahmed M Abdelaziz
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Sarah Diab
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Saiful Islam
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Sunita K C Basnet
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Benjamin Noll
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Peng Li
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Laychiluh B Mekonnen
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Jingfeng Lu
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Hugo Albrecht
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Robert W Milne
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Cobus Gerber
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Mingfeng Yu
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Shudong Wang
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| |
Collapse
|
35
|
Ramalingam S, Ramamurthy VP, Gediya LK, Murigi FN, Purushottamachar P, Huang W, Choi EY, Zhang Y, Vasaitis TS, Kane MA, Lapidus RG, Njar VCO. The Novel Mnk1/2 Degrader and Apoptosis Inducer VNLG-152 Potently Inhibits TNBC Tumor Growth and Metastasis. Cancers (Basel) 2019; 11:cancers11030299. [PMID: 30832411 PMCID: PMC6468747 DOI: 10.3390/cancers11030299] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 12/17/2022] Open
Abstract
Currently, there are no effective therapies for patients with triple-negative breast cancer (TNBC), an aggressive and highly metastatic disease. Activation of eukaryotic initiation factor 4E (eIF4E) by mitogen-activated protein kinase (MAPK)-interacting kinases 1 and 2 (Mnk1/2) play a critical role in the development, progression and metastasis of TNBC. Herein, we undertook a comprehensive study to evaluate the activity of a first-in-class Mnk1/2 protein degraders, racemic VNLG-152R and its two enantiomers (VNLG-152E1 and VNLG-152E2) in in vitro and in vivo models of TNBC. These studies enabled us to identify racemic VNLG-152R as the most efficacious Mnk1/2 degrader, superior to its pure enantiomers. By targeting Mnk1/2 protein degradation (activity), VNLG-152R potently inhibited both Mnk-eIF4E and mTORC1 signaling pathways and strongly regulated downstream factors involved in cell cycle regulation, apoptosis, pro-inflammatory cytokines/chemokines secretion, epithelial-mesenchymal transition (EMT) and metastasis. Most importantly, orally bioavailable VNLG-152R exhibited remarkable antitumor (91 to 100% growth inhibition) and antimetastatic (~80% inhibition) activities against cell line and patient-derived TNBC xenograft models, with no apparent host toxicity. Collectively, these studies demonstrate that targeting Mnk-eIF4E/mTORC1 signaling with a potent Mnk1/2 degrader, VNLG-152R, is a novel therapeutic strategy that can be developed as monotherapy for the effective treatment of patients with primary/metastatic TNBC.
Collapse
Affiliation(s)
- Senthilmurugan Ramalingam
- Department of Pharmacology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA.
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA.
| | - Vidya P Ramamurthy
- Department of Pharmacology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA.
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA.
| | - Lalji K Gediya
- Department of Pharmacology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA.
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA.
| | - Francis N Murigi
- Department of Pharmacology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA.
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA.
| | - Puranik Purushottamachar
- Department of Pharmacology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA.
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA.
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201-1559, USA.
| | - Eun Yong Choi
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA.
| | - Yuji Zhang
- Division of Biostatistics and Bioinformatics, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201-1559, USA.
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Tadas S Vasaitis
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, 207 Somerset Hall, Princess Anne, MD 21853, USA.
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201-1559, USA.
| | - Rena G Lapidus
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA.
| | - Vincent C O Njar
- Department of Pharmacology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA.
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA.
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA.
| |
Collapse
|
36
|
Liu K, He B, Xu J, Li Y, Guo C, Cai Q, Wang S. miR-483-5p Targets MKNK1 to Suppress Wilms' Tumor Cell Proliferation and Apoptosis In Vitro and In Vivo. Med Sci Monit 2019; 25:1459-1468. [PMID: 30798328 PMCID: PMC6398281 DOI: 10.12659/msm.913005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Background Wilms’ tumor (WT) is the most common type of renal tumor in children and it has high mortality rates. MicroRNAs (miRNAs) are important regulators of cellular differentiation processes that have been discovered to contribute to the development of various kinds of tumors. Material/Methods The Wilms’ tumor tissues and adjacent tissues were obtained from 28 patients to quantity miR-483-5p expression level. The miR-483-5p mimics and scrambles were transfected into the human kidney WT cell line GHINK-1 to evaluate the effect of miR-483-5p on Wilms’ tumor cell proliferation and apoptosis in vitro. A total of 18 female BALB/c nu/nu mice were used to further confirm how miR-483-5p affects Wilms’ tumor in vivo. Results In the present study, miR-483-5p was identified to be downregulated in Wilms’ tumor tissues compared with the normal adjacent tissues. Additionally, low expression of mir-483-5p was significantly correlated with unfavorable histology subtypes, lymphatic metastasis, and late clinical stage (stage III and IV). Overexpression of miR-483-5p inhibited the proliferation and colony formation of GHINK-1 (Wilms’ tumor) cells compared with the control group due to enhanced cell apoptosis. Furthermore, miR-483-5p upregulated the protein expression level of caspase-3. Finally, MAP kinase-interacting serine/threonine-protein kinase 1 was identified as a direct target of miR-483-5p, which was confirmed by luciferase reporter assay and Western blotting. Conclusions MiR-483-5p suppressed WT cell proliferation via inducing apoptosis through targeting MKNK1. This may provide novel insights into the mechanisms underlying WT and a potential therapeutic candidate for the treatment of WT in the future.
Collapse
Affiliation(s)
- Kai Liu
- Department of Pediatrics, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| | - Bingsen He
- Department of Pediatrics, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| | - Jiang Xu
- Department of Pediatrics, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| | - Yang Li
- Department of Pediatrics, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| | - Cheng Guo
- Department of Pediatrics, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| | - Qinhui Cai
- Department of Pediatrics, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| | - Shuya Wang
- Department of Rheumatology and Immune Disease, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| |
Collapse
|
37
|
Yuan X, Wu H, Bu H, Zheng P, Zhou J, Zhang H. Design, synthesis and biological evaluation of pyridone-aminal derivatives as MNK1/2 inhibitors. Bioorg Med Chem 2019; 27:1211-1225. [PMID: 30824167 DOI: 10.1016/j.bmc.2019.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/24/2019] [Accepted: 02/02/2019] [Indexed: 11/27/2022]
Abstract
Excessive phosphorylation of eukaryotic translation initiation factor 4E (eIF4E) plays a major role in the dysregulation of mRNA translation and the activation of tumor cell signaling. eIF4E is exclusively phosphorylated by mitogen-activated protein kinase interacting kinases 1 and 2 (MNK1/2) on Ser209. So, MNK1/2 inhibitors could decrease the level of p-eIF4E and regulate tumor-associated signaling pathways. A series of pyridone-aminal derivatives were synthesized and evaluated as MNK1/2 inhibitors. Several compounds exhibited great inhibitory activity against MNK1/2 and selected compounds showed moderate to excellent anti-proliferative potency against hematologic cancer cell lines. In particular, compound 42i (MNK1 IC50 = 7.0 nM; MNK2 IC50 = 6.1 nM) proved to be the most potent compound against TMD-8 cell line with IC50 value of 0.91 μM. Furthermore, 42i could block the phosphorylation level of eIF4E in CT-26 cell line, and 42i inhibited the tumor growth of CT-26 allograft model significantly. These results indicated that compound 42i was a promising MNK1/2 inhibitor for the potent treatment of colon cancer.
Collapse
Affiliation(s)
- Xinrui Yuan
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Hanshu Wu
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Hong Bu
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Peiyuan Zheng
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Jinpei Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| | - Huibin Zhang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| |
Collapse
|
38
|
Xie J, Merrett JE, Jensen KB, Proud CG. The MAP kinase-interacting kinases (MNKs) as targets in oncology. Expert Opin Ther Targets 2019; 23:187-199. [DOI: 10.1080/14728222.2019.1571043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jianling Xie
- Nutrition & Metabolism, South Australian Health & Medical Research Institute, Adelaide, Australia
| | - James E. Merrett
- Nutrition & Metabolism, South Australian Health & Medical Research Institute, Adelaide, Australia
| | - Kirk B. Jensen
- Nutrition & Metabolism, South Australian Health & Medical Research Institute, Adelaide, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Christopher G. Proud
- Nutrition & Metabolism, South Australian Health & Medical Research Institute, Adelaide, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
39
|
Yuan X, Wu H, Bu H, Zhou J, Zhang H. Targeting the immunity protein kinases for immuno-oncology. Eur J Med Chem 2018; 163:413-427. [PMID: 30530193 DOI: 10.1016/j.ejmech.2018.11.072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 01/09/2023]
Abstract
With the rise of immuno-oncology, small-molecule modulators targeting immune system and inflammatory processes are becoming a research hotspot. This work mainly focuses on key kinases acting as central nodes in immune signaling pathways. Although over thirty small-molecule kinase inhibitors have been approved by FDA for the treatment of various cancers, only a few are associated with immuno-oncology. With the going deep of the research work, more and more immunity protein kinase inhibitors are approved for clinical trials to treat solid tumors and hematologic malignancies by FDA, which remain good prospects. Meanwhile, in-depth understanding of biological function of immunity protein kinases in immune system is pushing the field forward. This article focuses on the development of safe and effective small-molecule immunity protein kinase inhibitors and further work needs to keep the promises of these inhibitors for patients' welfare.
Collapse
Affiliation(s)
- Xinrui Yuan
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Hanshu Wu
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Hong Bu
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Jinpei Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.
| | - Huibin Zhang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.
| |
Collapse
|
40
|
Jin X, Merrett J, Tong S, Flower B, Xie J, Yu R, Tian S, Gao L, Zhao J, Wang X, Jiang T, Proud CG. Design, synthesis and activity of Mnk1 and Mnk2 selective inhibitors containing thieno[2,3-d]pyrimidine scaffold. Eur J Med Chem 2018; 162:735-751. [PMID: 30496989 DOI: 10.1016/j.ejmech.2018.10.070] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/25/2018] [Accepted: 10/31/2018] [Indexed: 01/10/2023]
Abstract
The mitogen-activated protein kinase-interacting kinases 1 and 2 (MNK1 and MNK2) phosphorylate eukaryotic initiation factor 4E (eIF4E) and play important roles in promoting tumorigenesis and metabolic disease. Thus, inhibiting these enzymes might be valuable in the treatment of such conditions. We designed and synthesized a series of 4-((4-fluoro-2-isopropoxyphenyl)amino)-5-methylthieno[2,3-d]pyrimidine derivatives, and evaluated their inhibitory activity against the MNKs. We found 15 compounds that were active as MNK inhibitors and that one in particular, designated MNK-7g, which was potent against MNK1 and substantially more potent against MNK2. The compound MNK-7g did not affect other signaling pathways tested and had no adverse effects on cell viability. As expected from earlier studies, MNK-7g also inhibited cell migration. Therefore, the compound MNK-7g, which forms an ionic bond with Asp226 in MNK2 and possesses a substituted aniline in a thieno[2,3-d] pyrimidine structure, is a promising starting point for the future development of novel drugs for treating or managing cancer and metabolic disease.
Collapse
Affiliation(s)
- Xin Jin
- School of Medicine and Pharmacy, Ocean University of China, and Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - James Merrett
- Nutrition & Metabolism, South Australian Health & Medical Research Institute, North Terrace, Adelaide, SA, 5000, Australia
| | - Sheng Tong
- School of Medicine and Pharmacy, Ocean University of China, and Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Bartholomew Flower
- Nutrition & Metabolism, South Australian Health & Medical Research Institute, North Terrace, Adelaide, SA, 5000, Australia
| | - Jianling Xie
- Nutrition & Metabolism, South Australian Health & Medical Research Institute, North Terrace, Adelaide, SA, 5000, Australia
| | - Rilei Yu
- School of Medicine and Pharmacy, Ocean University of China, and Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shuye Tian
- Nutrition & Metabolism, South Australian Health & Medical Research Institute, North Terrace, Adelaide, SA, 5000, Australia
| | - Ling Gao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, China
| | - Xuemin Wang
- Nutrition & Metabolism, South Australian Health & Medical Research Institute, North Terrace, Adelaide, SA, 5000, Australia; School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Tao Jiang
- School of Medicine and Pharmacy, Ocean University of China, and Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Christopher G Proud
- Nutrition & Metabolism, South Australian Health & Medical Research Institute, North Terrace, Adelaide, SA, 5000, Australia; School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|
41
|
Uttam S, Wong C, Price TJ, Khoutorsky A. eIF4E-Dependent Translational Control: A Central Mechanism for Regulation of Pain Plasticity. Front Genet 2018; 9:470. [PMID: 30459806 PMCID: PMC6232926 DOI: 10.3389/fgene.2018.00470] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/24/2018] [Indexed: 01/04/2023] Open
Abstract
Translational control of gene expression has emerged as a key mechanism in regulating different forms of long-lasting neuronal plasticity. Maladaptive plastic reorganization of peripheral and spinal nociceptive circuits underlies many chronic pain states and relies on new gene expression. Accordingly, downregulation of mRNA translation in primary afferents and spinal dorsal horn neurons inhibits tissue injury-induced sensitization of nociceptive pathways, supporting a central role for translation dysregulation in the development of persistent pain. Translation is primarily regulated at the initiation stage via the coordinated activity of translation initiation factors. The mRNA cap-binding protein, eukaryotic translation initiation factor 4E (eIF4E), is involved in the recruitment of the ribosome to the mRNA cap structure, playing a central role in the regulation of translation initiation. eIF4E integrates inputs from the mTOR and ERK signaling pathways, both of which are activated in numerous painful conditions to regulate the translation of a subset of mRNAs. Many of these mRNAs are involved in the control of cell growth, proliferation, and neuroplasticity. However, the full repertoire of eIF4E-dependent mRNAs in the nervous system and their translation regulatory mechanisms remain largely unknown. In this review, we summarize the current evidence for the role of eIF4E-dependent translational control in the sensitization of pain circuits and present pharmacological approaches to target these mechanisms. Understanding eIF4E-dependent translational control mechanisms and their roles in aberrant plasticity of nociceptive circuits might reveal novel therapeutic targets to treat persistent pain states.
Collapse
Affiliation(s)
- Sonali Uttam
- Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - Calvin Wong
- Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - Theodore J. Price
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
- Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, TX, United States
| | - Arkady Khoutorsky
- Department of Anesthesia, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| |
Collapse
|
42
|
Tian S, Wang X, Proud CG. Oncogenic MNK signalling regulates the metastasis suppressor NDRG1. Oncotarget 2018; 8:46121-46135. [PMID: 28545025 PMCID: PMC5542254 DOI: 10.18632/oncotarget.17555] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/28/2017] [Indexed: 12/18/2022] Open
Abstract
The protein N-myc down-regulated gene 1 (NDRG1) represses tumour metastasis. It is phosphorylated at several sites by serum and glucocorticoid-regulated kinase 1 (SGK1). Here we show that NDRG1 is also regulated by the oncogenic MAP kinase-interacting kinase (MNK) pathway, a target for cancer therapy.Inhibiting MNKs increases the expression of NDRG1 protein and mRNA in breast cancer cells. MNK inhibition also decreases the phosphorylation of NDRG1. Phosphorylation of NDRG1 is reduced in cells lacking MNK1, but not MNK2-knockout cells, indicating that NDRG1 phosphorylation is a specific target for MNK1. However, MNK1 cannot directly phosphorylate NDRG1 in vitro, indicating that additional signalling connections are involved. Taken together, our data indicate that MNK signaling regulates NDRG1 at transcriptional and post-translational levels.We show that SGK1 phosphorylates MNK1 at a conserved site, which represses its activity. NDRG1, SGK1 and the MNKs are implicated in cell migration and metastasis. As expected, knocking-down NDRG1 promoted cell migration. However, whereas MNK inhibition impairs these processes irrespective of NDRG1 levels, SGK inhibition only did so in NDRG1-depleted cells. Thus, MNKs and SGK affect migration/invasion through distinct mechanisms.Our data reveal several novel connections between signalling pathways important for tumour biology.
Collapse
Affiliation(s)
- Shuye Tian
- Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide SA5000, Australia.,School of Biological Sciences, University of Adelaide, Adelaide SA5005, Australia
| | - Xuemin Wang
- Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide SA5000, Australia.,School of Biological Sciences, University of Adelaide, Adelaide SA5005, Australia
| | - Christopher G Proud
- Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide SA5000, Australia.,School of Biological Sciences, University of Adelaide, Adelaide SA5005, Australia
| |
Collapse
|
43
|
Reich SH, Sprengeler PA, Chiang GG, Appleman JR, Chen J, Clarine J, Eam B, Ernst JT, Han Q, Goel VK, Han EZR, Huang V, Hung INJ, Jemison A, Jessen KA, Molter J, Murphy D, Neal M, Parker GS, Shaghafi M, Sperry S, Staunton J, Stumpf CR, Thompson PA, Tran C, Webber SE, Wegerski CJ, Zheng H, Webster KR. Structure-based Design of Pyridone-Aminal eFT508 Targeting Dysregulated Translation by Selective Mitogen-activated Protein Kinase Interacting Kinases 1 and 2 (MNK1/2) Inhibition. J Med Chem 2018. [PMID: 29526098 DOI: 10.1021/acs.jmedchem.7b01795] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Dysregulated translation of mRNA plays a major role in tumorigenesis. Mitogen-activated protein kinase interacting kinases (MNK)1/2 are key regulators of mRNA translation integrating signals from oncogenic and immune signaling pathways through phosphorylation of eIF4E and other mRNA binding proteins. Modulation of these key effector proteins regulates mRNA, which controls tumor/stromal cell signaling. Compound 23 (eFT508), an exquisitely selective, potent dual MNK1/2 inhibitor, was designed to assess the potential for control of oncogene signaling at the level of mRNA translation. The crystal structure-guided design leverages stereoelectronic interactions unique to MNK culminating in a novel pyridone-aminal structure described for the first time in the kinase literature. Compound 23 has potent in vivo antitumor activity in models of diffuse large cell B-cell lymphoma and solid tumors, suggesting that controlling dysregulated translation has real therapeutic potential. Compound 23 is currently being evaluated in Phase 2 clinical trials in solid tumors and lymphoma. Compound 23 is the first highly selective dual MNK inhibitor targeting dysregulated translation being assessed clinically.
Collapse
Affiliation(s)
- Siegfried H Reich
- eFFECTOR Therapeutics , 11180 Roselle Street , San Diego , California 92121 , United States
| | - Paul A Sprengeler
- eFFECTOR Therapeutics , 11180 Roselle Street , San Diego , California 92121 , United States
| | - Gary G Chiang
- eFFECTOR Therapeutics , 11180 Roselle Street , San Diego , California 92121 , United States
| | - James R Appleman
- Primmune Therapeutics, Inc. , 3210 Merryfield Row , San Diego , California 92121 , United States
| | - Joan Chen
- eFFECTOR Therapeutics , 11180 Roselle Street , San Diego , California 92121 , United States
| | - Jeff Clarine
- eFFECTOR Therapeutics , 11180 Roselle Street , San Diego , California 92121 , United States
| | - Boreth Eam
- eFFECTOR Therapeutics , 11180 Roselle Street , San Diego , California 92121 , United States
| | - Justin T Ernst
- eFFECTOR Therapeutics , 11180 Roselle Street , San Diego , California 92121 , United States
| | - Qing Han
- Structure-Based Design, Inc. , 6048 Cornerstone Court West #D , San Diego , California 92121 , United States
| | - Vikas K Goel
- eFFECTOR Therapeutics , 11180 Roselle Street , San Diego , California 92121 , United States
| | - Edward Z R Han
- Structure-Based Design, Inc. , 6048 Cornerstone Court West #D , San Diego , California 92121 , United States
| | - Vera Huang
- Molecular Stethoscope , 10835 Road to the Cure #100 , San Diego , California 92121 , United States
| | - Ivy N J Hung
- eFFECTOR Therapeutics , 11180 Roselle Street , San Diego , California 92121 , United States
| | - Adrianna Jemison
- Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104 , United States
| | - Katti A Jessen
- Oncternal Therapeutics , 3525 Del Mar Heights Road #821 , San Diego , California 92130 , United States
| | - Jolene Molter
- eFFECTOR Therapeutics , 11180 Roselle Street , San Diego , California 92121 , United States
| | - Douglas Murphy
- Molcentrics, Inc. , 11835 Carmel Mountain Road #1304-110 , San Diego , California 92128 , United States
| | - Melissa Neal
- eFFECTOR Therapeutics , 11180 Roselle Street , San Diego , California 92121 , United States
| | - Gregory S Parker
- eFFECTOR Therapeutics , 11180 Roselle Street , San Diego , California 92121 , United States
| | - Michael Shaghafi
- Abide Therapeutics , 10835 Road to the Cure, Suite 250 , San Diego , California 92121 , United States
| | - Samuel Sperry
- eFFECTOR Therapeutics , 11180 Roselle Street , San Diego , California 92121 , United States
| | - Jocelyn Staunton
- eFFECTOR Therapeutics , 11180 Roselle Street , San Diego , California 92121 , United States
| | - Craig R Stumpf
- eFFECTOR Therapeutics , 11180 Roselle Street , San Diego , California 92121 , United States
| | - Peggy A Thompson
- eFFECTOR Therapeutics , 11180 Roselle Street , San Diego , California 92121 , United States
| | - Chinh Tran
- eFFECTOR Therapeutics , 11180 Roselle Street , San Diego , California 92121 , United States
| | - Stephen E Webber
- Polaris Pharmaceuticals , 9373 Towne Centre Drive #150 , San Diego , California 92121 , United States
| | - Christopher J Wegerski
- eFFECTOR Therapeutics , 11180 Roselle Street , San Diego , California 92121 , United States
| | - Hong Zheng
- Structure-Based Design, Inc. , 6048 Cornerstone Court West #D , San Diego , California 92121 , United States
| | - Kevin R Webster
- eFFECTOR Therapeutics , 11180 Roselle Street , San Diego , California 92121 , United States
| |
Collapse
|
44
|
Wang X, Wang Y, Zhang Q, Zhuang H, Chen B. MAP Kinase-Interacting Kinase 1 Promotes Proliferation and Invasion of Hepatocellular Carcinoma and Is an Unfavorable Prognostic Biomarker. Med Sci Monit 2018; 24:1759-1767. [PMID: 29576605 PMCID: PMC5885772 DOI: 10.12659/msm.909012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) accounts for one of the most prevalent tumor types in the world. The MAP kinase-interacting kinase 1 (MNK1) functions downstream of MAP kinases such as p38 and ERK, and its potential role in cancer development is being uncovered. The aim of this study was to investigate the expression and function of MNK1 in HCC. Material/Methods Immunohistochemical staining and quantitative PCR were performed to explore the expression of MNK1 in both HCC tissues and adjacent normal liver tissues. Chi-square test, univariate analysis, and multivariate analysis were conducted to statistically evaluate clinical significance of MNK1 in HCC. Proliferation, migration, and invasion capacities of HCC cells were assessed after overexpressing or silencing MNK1. Results Both the RNA and protein levels of MNK1 were upregulated in HCC tissues compared to normal liver tissues. High expression of MNK1 was correlated with advanced tumor stage and poor overall survival. Moreover, MNK1 was identified as a novel independent prognostic factor for HCC patients. Cellular studies showed that MNK1 can enhance the proliferation, migration, and invasion capacities of HCC cells, thereby promoting tumor progression. Conclusions High expression of MNK1 is frequent in HCC tissues, which promotes tumor proliferation and invasion, and is correlated with a poor overall survival. Targeting MNK1 may be a novel direction for the drug development of HCC therapy.
Collapse
Affiliation(s)
- Xujing Wang
- Department of Hepatopancreatobiliary Surgery, East Hospital Affiliated to Tongji University in Shanghai, Shanghai, China (mainland)
| | - Yongkun Wang
- Department of Hepatopancreatobiliary Surgery, East Hospital Affiliated to Tongji University in Shanghai, Shanghai, China (mainland)
| | - Qiqi Zhang
- Department of Hepatopancreatobiliary Surgery, East Hospital Affiliated to Tongji University in Shanghai, Shanghai, China (mainland)
| | - Huiren Zhuang
- Department of Hepatopancreatobiliary Surgery, East Hospital Affiliated to Tongji University in Shanghai, Shanghai, China (mainland)
| | - Bo Chen
- Department of Hepatopancreatobiliary Surgery, East Hospital Affiliated to Tongji University in Shanghai, Shanghai, China (mainland)
| |
Collapse
|
45
|
MAP kinase-interacting serine/threonine kinase 2 promotes proliferation, metastasis, and predicts poor prognosis in non-small cell lung cancer. Sci Rep 2017; 7:10612. [PMID: 28878291 PMCID: PMC5587555 DOI: 10.1038/s41598-017-10397-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/07/2017] [Indexed: 01/04/2023] Open
Abstract
We hypothesized that MAP kinase-interacting serine/threonine kinase 2 (MNK2) may contribute to non-small cell lung cancer (NSCLC) development, and serve as a new therapeutic target. Immunohistochemical staining evaluated the correlation between MNK2 expression and clinicopathological features in 367 NSCLC cancer tissues. We determined the effects of MNK2 silencing in NSCLC cell lines in vitro and in vivo. RT-PCR and western blotting was used to examine the impact of MNK2 on ERK and AKT pathways. MNK2 was overexpressed in NSCLC cell lines and tumor tissues. Patients with MNK2 overexpression had lower OS rates (P < 0.001). High expression of MNK2 was correlated with lymph node metastasis (P = 0.008). MNK2 functioned as an independent prognostic factor for poor survival in patients with NSCLC (P = 0.003). MNK2 down-regulation inhibited proliferation, migration and invasion in vitro (P < 0.001), and reduced tumor growth and invasion in nude mice (P < 0.05). MNK2 enhanced phosphorylation of eIF4E, a downstream target of ERK and AKT pathways, which promoted NSCLC proliferation and invasion. We conclude that MNK2 overexpression in NSCLC is associated with proliferation, migration, invasion, and lower survival rates in patients via the phosphorylated eIF4E-mediated signaling pathway.
Collapse
|