1
|
Gaimari A, De Lucia A, Nicolini F, Mazzotti L, Maltoni R, Rughi G, Zurlo M, Marchesini M, Juan M, Parras D, Cerchione C, Martinelli G, Bravaccini S, Tettamanti S, Pasetto A, Pasini L, Magnoni C, Gazzola L, Borges de Souza P, Mazza M. Significant Advancements and Evolutions in Chimeric Antigen Receptor Design. Int J Mol Sci 2024; 25:12201. [PMID: 39596267 PMCID: PMC11595069 DOI: 10.3390/ijms252212201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Recent times have witnessed remarkable progress in cancer immunotherapy, drastically changing the cancer treatment landscape. Among the various immunotherapeutic approaches, adoptive cell therapy (ACT), particularly chimeric antigen receptor (CAR) T cell therapy, has emerged as a promising strategy to tackle cancer. CAR-T cells are genetically engineered T cells with synthetic receptors capable of recognising and targeting tumour-specific or tumour-associated antigens. By leveraging the intrinsic cytotoxicity of T cells and enhancing their tumour-targeting specificity, CAR-T cell therapy holds immense potential in achieving long-term remission for cancer patients. However, challenges such as antigen escape and cytokine release syndrome underscore the need for the continued optimisation and refinement of CAR-T cell therapy. Here, we report on the challenges of CAR-T cell therapies and on the efforts focused on innovative CAR design, on diverse therapeutic strategies, and on future directions for this emerging and fast-growing field. The review highlights the significant advances and changes in CAR-T cell therapy, focusing on the design and function of CAR constructs, systematically categorising the different CARs based on their structures and concepts to guide researchers interested in ACT through an ever-changing and complex scenario. UNIVERSAL CARs, engineered to recognise multiple tumour antigens simultaneously, DUAL CARs, and SUPRA CARs are some of the most advanced instances. Non-molecular variant categories including CARs capable of secreting enzymes, such as catalase to reduce oxidative stress in situ, and heparanase to promote infiltration by degrading the extracellular matrix, are also explained. Additionally, we report on CARs influenced or activated by external stimuli like light, heat, oxygen, or nanomaterials. Those strategies and improved CAR constructs in combination with further genetic engineering through CRISPR/Cas9- and TALEN-based approaches for genome editing will pave the way for successful clinical applications that today are just starting to scratch the surface. The frontier lies in bringing those approaches into clinical assessment, aiming for more regulated, safer, and effective CAR-T therapies for cancer patients.
Collapse
MESH Headings
- Humans
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Immunotherapy, Adoptive/methods
- Neoplasms/therapy
- Neoplasms/immunology
- Animals
- Antigens, Neoplasm/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Genetic Engineering
Collapse
Affiliation(s)
- Anna Gaimari
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Anna De Lucia
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Fabio Nicolini
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Lucia Mazzotti
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Roberta Maltoni
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Giovanna Rughi
- Centro Trial Oncoematologico, Department of “Onco-Ematologia e Terapia Cellulare e Genica Bambino” Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Matteo Zurlo
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Matteo Marchesini
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Manel Juan
- Department of Immunology, Centre de Diagnòstic Biomèdic, Hospital Clínic of Barcelona, 08036 Barcelona, Spain;
| | - Daniel Parras
- Institut D’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
| | - Claudio Cerchione
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Giovanni Martinelli
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Sara Bravaccini
- Faculty of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy;
| | - Sarah Tettamanti
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università Milano Bicocca, Osp. San Gerardo/Fondazione MBBM, 20900 Monza, Italy;
| | | | - Luigi Pasini
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Chiara Magnoni
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40127 Bologna, Italy
| | - Luca Gazzola
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40127 Bologna, Italy
| | - Patricia Borges de Souza
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Massimiliano Mazza
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| |
Collapse
|
2
|
Wittling MC, Cole AC, Brammer B, Diatikar KG, Schmitt NC, Paulos CM. Strategies for Improving CAR T Cell Persistence in Solid Tumors. Cancers (Basel) 2024; 16:2858. [PMID: 39199630 PMCID: PMC11352972 DOI: 10.3390/cancers16162858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
CAR T cells require optimization to be effective in patients with solid tumors. There are many barriers affecting their ability to succeed. One barrier is persistence, as to achieve an optimal antitumor response, infused CAR T cells must engraft and persist. This singular variable is impacted by a multitude of factors-the CAR T cell design, lymphodepletion regimen used, expansion method to generate the T cell product, and more. Additionally, external agents can be utilized to augment CAR T cells, such as the addition of novel cytokines, pharmaceutical drugs that bolster memory formation, or other agents during either the ex vivo expansion process or after CAR T cell infusion to support them in the oppressive tumor microenvironment. This review highlights many strategies being used to optimize T cell persistence as well as future directions for improving the persistence of infused cells.
Collapse
Affiliation(s)
- Megen C. Wittling
- Department of Surgery/Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
- School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Anna C. Cole
- Department of Surgery/Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | - Brianna Brammer
- School of Medicine, Emory University, Atlanta, GA 30322, USA
- Department of Otolaryngology, Emory University, Atlanta, GA 30322, USA
| | - Kailey G. Diatikar
- Department of Surgery/Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | - Nicole C. Schmitt
- Department of Otolaryngology, Emory University, Atlanta, GA 30322, USA
| | - Chrystal M. Paulos
- Department of Surgery/Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
3
|
De Castro V, Galaine J, Loyon R, Godet Y. CRISPR-Cas gene knockouts to optimize engineered T cells for cancer immunotherapy. Cancer Gene Ther 2024; 31:1124-1134. [PMID: 38609574 DOI: 10.1038/s41417-024-00771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
While CAR-T and tgTCR-T therapies have exhibited noteworthy and promising outcomes in hematologic and solid tumors respectively, a set of distinct challenges remains. Consequently, the quest for novel strategies has become imperative to safeguard and more effectively release the full functions of engineered T cells. These factors are intricately linked to the success of adoptive cell therapy. Recently, CRISPR-based technologies have emerged as a major breakthrough for maintaining T cell functions. These technologies have allowed the discovery of T cells' negative regulators such as specific cell-surface receptors, cell-signaling proteins, and transcription factors that are involved in the development or maintenance of T cell dysfunction. By employing a CRISPR-genic invalidation approach to target these negative regulators, it has become possible to prevent the emergence of hypofunctional T cells. This review revisits the establishment of the dysfunctional profile of T cells before delving into a comprehensive summary of recent CRISPR-gene invalidations, with each invalidation contributing to the enhancement of engineered T cells' antitumor capacities. The narrative unfolds as we explore how these advancements were discovered and identified, marking a significant advancement in the pursuit of superior adoptive cell therapy.
Collapse
Affiliation(s)
- Valentine De Castro
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000, Besançon, France
| | - Jeanne Galaine
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000, Besançon, France
| | - Romain Loyon
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000, Besançon, France
| | - Yann Godet
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000, Besançon, France.
| |
Collapse
|
4
|
Utkarsh K, Srivastava N, Kumar S, Khan A, Dagar G, Kumar M, Singh M, Haque S. CAR-T cell therapy: a game-changer in cancer treatment and beyond. Clin Transl Oncol 2024; 26:1300-1318. [PMID: 38244129 DOI: 10.1007/s12094-023-03368-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/04/2023] [Indexed: 01/22/2024]
Abstract
In recent years, cancer has become one of the primary causes of mortality, approximately 10 million deaths worldwide each year. The most advanced, chimeric antigen receptor (CAR) T cell immunotherapy has turned out as a promising treatment for cancer. CAR-T cell therapy involves the genetic modification of T cells obtained from the patient's blood, and infusion back to the patients. CAR-T cell immunotherapy has led to a significant improvement in the remission rates of hematological cancers. CAR-T cell therapy presently limited to hematological cancers, there are ongoing efforts to develop additional CAR constructs such as bispecific CAR, tandem CAR, inhibitory CAR, combined antigens, CRISPR gene-editing, and nanoparticle delivery. With these advancements, CAR-T cell therapy holds promise concerning potential to improve upon traditional cancer treatments such as chemotherapy and radiation while reducing associated toxicities. This review covers recent advances and advantages of CAR-T cell immunotherapy.
Collapse
Affiliation(s)
- Kumar Utkarsh
- Department of Microbiology and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Namita Srivastava
- Department of Microbiology and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Sachin Kumar
- Department of Microbiology and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Azhar Khan
- Faculty of Applied Science and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Gunjan Dagar
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Mukesh Kumar
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Mayank Singh
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Shabirul Haque
- Department of Autoimmune Diseases, Feinstein Institute for Medical Research, Northwell Health, 350, Community Drive, Manhasset, NY, 11030, USA.
| |
Collapse
|
5
|
Mokhtari Z, Seyedhashemi E, Eftekhari M, Ghasemi S, Sabouri A, Abbaszadeh-Goudarzi K, Abuali M, Azimi H, Kesharwani P, Pourghadamyari H, Sahebkar A. Enhancement of cisplatin-induced apoptosis by saffron in human lung cancer cells. J Trace Elem Med Biol 2023; 79:127229. [PMID: 37315393 DOI: 10.1016/j.jtemb.2023.127229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Cisplatin is a prevalent chemotherapeutic agent, and it has been used extensively to treat lung cancer. However, its clinical efficacy is hampered by its safety profile and dose-limiting toxicity. Saffron is a natural product that has shown significant anticancer effects. The combination treatment of saffron with chemotherapeutic agents has been considered a new strategy. METHODS Herein, saffron extract as a natural anticancer substance was combined with cisplatin to assess their combined efficacy against tumor development in vitro. In A549 and QU-DB cell lines, the combined effect of the saffron extract with cisplatin led to a significant reduction in cell viability as compared to cisplatin alone. RESULTS After 48 h incubation a considerable reduction in ROS levels in the QU-DB cell line upon treatment with cisplatin in the presence of saffron extract in comparison with cells treated with cisplatin alone. Furthermore, apoptosis increased significantly when in cells treated with cisplatin in combination with saffron extract compared to cisplatin alone. CONCLUSION Our data establish that the combination of saffron extract as a natural anticancer substance with cisplatin leads to improved cell toxicity of cisplatin as an anticancer agent. Therefore, the saffron extract could be potentially used as an additive to enable a reduction in cisplatin dosages and its side effects.
Collapse
Affiliation(s)
- Zeinab Mokhtari
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Effat Seyedhashemi
- Department of Genetic, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Maryam Eftekhari
- Department of Genetic, Hormozgan University of Medical Science, Hormozegan, Iran
| | - Shiva Ghasemi
- Department of Molecular Genetics, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Akram Sabouri
- Department of Microbiology, East Branch of Payamnoor University, Tehran, Iran
| | | | - Morteza Abuali
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran, University of Medical Sciences, Tehran, Iran
| | - Hanie Azimi
- School of Advanced Sciences and Technology, Islamic Azad University of Tehran Medical Branch, Tehran, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India
| | - Hossein Pourghadamyari
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran; Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical hysiology Sciences, Kerman University of Medical Sciences, Kerman, Iran; Department of Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Srour SA, Akin S. Chimeric Antigen Receptor T-Cell Therapy for Solid Tumors: The Past and the Future. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2023; 6:19-30. [PMID: 36751657 PMCID: PMC9888521 DOI: 10.36401/jipo-22-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 06/18/2023]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is the new standard treatment for various indications in patients with advanced hematologic malignancies. Despite the several preclinical and early phase clinical trials, the overall clinical experience has been disappointing when applying this innovative therapy in solid tumors. The failure of CAR T-cell therapy and its limited antitumor activity in solid tumors have been attributed to several mechanisms, including tumor antigen heterogeneity, the hostile tumor microenvironment and poor trafficking of CAR T cells into tumor sites, and the unacceptable toxicities in some settings, among others. However, remarkable improvements have been made in understanding many of these failure mechanisms for which several emerging novel approaches are being applied to overcome these challenges. In this review, after a brief historic background for immunotherapy in solid tumors, we highlight the recent developments achieved in CAR T-cell designs, summarize completed clinical trials, and discuss current challenges facing CAR T-cell therapy and the suggested strategies to overcome these barriers.
Collapse
Affiliation(s)
- Samer A. Srour
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Serkan Akin
- Department of Medical Oncology, Hacettepe University Cancer Institute, Hacettepe University, Ankara, Turkey
| |
Collapse
|
7
|
Wu Y, Huang Z, Harrison R, Liu L, Zhu L, Situ Y, Wang Y. Engineering CAR T cells for enhanced efficacy and safety. APL Bioeng 2022; 6:011502. [PMID: 35071966 PMCID: PMC8769768 DOI: 10.1063/5.0073746] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/22/2021] [Indexed: 01/18/2023] Open
Abstract
Despite its success in treating hematologic malignancies, chimeric antigen receptor (CAR) T cell therapy faces two major challenges which hinder its broader applications: the limited effectiveness against solid tumors and the nonspecific toxicities. To address these concerns, researchers have used synthetic biology approaches to develop optimization strategies. In this review, we discuss recent improvements on the CAR and other non-CAR molecules aimed to enhance CAR T cell efficacy and safety. We also highlight the development of different types of inducible CAR T cells that can be controlled by environmental cues and/or external stimuli. These advancements are bringing CAR T therapy one step closer to safer and wider applications, especially for solid tumors.
Collapse
Affiliation(s)
- Yiqian Wu
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Ziliang Huang
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Reed Harrison
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Longwei Liu
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Linshan Zhu
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Yinglin Situ
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Yingxiao Wang
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
8
|
Evaluation of the Effect of Crocin on Doxorubicin-Induced Cardiotoxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1328:143-153. [PMID: 34981476 DOI: 10.1007/978-3-030-73234-9_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite newer advances in cancer treatment, chemotherapy is still one of the most widely used treatment strategies in this field. However, this treatment strategy faces major challenges. Doxorubicin (Dox) is an effective chemotherapeutic agent used to treat various cancers. However, several studies have shown that the use of Dox in therapeutic concentrations is associated with serious side effects, such as cardiac toxicity. The use of natural products in combination with chemotherapeutic agents to reduce side effects is a novel approach, and several studies have shown promising results. In this regard, we examined the effect of Crocin on doxorubicin-induced cardiotoxicity in rat and H9c2 cell line. The in vitro model on H9C2 cells and the in vivo models on rats were treated with doxorubicin. Cell viability, DNA damage, and apoptosis were measured in H9C2 cell line in the presence and absence of Crocin. Oxidative stress and various inflammatory parameters, as well as cardiac function tests, also were assessed in doxorubicin-induced cardiotoxicity animal model in the presence and absence of Crocin. Our results showed that Crocin can significantly decrease apoptosis in H9C2 cell line through a reduction in ROS production and DNA damages. Moreover, evaluation of the effect of Crocin on doxorubicin-induced cardiotoxicity animal model showed that Crocin also can significantly reduce oxidative stress and inflammatory parameters in the serum of the animals. Assessment of cardiac function revealed that Crocin has a significant protective effect against doxorubicin-induced cardiotoxicity in the animal model. Our data indicate that Crocin significantly attenuated doxorubicin-induced cardiotoxicity. Hence, Crocin could be potentially used as an adjuvant treatment in combination with Dox to reduce cardiotoxicity.
Collapse
|
9
|
Li X, Liu MJ, Mou N, Yang ZX, Wang J, Mu J, Zhu HB, Deng Q. Efficacy and safety of humanized CD19 CAR-T as a salvage therapy for recurrent CNSL of B-ALL following murine CD19 CAR-T cell therapy. Oncol Lett 2021; 22:788. [PMID: 34584566 PMCID: PMC8461760 DOI: 10.3892/ol.2021.13049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 02/19/2021] [Indexed: 12/30/2022] Open
Abstract
The present study aimed to compare the differences between the humanized CD19 chimeric antigen receptor (CAR)-T cell therapy and the murine CD19 CAR-T therapy in recurrent B-acute lymphoblastic leukemia (B-ALL). A 62-year-old male patient who had B-ALL (BCR/ABL+) for 4 years was diagnosed with relapsed central nervous system leukemia (CNSL). After several courses of high dose methotrexate combined with intrathecal chemotherapy, the patient received murine CD19 CAR-T therapy and achieved complete response (CR). The patient was diagnosed with relapsed CNSL again 15 months after his murine CD19 CAR-T therapy, and was therefore enrolled in the humanized CD19 CAR-T therapy. Subsequently, the present study aimed to compare murine and humanized CD19 CAR-T cells against Nalm-6 cells in vitro and in mice. The patient initially achieved CR from his murine CD19 CAR-T therapy with Grade 1 cytokine-release syndrome (CRS) and Grade 1 CAR-T cell-related encephalopathy syndrome (CRES). The patient then achieved CR again from his humanized CD19 CAR-T therapy with Grade 1 CRS and Grade 2 CRES. Peak levels of CD19 CAR-T cells were higher in humanized CD19 CAR-T therapy than those in murine CD19 CAR-T therapy 7 days after infusion in the peripheral blood, in bone marrow and in cerebrospinal fluid (CSF). The cytokine levels were higher in humanized CD19 CAR-T therapy than those in murine CD19 CAR-T therapy in the peripheral blood and in CSF. The cytotoxicity to Nalm-6 cells was higher in humanized CD19 CAR-T cells than that in murine CD19 CAR-T cells in vitro. In Nalm-6 BALB/c mice, the median survival time of mice in the murine CD19 CAR-T group was 35 days, while it was 43 days in the humanized CD19 CAR-T group. In conclusion, humanized CD19 CAR-T cell therapy had a better curative effect than that of murine CD19 CAR-T therapy, and may be used as a salvage treatment for recurrent B-ALL after treatment with murine CD19 CAR-T therapy.
Collapse
Affiliation(s)
- Xin Li
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Mei-Jing Liu
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, P.R. China.,Department of Hematology, The First Central Clinical College of Tianjin Medical University, Tianjin 300192, P.R. China
| | - Nan Mou
- Shanghai Genbase Biotechnology Co., Ltd., Tianjin 201210, P.R. China
| | - Zhen-Xing Yang
- Shanghai Genbase Biotechnology Co., Ltd., Tianjin 201210, P.R. China
| | - Jia Wang
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Juan Mu
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Hai-Bo Zhu
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Qi Deng
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| |
Collapse
|
10
|
Hosseini SS, Aghaiypour Kolyani K, Rafiei Tabatabaei R, Goudarzi H, Akhavan Sepahi A, Salemi M. In silico prediction of B and T cell epitopes based on NDV fusion protein for vaccine development against Newcastle disease virus. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2021; 12:157-165. [PMID: 34345381 PMCID: PMC8328245 DOI: 10.30466/vrf.2019.98625.2351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 05/07/2019] [Indexed: 11/24/2022]
Abstract
Newcastle disease (ND) is known as the most common diseases of economic importance worldwide. Vaccination against virulent strains of Newcastle disease virus (NDV) has failed during some outbreaks. Here, we aimed to assess the epitopes of NDV fusion protein as targets for a peptide-based vaccine. To explore the most antigenic epitopes on the F protein, we retrieved virulent strains of genotype VII from National Center for Biotechnology Information (NCBI). Linear and conformational B-cell epitopes were identified. Moreover, T-cell epitopes with high and moderate binding affinities to human major histocompatibility complex (MHC) class I and class II alleles were predicted using bioinformatics tools. Subsequently, the overlapped epitopes of B-cell and MHC class I and MHC class II were determined. To validate our predictions, the best epitopes were docked, to chicken MHC class I (B-F) alleles using the HADDOCK flexible docking server. Seven ‘high ranked epitopes’ were identified. Among them, ‘LYCTRIVTF’ and ‘MRATYLETL’ showed the highest scores. The other five epitopes including LSGEFDATY, LTTPPYMALK, LYLTELTTV, DCIKITQQV and SIAATNEAV obtained very encouraging results as well. SIAATNEAV had been recognized as a neutralizing epitope of F protein using monoclonal antibodies before. Taken together, our results demonstrated that the identified epitopes needed to be tested by in vitro and in vivo experiments.
Collapse
Affiliation(s)
| | - Khosrow Aghaiypour Kolyani
- Department of Genomics and Genetic Engineering, Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Robab Rafiei Tabatabaei
- Department of Microbiology, Faculty of Basic Sciences, Islamic Azad University, Tehran North Branch, Tehran, Iran
| | - Hossein Goudarzi
- Central Laboratory Department, Razi Vaccine and Serum Research Institute Agricultural Research, AREEO, Karaj, Iran
| | - Abbas Akhavan Sepahi
- Department of Microbiology, Faculty of Science, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Salemi
- Department of Genomics and Genetic Engineering, Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
11
|
Tavakoli F, Khatami SS, Momeni F, Azadbakht J, Ghasemi F. Cervical Cancer Diagnosis: Insights into Biochemical Biomarkers and Imaging Techniques. Comb Chem High Throughput Screen 2021; 24:605-623. [PMID: 32875976 DOI: 10.2174/1386207323666200901101955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/14/2020] [Accepted: 08/06/2020] [Indexed: 11/22/2022]
Abstract
Cervical malignancy is known as one of the important cancers which is originated from cervix. This malignancy has been observed in women infected with papillomavirus who had regular oral contraceptives, multiple pregnancies, and sexual relations. Early and fast cervical cancer diagnosis is known as two important aspects of cervical cancer therapy. Several investigations indicated that early and fast detection of cervical cancer could be associated with better treatment process and increasing survival rate of patients with this malignancy. Imaging techniques are very important diagnosis tools that could be employed for diagnosis and following responses to therapy in various cervical cancer stages. Multiple lines of evidence indicated that utilization of imaging techniques is related to some limitations (i.e. high cost, and invasive effects). Hence, it seems that along with using imaging techniques, finding and developing new biomarkers could be useful in the diagnosis and treatment of subjects with cervical cancer. Taken together, many studies showed that a variety of biomarkers including, several proteins, mRNAs, microRNAs, exosomes and polymorphisms might be introduced as prognostic, diagnostic and therapeutic biomarkers in cervical cancer therapy. In this review article, we highlighted imaging techniques as well as novel biomarkers for the diagnosis of cervical cancer.
Collapse
Affiliation(s)
- Fatemeh Tavakoli
- Department of Biotechnology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Sadat Khatami
- Department of Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Fatemeh Momeni
- Isfahan Research Committee of Multiple Sclerosis, Alzahra Research Institute, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Javid Azadbakht
- Department of Radiology and Imaging, Kashan University of Medical Science, Kashan, Iran
| | - Faezeh Ghasemi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
12
|
Dana H, Chalbatani GM, Jalali SA, Mirzaei HR, Grupp SA, Suarez ER, Rapôso C, Webster TJ. CAR-T cells: Early successes in blood cancer and challenges in solid tumors. Acta Pharm Sin B 2021; 11:1129-1147. [PMID: 34094824 PMCID: PMC8144892 DOI: 10.1016/j.apsb.2020.10.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/20/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
New approaches to cancer immunotherapy have been developed, showing the ability to harness the immune system to treat and eliminate cancer. For many solid tumors, therapy with checkpoint inhibitors has shown promise. For hematologic malignancies, adoptive and engineered cell therapies are being widely developed, using cells such as T lymphocytes, as well as natural killer (NK) cells, dendritic cells, and potentially others. Among these adoptive cell therapies, the most active and advanced therapy involves chimeric antigen receptor (CAR)-T cells, which are T cells in which a chimeric antigen receptor is used to redirect specificity and allow T cell recognition, activation and killing of cancers, such as leukemia and lymphoma. Two autologous CAR-T products have been approved by several health authorities, starting with the U.S. Food and Drug Administration (FDA) in 2017. These products have shown powerful, inducing, long-lasting effects against B cell cancers in many cases. In distinction to the results seen in hematologic malignancies, the field of using CAR-T products against solid tumors is in its infancy. Targeting solid tumors and trafficking CAR-T cells into an immunosuppressive microenvironment are both significant challenges. The goal of this review is to summarize some of the most recent aspects of CAR-T cell design and manufacturing that have led to successes in hematological malignancies, allowing the reader to appreciate the barriers that must be overcome to extend CAR-T therapies to solid tumors successfully.
Collapse
Affiliation(s)
- Hassan Dana
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran 13145-158, Iran
| | - Ghanbar Mahmoodi Chalbatani
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717434, Iran
| | - Seyed Amir Jalali
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717434, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Stephan A. Grupp
- Division of Oncology, Department of Pediatrics, the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Eloah Rabello Suarez
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, SP 09210-580, Brazil
| | - Catarina Rapôso
- Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), Campinas, SP 13083-871, Brazil
| | - Thomas J. Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
13
|
Fathizadeh H, Saffari M, Esmaeili D, Moniri R, Kafil HS. Bacteriocins: New Potential Therapeutic Candidates in Cancer Therapy. Curr Mol Med 2021; 21:211-220. [PMID: 33109060 DOI: 10.2174/1566524020999200817113730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 11/22/2022]
Abstract
Cancer is one of the most important disorders which is associated with high mortality and high costs of treatment for patients. Despite several efforts, finding, designing and developing, new therapeutic platforms in the treatment of cancer patients are still required. Utilization of microorganisms, particularly bacteria has emerged as new therapeutic approaches in the treatment of various cancers. Increasing data indicated that bacteria could be used in the production of a wide range of anti-cancer agents, including bacteriocins, antibiotics, peptides, enzymes, and toxins. Among these anti-cancer agents, bacteriocins have attractive properties, which make them powerful anti-cancer drugs. Multiple lines evidence indicated that several bacteriocins (i.e., colcins, nisins, pediocins, pyocins, and bovocins) via activation/inhibition different cellular and molecular signaling pathways are able to suppress tumor growth in various stages. Hence, identification and using various bacteriocins could lead to improve and introduce them to clinical practices. Here, we summarized various bacteriocins which could be employed as anti-cancer agents in the treatment of many cancers.
Collapse
Affiliation(s)
- Hadis Fathizadeh
- Department of Microbiology and immunology, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahmood Saffari
- Department of Microbiology and immunology, Kashan University of Medical Sciences, Kashan, Iran
| | - Davoud Esmaeili
- Department of Microbiology and Applied Microbiology Research Center, Systems biology and poisonings institute, Baqiyatallah University of Medical sciences, Tehran, Iran
| | - Rezvan Moniri
- Department of Microbiology and immunology, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Samadi Kafil
- Department of Bacteriology and Virology, School of Medicine, Tabriz University of Medical Sciences, Iran
| |
Collapse
|
14
|
Shahrzad MK, Gharehgozlou R, Fadaei S, Hajian P, Mirzaei HR. Vitamin D and Non-coding RNAs: New Insights into the Regulation of Breast Cancer. Curr Mol Med 2021; 21:194-210. [PMID: 32652908 DOI: 10.2174/1566524020666200712182137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 11/22/2022]
Abstract
Breast cancer, a life-threatening serious disease with a high incident rate among women, is responsible for thousands of cancer-associated death worldwide. Numerous investigations have evaluated the possible mechanisms related to this malignancy. Among them, non-coding RNAs (ncRNAs), i.e., microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs have recently attracted attention of researchers. In addition to recent studies for evaluating the role of ncRNAs in breast cancer etiology, some investigations have revealed that vitamin D has regulatory and therapeutic roles in breast cancer. Moreover, an important link between vitamin D and ncRNAs in cancer therapy has been highlighted. Herein, the aim of this study was to discuss the available data on the mentioned link in breast cancer.
Collapse
Affiliation(s)
- Mohammad Karim Shahrzad
- Department of Internal Medicine and endocrinology, Shohadae Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Gharehgozlou
- Cancer Research Center, Shohada Tajrish Hospital, Department of Radiation Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Fadaei
- Department of Internal Medicine and endocrinology, Beheshti University of Medical Sciences, Tehran, Iran
| | - Parastoo Hajian
- Cancer Research Center, Shohada Tajrish Hospital, Department of Radiation Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Mirzaei
- Cancer Research Center, Shohada Tajrish Hospital, Department of Radiation Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Rafei H, Daher M, Rezvani K. Chimeric antigen receptor (CAR) natural killer (NK)-cell therapy: leveraging the power of innate immunity. Br J Haematol 2021; 193:216-230. [PMID: 33216984 PMCID: PMC9942693 DOI: 10.1111/bjh.17186] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Chimeric antigen receptor (CAR) T cells are a rapidly emerging form of cancer treatment, and have resulted in remarkable responses in refractory lymphoid malignancies. However, their widespread clinical use is limited by toxicity related to cytokine release syndrome and neurotoxicity, the logistic complexity of their manufacturing, cost and time-to-treatment for autologous CAR-T cells, and the risk of graft-versus-host disease (GvHD) associated with allogeneic CAR-T cells. Natural killer (NK) cells have emerged as a promising source of cells for CAR-based therapies due to their ready availability and safety profile. NK cells are part of the innate immune system, providing the first line of defence against pathogens and cancer cells. They produce cytokines and mediate cytotoxicity without the need for prior sensitisation and have the ability to interact with, and activate other immune cells. NK cells for immunotherapy can be generated from multiple sources, such as expanded autologous or allogeneic peripheral blood, umbilical cord blood, haematopoietic stem cells, induced pluripotent stem cells, as well as cell lines. Genetic engineering of NK cells to express a CAR has shown impressive preclinical results and is currently being explored in multiple clinical trials. In the present review, we discuss both the preclinical and clinical trial progress made in the field of CAR NK-cell therapy, and the strategies to overcome the challenges encountered.
Collapse
Affiliation(s)
- Hind Rafei
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center
| | - May Daher
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
16
|
Javadrashid D, Baghbanzadeh A, Hemmat N, Hajiasgharzadeh K, Nourbakhsh NS, Lotfi Z, Baradaran B. Envisioning the immune system to determine its role in pancreatic ductal adenocarcinoma: Culprit or victim? Immunol Lett 2021; 232:48-59. [PMID: 33647329 DOI: 10.1016/j.imlet.2021.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 12/16/2022]
Abstract
Pancreatic ductal adenocarcinoma has a poor 5-year survival rate that makes it one of the most fatal human malignancies. Unfortunately, despite the serious improvement in the survival of most cancers, there has been a minor advance in pancreatic cancer (PC). Major advances in PC treatment have been assessed over the bygone twenty-year time span, yet some complications make the survival of the patients shorter. Getting to know the PC tumor microenvironment (TME) and the immunosuppression that happens during the pathogenesis of this malignancy could be a great help to understand the nature of the immune system and find better treatment modalities based on it. Although many immune cells are present in PC, immunosuppression of the TME leads to severe immune dysfunction in the patients, therefore immune effectors fail to do their functions. Lately, immunotherapy has been presented as one of the promising treatment strategies for different malignancies including hepatocellular carcinoma, melanoma, non-small cell lung cancer, and kidney cancer. In PC, there has been shown promising results centered around the TME, immune checkpoint inhibitors, cancer vaccines, and other approaches especially when used as combinational therapy. Here we dig a little deeper into the role of the immune system and possible therapeutic options in the treatment of PC.
Collapse
Affiliation(s)
- Darya Javadrashid
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Ziba Lotfi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
17
|
Jafarzadeh L, Khakpoor-Koosheh M, Mirzaei H, Mirzaei HR. Biomarkers for predicting the outcome of various cancer immunotherapies. Crit Rev Oncol Hematol 2021; 157:103161. [DOI: 10.1016/j.critrevonc.2020.103161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/21/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
|
18
|
Zhao Q, Guo J, Zhao Y, Shen J, Kaboli PJ, Xiang S, Du F, Wu X, Li M, Wan L, Li X, Wen Q, Li J, Zou C, Xiao Z. Comprehensive assessment of PD-L1 and PD-L2 dysregulation in gastrointestinal cancers. Epigenomics 2020; 12:2155-2171. [PMID: 33337915 DOI: 10.2217/epi-2020-0093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: PD-L1 and PD-L2 are ligands of PD-1. Their overexpression has been reported in different cancers. However, the underlying mechanism of PD-L1 and PD-L2 dysregulation and their related signaling pathways are still unclear in gastrointestinal cancers. Materials & methods: The expression of PD-L1 and PD-L2 were studied in The Cancer Genome Atlas and Genotype-Tissue Expression databases. The gene and protein alteration of PD-L1 and PD-L2 were analyzed in cBioportal. The direct transcription factor regulating PD-L1/PD-L2 was determined with ChIP-seq data. The association of PD-L1/PD-L2 expression with clinicopathological parameters, survival, immune infiltration and tumor mutation burden were investigated with data from The Cancer Genome Atlas. Potential targets and pathways of PD-L1 and PD-L2 were determined by protein enrichment, WebGestalt and gene ontology. Results: Comprehensive analysis revealed that PD-L1 and PD-L2 were significantly upregulated in most types of gastrointestinal cancers and their expressions were positively correlated. SP1 was a key transcription factor regulating the expression of PD-L1. Conclusion: Higher PD-L1 or PD-L2 expression was significantly associated with poor overall survival, higher tumor mutation burden and more immune and stromal cell populations. Finally, HIF-1, ERBB and mTOR signaling pathways were most significantly affected by PD-L1 and PD-L2 dysregulation. Altogether, this study provided comprehensive analysis of the dysregulation of PD-L1 and PD-L2, its underlying mechanism and downstream pathways, which add to the knowledge of manipulating PD-L1/PD-L2 for cancer immunotherapy.
Collapse
Affiliation(s)
- Qijie Zhao
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, PR China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China.,Department of Pathophysiology, College of Basic Medical Science, Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Jinan Guo
- The department of urology, The Second Clinical Medical college of Jinan University (Shenzhen people's Hospital), The First Affiliated Hospital of South University of Science & Technology of China, Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen, Guangdong, PR China.,Shenzhen Public Service Platform on Tumor Precision Medicine & Molecular Diagnosis, Shenzhen, Guangdong, PR China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, PR China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, PR China
| | - Parham Jabbarzadeh Kaboli
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, PR China
| | - Shixin Xiang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, PR China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, PR China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, PR China
| | - Lin Wan
- Department of Hematology & Oncology, The Children's Hospital of Soochow, Jiangsu, PR China
| | - Xiang Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
| | - Jing Li
- Department of Oncology & Hematology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, Sichuan, PR China
| | - Chang Zou
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, PR China.,Shenzhen Public Service Platform on Tumor Precision Medicine & Molecular Diagnosis, Shenzhen, Guangdong, PR China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, PR China
| |
Collapse
|
19
|
Rostamian H, Fallah-Mehrjardi K, Khakpoor-Koosheh M, Pawelek JM, Hadjati J, Brown CE, Mirzaei HR. A metabolic switch to memory CAR T cells: Implications for cancer treatment. Cancer Lett 2020; 500:107-118. [PMID: 33290868 DOI: 10.1016/j.canlet.2020.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/27/2022]
Abstract
Therapeutic efficacy of chimeric antigen receptor (CAR) T cells is associated with their expansion, persistence and effector function. Although CAR T cell therapy has shown remarkable therapeutic effects in hematological malignancies, its therapeutic efficacy has been limited in some types of cancers - in particular, solid tumors - partially due to the cells' inability to persist and the acquisition of T cell dysfunction within a harsh immunosuppressive tumor microenvironment. Therefore, it would be expected that generation of CAR T cells with intrinsic properties for functional longevity, such as the cells with early-memory phenotypes, could beneficially enhance antitumor immunity. Furthermore, because the metabolic pathways of CAR T cells help determine cellular differentiation and lifespan, therapies targeting such pathways like glycolysis and oxidative phosphorylation, can alter CAR T cell fate and durability within tumors. Here we discuss how reprogramming of CAR T cell metabolism and metabolic switch to memory CAR T cells influences their antitumor activity. We also offer potential strategies for targeting these metabolic circuits in the setting of adoptive CAR T cell therapy, aiming to better unleash the potential of adoptive CAR T cell therapy in the clinic.
Collapse
Affiliation(s)
- Hosein Rostamian
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Keyvan Fallah-Mehrjardi
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Khakpoor-Koosheh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - John M Pawelek
- Department of Dermatology and the Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Jamshid Hadjati
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Christine E Brown
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, CA, 91010, USA; Department of Immuno-Oncology, City of Hope Beckman Research Institute, Duarte, CA, 91010, USA.
| | - Hamid R Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Liu P, Liu M, Lyu C, Lu W, Cui R, Wang J, Li Q, Mou N, Deng Q, Yang D. Acute Graft-Versus-Host Disease After Humanized Anti-CD19-CAR T Therapy in Relapsed B-ALL Patients After Allogeneic Hematopoietic Stem Cell Transplant. Front Oncol 2020; 10:573822. [PMID: 33117709 PMCID: PMC7551306 DOI: 10.3389/fonc.2020.573822] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/28/2020] [Indexed: 11/25/2022] Open
Abstract
We studied the acute graft-versus-host disease (GVHD) after humanized anti-CD19-CAR T therapy in relapsed B-acute lymphoblastic leukemia (ALL) patients after allogeneic hematopoietic stem cell transplant (allo-HSCT). Fifteen B-ALL patients were enrolled in our study. Thirteen patients (86.67%) achieved a complete response (CR) or CR with incomplete count recovery. The donor chimerism of the 13 patients reached 99.86 ± 0.21%. The development of aGVHD was observed in 10 patients (66.67%). Six patients developed grade I-II of aGVHD, while the other four patients developed grade III-IV of aGVHD. The notable adverse events were grade 1–2 cytokine release syndrome (CRS) in 10 patients and grade 3–4 CRS in five patients. Two patients died of infection, while another patient died of sudden cardiac arrest. The anti-CD19-CAR T cells were not eliminated in peripheral blood when the patients developed aGVHD. However, we did not observe their expansion peaks again in the process of aGVHD. During the aGVHD, the peaks of IL-6 and TNF-a were correlated with aGVHD levels. By May 31, 2020, the rates of leukemia-free survival (LFS) and overall survival (OS) at 180 days were 53.846 and 61.638%, respectively. All the patients who survived to date experienced aGVHD after humanized anti-CD19-CAR T cell therapy. Trial registration: The patients were enrolled in clinical trials of ChiCTR-ONN-16009862 and ChiCTR1800019622.
Collapse
Affiliation(s)
- Pengjiang Liu
- Department of Hematology, Tianjin First Central Hospital, Tianjin, China
| | - Meijing Liu
- The First Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Cuicui Lyu
- Department of Hematology, Tianjin First Central Hospital, Tianjin, China
| | - Wenyi Lu
- Department of Hematology, Tianjin First Central Hospital, Tianjin, China
| | - Rui Cui
- Department of Hematology, Tianjin First Central Hospital, Tianjin, China
| | - Jia Wang
- Department of Hematology, Tianjin First Central Hospital, Tianjin, China
| | - Qing Li
- Department of Hematology, Tianjin First Central Hospital, Tianjin, China
| | - Nan Mou
- Shanghai Genbase Biotechnology Co., Ltd., Tianjin, China
| | - Qi Deng
- Department of Hematology, Tianjin First Central Hospital, Tianjin, China
| | - Donglin Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
21
|
Jiang YL, Li Q, Pu YD, Jiang YY, Yuan T, Deng Q, Li YM, Han MZ, Zhai WH. [Maintenance therapy following CD19 CAR-T treatment for relapsed B-cell acute lymphoblastic leukemia after allogeneic hematopoietic stem cell transplantation]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2020; 41:495-501. [PMID: 32654464 PMCID: PMC7378295 DOI: 10.3760/cma.j.issn.0253-2727.2020.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Objective: This study aimed to evaluate the maintenance therapy following an anti-CD19-CAR T-cell therapy for a B-cell acute lymphoblastic leukemia (ALL) patient who relapsed after allogeneic hematopoietic cell transplantation (allo-HSCT) and investigate the effect of donor stem cells and donor T lymphocyte infusion on the amplification of CD19 CAR-T cells. Methods: One refractory B-ALL patient relapsed after murine CD19 CAR-T cell therapy followed by a sibling allo-HSCT. He underwent a humanized CD19 CAR-T cell therapy followed by donor stem cell and donor T lymphocytes infusions as maintenance therapy in our hospital. The level of cytokines, the proportion of CD19 CAR-T cell, the level of CAR19 DNA expression in the peripheral blood, and the proportion of leukemia cells and donor chimerism in the bone marrow were detected. Correspondingly, T lymphocytes from the C57 spleen were separated to modify the CD19 CAR lentivirus and refused into C57 mice, and after 14 days, the B lymphocytes from C57 mice were separated and refused into the same C57 mice. The CD19 CAR T cells, B cells, and CD19 CAR gene counts in the peripheral blood were evaluated at different time points. Results: ①The patient achieved a complete response (CR) 14 days after a humanized CD19 CAR-T therapy with grade 1 cytokine release syndrome (CRS) and restored a donor chimerism to 99.76%. ② Following the remission from humanized CD19 CAR-T therapy, the patient received a maintenance therapy of donor stem cell infusion. Mild graft-versus-host disease (GVHD) manifested 24 days after infusion with an increased proportion of CD19 CAR-T cells and an increased level of CAR19 DNA expression in the peripheral blood. It fell with the remission of GVHD. The patient maintained CR and 99.69% donor chimerism during this period. ③ Throughout the subsequent donor T lymphocytes maintenance therapy, mild GVHD surfaced12 days after infusion without an increased proportion of CD19 CAR-T cells and an increased level of CAR19 DNA expression in the peripheral blood. The patient maintained CR and 99.87% donor chimerism during this period. ④ In vivo experiments on C57 mice confirmed that the proportion of CD19 CAR-T cells and the level of CAR19 DNA expression were upregulated in mice following CAR-T cell infusion, accompanied by depletion of CD19(+) B lymphocyte. After infusion of CD19(+) B lymphocyte cells, an increased proportion of CD19 CAR-T cells and an increased level of CAR19 DNA expression in the peripheral blood were observed again. Conclusions: The infusion of donor stem cells and donor T lymphocytes could be used as a maintenance treatment after CD19 CAR-T cell therapy for B-ALL patients who relapsed after allo-HSCT. Infusion of donor stem cells induced an increased proportion of CD19 CAR-T cells and an increased level of CAR19 DNA expression with the occurrence of GVHD. It might lead to further elimination of minimal residual disease.
Collapse
Affiliation(s)
- Y L Jiang
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Q Li
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Y D Pu
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Y Y Jiang
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, China
| | - T Yuan
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Q Deng
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Y M Li
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, China
| | - M Z Han
- Institute of Hematology and Blood Diseases Hospital, CAMS & PUMC, National Clinical Research Center for Blood Diseases, Tianjin 300020, China
| | - W H Zhai
- Institute of Hematology and Blood Diseases Hospital, CAMS & PUMC, National Clinical Research Center for Blood Diseases, Tianjin 300020, China
| |
Collapse
|
22
|
Li LL, Yuan HL, Yang YQ, Wang L, Zou RC. A brief review concerning Chimeric Antigen Receptors T cell therapy. J Cancer 2020; 11:5424-5431. [PMID: 32742489 PMCID: PMC7391193 DOI: 10.7150/jca.46308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/24/2020] [Indexed: 12/16/2022] Open
Abstract
The understanding concerning the function of immune system in cancer has achieved considerable advance with time passes by. Manipulating genetically engineered immune cells were investigated as a novel strategy for treating cancer. Chimeric antigen receptors (CARs) are recombinant protein molecules by merging the exquisite targeting the potent cytotoxicity of T cells and specificity of monoclonal antibodies and, which could trigger serial cascades of signal transduction and thereby activate T cells to directly destroy the tumor cells. Manufacturing CAR-modified T lymphocytes were successfully implemented in treating cancer derived from they could specifically retarget tumor-associated antigens, causing effective elimination of tumor cells, which spurred the optimization and development of new CAR-T cell technology. The advancement of synthetic biology methodologies of cell therapy in CAR-T would ultimately provide us with a much safer, reliable and efficient modality to against cancer. This review primarily described the emergence, development and application of cell therapy in CAR-T, then discuss the side effects and the potential factors of tumor reccurrence caused by CAR-T cell therapy, in addition to the corresponding countermeasure concerning complications.
Collapse
Affiliation(s)
- Ling-Lin Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China.,Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China.,Department of Nephrology, The Third People's Hospital of Yunnan Province, Kunming, Yunnan, P.R. China
| | - Hong-Ling Yuan
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Yu-Qiong Yang
- Department of Nephrology, The Third People's Hospital of Yunnan Province, Kunming, Yunnan, P.R. China
| | - Lin Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China
| | - Ren-Chao Zou
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China
| |
Collapse
|
23
|
Duz MB, Karatas OF. Expression profile of stem cell markers and ABC transporters in 5-fluorouracil resistant Hep-2 cells. Mol Biol Rep 2020; 47:5431-5438. [PMID: 32627138 DOI: 10.1007/s11033-020-05633-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023]
Abstract
Resistance of laryngeal squamous cell carcinoma cells to traditional therapeutic regimens still remains to be a major reason for therapeutic failure in patients. In this study, we aimed at investigating the expression profiles of ATP-binding cassette (ABC) transporters and stem cell markers in 5-fluorouracil (5-FU) resistant laryngeal Hep-2 cells. We treated parental Hep-2 cells, with stepwise increased doses of 5-FU for almost 1 year to develop 5-FU resistant sub-lines with resistance against varying levels of 5-FU concentrations (4 sub-lines resistant to 1, 2, 4, and eightfold of 5-FU). Then, we measured the expression levels of 10 genes from ABC transporters family and 4 stem cell associated markers using quantitative reverse transcription polymerase chain reaction (qRT-PCR) to find out a potential relationship between these markers and chemoresistance. We found that stemness-associated markers had elevated expressions from the beginning of 5-FU resistance acquisition. Their expressions elevated stepwise while parental Hep-2 cells got resistance to higher doses of 5-FU. Expressions of tested ABC transporters (ABCA5, ABCB1, ABCB6, ABCC1, ABCC2, ABCC3, ABCC5, ABCC10 and ABCF2, and ABCG2) were also deregulated in 5-FU resistant Hep-2 cells. Although their expressions remained unaltered at the beginning of acquisition of resistance, expressions of ABC transporters except from ABCB6 increased significantly when cells became resistant to higher doses of 5-FU. Our results suggest that enrichment of cells with stemness characteristics and upregulation of ABC transporters might be amongst the crucial contributors of chemoresistance in laryngeal cancer cells.
Collapse
Affiliation(s)
- Mehmet Bugrahan Duz
- Department of Medical Genetics, Haseki Training and Research Hospital, Health Science University, Istanbul, Turkey
| | - Omer Faruk Karatas
- Department of Molecular Biology and Genetics, Erzurum Technical University, Omer Nasuhi Bilmen Mah. Havaalani Yolu Cad. No: 53 Yakutiye, Erzurum, Turkey. .,High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey.
| |
Collapse
|
24
|
Halim L, Maher J. CAR T-cell immunotherapy of B-cell malignancy: the story so far. Ther Adv Vaccines Immunother 2020; 8:2515135520927164. [PMID: 32524070 PMCID: PMC7257863 DOI: 10.1177/2515135520927164] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/21/2020] [Indexed: 12/13/2022] Open
Abstract
Chimeric antigen receptor (CAR) T-cell immunotherapy has achieved unprecedented efficacy in the treatment of chemotherapy-resistant or refractory B-cell malignancies. Promising results from pivotal anti-CD19 CAR T-cell phase II trials have led to landmark approvals of two CD19-specific CAR T-cell products by the United States Food and Drug Administration and European Medicines Agency. However, several issues associated with CAR T-cell treatment remain unresolved, such as the management of severe toxicities and the frequent occurrence of both antigen-positive and antigen-negative relapse. Nonetheless, pre-clinical research is advancing at an unprecedented pace to develop innovative solutions to address these issues. Herein, we summarise recent clinical developments and outcomes of CD19-targeted CAR T-cell immunotherapy and discuss emerging strategies that may further improve the success, safety and broadened applicability of this approach.
Collapse
Affiliation(s)
- Leena Halim
- King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Hospital, London, UK
| | - John Maher
- King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Hospital, London, UK
- Department of Clinical Immunology and Allergy, King’s College Hospital NHS Foundation Trust, London, UK
- Department of Immunology, Eastbourne Hospital, East Sussex, UK
| |
Collapse
|
25
|
Alagoz M, Kherad N. Advance genome editing technologies in the treatment of human diseases: CRISPR therapy (Review). Int J Mol Med 2020; 46:521-534. [PMID: 32467995 PMCID: PMC7307811 DOI: 10.3892/ijmm.2020.4609] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
Genome editing techniques are considered to be one of the most challenging yet efficient tools for assisting therapeutic approaches. Several studies have focused on the development of novel methods to improve the efficiency of gene editing, as well as minimise their off-target effects. Clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein (Cas9) is a tool that has revolutionised genome editing technologies. New applications of CRISPR/Cas9 in a broad range of diseases have demonstrated its efficiency and have been used in ex vivo models of somatic and pluripotent stem cells, as well as in in vivo animal models, and may eventually be used to correct defective genes. The focus of the present review was the recent applications of CRISPR/Cas9 and its contribution to the treatment of challenging human diseases, such as various types of cancer, neurodegenerative diseases and a broad spectrum of other disorders. CRISPR technology is a novel method for disease treatment, enhancing the effectiveness of drugs and improving the development of personalised medicine.
Collapse
Affiliation(s)
- Meryem Alagoz
- Molecular Biology and Genetics, Biruni Universitesi, Istanbul 34010, Turkey
| | - Nasim Kherad
- Molecular Biology and Genetics, Biruni Universitesi, Istanbul 34010, Turkey
| |
Collapse
|
26
|
Tian Y, Li Y, Shao Y, Zhang Y. Gene modification strategies for next-generation CAR T cells against solid cancers. J Hematol Oncol 2020; 13:54. [PMID: 32423475 PMCID: PMC7236186 DOI: 10.1186/s13045-020-00890-6] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/01/2020] [Indexed: 02/07/2023] Open
Abstract
Immunotherapies have become the backbone of cancer treatment. Among them, chimeric antigen receptor (CAR) T cells have demonstrated great success in the treatment of hematological malignancies. However, CAR T therapy against solid tumors is less effective. Antigen targeting; an immunosuppressive tumor microenvironment (TME); and the infiltration, proliferation, and persistence of CAR T cells are the predominant barriers preventing the extension of CAR T therapy to solid tumors. To circumvent these obstacles, the next-generation CAR T cells will require more potent antitumor properties, which can be achieved by gene-editing technology. In this review, we summarize innovative strategies to enhance CAR T cell function by improving target identification, persistence, trafficking, and overcoming the suppressive TME. The construction of multi-target CAR T cells improves antigen recognition and reduces immune escape. Enhancing CAR T cell proliferation and persistence can be achieved by optimizing costimulatory signals and overexpressing cytokines. CAR T cells equipped with chemokines or chemokine receptors help overcome their poor homing to tumor sites. Strategies like knocking out immune checkpoint molecules, incorporating dominant negative receptors, and chimeric switch receptors can favor the depletion or reversal of negative T cell regulators in the TME.
Collapse
Affiliation(s)
- Yonggui Tian
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, China
| | - Yilu Li
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- School of Medicine, Zhengzhou University, Zhengzhou, 450052, China
| | - Yupei Shao
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- School of Medicine, Zhengzhou University, Zhengzhou, 450052, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, China.
| |
Collapse
|
27
|
Tan J, Yu W. CRISPR as a tool in tumor therapy: A short review. Biotechnol Appl Biochem 2020; 67:875-879. [PMID: 32248582 DOI: 10.1002/bab.1913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/25/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Jiaqi Tan
- Department of Pediatrics Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei China
| | - Wen Yu
- Department of Pediatrics Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei China
| |
Collapse
|
28
|
Tang Q, Yin D, Wang Y, Du W, Qin Y, Ding A, Li H. Cancer Stem Cells and Combination Therapies to Eradicate Them. Curr Pharm Des 2020; 26:1994-2008. [PMID: 32250222 DOI: 10.2174/1381612826666200406083756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/13/2020] [Indexed: 12/23/2022]
Abstract
Cancer stem cells (CSCs) show self-renewal ability and multipotential differentiation, like normal stem or progenitor cells, and which proliferate uncontrollably and can escape the effects of drugs and phagocytosis by immune cells. Traditional monotherapies, such as surgical resection, radiotherapy and chemotherapy, cannot eradicate CSCs, however, combination therapy may be more effective at eliminating CSCs. The present review summarizes the characteristics of CSCs and several promising combination therapies to eradicate them.
Collapse
Affiliation(s)
- Qi Tang
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China.,Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Dan Yin
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Yao Wang
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Wenxuan Du
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Yuhan Qin
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Anni Ding
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Hanmei Li
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
29
|
Cancer stem cells and oral cancer: insights into molecular mechanisms and therapeutic approaches. Cancer Cell Int 2020; 20:113. [PMID: 32280305 PMCID: PMC7137421 DOI: 10.1186/s12935-020-01192-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/27/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) have been identified as a little population of cancer cells, which have features as the same as the cells normal stem cells. There is enough knowledge of the CSCs responsibility for metastasis, medicine resistance, and cancer outbreak. Therefore, CSCs control possibly provides an efficient treatment intervention inhibiting tumor growth and invasion. In spite of the significance of targeting CSCs in treating cancer, few study comprehensively explored the nature of oral CSCs. It has been showed that oral CSCs are able to contribute to oral cancer progression though activation/inhibition a sequences of cellular and molecular pathways (microRNA network, histone modifications and calcium regulation). Hence, more understanding about the properties of oral cancers and their behaviors will help us to develop new therapeutic platforms. Head and neck CSCs remain a viable and intriguing option for targeted therapy. Multiple investigations suggested the major contribution of the CSCs to the metastasis, tumorigenesis, and resistance to the new therapeutic regimes. Therefore, experts in the field are examining the encouraging targeted therapeutic choices. In spite of the advancements, there are not enough information in this area and thus a magic bullet for targeting and eliminating the CSCs deviated us. Hence, additional investigations on the combined therapies against the head and neck CSCs could offer considerable achievements. The present research is a review of the recent information on oral CSCs, and focused on current advancements in new signaling pathways contributed to their stemness regulation. Moreover, we highlighted various therapeutic approaches against oral CSCs.
Collapse
|
30
|
Yadav RK, Ali A, Kumar S, Sharma A, Baghchi B, Singh P, Das S, Singh C, Sharma S. CAR T cell therapy: newer approaches to counter resistance and cost. Heliyon 2020; 6:e03779. [PMID: 32322738 PMCID: PMC7171532 DOI: 10.1016/j.heliyon.2020.e03779] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/05/2020] [Accepted: 04/09/2020] [Indexed: 12/15/2022] Open
Abstract
The genetically engineered Chimeric Antigen Receptor bearing T-cell (CAR T cell) therapy has been emerged as the new paradigm of cancer immunotherapy. However, recent studies have reported an increase in the number of relapsed haematological malignancies. This review provides newer insights into how the efficacy of CAR T cells might be increased by the application of new genome editing technologies, monitoring the complexity of tumor types and T cells sub-types. Next, tumor mutation burden along with tumormicroenvironment and epigenetic mechanisms of CAR T cell as well as tumor cell may play a vital role to tackle the cancer resistance mechanisms. These studies highlight the need to consider traditional cancer therapy in conjunction with CAR T cell therapy for relapsed or cases unresponsive to treatment. Of note, this therapy is highly expensive and requires multi-skill for successful implementation, which results in reduction of its accessibility/affordability to the patients. Here, we also propose a model for cost minimization of CAR T cell therapy by a collaboration of academia, hospitals and industry.
Collapse
Affiliation(s)
- Rajesh Kumar Yadav
- Department of Biochemistry, All India Institute of Medical Sciences, Patna, India
| | - Asgar Ali
- Department of Biochemistry, All India Institute of Medical Sciences, Patna, India
| | - Santosh Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, Patna, India
| | - Alpana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Delhi, India
| | - Basab Baghchi
- Department of Medical Oncology/Haematology, All India Institute of Medical Sciences, Patna, India
| | - Pritanjali Singh
- Department of Radiotherapy, All India Institute of Medical Sciences, Patna, India
| | - Sushmita Das
- Department of Microbiology, All India Institute of Medical Sciences, Patna, India
| | - Chandramani Singh
- Department of Community and Family Medicine, All India Institute of Medical Sciences, Patna, India
| | - Sadhana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Patna, India
| |
Collapse
|
31
|
Shahi M, Mohammadnejad D, Karimipour M, Rasta SH, Rahbarghazi R, Abedelahi A. Hyaluronic Acid and Regenerative Medicine: New Insights into the Stroke Therapy. Curr Mol Med 2020; 20:675-691. [PMID: 32213158 DOI: 10.2174/1566524020666200326095837] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 11/22/2022]
Abstract
Stroke is known as one of the very important public health problems that are related to societal burden and tremendous economic losses. It has been shown that there are few therapeutic approaches for the treatment of this disease. In this regard, the present therapeutic platforms aim to obtain neuroprotection, reperfusion, and neuro recovery. Among these therapies, regenerative medicine-based therapies have appeared as new ways of stroke therapy. Hyaluronic acid (HA) is a new candidate, which could be applied as a regenerative medicine-based therapy in the treatment of stroke. HA is a glycosaminoglycan composed of disaccharide repeating elements (N-acetyl-Dglucosamine and D-glucuronic acid). Multiple lines of evidence demonstrated that HA has critical roles in normal tissues. It can be a key player in different physiological and pathophysiological conditions such as water homeostasis, multiple drug resistance, inflammatory processes, tumorigenesis, angiogenesis, and changed viscoelasticity of the extracellular matrix. HA has very important physicochemical properties i.e., availability of reactive functional groups and its solubility, which make it a biocompatible material for application in regenerative medicine. Given that HAbased bioscaffolds and biomaterials do not induce inflammation or allergies and are hydrophilic, they are used as soft tissue fillers and injectable dermal fillers. Several studies indicated that HA could be employed as a new therapeutic candidate in the treatment of stroke. These studies documented that HA and HA-based therapies exert their pharmacological effects via affecting stroke-related processes. Herein, we summarized the role of the extracellular matrix in stroke pathogenesis. Moreover, we highlighted the HA-based therapies for the treatment of stroke.
Collapse
Affiliation(s)
- Maryam Shahi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Daruosh Mohammadnejad
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Karimipour
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Hossein Rasta
- Department of Medical Bioengineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Abedelahi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
32
|
Chen R, Wang M, Liu Q, Wu J, Huang W, Li X, Du B, Xu Q, Duan J, Jiao S, Lee HS, Jung NC, Lee JH, Wang Y, Wang Y. Sequential treatment with aT19 cells generates memory CAR-T cells and prolongs the lifespan of Raji-B-NDG mice. Cancer Lett 2020; 469:162-172. [PMID: 31634527 DOI: 10.1016/j.canlet.2019.10.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/03/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023]
Abstract
Treatment with chimeric antigen receptor (CAR)-modified T cells targeting CD19 has proved successful in patients with relapsed/refractory B cell malignancies. However, long-term follow-up indicates that remission in a substantial proportion of patients is not sustainable. Most patients that experience recurrence have tumors and lost the CAR-T cells. To maintain the activity of CAR-T cells, Raji-B-NDG mice were treated sequentially with CAR-T-19 cells and homologous cells expressing human CD19 to promote expansion of CAR-T cells. Sequential treatment of mice with CAR-T-19 cells followed by Raji tumor cells led to marked prolongation of survival. The best case scenario after sequential treatment was a survival time of more than 200 days; the average survival time of mice in the non-sequential treatment group was 80 days. We treated mice with autologous CD19-modified T cells after initial treatment with CAR-T-19 cells. The overall survival and recurrence-free survival times of mice receiving sequential treatment were significantly longer. The percentages of CAR+ T cells in peripheral blood increased. Sequential therapy with autologous CAR-T-19 and aT19 cells provides a new strategy for generating memory CAR-T cells, which may lead ultimately to increased clinical efficacy.
Collapse
MESH Headings
- Animals
- Antigens, CD19/genetics
- Antigens, CD19/immunology
- Cell Line, Tumor
- Combined Modality Therapy/methods
- Disease-Free Survival
- HEK293 Cells
- Healthy Volunteers
- Humans
- Immunologic Memory
- Immunotherapy, Adoptive/methods
- Longevity/immunology
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/mortality
- Lymphoma, B-Cell/therapy
- Mice
- Neoplasm Recurrence, Local/immunology
- Neoplasm Recurrence, Local/prevention & control
- Receptors, Chimeric Antigen/immunology
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Remission Induction/methods
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/transplantation
- Time Factors
- Transduction, Genetic
- Transplantation, Autologous/methods
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Ruifeng Chen
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Meng Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Qiang Liu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Jiajing Wu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Weijing Huang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Xuejiao Li
- Immunotech Applied Science Ltd, Beijing, 100176, China
| | - Baohua Du
- Immunotech Applied Science Ltd, Beijing, 100176, China
| | - Qilong Xu
- Immunotech Applied Science Ltd, Beijing, 100176, China
| | | | | | - Hyun Soo Lee
- Pharos Vaccine Inc, Dunchon-daero, Jungwon-gu, Seongnam-si, Gyeonggi-do, 13215, Republic of Korea
| | - Nam-Chul Jung
- Pharos Vaccine Inc, Dunchon-daero, Jungwon-gu, Seongnam-si, Gyeonggi-do, 13215, Republic of Korea
| | - Jun-Ho Lee
- Pharos Vaccine Inc, Dunchon-daero, Jungwon-gu, Seongnam-si, Gyeonggi-do, 13215, Republic of Korea
| | - Yu Wang
- Immunotech Applied Science Ltd, Beijing, 100176, China.
| | - Youchun Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, 100050, China.
| |
Collapse
|
33
|
Kh. Saleh K, Dalkiliç S, Kadioğlu Dalkiliç L, R. Hamarashid B, Kirbağ S. Targeting cancer cells: from historic methods to modern chimeric antigen receptor (CAR) T-Cell strategies. AIMS ALLERGY AND IMMUNOLOGY 2020. [DOI: 10.3934/allergy.2020004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
34
|
Razi E, Radak M, Mahjoubin-Tehran M, Talebi S, Shafiee A, Hajighadimi S, Moradizarmehri S, Sharifi H, Mousavi N, Sarvizadeh M, Nejati M, Taghizadeh M, Ghasemi F. Cancer stem cells as therapeutic targets of pancreatic cancer. Fundam Clin Pharmacol 2019; 34:202-212. [PMID: 31709581 DOI: 10.1111/fcp.12521] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 11/02/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022]
Abstract
The discovery of stem cells and their potential abilities in self-renewal and differentiation has opened a new horizon in medicine. Scientists have found a small population of stem cells in some types of cancers with the same functions as normal stem cells. There are two models for tumor progression: clonal (stochastic) and cancer stem cell (CSCs) models. According to the first model, all transformed cells in the tumor have carcinogenic potential and are able to proliferate and produce the same cells. The latter model, which has received more attention recently, considers the role of CSCs in drug resistance and tumor metastasis. Following the model, researchers have found that targeting CSCs may be a promising way in cancer therapy. This review describes CSC characteristics in general, while also focusing on CSC properties in the context of pancreatic cancer.
Collapse
Affiliation(s)
- Ebrahim Razi
- The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran
| | - Mehran Radak
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Talebi
- Division of Human Genetics, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alimohammad Shafiee
- Division of General Internal Medicine, Toronto General Hospital, Toronto, ON, Canada
| | - Sarah Hajighadimi
- Division of General Internal Medicine, Toronto General Hospital, Toronto, ON, Canada
| | - Sanaz Moradizarmehri
- Division of General Internal Medicine, Toronto General Hospital, Toronto, ON, Canada
| | - Hossein Sharifi
- The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran
| | - Nousin Mousavi
- Department of Surgery, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mostafa Sarvizadeh
- The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran
| | - Majid Nejati
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Faezeh Ghasemi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
35
|
Mihăilă RG. Chimeric Antigen Receptor-Engineered T-Cells - A New Way and Era for Lymphoma Treatment. Recent Pat Anticancer Drug Discov 2019; 14:312-323. [PMID: 31642414 DOI: 10.2174/1574892814666191022164641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 10/16/2019] [Accepted: 10/19/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Patients with refractory or relapsed diffuse large B-cell lymphoma have a poor prognosis with the current standard of care. OBJECTIVE Chimeric Antigen Receptor T-cells (CAR T-cells) are functionally reprogrammed lymphocytes, which are able to recognize and kill tumor cells. The aim of this study is to make progress in this area. METHODS A mini-review was achieved using the articles published in Web of Science and PubMed in the last year and the new patents were made in this field. RESULTS The responses to CAR T-cell products axicabtagene ciloleucel and tisagenlecleucel are promising; the objective response rate can reach up to 83%, and the complete response rate ranges between 40 and 58%. About half of the patients may have serious side effects, such as cytokine release syndrome and neurotoxicity. Current and future developments include the improvement of CAR T-cell expansion and polyfunctionality, the combined use of CAR T-cells with a fusion protein between interferon and an anti-CD20 monoclonal antibody, with checkpoint inhibitors or small molecule sensitizers that have apoptotic-regulatory effects. Furthermore, the use of IL-12-expressing CAR T-cells, an improved technology for the production of CAR T-cells based on targeted nucleases, the widespread use of allogeneic CAR T-cells or universal CAR T-cells obtained from genetically engineered healthy donor T-cells are future developments actively considered. CONCLUSION CAR T-cell therapy significantly improved the outcome of patients with relapsed or refractory diffuse large B-cell lymphoma. The advances in CAR T-cells production technology will improve the results and enable the expansion of this new immunotherapy.
Collapse
Affiliation(s)
- Romeo G Mihăilă
- "Lucian Blaga" University of Sibiu, Faculty of Medicine, Emergency County Clinical Hospital Sibiu, Sibiu 550169, Romania
| |
Collapse
|
36
|
Hesari A, Rajab S, Rezaei M, Basam M, Golmohamadi S, Ghasemi F. Knockdown of Sal-like 4 expression by siRNA induces apoptosis in colorectal cancer. J Cell Biochem 2019; 120:11531-11538. [PMID: 30771239 DOI: 10.1002/jcb.28433] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/22/2018] [Accepted: 11/29/2018] [Indexed: 01/24/2023]
Abstract
Colorectal cancer (CRC) is known as the third most common malignancies among men and women and is also the second leading cause of cancer-related deaths worldwide. It has been indicated that a variety of risk factors are involved in the pathogenesis of CRC. Spalt-like transcription factor 4 (SALL4) is known as a transcription factor that plays an important role in the proliferation of cancerous cells. In this study, using a specific sequence of small interfering RNA (siRNA) against the sequence of SALL4, its activity is investigated in the CRC cell line (sw742). The CRC cells (sw742) were cultured and then, using a specific anti-SALL4 siRNA, their toxic doses were determined. Then, the gene is transfected into the cell. Proliferation and expression of the SALL4 and Bcl-2 gene were measured using the real-time polymerase chain reaction method. Cell death was evaluated by propidium iodide staining and fluorescence-activated cell sorting analysis. Our results indicated that the specific concentration of siRNA of the SALL4 gene was 62.5 nmole. Gene expression of SALL4 and Bcl-2 results showed that expression of Bcl-2 gene in the siRNA group was significantly reduced. In conclusion, our finding indicated that it could be used as a therapeutic and diagnostic biomarker in the treatment of patients with CRC.
Collapse
Affiliation(s)
- AmirReza Hesari
- Department of Biotechnology, Molecular and Medicine Research Center, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Shadi Rajab
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Marzieh Rezaei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Basam
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Sara Golmohamadi
- Department of Biotechnology, Molecular and Medicine Research Center, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Faezeh Ghasemi
- Department of Biotechnology, Molecular and Medicine Research Center, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.,Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
37
|
Zakeri Z, Salmaninejad A, Hosseini N, Shahbakhsh Y, Fadaee E, Shahrzad MK, Fadaei S. MicroRNA and exosome: Key players in rheumatoid arthritis. J Cell Biochem 2019; 120:10930-10944. [PMID: 30825220 DOI: 10.1002/jcb.28499] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/10/2018] [Accepted: 12/14/2018] [Indexed: 01/24/2023]
Abstract
Rheumatoid arthritis (RA) is known as one of important autoimmune disorders which can lead to joint pain and damage throughout body. Given that internal (ie, genetic and epigenetic alterations) and external factors (ie, lifestyle changes, age, hormones, smoking, stress, and obesity) involved in RA pathogenesis. Increasing evidence indicated that cellular and molecular alterations play critical roles in the initiation and progression of RA. Among various targets and molecular signaling pathways, microRNAs (miRNAs) and their regulatory networks have key roles in the RA pathogenesis. It has been showed that deregulation of many miRNAs involved in different stages of RA. Hence, identification of miRNAs and their signaling pathways in RA, could contribute to new knowledge which help to better treatment of patients with RA. Besides miRNAs, exosomes have been emerged as key messengers in RA pathogenesis. Exsosomes are nanocarriers which could be released from various cells and lead to changing of behaviors recipient cells via targeting their cargos (eg, proteins, messenger RNAs, miRNAs, long noncoding RNAs, DNAs). Here, we summarized several miRNAs involved in RA pathogenesis. Moreover, we highlighted the roles of exosomes in RA pathogenesis.
Collapse
Affiliation(s)
- Zahra Zakeri
- Labafinejad Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Salmaninejad
- Drug Applied Research Center, Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Genetics, Medical Genetics Research Center, Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nayyerehalsadat Hosseini
- Department of Medical Genetics, Medical Genetics Research Center, Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yas Shahbakhsh
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elyas Fadaee
- Faculty of Medicine, Islamic Azad University of Najafabad, Najafabad, Iran
| | - Mohammad Karim Shahrzad
- Shohada Tajrish Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Fadaei
- Department of Internal Medicine, Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Circulating microRNAs as potential diagnostic biomarkers and therapeutic targets in prostate cancer: Current status and future perspectives. J Cell Biochem 2019; 120:16316-16329. [DOI: 10.1002/jcb.29053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 02/04/2019] [Indexed: 12/19/2022]
|
39
|
Sharifi H, Shafiee A, Molavi G, Razi E, Mousavi N, Sarvizadeh M, Taghizadeh M. Leukemia-derived exosomes: Bringing oncogenic signals to blood cells. J Cell Biochem 2019; 120:16307-16315. [PMID: 31127656 DOI: 10.1002/jcb.29018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/11/2019] [Accepted: 04/18/2019] [Indexed: 12/26/2022]
Abstract
Leukemia is a cancer, which is derived from leukocytes and precursors of leukocytes in the bone marrow. A large number of pivotal biological processes are linked to leukemia pathogenesis. More insights into these mechanisms can provide a better developing pharmacological platform for patients with leukemia. Among the different players in leukemia pathogenesis, exosomes have appeared as a new biological vehicle, which can transfer oncogenic signals to blood cells. Exosomes are nano-carriers, which enable transferring numerous cargos such as DNA fragments, RNAs, messenger RNAs, microRNAs, long noncoding RNA, and proteins. Targeting the contents of exosomes leads to the alteration of host cell behavior. Increasing evidence has indicated that leukemia-derived exosomes could be utilized as prognostic, diagnostic, and therapeutic biomarkers for individuals suffering from leukemia. In this regard, the importance of exosomes in terms of initiation and progression of leukemia was underlined in this study.
Collapse
Affiliation(s)
- Hossein Sharifi
- The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran
| | - Alimohammad Shafiee
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Ghader Molavi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ebrahim Razi
- The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran
| | - Nousin Mousavi
- Department of Surgery, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mostafa Sarvizadeh
- The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
40
|
Sharifi H, Jafari Najaf Abadi MH, Razi E, Mousavi N, Morovati H, Sarvizadeh M, Taghizadeh M. MicroRNAs and response to therapy in leukemia. J Cell Biochem 2019; 120:14233-14246. [PMID: 31081139 DOI: 10.1002/jcb.28892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/11/2019] [Accepted: 03/22/2019] [Indexed: 12/26/2022]
Abstract
A variety of epigenetic factors involved in leukemia pathogenesis. Among various epigenetic factors, microRNAs (miRNAs) have emerged as important players, which affect a sequence of cellular and molecular signaling pathways. Leukemia is known as progressive cancer, which is related to many health problems in the world. It has been shown that the destruction of the blood-forming organs could lead to abnormal effects on the proliferation and development of leukocytes and their precursors. Despite many attempts for approved effective and powerful therapies for patients with leukemia, finding and developing new therapeutic approaches are required. One of the important aspects of leukemia therapy, identification of underlying cellular and molecular mechanisms involved in the pathogenesis of leukemia. Several miRNAs (ie, miR-103, miR-101, mit-7, let-7i, miR-424, miR-27a, and miR-29c) and play major roles in response to therapy in patients with leukemia. miRNAs exert their effects by targeting a variety of targets, which are associated with response to therapy in patients with leukemia. It seems that more understanding about the roles of miRNAs in response to therapy in patients with leukemia could contribute to better treatment of patients with leukemia. Here, for the first time, we summarized various miRNAs, which are involved in response to therapy in the treatment patients with leukemia.
Collapse
Affiliation(s)
- Hossein Sharifi
- The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran
| | | | - Ebrahim Razi
- The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran
| | - Nousin Mousavi
- Department of Surgery, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamid Morovati
- Department of Medical Mycology and Parasitology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Sarvizadeh
- The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
41
|
Jiang J, Zhou H, Ni C, Hu X, Mou Y, Huang D, Yang L. Immunotherapy in pancreatic cancer: New hope or mission impossible? Cancer Lett 2019; 445:57-64. [DOI: 10.1016/j.canlet.2018.10.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/29/2018] [Accepted: 10/10/2018] [Indexed: 12/17/2022]
|
42
|
DeRenzo C, Gottschalk S. Genetic Modification Strategies to Enhance CAR T Cell Persistence for Patients With Solid Tumors. Front Immunol 2019; 10:218. [PMID: 30828333 PMCID: PMC6384227 DOI: 10.3389/fimmu.2019.00218] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 01/25/2019] [Indexed: 01/19/2023] Open
Abstract
Immunotherapy with chimeric antigen receptor (CAR) T cells offers a promising method to improve cure rates and decrease morbidities for patients with cancer. In this regard, CD19-specific CAR T cell therapies have achieved dramatic objective responses for a high percent of patients with CD19-positive leukemia or lymphoma. Most patients with solid tumors however, have experienced transient or no benefit from CAR T cell therapies. Novel strategies are therefore needed to improve CAR T cell function for patients with solid tumors. One obstacle for the field is limited CAR T cell persistence after infusion into patients. In this review we highlight genetic engineering strategies to improve CAR T cell persistence for enhancing antitumor activity for patients with solid tumors.
Collapse
Affiliation(s)
- Christopher DeRenzo
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
43
|
Sarvizadeh M, Ghasemi F, Tavakoli F, Sadat Khatami S, Razi E, Sharifi H, Biouki NM, Taghizadeh M. Vaccines for colorectal cancer: an update. J Cell Biochem 2018; 120:8815-8828. [PMID: 30536960 DOI: 10.1002/jcb.28179] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 11/12/2018] [Indexed: 12/29/2022]
Abstract
Colorectal cancer (CRC) is known as the third most common and fourth leading cancer associated death worldwide. The occurrence of metastasis has remained as a critical challenge in CRC, so that distant metastasis (mostly to the liver) has been manifested in about 20%-25% of patients. Several screening approaches have introduced for detecting CRC in different stages particularly in early stages. The standard treatments for CRC are surgery, chemotherapy and radiotherapy, in alone or combination. Immunotherapy is a set of novel approaches with the aim of remodeling the immune system battle with metastatic cancer cells, such as immunomodulatory monoclonal antibodies (immune checkpoint inhibitors), adoptive cell transfer (ACT) and cancer vaccine. Cancer vaccines are designed to trigger the intense response of immune system to tumor-specific antigens. In two last decades, introduction of new cancer vaccines and designing several clinical trials with vaccine therapy, have been taken into consideration in colon cancer patients. This review will describe the treatment approaches with the special attention to vaccines applied to treat colorectal cancer.
Collapse
Affiliation(s)
- Mostafa Sarvizadeh
- The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran
| | - Faezeh Ghasemi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Fatemeh Tavakoli
- Department of Biotechnology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Sadat Khatami
- Department of Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Ebrahim Razi
- The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran
| | - Hossein Sharifi
- The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran
| | - Nousin Moussavi Biouki
- Department of Surgery, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
44
|
Hesari A, Anoshiravani AA, Talebi S, Noruzi S, Mohammadi R, Salarinia R, Zare R, Ghasemi F. Knockdown of sal-like 4 expression by small interfering RNA induces apoptosis in breast cancer cells. J Cell Biochem 2018; 120:9392-9399. [PMID: 30520112 DOI: 10.1002/jcb.28214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 11/15/2018] [Indexed: 12/21/2022]
Abstract
Breast cancer is the most prevalent cancers worldwide and causes a significant amount of deaths annually. Spalt-like transcription factor 4 is known as a transcription factor, which has an important role in the proliferation of cancerous cells. Small interfering RNA (siRNA) is a short-chain molecule of 20 to 25 nucleotides that protrude on two sides of the 3', two nucleotides. In this study, using a specific sequence of siRNA against the sequence of this gene, its activity is investigated in the cell line of breast cancer. The breast cancer cells (MCF-7) were cultured and then, using a specific anti-sal-like 4 (SALL4) siRNA, their toxic doses were determined. Then, the gene is transfected into the cell. Proliferation and expression of the SALL4 and BCL-2 gene were measured using the real-time polymerase chain reaction method. The specific concentration of siRNA IC50 of the SALL4 gene was 40.35 nmole. Gene expression results indicated that the expression of the Bcl-2 gene in the siRNA group was significantly reduced ( P < 0.05). SiRNA can increase the apoptosis of breast cancer cells by reducing the gene expression of SALL4 gene and Bcl-2; it can be used as a novel targeted therapy. This strategy, in addition to increasing the specificity of the drug, also reduces the side effects when compared with conventional chemotherapy.
Collapse
Affiliation(s)
- Amireza Hesari
- Department of Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | | | - Samaneh Talebi
- Division of Human Genetics, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Somayye Noruzi
- Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Rezvan Mohammadi
- Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Reza Salarinia
- Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran.,Department of Medical Biotechnology and Molecular Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Reza Zare
- Student Research Committee, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Faezeh Ghasemi
- Department of Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.,Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Next to Milad Tower, Tehran, Iran
| |
Collapse
|
45
|
Mirzaei HR, Jamali A, Jafarzadeh L, Masoumi E, Alishah K, Fallah Mehrjardi K, Emami SAH, Noorbakhsh F, Till BG, Hadjati J. Construction and functional characterization of a fully human anti‐CD19 chimeric antigen receptor (huCAR)‐expressing primary human T cells. J Cell Physiol 2018; 234:9207-9215. [DOI: 10.1002/jcp.27599] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 09/19/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Hamid Reza Mirzaei
- Department of Medical Immunology School of Medicine, Tehran University of Medical Sciences Tehran Iran
| | - Arezoo Jamali
- Department of Molecular Medicine Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences Tehran Iran
- Department of Medical Laboratory Sciences School of Allied Medical Sciences, Tehran University of Medical Sciences Tehran Iran
| | - Leila Jafarzadeh
- Department of Medical Immunology School of Medicine, Tehran University of Medical Sciences Tehran Iran
| | - Elham Masoumi
- Department of Medical Immunology School of Medicine, Tehran University of Medical Sciences Tehran Iran
| | - Khadijeh Alishah
- Department of Biotechnology College of Science, University of Tehran Tehran Iran
| | - Keyvan Fallah Mehrjardi
- Department of Medical Immunology School of Medicine, Tehran University of Medical Sciences Tehran Iran
| | - Seyed Amir Hossein Emami
- Division of Oncology, Department of Internal Medicine School of Medicine, Tehran University of Medical Sciences Tehran Iran
| | - Farshid Noorbakhsh
- Department of Medical Immunology School of Medicine, Tehran University of Medical Sciences Tehran Iran
| | - Brian G. Till
- Clinical Research Division Fred Hutchinson Cancer Research Center Seattle Washington
| | - Jamshid Hadjati
- Department of Medical Immunology School of Medicine, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
46
|
Mirzaei HR, Mirzaei H, Namdar A, Rahmati M, Till BG, Hadjati J. Predictive and therapeutic biomarkers in chimeric antigen receptor T‐cell therapy: A clinical perspective. J Cell Physiol 2018; 234:5827-5841. [DOI: 10.1002/jcp.27519] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 09/10/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Hamid Reza Mirzaei
- Department of Medical Immunology School of Medicine, Tehran University of Medical Sciences Tehran Iran
| | - Hamed Mirzaei
- Department of Medical Biotechnology School of Medicine, Mashhad University of Medical Sciences Mashahd Iran
| | - Afshin Namdar
- Department of Dentistry Faculty of Medicine and Dentistry, University of Alberta Edmonton Canada
| | - Majid Rahmati
- Cancer Prevention Research Center Shahroud University of Medical Sciences Shahroud Iran
| | - Brian G. Till
- Clinical Research Division Fred Hutchinson Cancer Research Center Seattle WA United States
| | - Jamshid Hadjati
- Department of Medical Immunology School of Medicine, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
47
|
Han X, Wang Y, Han WD. Chimeric antigen receptor modified T-cells for cancer treatment. Chronic Dis Transl Med 2018; 4:225-243. [PMID: 30603741 PMCID: PMC6309024 DOI: 10.1016/j.cdtm.2018.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Indexed: 12/12/2022] Open
Abstract
T cells engineered with the chimeric antigen receptor (CAR) are rapidly emerging as an important immunotherapy for hematologic malignancies. The anti-cluster of differentiation (CD)19 CAR-T cell therapy has been remarkably successful against refractory/relapsed acute lymphoblastic leukemia (ALL), and a complete remission rate as high as 90% was observed, in both children and adults. Although the achievement of clinical efficacy using CAR-T cell therapy for solid tumors has encountered several obstacles that were associated with the multiple mechanisms contributing to an immunosuppressive microenvironment, investigators are exploring more optimized approaches to improve the efficiency of CAR-T in solid tumors. In addition, cytokine release syndrome (CRS) and neurotoxicity following CAR-T cell therapy can be severe or even fatal; therefore, the management of these toxicities is significant. Herein, we briefly review the structure of CAR-T and some novel CAR designs, the clinical application of CAR-T cell therapies, as well as the assessment and management of toxicities.
Collapse
Affiliation(s)
- Xiao Han
- Molecular & Immunological Department, Bio-therapeutic Department, The General Hospital of People's Liberation Army, Beijing 100853, China
| | - Yao Wang
- Molecular & Immunological Department, Bio-therapeutic Department, The General Hospital of People's Liberation Army, Beijing 100853, China
| | - Wei-Dong Han
- Molecular & Immunological Department, Bio-therapeutic Department, The General Hospital of People's Liberation Army, Beijing 100853, China
| |
Collapse
|