1
|
Raman R, Debata S, Govindarajan T, Kumar P. Targeting Triple-Negative Breast Cancer: Resistance Mechanisms and Therapeutic Advancements. Cancer Med 2025; 14:e70803. [PMID: 40318146 PMCID: PMC12048392 DOI: 10.1002/cam4.70803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 02/12/2025] [Accepted: 03/11/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is one of the most heterogeneous and menacing forms of breast cancer, with no sustainable cure available in the current treatment landscape. Its lack of targets makes it highly unresponsive to various treatment modalities, which is why chemotherapy continues to be the primary form of treatment, despite the high rates of patients developing chemoresistance. In recent years, however, there has been significant progress in identifying and understanding the role of several aspects that might contribute to genomic instability and other hallmarks of cancer, including cellular proteins, immune targets, and epigenetic mechanisms, which are desirable as they permit reversibility easier than the often-adamant genetic changes. METHODS A literature review was conducted on the role of various TNBC associated biomarkers, their therapeutic applications, and their role in tumorigenesis and tumor maintenance, with a focus on linking both the driving biological mechanisms and emerging treatment options for TNBC. CONCLUSIONS Shifting the focus of treatment to identify crucial tumor cell subpopulations and associated biomarkers, such as local immune cell populations and cancer stem cells, could potentially solve or simplify decades' worth of problems that are associated with TNBC, bolstering early detection and the evolution of precision medicine and treatment. The techniques that can be used here are epigenetic analysis and RNA sequencing. Biomarkers, such as PD-L1, survivin, and ABC transporters, are implicated in several crucial processes that maintain tumors, such as cell proliferation, metastasis, immunosuppression, and stemness. Complex treatment options such as, immunotherapy, pathway inhibition, PARP inhibition, virotherapy, and RNA targeting have been considered for TNBC. Phytochemicals are also being considered as a treatment modality for TNBC, as a supplement to chemotherapy and radiation therapy, or as sole treatment.
Collapse
Affiliation(s)
- Rachana Raman
- Photoceutics and Regeneration Laboratory, Department of Biotechnology, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Manipal Institute of TechnologyManipal Academy of Higher EducationManipalKarnatakaIndia
- Innotech Manipal, Manipal Institute of TechnologyManipal Academy of Higher EducationManipalKarnatakaIndia
| | - Shristi Debata
- Department of Biotechnology, Manipal Institute of TechnologyManipal Academy of Higher EducationManipalKarnatakaIndia
| | | | - Praveen Kumar
- Photoceutics and Regeneration Laboratory, Department of Biotechnology, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Manipal Institute of TechnologyManipal Academy of Higher EducationManipalKarnatakaIndia
- Innotech Manipal, Manipal Institute of TechnologyManipal Academy of Higher EducationManipalKarnatakaIndia
| |
Collapse
|
2
|
Mao Q, Liu J, Yan Y, Wang G, Zhang M, Wang Z, Wen X, Jiang Z, Li H, Li J, Xu M, Zhang R, Yang B. 13-Methylpalmatine alleviates bleomycin-induced pulmonary fibrosis by suppressing the ITGA5/TGF-β/Smad signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156545. [PMID: 40023972 DOI: 10.1016/j.phymed.2025.156545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is an irreversible lung disease for which there is a lack of effective and safe therapeutic drugs. 13-Methylpalmatine (13-Me-PLT) is an active compound from Coptis chinensis, and no study has yet been reported on its pharmacological effects in pulmonary fibrotic diseases. The group has previously demonstrated the antimyocardial fibrosis efficacy of 13-Me-PLT but its effect on pulmonary fibrosis and its potential mechanism has not yet been investigated. PURPOSE The present research is designed to clarify the therapeutic potential and mechanism of action of 13-Me-PLT in IPF using a bleomycin (BLM)-induced mouse model of IPF. METHODS In vivo, mice were administrated with BLM to establish the IPF model, and IPF mice were treated with 13-Me-PLT (5, 10, and 20 mg/kg) and pirfenidone (PFD, 300 mg/kg) by gavage. In vitro, we employed TGF-β1 (10 ng/ml)-induced MRC5 cells, which were then treated with 13-Me-PLT (5, 10, 20 μM) and PFD (500 μM). High-throughput transcriptome sequencing, molecular dynamics simulations, molecular docking and Surface plasmon resonance (SPR) were employed to elucidate the underlying mechanisms of 13-Me-PLT in mitigating IPF. RESULT In vivo experiments showed that 13-Me-PLT significantly ameliorated BLM-induced lung fibrosis in mice. In vitro studies, 13-Me-PLT showed good antifibrotic potential by inhibiting fibroblast differentiation. Transcriptomic analysis of mouse lung tissues identified ITGA5 and TGF-β/Smad signaling pathways as key targets for the antifibrotic effects of 13-Me-PLT. Molecular docking and kinetic analyses further supported these findings. Functional studies involving ITGA5 silencing and overexpression confirmed that 13-Me-PLT down-regulated ITGA5 expression and inhibited the activation of the TGF-β/Smad signaling pathway, confirming its mechanism of action. CONCLUSION To our best knowledge, these results provide the first insight that 13-Me-PLT is protective against BLM-induced IPF in mice. Unlike existing antifibrotic drugs, 13-Me-PLT specifically targets the ITGA5/TGF-β/Smad signaling pathway, offering a novel and potentially more effective therapeutic approach. This study not only validates the antifibrotic efficacy of 13-Me-PLT but also elucidates its unique mechanism of action, these findings may provide an opportunity to develop new drugs to treat IPF.
Collapse
Affiliation(s)
- Qin Mao
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Jiajing Liu
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Yu Yan
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Gang Wang
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Miao Zhang
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Zhuo Wang
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Xiaowei Wen
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Zefeng Jiang
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Haijing Li
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Jing Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Mingyang Xu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Rong Zhang
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China; State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, PR China.
| | - Baofeng Yang
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China; State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, PR China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, PR China.
| |
Collapse
|
3
|
Zhang M, Li J, Meng X, Sun Q, Xue Z, Wang M, Du F, Zhang J. ITGA5 induces mesenchymal transformation to promote gliomas progression via PI3K/AKT/mTORC1 signaling pathway. Sci Rep 2025; 15:13539. [PMID: 40253517 PMCID: PMC12009355 DOI: 10.1038/s41598-025-98170-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 04/09/2025] [Indexed: 04/21/2025] Open
Abstract
Glioma is a common malignant tumor of the central nervous system, characterized by high malignancy, strong invasiveness and high recurrence rate. Integrin α5 (ITGA5), a member of the integrin adhesion molecule family, has been reported to be associated with tumor progression and metastasis. In this study, we first identified the overexpression of ITGA5 in glioma through bioinformatics analysis. Kaplan-Meier analysis, Cox regression analysis, and nomogram modeling revealed that high ITGA5 expression was significantly associated with poor prognosis in glioma patients. The ssGSEA showed that the high expression of ITGA5 had a higher level of immune cell infiltration, especially aDCs, B cells, CD8 + T cells, Macrophages, T helper cells, etc. To validate the results of bioinformatics analysis, we used qRT-PCR and Western blot assay confirmed that ITGA5 expression was up-regulated in glioma tissues and increased with pathological grade. Immunohistochemistry showed that high expression of ITGA5 was positively correlated with WHO grade, Ki67 expression and P53 status (P < 0.05). Univariate and multivariate Cox regression analysis showed that ITGA5 expression was an independent prognostic marker in gliomas. Functionally, silencing of ITGA5 significantly inhibited the proliferation, invasion, and migration of glioma cells. The GSEA analysis indicated that ITGA5 was involved in mesenchymal transformation, PI3K/AKT/mTORC1 pathways. In vitro experiments further confirmed that ITGA5 positively regulates mesenchymal transformation and activates the PI3K/AKT/mTORC1 pathway. Moreover, treatment with PI3K activator 740Y-P was able to reverse the effects of ITGA5 silencing on glioma cells growth and mesenchymal transformation. Therefore, ITGA5 may be a potential therapeutic target for the individualized treatment of glioma patients.
Collapse
Affiliation(s)
- Moxuan Zhang
- Beijing Neurosurgery Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| | - Junhong Li
- Linyi People's Hospital, Shandong Second Medical University, Linyi, 276000, Shandong Province, China
| | - Xianglong Meng
- Department of Neurosurgery, Beijing Daxing District People's Hospital, Beijing, 102699, China
| | - Qiang Sun
- Department of Neurosurgery, Linyi People's Hospital, Linyi, 276000, Shandong Province, China
| | - Zhengchun Xue
- Department of Neurosurgery, Linyi People's Hospital, Linyi, 276000, Shandong Province, China
| | - Mingguang Wang
- Department of Neurosurgery, Linyi People's Hospital, Linyi, 276000, Shandong Province, China
| | - Fei Du
- Department of Neurosurgery, Linyi People's Hospital, Linyi, 276000, Shandong Province, China
| | - Jian Zhang
- Department of Neurosurgery, Linyi People's Hospital, Linyi, 276000, Shandong Province, China.
| |
Collapse
|
4
|
Wu Z, Wang Z, Hua Z, Ji Y, Ye Q, Zhang H, Yan W. Prognostic signature and immunotherapeutic relevance of Focal adhesion signaling pathway-related genes in osteosarcoma. Heliyon 2024; 10:e38523. [PMID: 39524888 PMCID: PMC11550747 DOI: 10.1016/j.heliyon.2024.e38523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024] Open
Abstract
Background As the most common primary malignant bone tumor in children and adolescents, osteosarcoma currently lacks an effective clinical cure. Focal adhesion plays a crucial role in tumor invasion, migration, and drug resistance by mediating communication between the extracellular matrix and tumor cells. This study investigated the prognostic features and immunotherapeutic relevance of focal adhesion pathway-related genes in osteosarcoma to aid in the development of new therapeutic options. Methods We obtained mutational, transcriptomic, gene expression, and clinical data of osteosarcoma patients from the Gene Expression Omnibus (GEO) and Therapeutically Applicable Research to Generate Effective (TARGET) databases. Differentially expressed genes were screened, followed by the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses. Kaplan-Meier survival analysis was performed for genes related to the focal adhesion pathway, and multivariate Cox regression analysis was employed to construct a prognostic signature model. Genes such as SIGLEC15, TIGIT, CD274, HAVCR2, PDCD1, CTLA4, and LAG3 were extracted from the TARGET and CCLE databases for osteosarcoma patients and osteosarcoma cell lines, respectively,to observe the expression of immune checkpoint-related genes. Finally, qRT-PCR was used to verify the expression of these immune checkpoint-related genes in osteosarcoma cell lines. Results In our study, 376 samples were analyzed, including 369 osteosarcoma samples and 7 normal tissue samples. We identified 50 up-regulated and 28 down-regulated differentially expressed genes. Among these, 10 Candidate genes relative to focal Adhesion were selected, and CAV1, ZYX, and ITGA5 were found to have a significant prognostic role based on survival analysis of osteosarcoma samples from the TARGET database. A predictive signature model related to the focal adhesion signaling pathway was constructed using these genes, and the AUCs of the 1-year, 3-year, and 5-year ROC curves were 0. 647, 0. 712, and 0. 717, respectively. The overall survival (OS) rate of osteosarcoma patients with high-risk scores was poorer than those with low-risk scores. Then, samples were divided into two subgroups based on the expression of the three genes, revealing significant differences in the expression of certain immune checkpoint-related genes between the subgroups. Additionally, above three genes and immune checkpoint-related genes in osteosarcoma cell lines were extracted from the CCLE database, showing high expression levels in eight osteosarcoma cell lines. We observed that CD274 and PDCD1LG2 were highly expressed in some osteosarcoma cell lines. Finally, the expression of CAV1, ZYX, ITGA5, CD80, CD274, and PDCD1LG2 in osteosarcoma cell lines was verified by qRT-PCR. Conclusions Our study validated the prognostic role of three focal adhesion pathway-related genes (ZYX, CAV1, and ITGA5) in patients with osteosarcoma and constructed a prognostic signature model associated with the focal adhesion signaling pathway. We identified significant differences in the expression of multiple immune checkpoint-related genes among subgroups defined by the three genes. Additionally, CD274 and PDCD1LG2 showed higher expression in osteosarcoma cell lines characterized by these genes. These findings may aid in the selection of effective immunotherapy for specific osteosarcoma patients.
Collapse
Affiliation(s)
- Zhiqiang Wu
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhiqing Wang
- Zhabei Central Hospital, No. 619, Zhonghuaxin Road, Jing'an District, Shanghai, 200070, China
| | - Zhanqiang Hua
- Department of Orthopedics, Shanghai Electric Power Hospital, Shanghai, 200050, China
| | - Yingzheng Ji
- Department of Orthopedics, Naval Medical Center of PLA, Second Military Medical University, China
| | - Qingrong Ye
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Hao Zhang
- Department of Orthopedics, Naval Medical Center of PLA, Second Military Medical University, China
| | - Wangjun Yan
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| |
Collapse
|
5
|
Liu J, Wang Y, Chen X, Chen X, Zhang M. ITGA5 is associated with prognosis marker and immunosuppression in head and neck squamous cell carcinoma. Diagn Pathol 2024; 19:134. [PMID: 39375732 PMCID: PMC11457354 DOI: 10.1186/s13000-024-01559-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/28/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is a major tumor that seriously threatens the health of the head and neck or mucosal system. It is manifested as a malignant phenotype of high metastasis and invasion caused by squamous cell transformation in the tissue area. Therefore, it is necessary to search for a biomarker that can systematically correlate and reflect the prognosis of HNSCC based on the characteristics of head and neck tumors. METHODS Based on TCGA-HNSCC data, R software was used to analyze gene expression, correlation, Venn diagram, immune invasive and immunosuppressive phenotypes respectively. The intrinsic effect of ITGA5 on the malignant phenotype of HNSCC cells was verified by cell experiments. Immunohistochemical images from The Human Protein Atlas (THPA) database display the differences in the expression of related proteins in HNSCC tissues. Based on functional enrichment and correlation analysis, the prognostic value of ITGA5 for HNSCC was explored, and the expression level of ITGA5 may affect the chemotherapy of targeting the PI3K-AKT. RESULTS In this study, the target gene ITGA5 may be identified as a valuable prognostic marker for HNSCC. The results of enrichment analysis showed that ITGA5 was mainly involved in the dynamic process of extracellular matrix, which may affect the migration or metastasis of tumor cells. Meanwhile, ITGA5 may be closely related to the infiltration of M2 macrophages, and its secretory phenotypes TGFB1, PDGFA and PDGFB may affect the immunosuppressive phenotypes of tumor cells, which reflects the systemic influence of ITGA5 in HNSCC. In addition, the expression levels of ITGA5 were negatively correlated with the efficacy of targeting PI3K-AKT chemotherapy. CONCLUSION ITGA5 can be used as a potential marker to systematically associate with prognosis of HNSCC, which may be associated with HNSCC malignant phenotype, immunosuppression and chemotherapy resistance.
Collapse
Affiliation(s)
- Jianmin Liu
- Department of Head and Neck Surgery, Sichuan Cancer Hospital, Chengdu City, Sichuan Province, China
| | - Yongkuan Wang
- Department of Otolaryngology/Head and Neck surgery, People's Hospital of Deyang City, Deyang City, Sichuan Province, China
| | - Xi Chen
- Department of Otolaryngology/Head and Neck surgery, People's Hospital of Deyang City, Deyang City, Sichuan Province, China
| | - Xiaofang Chen
- Department of Otolaryngology/Head and Neck surgery, People's Hospital of Deyang City, Deyang City, Sichuan Province, China
| | - Meng Zhang
- Department of Otolaryngology/Head and Neck surgery, People's Hospital of Deyang City, Deyang City, Sichuan Province, China.
| |
Collapse
|
6
|
Ding Q, Yang W, Xue G, Liu H, Cai Y, Que J, Jin X, Luo M, Pang F, Yang Y, Lin Y, Liu Y, Sun H, Tan R, Wang P, Xu Z, Jiang Q. Dimension reduction, cell clustering, and cell-cell communication inference for single-cell transcriptomics with DcjComm. Genome Biol 2024; 25:241. [PMID: 39252099 PMCID: PMC11382422 DOI: 10.1186/s13059-024-03385-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
Advances in single-cell transcriptomics provide an unprecedented opportunity to explore complex biological processes. However, computational methods for analyzing single-cell transcriptomics still have room for improvement especially in dimension reduction, cell clustering, and cell-cell communication inference. Herein, we propose a versatile method, named DcjComm, for comprehensive analysis of single-cell transcriptomics. DcjComm detects functional modules to explore expression patterns and performs dimension reduction and clustering to discover cellular identities by the non-negative matrix factorization-based joint learning model. DcjComm then infers cell-cell communication by integrating ligand-receptor pairs, transcription factors, and target genes. DcjComm demonstrates superior performance compared to state-of-the-art methods.
Collapse
Affiliation(s)
- Qian Ding
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Wenyi Yang
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Guangfu Xue
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Hongxin Liu
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Yideng Cai
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Jinhao Que
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Xiyun Jin
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, 150076, China
| | - Meng Luo
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Fenglan Pang
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Yuexin Yang
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Yi Lin
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, 150076, China
| | - Yusong Liu
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, 150076, China
| | - Haoxiu Sun
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, 150076, China
| | - Renjie Tan
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, 150076, China
| | - Pingping Wang
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, 150076, China.
| | - Zhaochun Xu
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, 150076, China.
| | - Qinghua Jiang
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China.
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, 150076, China.
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, 150076, China.
| |
Collapse
|
7
|
Gou S, Wu A, Luo Z. Integrins in cancer stem cells. Front Cell Dev Biol 2024; 12:1434378. [PMID: 39239559 PMCID: PMC11375753 DOI: 10.3389/fcell.2024.1434378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/12/2024] [Indexed: 09/07/2024] Open
Abstract
Integrins are a class of adhesion receptors on cell membranes, consisting of α and β subunits. By binding to the extracellular matrix, integrins activate intracellular signaling pathways, participating in every step of cancer initiation and progression. Tumor stem cells possess self-renewal and self-differentiation abilities, along with strong tumorigenic potential. In this review, we discussed the role of integrins in cancer, with a focus on their impact on tumor stem cells and tumor stemness. This will aid in targeting tumor stem cells as a therapeutic approach, leading to the exploration of novel cancer treatment strategies.
Collapse
Affiliation(s)
- Siqi Gou
- The Second Affiliated Hospital, Department of urology, Hengyang Medical School, University of South China, Hengyang, China
| | - Anqi Wu
- The Second Affiliated Hospital, Department of Clinical Research Center, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhigang Luo
- The Second Affiliated Hospital, Department of urology, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
8
|
Wu Z, Zhuang X, Liang M, Sheng L, Huang L, Li Y, Ke Y. Identification of an inflammatory response-related gene prognostic signature and immune microenvironment for cervical cancer. Front Mol Biosci 2024; 11:1394902. [PMID: 38903179 PMCID: PMC11187284 DOI: 10.3389/fmolb.2024.1394902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
Background: Cervical cancer (CC) is the fourth most common cancer among women worldwide. As part of the brisk cross-talk between the host and the tumor, prognosis can be affected through inflammatory responses or the tumor microenvironment. However, further exploration of the inflammatory response-related genes that have prognostic value, microenvironment infiltration, and chemotherapeutic therapies in CC is needed. Methods: The clinical data and mRNA expression profiles of CC patients were downloaded from a public database for this study. In the TCGA cohort, a multigene prognostic signature was constructed by least absolute shrinkage and selection operator (LASSO) and Cox analyses. CC patients from the GEO cohort were used for validation. K‒M analysis was used to compare overall survival (OS) between the high- and low-risk groups. Univariate and multivariate Cox analyses were applied to determine the independent predictors of OS. The immune cell infiltration and immune-related functional score were calculated by single-sample gene set enrichment analysis (GSEA). Immunohistochemistry was utilized to validate the protein expression of prognostic genes in CC tissues. Results: A genetic signature model associated with the inflammatory response was built by LASSO Cox regression analysis. Patients in the high-risk group had a significantly lower OS rate. The predictive ability of the prognostic genes was evaluated by means of receiver operating characteristic (ROC) curve analysis. The risk score was confirmed to be an independent predictor of OS by univariate and multivariate Cox analyses. The immune status differed between the high-risk and low-risk groups, and the cancer-related pathways were enriched in the high-risk group according to functional analysis. The risk score was significantly related to tumor stage and immune infiltration type. The expression levels of five prognostic genes (LCK, GCH1, TNFRSF9, ITGA5, and SLC7A1) were positively related to sensitivity to antitumor drugs. Additionally, the expression of prognostic genes was significantly different between CC tissues and myoma patient cervix (non-tumorous) tissues in the separate sample cohort. Conclusion: A model consisting of 5 inflammation-related genes can be used to predict prognosis and influence immune status in CC patients. Furthermore, the inhibition or enhancement of these genes may become a novel alternative therapy.
Collapse
Affiliation(s)
- Zhuna Wu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Xuanxuan Zhuang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Meili Liang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Liying Sheng
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Li Huang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Yanting Li
- Department of Gynecology and Obstetrics, Anhai Hospital of Jinjiang, Quanzhou, Fujian, China
| | - Yumin Ke
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
9
|
Zhao Q, Shang Y, Lü J, Liu Y, Wang T, Li D, Li J, Lu Y, Wang Z, Yu Z. miR-29a-KLF4 signaling inhibits breast tumor initiation by regulating cancer stem cells. Int Immunopharmacol 2024; 130:111797. [PMID: 38442582 DOI: 10.1016/j.intimp.2024.111797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Abstract
Cancer stem cells (CSCs) are known for their potent ability to drive tumor initiation and recurrence, yet the molecular mechanisms regulating CSCs are still unclear. Our study found a positive correlation between increased levels of miR-29a and better survival rates in early-stage breast cancer patients, but a negative correlation in late-stage patients, suggesting a dual function of miR-29a in regulating breast cancer. Furthermore, miR-29a showed significant downregulation in the ALDH+ breast cancer stem cell population compared to non-stem cancer cells. Overexpression of miR-29a in human breast cancer cells reduced the proportion of CSCs, suppressed their ability to form mammospheres, and inhibited the expression of stemness genes SOX2, KLF4, and hTERT in vitro. Conversely, knockdown of miR-29a in breast cancer cells showed opposite effects. Tumor xenograft experiments revealed that miR-29a overexpression significantly inhibited tumorigenesis initiated by MDA-MB-231 cell transplantation in nude mice. We further demonstrated that Krüppel-like factor 4 (KLF4), a key gene that regulates cell stemness, was a direct target of miR-29a in breast cancer cells. miR-29a suppressed the expression of KLF4 at both mRNA and protein levels. Reintroduction of KLF4 into breast cancer cells rescued the miR-29a-induced CSC suppression phenotype. In summary, our study is the first to demonstrate that miR-29a-KLF4 signaling inhibits breast tumor initiation by regulating CSCs, which provides novel therapeutic targets for preventing breast tumor initiation.
Collapse
Affiliation(s)
- Qian Zhao
- Medical Innovation Center and State Key Laboratory of Cardiology, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yuanyuan Shang
- Department of General Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jinhui Lü
- Medical Innovation Center and State Key Laboratory of Cardiology, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yu Liu
- Medical Innovation Center and State Key Laboratory of Cardiology, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; School of Basic Medical Sciences, Jinzhou Medical University, Liaoning, China
| | - Tao Wang
- Medical Innovation Center and State Key Laboratory of Cardiology, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Danni Li
- Medical Innovation Center and State Key Laboratory of Cardiology, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jiayuan Li
- Medical Innovation Center and State Key Laboratory of Cardiology, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; School of Basic Medical Sciences, Jinzhou Medical University, Liaoning, China
| | - Ying Lu
- Medical Innovation Center and State Key Laboratory of Cardiology, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | - Zhongrui Wang
- Department of General Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | - Zuoren Yu
- Medical Innovation Center and State Key Laboratory of Cardiology, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|
10
|
Wang PS, Liu Z, Sweef O, Xie J, Chen J, Zhu H, Zeidler-Erdely PC, Yang C, Wang Z. Long noncoding RNA ABHD11-AS1 interacts with SART3 and regulates CD44 RNA alternative splicing to promote lung carcinogenesis. ENVIRONMENT INTERNATIONAL 2024; 185:108494. [PMID: 38364571 PMCID: PMC11375692 DOI: 10.1016/j.envint.2024.108494] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/02/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024]
Abstract
Hexavalent chromium [Cr(VI)] is a common environmental pollutant and chronic exposure to Cr(VI) causes lung cancer in humans, however, the mechanism of Cr(VI) carcinogenesis has not been well understood. Lung cancer is the leading cause of cancer-related death, although the mechanisms of how lung cancer develops and progresses have been poorly understood. While long non-coding RNAs (lncRNAs) are found abnormally expressed in cancer, how dysregulated lncRNAs contribute to carcinogenesis remains largely unknown. The goal of this study is to investigate the mechanism of Cr(VI)-induced lung carcinogenesis focusing on the role of the lncRNA ABHD11 antisense RNA 1 (tail to tail) (ABHD11-AS1). It was found that the lncRNA ABHD11-AS1 expression levels are up-regulated in chronic Cr(VI) exposure-transformed human bronchial epithelial cells, chronically Cr(VI)-exposed mouse lung tissues, and human lung cancer cells as well. Bioinformatics analysis revealed that ABHD11-AS1 levels are up-regulated in lung adenocarcinomas (LUADs) tissues and associated with worse overall survival of LUAD patients but not in lung squamous cell carcinomas. It was further determined that up-regulation of ABHD11-AS1 expression plays an important role in chronic Cr(VI) exposure-induced cell malignant transformation and tumorigenesis, and the stemness of human lung cancer cells. Mechanistically, it was found that ABHD11-AS1 directly binds SART3 (spliceosome associated factor 3, U4/U6 recycling protein). The interaction of ABHD11-AS1 with SART3 promotes USP15 (ubiquitin specific peptidase 15) nuclear localization. Nuclear localized USP15 interacts with pre-mRNA processing factor 19 (PRPF19) to increase CD44 RNA alternative splicing activating β-catenin and enhancing cancer stemness. Together, these findings indicate that lncRNA ABHD11-AS1 interacts with SART3 and regulates CD44 RNA alternative splicing to promote cell malignant transformation and lung carcinogenesis.
Collapse
Affiliation(s)
- Po-Shun Wang
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA; Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Zulong Liu
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA; Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Osama Sweef
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jie Xie
- Department of Toxicology and Cancer Biology, University of Kentucky School of Medicine, Lexington, KY, USA
| | - Jing Chen
- Department of Biochemistry and Molecular Biology, University of Kentucky School of Medicine, Lexington, KY, USA
| | - Haining Zhu
- Department of Biochemistry and Molecular Biology, University of Kentucky School of Medicine, Lexington, KY, USA
| | - Patti C Zeidler-Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Chengfeng Yang
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA; Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Zhishan Wang
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA; Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
11
|
Yan G, Xiao Q, Zhao J, Chen H, Xu Y, Tan M, Peng L. Brucea javanica derived exosome-like nanovesicles deliver miRNAs for cancer therapy. J Control Release 2024; 367:425-440. [PMID: 38295998 DOI: 10.1016/j.jconrel.2024.01.060] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
Triple-negative breast cancer (TNBC) is characterized by complex heterogeneity, high recurrence and metastasis rates, and short overall survival, owing to the lack of endocrine and targeted receptors, which necessitates chemotherapy as the major treatment regimen. Exosome-like nanovesicles derived from medicinal plants have shown great potential as novel biotherapeutics for cancer therapy by delivering their incorporated nucleic acids, especially microRNAs (miRNAs), to mammalian cells. In this study, we isolated exosome-like nanovesicles derived from B. javanica (BF-Exos) and investigated their influence and underlying molecular mechanisms in TNBC. We found that BF-Exos delivered 10 functional miRNAs to 4T1 cells, significantly retarding the growth and metastasis of 4T1 cells by regulating the PI3K/Akt/mTOR signaling pathway and promoting ROS/caspase-mediated apoptosis. Moreover, BF-Exos were shown to inhibit the secretion of vascular endothelial growth factor, contributing to anti-angiogenesis in the tumor microenvironment. In vivo, BF-Exos inhibited tumor growth, metastasis, and angiogenesis in breast tumor mouse models, while maintaining high biosafety. Overall, BF-Exos are considered promising nanoplatforms for the delivery of medicinal plant-derived nucleic acids, with great potential to be developed into novel biotherapeutics for the treatment of TNBC.
Collapse
Affiliation(s)
- Ge Yan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Qiyao Xiao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Jingyu Zhao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Haoran Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yang Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Minhong Tan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Lihua Peng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, PR China; Jinhua Institute of Zhejiang University, Jinhua 321299, Zhejiang, PR China.
| |
Collapse
|
12
|
Zhang C, Yu Z, Yang S, Liu Y, Song J, Mao J, Li M, Zhao Y. ZNF460-mediated circRPPH1 promotes TNBC progression through ITGA5-induced FAK/PI3K/AKT activation in a ceRNA manner. Mol Cancer 2024; 23:33. [PMID: 38355583 PMCID: PMC10865535 DOI: 10.1186/s12943-024-01944-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Circular RNAs are highly stable regulatory RNAs that have been increasingly associated with tumorigenesis and progression. However, the role of many circRNAs in triple-negative breast cancer (TNBC) and the related mechanisms have not been elucidated. METHODS In this study, we screened circRNAs with significant expression differences in the RNA sequencing datasets of TNBC and normal breast tissues and then detected the expression level of circRPPH1 by qRT‒PCR. The biological role of circRPPH1 in TNBC was then verified by in vivo and in vitro experiments. Mechanistically, we verified the regulatory effects between circRPPH1 and ZNF460 and between circRPPH1 and miR-326 by chromatin immunoprecipitation (ChIP), fluorescence in situ hybridization assay, dual luciferase reporter gene assay and RNA pull-down assay. In addition, to determine the expression of associated proteins, we performed immunohistochemistry, immunofluorescence, and western blotting. RESULTS The upregulation of circRPPH1 in TNBC was positively linked with a poor prognosis. Additionally, both in vivo and in vitro, circRPPH1 promoted the biologically malignant behavior of TNBC cells. Additionally, circRPPH1 may function as a molecular sponge for miR-326 to control integrin subunit alpha 5 (ITGA5) expression and activate the focal adhesion kinase (FAK)/PI3K/AKT pathway. CONCLUSION Our research showed that ZNF460 could promote circRPPH1 expression and that the circRPPH1/miR-326/ITGA5 axis could activate the FAK/PI3K/AKT pathway to promote the progression of TNBC. Therefore, circRPPH1 can be used as a therapeutic or diagnostic target for TNBC.
Collapse
Affiliation(s)
- Chuanpeng Zhang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Ziyi Yu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Susu Yang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Yitao Liu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Jiangni Song
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Juan Mao
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Minghui Li
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Yi Zhao
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China.
| |
Collapse
|
13
|
Ahram M, Abu Alragheb B, Abushukair H, Bawadi R, Al-Hussaini M. MicroRNAs Associated with Androgen Receptor and Metastasis in Triple-Negative Breast Cancer. Cancers (Basel) 2024; 16:665. [PMID: 38339416 PMCID: PMC10854913 DOI: 10.3390/cancers16030665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
It is crucial to identify novel molecular biomarkers and therapeutic targets for triple-negative breast cancer (TNBC). The androgen receptor (AR) is a regulator of TNBC, acting partially via microRNA molecules (miRNAs). In this study, we used PCR arrays to profile the expression of 84 miRNAs in 24 TNBC tissue samples, which were equally classified according to AR expression and/or metastasis. Several bioinformatics tools were then utilized to determine the potentially affected protein targets and signaling pathways. Seven miRNAs were found to be significantly more highly expressed in association with AR expression, including miR-328-3p and miR-489-3p. Increased expression of miR-205-3p was found to be significantly associated with metastasis. Certain miRNAs were specifically found to be differentially expressed in either metastatic or non-metastatic AR-positive tumors. A gene ontology (GO) analysis indicated biological roles in the regulation of transcription, cellular response to DNA damage, and the transforming growth factor-beta (TGF-beta) signaling pathway. The GO analysis also showed enrichment in kinase and transcription factor activities. The TGF-beta and a number of kinase-dependent pathways were also retrieved using the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. This study offers an understanding of the role of AR in TNBC and further implicates miRNAs in mediating the effects of AR on TNBC.
Collapse
Affiliation(s)
- Mamoun Ahram
- Department of Physiology and Biochemistry, School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | | | - Hassan Abushukair
- School of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Randa Bawadi
- Department of Physiology and Biochemistry, School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | - Maysa Al-Hussaini
- Department of Pathology and Laboratory Medicine, King Hussein Cancer Center, Amman 11941, Jordan;
| |
Collapse
|
14
|
Bhattacharya S, Sarker S, Das S, Ahir M, Chattopadhyay S, Ghosh S, Adhikary A. microRNA-205 represses breast cancer metastasis by perturbing the rab coupling protein [RCP]-mediated integrin β1 recycling on the membrane. Apoptosis 2024; 29:191-209. [PMID: 37945815 DOI: 10.1007/s10495-023-01912-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
During cancer cell invasion, integrin undergoes constant endo/exocytic trafficking. It has been found that the recycling ability of integrin β1 through Rab11-controlled long loop pathways is directly associated with cancer invasion. Previous studies showed that gain-of-function mutant p53 regulates the Rab-coupling protein [RCP]-mediated integrin β1 recycling by inactivating tumor suppressor TAp63. So, we were interested to investigate the involvement of miR-205 in this process. In the current study first, we evaluated that the lower expression of miR-205 in MDA-MB-231 cell line is associated with high motility and invasiveness. Further investigation corroborated that miR-205 directly targets RCP resulting in attenuated RCP-mediated integrin β1 recycling. Overexpression of TAp63 validates our in vitro findings. To appraise the anti-metastatic role of miR-205, we developed two in vivo experimental models- xenograft-chick embryo and xenograft-immunosuppressed BALB/c mice. Our in vivo results support the negative effect of miR-205 on metastasis. Therefore, these findings advocate the tumor suppressor activity of miR-205 in breast cancer cells and suggest that in the future development of miR-205-targeting RNAi therapeutics could be a smart alternative approach to prevent the metastatic fate of the disease.
Collapse
Affiliation(s)
- Saurav Bhattacharya
- Centre for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata, 700106, West Bengal, India
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Sushmita Sarker
- Centre for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata, 700106, West Bengal, India
| | - Shaswati Das
- Centre for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata, 700106, West Bengal, India
| | - Manisha Ahir
- Centre for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata, 700106, West Bengal, India
- Baylor College of Medicine, Houston, TX, USA
| | - Sreya Chattopadhyay
- Department of Physiology, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata, 700009, West Bengal, India
| | - Swatilekha Ghosh
- Amity Institute of Biotechnology, Amity University, Kolkata. Major Arterial Road [South-East], Action Area II, Newtown, Kolkata, 700135, West Bengal, India
| | - Arghya Adhikary
- Department of Life science & Bio-technology, Jadavpur University, Kolkata, West Bengal, India.
| |
Collapse
|
15
|
Bae HL, Jeong K, Yang S, Jun H, Kim K, Chai YJ. Expression Profiles of Hypoxia-Related Genes of Cancers Originating from Anatomically Similar Locations Using TCGA Database Analysis. MEDICINES (BASEL, SWITZERLAND) 2023; 11:2. [PMID: 38248716 PMCID: PMC10819830 DOI: 10.3390/medicines11010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/15/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024]
Abstract
Background: Hypoxia is a well-recognized characteristic of the tumor microenvironment of solid cancers. This study aimed to analyze hypoxia-related genes shared by groups based on tumor location. Methods: A total of 9 hypoxia-related pathways from the Kyoto Encyclopedia of Genes and Genomes database or the Reactome database were selected, and 850 hypoxia-related genes were analyzed. Based on their anatomical locations, 14 tumor types were categorized into 6 groups. The group-specific genetic risk score was classified as high- or low-risk based on mRNA expression, and survival outcomes were evaluated. Results: The risk scores in the Female Reproductive group and the Lung group were internally and externally validated. In the Female Reproductive group, CDKN2A, FN1, and ITGA5 were identified as hub genes associated with poor prognosis, while IL2RB and LEF1 were associated with favorable prognosis. In the Lung group, ITGB1 and LDHA were associated with poor prognosis, and GLS2 was associated with favorable prognosis. Functional enrichment analysis showed that the Female Reproductive group was enriched in relation to cilia and skin, while the Lung group was enriched in relation to cytokines and defense. Conclusions: This analysis may lead to better understanding of the mechanisms of cancer progression and facilitate establishing new biomarkers for prognosis prediction.
Collapse
Affiliation(s)
- Hye Lim Bae
- Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Republic of Korea;
| | - Kyeonghun Jeong
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea;
| | - Suna Yang
- Department of Clinical Medical Science, Seoul National University, Seoul 08826, Republic of Korea;
| | - Hyeji Jun
- Seoul National University Hospital Biomedical Research Institute, Seoul 03080, Republic of Korea;
| | - Kwangsoo Kim
- Department of Transdisciplinary Department of Medicine, Institute of Convergence Medicine with Innovative Technology, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Department of Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Young Jun Chai
- Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Republic of Korea;
- Department of Transdisciplinary Department of Medicine, Institute of Convergence Medicine with Innovative Technology, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Department of Surgery, Seoul Metropolitan Government—Seoul National University Boramae Medical Center, Seoul 07061, Republic of Korea
| |
Collapse
|
16
|
Xing T, Hu Y, Wang H, Zou Q. A senescence-related signature for predicting the prognosis of breast cancer: A bioinformatics analysis. Medicine (Baltimore) 2023; 102:e33739. [PMID: 37171330 PMCID: PMC10174404 DOI: 10.1097/md.0000000000033739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/13/2023] Open
Abstract
Breast cancer is a heterogeneous disease with diverse prognosis and treatment outcomes. Current gene signatures for prognostic prediction are limited to specific subtypes of breast cancer. Cellular senescence is a state of irreversible cell cycle arrest that affects various physiological and pathological processes. This study aimed to develop and validate a senescence-related signature for predicting the prognosis of breast cancer patients. We retrieved 744 senescence-associated genes from the SeneQuest database and analyzed their expression profiles in 2 large datasets of breast cancer patients: The Cancer Genome Atlas (TCGA) and the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC). We used univariate Cox regression analysis, least absolute shrinkage and selection operator (LASSO) regression, and multivariate Cox regression analysis to derive a 29-gene senescence-related risk signature. The risk signature was significantly associated with disease-specific survival (DSS), clinical characteristics, molecular subtypes, and immune checkpoint genes expressions in both datasets. The risk signature also stratified high-risk and low-risk patients within the same clinical stage and molecular subtype. The risk signature was an independent prognostic factor for breast cancer patients. The senescence-related signature may be a useful biomarker for predicting prognosis and immunotherapy response of breast cancer patients. The risk signature may also guide adjuvant chemotherapy decisions, especially in hormone receptor positive (HR+) and human epidermal growth factor receptor type 2 (HER2)- subtypes.
Collapse
Affiliation(s)
- Tengfei Xing
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiyi Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Hongying Wang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang Zou
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Hu D, Zhang Z, Zhang Y, Huang K, Li X. Identification of immune related molecular subtypes and prognosis model for predicting prognosis, drug resistance in cervical squamous cell carcinoma. Front Genet 2023; 14:1137995. [PMID: 37007965 PMCID: PMC10063826 DOI: 10.3389/fgene.2023.1137995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/09/2023] [Indexed: 03/19/2023] Open
Abstract
Background: One of the features of tumor immunity is the immunosuppressive tumor microenvironment (TME). In this study, TME gene signatures were used to define the characteristics of Cervical squamous cell carcinoma (CESC) immune subtypes and construct a new prognostic model. Methods: Single sample gene set enrichment analysis (ssGSEA) was used to quantify pathway activity. RNA-seq of 291 CESC were obtained from the Cancer Genome Atlas (TCGA) database as a training set. Microarray-based data of 400 cases of CESC were obtained from the Gene Expression Compilation (GEO) database as an independent validation set. 29 TME related gene signatures were consulted from previous study. Consensus Cluster Plus was employed to identify molecular subtype. Univariate cox regression analysis and random survival forest (RSF) were used to establish the immune-related gene risk model based on the TCGA data set of CESC, and the accuracy of prognosis prediction was verified by GEO data set. ESTIMATE algorithm was used to perform immune and matrix scores on the data set. Results: three molecular subtypes (C1, C2, C3) were screened in TCGA-CESC on account of 29 TME gene signatures. Among, C3 with better survival outcome had higher immune related gene signatures, while C1 with worse prognosis time had enhanced matrix related features. Increased immune infiltration, inhibition of tumor related pathways, widespread genomic mutations and prone immunotherapy were observed in C3. Furthermore, a five immune genes signature was constructed and predicted overall survival for CESC, which successfully validated in GSE44001 dataset. A positive phenomenon was observed between five hub genes expressions and methylation. Similarly, high group enriched in matrix related features, while immune related gene signatures were enriched in low group. Immune cell, immune checkpoints genes expression levels were negatively, while most TME gene signatures were positively correlated with Risk Score. In addition, high group was more sensitive to drug resistance. Conclusion: This work identified three distinct immune subtypes and a five genes signature for predicting prognosis in CESC patients, which provided a promising treatment strategy for CESC.
Collapse
Affiliation(s)
- Dongzhi Hu
- Department of Obstetrics and Gynecology, Yiyang Central Hospital, Yiyang, China
| | - Zijian Zhang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yongjing Zhang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Kangni Huang
- Department of Obstetrics and Gynecology, Yiyang Central Hospital, Yiyang, China
| | - Xiaoxue Li
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
18
|
Li X, Li L, Wu J. The members of the miR-148/152 family inhibit cancer stem cell-like properties in gastric cancer via negative regulation of ITGA5. J Transl Med 2023; 21:105. [PMID: 36765401 PMCID: PMC9912648 DOI: 10.1186/s12967-023-03894-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/17/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND The role of microRNA (miRNA) in modulating the function of cancer stem cells through diverse signaling pathway has been evidenced. We here identified a role of microRNA (miRNA) family, specifically miR-148/152, in gastric cancer and delineated its functional effects on gastric cancer stem cells. METHODS Bioinformatics analysis was conducted to analyze expression of integrin α5 (ITGA5) which was verified through expression determination in clinical tissue samples. Next, the upstream regulatory factors of ITGA5 were determined. CD44+EpCAM (high) cells sorted from AGS cells subjected to gain-of-function experiments, followed by evaluation of their capacity of colony formation, generation of tumorosphere, cell migration and viability in vitro and xenograft tumor formation in vivo. RESULTS ITGA5 was elevated in gastric cancer tissues and confirmed as a target gene of the miR-148/152 family members. The miR-148/152 family members were downregulated in gastric cancer tissues and cells. Decreased expression of miR-148/152 family members was also detected in gastric cancer stem cells. However, the raised expression led to reduced colony formation, tumorosphere, cell migration, cell viability, and drug resistance of CD44+EpCAM (high) AGS cells in vitro, and tumorigenesis in vitro. ITGA5 overexpression reversed the effect of the miR-148/152 family members. CONCLUSIONS This study demonstrates that the miR-148/152 family members may prevent gastric cancer stem cell-like properties by targeting ITGA5, which can serve as an appealing target for gastric cancer treatment.
Collapse
Affiliation(s)
- Xiaoying Li
- grid.412644.10000 0004 5909 0696Department of Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032 People’s Republic of China
| | - Lin Li
- grid.412644.10000 0004 5909 0696Department of Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032 People’s Republic of China
| | - Jiangying Wu
- Department of Intervention, The Fourth Affiliated Hospital of China Medical University, No. 4, Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning, People's Republic of China.
| |
Collapse
|
19
|
Farheen J, Hosmane NS, Zhao R, Zhao Q, Iqbal MZ, Kong X. Nanomaterial-assisted CRISPR gene-engineering - A hallmark for triple-negative breast cancer therapeutics advancement. Mater Today Bio 2022; 16:100450. [PMID: 36267139 PMCID: PMC9576993 DOI: 10.1016/j.mtbio.2022.100450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/16/2022] [Accepted: 10/02/2022] [Indexed: 11/05/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most violent class of tumor and accounts for 20-24% of total breast carcinoma, in which frequently rare mutation occurs in high frequency. The poor prognosis, recurrence, and metastasis in the brain, heart, liver and lungs decline the lifespan of patients by about 21 months, emphasizing the need for advanced treatment. Recently, the adaptive immunity mechanism of archaea and bacteria, called clustered regularly interspaced short palindromic repeats (CRISPR) combined with nanotechnology, has been utilized as a potent gene manipulating tool with an extensive clinical application in cancer genomics due to its easeful usage and cost-effectiveness. However, CRISPR/Cas are arguably the efficient technology that can be made efficient via organic material-assisted approaches. Despite the efficacy of the CRISPR/Cas@nano complex, problems regarding successful delivery, biodegradability, and toxicity remain to render its medical implications. Therefore, this review is different in focus from past reviews by (i) detailing all possible genetic mechanisms of TNBC occurrence; (ii) available treatments and gene therapies for TNBC; (iii) overview of the delivery system and utilization of CRISPR-nano complex in TNBC, and (iv) recent advances and related toxicity of CRISPR-nano complex towards clinical trials for TNBC.
Collapse
Affiliation(s)
- Jabeen Farheen
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
- Zhejiang-Mauritius Joint Research Centre for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Narayan S. Hosmane
- Department of Chemistry & Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Ruibo Zhao
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
- Zhejiang-Mauritius Joint Research Centre for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
| | - Qingwei Zhao
- Research Center for Clinical Pharmacy & Key Laboratory for Drug Evaluation and Clinical Research of Zhejiang Province, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China
| | - M. Zubair Iqbal
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
- Zhejiang-Mauritius Joint Research Centre for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
- Zhejiang-Mauritius Joint Research Centre for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| |
Collapse
|
20
|
DNA Damage Response in Cancer Therapy and Resistance: Challenges and Opportunities. Int J Mol Sci 2022; 23:ijms232314672. [PMID: 36499000 PMCID: PMC9735783 DOI: 10.3390/ijms232314672] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Resistance to chemo- and radiotherapy is a common event among cancer patients and a reason why new cancer therapies and therapeutic strategies need to be in continuous investigation and development. DNA damage response (DDR) comprises several pathways that eliminate DNA damage to maintain genomic stability and integrity, but different types of cancers are associated with DDR machinery defects. Many improvements have been made in recent years, providing several drugs and therapeutic strategies for cancer patients, including those targeting the DDR pathways. Currently, poly (ADP-ribose) polymerase inhibitors (PARP inhibitors) are the DDR inhibitors (DDRi) approved for several cancers, including breast, ovarian, pancreatic, and prostate cancer. However, PARPi resistance is a growing issue in clinical settings that increases disease relapse and aggravate patients' prognosis. Additionally, resistance to other DDRi is also being found and investigated. The resistance mechanisms to DDRi include reversion mutations, epigenetic modification, stabilization of the replication fork, and increased drug efflux. This review highlights the DDR pathways in cancer therapy, its role in the resistance to conventional treatments, and its exploitation for anticancer treatment. Biomarkers of treatment response, combination strategies with other anticancer agents, resistance mechanisms, and liabilities of treatment with DDR inhibitors are also discussed.
Collapse
|
21
|
Wang JF, Chen YY, Zhang SW, Zhao K, Qiu Y, Wang Y, Wang JC, Yu Z, Li BP, Wang Z, Chen JQ. ITGA5 Promotes Tumor Progression through the Activation of the FAK/AKT Signaling Pathway in Human Gastric Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8611306. [PMID: 36193075 PMCID: PMC9526618 DOI: 10.1155/2022/8611306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND ITGA5 is an adhesion molecule that integrates the intracellular structures with the extracellular matrix to perform biological functions. However, ITGA5 is highly expressed in a variety of tumors and is involved in tumor progression by promoting cell proliferation and metastasis. Nevertheless, little research has been performed on its function in gastric cancer. Therefore, the aim of this study was to investigate the role of ITGA5 in gastric cancer, focusing on the mechanism regulating the proliferation, invasion and migration. METHODS The expression of ITGA5 in gastric cancer tissues was assessed by the use of molecular bioinformatics databases and high-throughput sequencing of gastric cancer tissues from patients. Western blot, qPCR, and immunohistochemistry were performed to detect the expression of ITGA5 in samples from gastric cancer patients and gastric cancer cell lines. Furthermore, the ITGA5 gene was silenced and overexpressed in gastric cancer cells, and the effect on proliferation, invasion, migration, and tumorigenic ability was assessed. RESULTS ITGA5 mRNA and protein expression were upregulated in gastric cancer cell lines and tissues from patients, and its expression was closely associated with tumor size, lymph node metastasis, and TNM stage. In vitro and in vivo experiments showed that ITGA5 silencing resulted in the inhibition of proliferation, invasion, migration, and graft growth of gastric cancer cells; conversely, the overexpression resulted in the promotion of these cell functions. Our results finally showed that the effect of ITGA5 on proliferation, invasion, and migration of gastric cancer cells was performed through the activation of the FAK/AKT pathway. CONCLUSIONS ITGA5 promotes proliferation, invasion, and migration of gastric cancer cells through the activation of FAK/AKT signaling pathway, suggesting that ITGA5 may be potentially considered as a new target in gastric cancer therapy.
Collapse
Affiliation(s)
- Jun-fu Wang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330031, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region, China
| | - Ye-yang Chen
- Department of Gastrointestinal Surgery, The First People's Hospital of Yulin, Yulin, 537000 Guangxi Zhuang Autonomous Region, China
| | - Si-wen Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Kun Zhao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region, China
| | - Yue Qiu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Ye Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jian-cheng Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Zhu Yu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Bo-pei Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Zheng Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jun-qiang Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
22
|
Cui X, Yang X, Wang G, Li H, Li S, Xu T, Wu Y, Zhang Z, Li X, Du Y, Dong M. Regulation of antitumor miR-205 targets oncogenes: Direct regulation of lymphoid specific helicase and its clinical significance. Life Sci 2022; 309:120993. [PMID: 36162484 DOI: 10.1016/j.lfs.2022.120993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 11/15/2022]
Abstract
HEADING AIMS Breast cancer is one of the most common malignant tumors with a high incidence and leading cancer-related death in women worldwide. MiR-205 plays a crucial role in breast cancer initiation and progression. Here, we identified the relationship between miR-205 and lymphoid specific helicase and confirmed the significance of the miR-205/lymphoid specific helicase (miR-205/HELLS) axis. MATERIALS AND METHODS Data from The Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database were analyzed to investigate the expression level of miR-205 and HELLS in breast cancer. The TargetScan, Starbase and miRWalk databases were used to predict the candidate target genes of miR-205. Proliferation and migration abilities were examined using cell counting kit-8 assay, colony formation assays, transwell assay and wound-healing assay. Dual-luciferase reporter assay was utilized to confirm the binding of miR-205 and HELLS. Quantitative RT-PCR, western blot assays or immunohistochemistry were conducted to detect the expression level of genes in breast cancer cells or tissues. Mice xenograft models were constructed to explore the function of miR-205 and HELLS in vivo. KEY FINDINGS Overexpressed miR-205 alleviated cancer cell proliferation and migration and influenced patients' prognosis by negatively regulating the HELLS gene. Consistently, animal experiments revealed that both overexpressing miR-205 and knocking down HELLS exhibited significant tumor growth inhibition in vivo. SIGNIFICANCE Our study demonstrated that miR-205 targets HELLS to regulate tumor progression. MiR-205 and HELLS could be considered a novel diagnosis and therapeutic molecular marker of breast cancer.
Collapse
Affiliation(s)
- Xiaoqing Cui
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People's Republic of China; Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People's Republic of China; Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People's Republic of China
| | - Xue Yang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People's Republic of China; Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People's Republic of China; Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People's Republic of China
| | - Ge Wang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People's Republic of China; Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People's Republic of China; Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People's Republic of China
| | - Hanning Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People's Republic of China; Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People's Republic of China; Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People's Republic of China
| | - Shuyu Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People's Republic of China; Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People's Republic of China; Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People's Republic of China
| | - Tao Xu
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People's Republic of China; Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People's Republic of China; Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People's Republic of China; Department of Obstetrics and Gynecology, Cancer Biology research center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People's Republic of China
| | - Yonglin Wu
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People's Republic of China; Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People's Republic of China; Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People's Republic of China
| | - Ziyao Zhang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Rd, Wuhan, 430060, Hubei, People's Republic of China
| | - Xingrui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People's Republic of China; Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People's Republic of China; Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People's Republic of China.
| | - Yaying Du
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People's Republic of China; Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People's Republic of China; Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People's Republic of China.
| | - Menglu Dong
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People's Republic of China; Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People's Republic of China; Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People's Republic of China.
| |
Collapse
|
23
|
A novel epithelial-mesenchymal transition gene signature for the immune status and prognosis of hepatocellular carcinoma. Hepatol Int 2022; 16:906-917. [PMID: 35699863 PMCID: PMC9349121 DOI: 10.1007/s12072-022-10354-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/06/2022] [Indexed: 12/11/2022]
Abstract
Background This study clarified whether EMT-related genes can predict immunotherapy efficacy and overall survival in patients with HCC. Methods The RNA-sequencing profiles and patient information of 370 samples were derived from the Cancer Genome Atlas (TCGA) dataset, and EMT-related genes were obtained from the Molecular Signatures database. The signature model was constructed using the least absolute shrinkage and selection operator Cox regression analysis in TCGA cohort. Validation data were obtained from the International Cancer Genome Consortium (ICGC) dataset of patients with HCC. Kaplan–Meier analysis and multivariate Cox analyses were employed to estimate the prognostic value. Immune status and tumor microenvironment were estimated using a single-sample gene set enrichment analysis (ssGSEA). The expression of prognostic genes was verified using qRT-PCR analysis of HCC cell lines. Results A signature model was constructed using EMT-related genes to determine HCC prognosis, based on which patients were divided into high-risk and low-risk groups. The risk score, as an independent factor, was related to tumor stage, grade, and immune cells infiltration. The results indicated that the most prognostic genes were highly expressed in the HCC cell lines, but GADD45B was down-regulated. Enrichment analysis suggested that immunoglobulin receptor binding and material metabolism were essential in the prognostic signature. Conclusion Our novel prognostic signature model has a vital impact on immune status and prognosis, significantly helping the decision-making related to the diagnosis and treatment of patients with HCC. Supplementary Information The online version contains supplementary material available at 10.1007/s12072-022-10354-3.
Collapse
|
24
|
Xiong Y, Song X, Kudusi, Zu X, Chen M, He W, Qi L. Oncogenic GBX2 promotes the malignant behaviors of bladder cancer cells by binding to the ITGA5 promoter and activating its transcription. Funct Integr Genomics 2022; 22:937-950. [PMID: 35672622 DOI: 10.1007/s10142-022-00870-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/16/2022] [Accepted: 05/12/2022] [Indexed: 12/24/2022]
Abstract
In bladder cancer patients, metastasis after surgical resection and serious adverse reactions brought by cisplatin-based systemic chemotherapy make it urgent to explore novel therapeutic methods for improving the clinical outcomes of patients with unsuccessful first-line chemotherapy and disease progression. In this study, GBX2 has been recognized as a differentially expressed transcriptional factor between bladder cases with response to treatment and progressive disease based on online expression profile analysis. Higher GBX2 expression was correlated with poorer OS, DSS, and PFS in bladder cancer patients. GBX2 co-expressed genes were enriched in ECM regulation. ITGA5 was positively correlated with GBX2. GBX2 and ITGA5 were notably elevated in bladder cancer cells. GBX2 and ITGA5 similarly affected bladder cancer cell phenotypes via facilitating cell viability, migration, and invasion. By binding to the promoter region of ITGA5, GBX2 activated ITGA5 transcription, upregulating ITGA5 expression. In bladder cancer cells co-transfected with sh-GBX2 and ITGA5 oe, the inhibitory effects of GBX2 knockdown on bladder cancer cell malignant behaviors were partially eliminated by ITGA5 overexpression. In conclusion, GBX2 and ITGA5 serve as oncogenic factors, promoting the viability, migration, and invasion of bladder cancer cells. GBX2 exerts its functions by targeting the ITGA5 promoter region to activate ITGA5 transcription.
Collapse
Affiliation(s)
- Yaoyao Xiong
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Extracorporeal Life Support Center of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xiaohang Song
- Department of Urology, Turpan People's Hospital, Turpan, 838000, Xinjiang, China
| | - Kudusi
- Department of Urology, Turpan People's Hospital, Turpan, 838000, Xinjiang, China
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Minfeng Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Wei He
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Lin Qi
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| |
Collapse
|
25
|
Wang Z, Uddin MB, Xie J, Tao H, Zeidler-Erdely PC, Kondo K, Yang C. Chronic Hexavalent Chromium Exposure Upregulates the RNA Methyltransferase METTL3 Expression to Promote Cell Transformation, Cancer Stem Cell-Like Property, and Tumorigenesis. Toxicol Sci 2022; 187:51-61. [PMID: 35201342 PMCID: PMC9216043 DOI: 10.1093/toxsci/kfac023] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hexavalent chromium [Cr(VI)] is a common environmental carcinogen causing lung cancer in humans. This study investigates the mechanism of Cr(VI) carcinogenesis focusing on the role of the epitranscriptomic dysregulation. The epitranscriptomic effect of Cr(VI) was determined in Cr(VI)-transformed human bronchial epithelial cells, chromate-exposed mouse and human lungs. The epitranscriptomic effect and its role in Cr(VI)-induced cell transformation, cancer stem cell (CSC)-like property, and tumorigenesis were determined by microarray analysis, soft agar colony formation, suspension spheroid formation, and mouse xenograft tumorigenesis assays. It was found that chronic Cr(VI) exposure causes epitranscriptomic dysregulations as evidenced by the increased levels of total RNA N6-methyladenosine (m6A) modification and the RNA m6A methyltransferase like-3 (METTL3) in Cr(VI)-transformed cells and chromate exposure-caused mouse and human lung tumors. Knockdown of METTL3 expression in Cr(VI)-transformed cells significantly reduces their m6A levels and transformed phenotypes and tumorigenicity in mice. Moreover, knockdown of METTL3 expression in parental nontransformed cells significantly reduces the capability of chronic Cr(VI) exposure to induce cell transformation and CSC-like property. Together, this study reveals that chronic Cr(VI) exposure is capable of altering cellular epitranscriptome by increasing the m6A RNA modification via upregulating the RNA methyltransferase METTL3 expression, which plays an important role in Cr(VI)-induced cell transformation, CSC-like property, and tumorigenesis.
Collapse
Affiliation(s)
- Zhishan Wang
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44109, USA
| | - Mohammad Burhan Uddin
- Center for Environmental and Systems Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA
| | - Jie Xie
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA
| | - Hua Tao
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44109, USA
| | - Patti C Zeidler-Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26508, USA
| | - Kazuya Kondo
- Department of Oncological Medical Services, Graduate School of Biomedical Sciences, Tokushima University Graduate School, Tokushima City 770-8509, Japan
| | - Chengfeng Yang
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44109, USA
| |
Collapse
|
26
|
Paul U, Banerjee S. The functional significance and cross-talk of non-coding RNAs in triple negative and quadruple negative breast cancer. Mol Biol Rep 2022; 49:6899-6918. [PMID: 35235157 DOI: 10.1007/s11033-022-07288-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/18/2022] [Indexed: 12/13/2022]
Abstract
One of the leading causes of cancer-related deaths worldwide is breast cancer, among which triple-negative breast cancer (TNBC) is the most malignant and lethal subtype. This cancer accounts for 10-20% of all breast cancer deaths. Proliferation, tumorigenesis, and prognosis of TNBC are affected when the androgen receptor (AR) is not expressed, and it is classified as quadruple negative breast cancer (QNBC). Non-coding RNAs, such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), play a significant role in tumorigenesis by virtue of their oncogenic and tumor-suppressive properties. To regulate tumorigenesis, miRNAs interact with their target mRNAs and modulate their expression, whereas lncRNAs can either act alone or interact with miRNAs or other molecules through various signaling pathways. Conversely, circRNAs regulate tumorigenesis by acting as miRNA sponges predominantly. Recently, non-coding RNAs were studied comprehensively for their roles in tumor proliferation, progression, and metastasis. As a result of existing studies and research progress, non-coding RNAs have been implicated in TNBC, necessitating their use as biomarkers for future diagnostic applications. In this review, the non-coding RNAs are explicitly implicated in the regulation of breast cancer, and their cross-talk between TNBC and QNBC is also discussed.
Collapse
Affiliation(s)
- Utpalendu Paul
- School of Bio Science and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Satarupa Banerjee
- School of Bio Science and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
27
|
Ling Z, Li W, Hu J, Li Y, Deng M, Zhang S, Ren X, Wu T, Xia J, Cheng B, Tao X. Targeting CCL2-CCR4 axis suppress cell migration of head and neck squamous cell carcinoma. Cell Death Dis 2022; 13:158. [PMID: 35177591 PMCID: PMC8854715 DOI: 10.1038/s41419-022-04610-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/20/2022] [Accepted: 02/04/2022] [Indexed: 12/13/2022]
Abstract
For head and neck squamous cell carcinoma (HNSCC), the local invasion and distant metastasis represent the predominant causes of mortality. Targeted inhibition of chemokines and their receptors is an ongoing antitumor strategy established on the crucial roles of chemokines in cancer invasion and metastasis. Herein, we showed that C-C motif chemokine ligand 2 (CCL2)- C-C motif chemokine receptor 4 (CCR4) signaling, but not the CCL2- C-C motif chemokine receptor 2 (CCR2) axis, induces the formation of the vav guanine nucleotide exchange factor 2 (Vav2)- Rac family small GTPase 1 (Rac1) complex to activate the phosphorylation of myosin light chain (MLC), which is involved in the regulation of cell motility and cancer metastasis. We identified that targeting CCR4 could effectively interrupt the activation of HNSCC invasion and metastasis induced by CCL2 without the promoting cancer relapse observed during the subsequent withdrawal period. All current findings suggested that CCL2-CCR4-Vav2-Rac1-p-MLC signaling plays an essential role in cell migration and cancer metastasis of HNSCC, and CCR4 may serve as a new potential molecular target for HNSCC therapy.
Collapse
Affiliation(s)
- Zihang Ling
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, P. R. China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, P. R. China
| | - Wei Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, P. R. China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, P. R. China
| | - Jiaqi Hu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, P. R. China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, P. R. China
| | - Yuanyuan Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, P. R. China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, P. R. China
| | - Miao Deng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, P. R. China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, P. R. China
| | - Siyuan Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, P. R. China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, P. R. China
| | - Xianyue Ren
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, P. R. China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, P. R. China
| | - Tong Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, P. R. China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, P. R. China
| | - Juan Xia
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, P. R. China. .,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, P. R. China.
| | - Bin Cheng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, P. R. China. .,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, P. R. China.
| | - Xiaoan Tao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, P. R. China. .,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, P. R. China.
| |
Collapse
|
28
|
Zhou C, Shen Y, Wei Z, Shen Z, Tang M, Shen Y, Deng H. ITGA5 is an independent prognostic biomarker and potential therapeutic target for laryngeal squamous cell carcinoma. J Clin Lab Anal 2022; 36:e24228. [PMID: 34994984 PMCID: PMC8841133 DOI: 10.1002/jcla.24228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/25/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022] Open
Abstract
Background Integrin α5 (ITGA5) was involved in a variety of cancers. However, the role of ITGA5 in laryngeal squamous cell carcinoma (LSCC) remains unknown. Methods The expression of ITGA5 and the corresponding clinicopathological parameters of LSCC patients the TCGA database. Five datasets (GSE51985, GSE59102, GSE84957, GSE27020, and GSE65858) were downloaded from the GEO database as validation sets. Kaplan–Meier plotter, Cox regression analysis, and nomogram were performed to determine the prognostic value of ITGA5 in LSCC. GO, KEGG, and GSEA were used to explore the underlying biological functions of ITGA5 in LSCC. The algorithms ESTIMATE and CIBERSORT were adopted to evaluate the association between ITGA5 and the infiltration of the immune cells. The algorithm pRRophetic was used to estimate the response to chemotherapeutic drugs. Results The expression of ITGA5 was higher in the LSCC samples and linked to poor overall survival and recurrence‐free survival. Further, the Cox regression analysis confirmed that high expression of ITGA5 was an independent unfavorable prognostic factor. The predictive performance of nomogram based on the expression of ITGA5 was accurate and practical. The functional enrichment analysis confirmed that ITGA5 was related to the construction of the components and structures of the extracellular matrix. Finally, patients with high ITGA5 expression were more likely to benefit from docetaxel and gemcitabine. Conclusion The expression of ITGA5 was elevated in the LSCC and was a predictor for prognosis and chemotherapeutic response in LSCC patients.
Collapse
Affiliation(s)
- Chongchang Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China.,Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Yiming Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China.,Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Zhengyu Wei
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China.,Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Zhisen Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China.,Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Ming Tang
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China.,Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Yi Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China.,Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Hongxia Deng
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China.,Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| |
Collapse
|
29
|
Tang Q, Liu D, Chen H, He D, Pan W, Li Q, Xie W, Chen S, Yu C. Functionalized PAMAM-Based system for targeted delivery of miR-205 and 5-fluorouracil in breast cancer. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
30
|
Kalinkova L, Nikolaieva N, Smolkova B, Ciernikova S, Kajo K, Bella V, Kajabova VH, Kosnacova H, Minarik G, Fridrichova I. miR-205-5p Downregulation and ZEB1 Upregulation Characterize the Disseminated Tumor Cells in Patients with Invasive Ductal Breast Cancer. Int J Mol Sci 2021; 23:ijms23010103. [PMID: 35008529 PMCID: PMC8744876 DOI: 10.3390/ijms23010103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/31/2022] Open
Abstract
Background: Dissemination of breast cancer (BC) cells through the hematogenous or lymphogenous vessels leads to metastatic disease in one-third of BC patients. Therefore, we investigated the new prognostic features for invasion and metastasis. Methods: We evaluated the expression of miRNAs and epithelial-to-mesenchymal transition (EMT) genes in relation to CDH1/E-cadherin changes in samples from 31 patients with invasive ductal BC including tumor centrum (TU-C), tumor invasive front (TU-IF), lymph node metastasis (LNM), and CD45-depleted blood (CD45-DB). Expression of miRNA and mRNA was quantified by RT-PCR arrays and associations with clinico-pathological characteristics were statistically evaluated by univariate and multivariate analysis. Results: We did not verify CDH1 regulating associations previously described in cell lines. However, we did detect extremely high ZEB1 expression in LNMs from patients with distant metastasis, but without regulation by miR-205-5p. Considering the ZEB1 functions, this overexpression indicates enhancement of metastatic potential of lymphogenously disseminated BC cells. In CD45-DB samples, downregulated miR-205-5p was found in those expressing epithelial and/or mesenchymal markers (CTC+) that could contribute to insusceptibility and survival of hematogenously disseminated BC cells mediated by increased expression of several targets including ZEB1. Conclusions: miR-205-5p and potentially ZEB1 gene are promising candidates for markers of metastatic potential in ductal BC.
Collapse
Affiliation(s)
- Lenka Kalinkova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, 84505 Bratislava, Slovakia; (L.K.); (N.N.); (S.C.); (K.K.); (H.K.)
| | - Nataliia Nikolaieva
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, 84505 Bratislava, Slovakia; (L.K.); (N.N.); (S.C.); (K.K.); (H.K.)
| | - Bozena Smolkova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, 84505 Bratislava, Slovakia; (B.S.); (V.H.K.)
| | - Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, 84505 Bratislava, Slovakia; (L.K.); (N.N.); (S.C.); (K.K.); (H.K.)
| | - Karol Kajo
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, 84505 Bratislava, Slovakia; (L.K.); (N.N.); (S.C.); (K.K.); (H.K.)
- Department of Pathology, St. Elisabeth Cancer Institute, 81250 Bratislava, Slovakia
| | - Vladimir Bella
- Department of Senology, St. Elisabeth Cancer Institute, 81250 Bratislava, Slovakia;
| | - Viera Horvathova Kajabova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, 84505 Bratislava, Slovakia; (B.S.); (V.H.K.)
| | - Helena Kosnacova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, 84505 Bratislava, Slovakia; (L.K.); (N.N.); (S.C.); (K.K.); (H.K.)
| | - Gabriel Minarik
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia;
| | - Ivana Fridrichova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, 84505 Bratislava, Slovakia; (L.K.); (N.N.); (S.C.); (K.K.); (H.K.)
- Correspondence: ; Tel.: +421-02-32295188
| |
Collapse
|
31
|
Hariprabu KNG, Sathya M, Vimalraj S. CRISPR/Cas9 in cancer therapy: A review with a special focus on tumor angiogenesis. Int J Biol Macromol 2021; 192:913-930. [PMID: 34655593 DOI: 10.1016/j.ijbiomac.2021.10.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022]
Abstract
Tumor angiogenesis is a critical target for cancer treatment and its inhibition has become a common anticancer approach following chemotherapy. However, due to the simultaneous activation of different compensatory molecular mechanisms that enhance tumor angiogenesis, clinically authorized anti-angiogenic medicines are ineffective. Additionally, medications used to treat cancer have an effect on normal body cells; nonetheless, more research is needed to create new cancer therapeutic techniques. With advances in molecular biology, it is now possible to use gene-editing technology to alter the genome and study the functional changes resulting from genetic manipulation. With the development of CRISPR/Cas9 technology, it has become a very powerful tool for altering the genomes of many organisms. It was determined that CRISPR/Cas9, which first appeared in bacteria as a part of an adaptive immune system, could be used, in modified forms, to alter genomes and function. In conclusion, CRISPR/Cas9 could be a major step forward to cancer management by providing patients with an effective method for dealing with cancers by dissecting the carcinogenesis pathways, identifying new biologic targets, and perhaps arming cancer cells with drugs. Hence, this review will discuss the current applications of CRISPR/Cas9 technology in tumor angiogenesis research for the purpose of cancer treatment.
Collapse
Affiliation(s)
| | - Muthusamy Sathya
- Centre for Biotechnology, Anna University, Chennai, Tamil Nadu, India
| | - Selvaraj Vimalraj
- Centre for Biotechnology, Anna University, Chennai, Tamil Nadu, India.
| |
Collapse
|
32
|
Wang H, Huang L, Chen L, Ji J, Zheng Y, Wang Z. Identification of Novel Biomarkers Related to Lung Squamous Cell Carcinoma Using Integrated Bioinformatics Analysis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:9059116. [PMID: 34659450 PMCID: PMC8519687 DOI: 10.1155/2021/9059116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/18/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Lung squamous cell carcinoma (LUSC) is one of the most common types of lung carcinoma and has specific clinicopathologic characteristics. In this study, we screened novel molecular biomarkers relevant to the prognosis of LUSC to explore new diagnostic and treatment approaches for this disease. METHODS We downloaded GSE73402 from the Gene Expression Omnibus (GEO) database. GSE73402 contains 62 samples, which could be classified as four subtypes according to their pathology and stages. Via weighted gene coexpression network analysis (WGCNA), the main module was identified and was further analyzed using differentially expressed genes (DEGs) analysis. Then, by protein-protein interaction (PPI) network and Gene Expression Profiling Interactive Analysis (GEPIA), hub genes were screened for potential biomarkers of LUSC. RESULTS Via WGCNA, the yellow module containing 349 genes was identified, and it is strongly related to the subtype of CIS (carcinoma in situ). DEGs analysis detected 180 genes that expressed differentially between the subtype of CIS and subtype of early-stage carcinoma (Stage I and Stage II). A PPI network of DEGs was constructed, and the top 20 genes with the highest correlations were selected for GEPIA database to explore their effect on LUSC survival prognosis. Finally, ITGA5, TUBB3, SCNN1B, and SERPINE1 were screened as hub genes in LUSC. CONCLUSIONS ITGA5, TUBB3, SCNN1B, and SERPINE1 may have great diagnostic and prognostic significance for LUSC and have great potential to be new treatment targets for LUSC.
Collapse
Affiliation(s)
- Haiyan Wang
- Department of Ultrasonography Center, Tai'an City Central Hospital, Tai'an, China
| | - Lizhi Huang
- Department of Thoracic Surgery, Shenzhen Bao'an People's Hospital (Group), Shenzhen, China
| | - Li Chen
- Department of Vascular, Tai'an City Central Hospital, Tai'an, China
| | - Jing Ji
- Department of Geriatrics, Tai'an City Central Hospital, Tai'an, China
| | - Yuanyuan Zheng
- Department of Radiotherapy, Tai'an City Central Hospital, Tai'an, China
| | - Zhen Wang
- Department of Thoracic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
33
|
VAV2 is required for DNA repair and implicated in cancer radiotherapy resistance. Signal Transduct Target Ther 2021; 6:322. [PMID: 34462423 PMCID: PMC8405816 DOI: 10.1038/s41392-021-00735-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 07/19/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy remains the mainstay for treatment of various types of human cancer; however, the clinical efficacy is often limited by radioresistance, in which the underlying mechanism is largely unknown. Here, using esophageal squamous cell carcinoma (ESCC) as a model, we demonstrate that guanine nucleotide exchange factor 2 (VAV2), which is overexpressed in most human cancers, plays an important role in primary and secondary radioresistance. We have discovered for the first time that VAV2 is required for the Ku70/Ku80 complex formation and participates in non-homologous end joining repair of DNA damages caused by ionizing radiation. We show that VAV2 overexpression substantially upregulates signal transducer and activator of transcription 1 (STAT1) and the STAT1 inhibitor Fludarabine can significantly promote the sensitivity of radioresistant patient-derived ESCC xenografts in vivo in mice to radiotherapy. These results shed new light on the mechanism of cancer radioresistance, which may be important for improving clinical radiotherapy.
Collapse
|
34
|
Kenney J, Ndoye A, Lamar JM, DiPersio CM. Comparative use of CRISPR and RNAi to modulate integrin α3β1 in triple negative breast cancer cells reveals that some pro-invasive/pro-metastatic α3β1 functions are independent of global regulation of the transcriptome. PLoS One 2021; 16:e0254714. [PMID: 34270616 PMCID: PMC8284828 DOI: 10.1371/journal.pone.0254714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/01/2021] [Indexed: 12/13/2022] Open
Abstract
Integrin receptors for the extracellular matrix play critical roles at all stages of carcinogenesis, including tumor growth, tumor progression and metastasis. The laminin-binding integrin α3β1 is expressed in all epithelial tissues where it has important roles in cell survival, migration, proliferation, and gene expression programs during normal and pathological tissue remodeling. α3β1 signaling and adhesion functions promote tumor growth and metastasis in a number of different types of cancer cells. Previously, we used RNA interference (RNAi) technology to suppress the expression of the ITGA3 gene (encoding the α3 subunit) in the triple-negative breast cancer cell line, MDA-MB-231, thereby generating variants of this line with reduced expression of integrin α3β1. This approach revealed that α3β1 promotes pro-tumorigenic functions such as cell invasion, lung metastasis, and gene regulation. In the current study, we used CRISPR technology to knock out the ITGA3 gene in MDA-MB-231 cells, thereby ablating expression of integrin α3β1 entirely. RNA-seq analysis revealed that while the global transcriptome was altered substantially by RNAi-mediated suppression of α3β1, it was largely unaffected following CRISPR-mediated ablation of α3β1. Moreover, restoring α3β1 to the latter cells through inducible expression of α3 cDNA failed to alter gene expression substantially, suggesting that use of CRISPR to abolish α3β1 led to a decoupling of the integrin from its ability to regulate the transcriptome. Interestingly, both cell invasion in vitro and metastatic colonization in vivo were reduced when α3β1 was abolished using CRISPR, as we observed previously using RNAi to suppress α3β1. Taken together, our results show that pro-invasive/pro-metastatic roles for α3β1 are not dependent on its ability to regulate the transcriptome. Moreover, our finding that use of RNAi versus CRISPR to target α3β1 produced distinct effects on gene expression underlines the importance of using multiple approaches to obtain a complete picture of an integrin’s functions in cancer cells.
Collapse
Affiliation(s)
- James Kenney
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, United States of America
| | - Abibatou Ndoye
- Department of Surgery, Albany Medical College, Albany, New York, United States of America
| | - John M. Lamar
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, United States of America
| | - C. Michael DiPersio
- Department of Surgery, Albany Medical College, Albany, New York, United States of America
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
35
|
Vallina C, López-Pintor RM, González-Serrano J, de Vicente JC, Hernández G, Lorz C. Genes involved in the epithelial-mesenchymal transition in oral cancer: A systematic review. Oral Oncol 2021; 117:105310. [PMID: 33901766 DOI: 10.1016/j.oraloncology.2021.105310] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/10/2021] [Accepted: 04/14/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Epithelial-mesenchymal transition (EMT) is considered the initial step in the invasion-metastasis cascade. The aim of this systematic review was to study the signature of genes involved in the EMT process in oral cancer (OC) confirmed by protein expression and its possible relationship with oral squamous cell carcinoma (OSCC) prognostic variables. MATERIALS AND METHODS A search of the scientific literature was carried out with no start date restriction until 17 September 2020 in the electronic databases Pubmed/MEDLINE, Web of Science, Cochrane Library and Scopus, following specific eligibility criteria. The methodological quality of the included studies was assessed using the Newcastle-Ottawa tool. RESULTS A total of 8 retrospective cohort studies were included, all of them performed in China and with low risk of bias. Overexpression of the genes HNRNPC, ITGA5, HMGA2 and SRSF3, and low expression of ALDH3A1 and ARID2 promote EMT in OC. The more advanced clinical stages of the TNM classification were significantly associated with overexpression of HNRNPC, ITGA5, HMGA2 and SRSF3, and low expression of ARID2. CONCLUSIONS HNRNPC, ITGA5, HMGA2, SRSF3, ALDH3A1 and ARID2 genes were associated with EMT process. Over- or under-expression of these genes is associated with worse stages of OSCC and/or worse prognosis of the tumor. Further studies on this topic are needed in different countries to be able to confirm these results, since the detection of these genes can help to know which tumors have a worse prognosis.
Collapse
Affiliation(s)
- Carmen Vallina
- School of Medicine and Dentistry, Oviedo University, Julián clavería s/n, 33006 Oviedo, Spain
| | - Rosa María López-Pintor
- ORALMED Research Group, Department of Dental Clinical Specialties, School of Dentistry, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - José González-Serrano
- ORALMED Research Group, Department of Dental Clinical Specialties, School of Dentistry, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Juan Carlos de Vicente
- ORALMED Research Group, Department of Oral and Maxillofacial Surgery, Hospital Central Universitario de Asturias (HUCA), Carretera de Rubín s/n, 33011 Oviedo, Asturias, Spain.
| | - Gonzalo Hernández
- ORALMED Research Group, Department of Dental Clinical Specialties, School of Dentistry, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Corina Lorz
- Molecular Oncology Unit, Environmental and Technological Energy Research Center (CIEMAT), Avd. Complutense 40, 28040, Spain; Research Institute 12 de Octubre i+12, University Hospital 12 de Octubre, Ave Córdoba s/n, 28041, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Ave Monforte de Lemos 3-5, 28029 Madrid, Spain.
| |
Collapse
|
36
|
Abstract
Bone metastasis occurs in advanced stages of breast cancer, worsening the quality of life and increasing the mortality of patients. Current treatments for bone metastasis are only palliative, and efficient therapeutic targets need to be still identified. MicroRNAs (miRNAs) are a large class of small non-coding RNAs that regulate gene expression within cells. Interestingly, the expression of certain miRNAs has been associated with several stages of bone metastasis progression, highlighting the importance of these small RNAs during the course of the metastatic disease. In this review, we aim to summarise the most recent findings on miRNAs and their mRNA targets in driving breast cancer bone metastasis. Furthermore, we discuss the possibility to use miRNAs as direct therapeutic targets or as advanced therapies for breast cancer bone metastasis, as well as their potential as predictive biomarkers of bone metastasis for an early diagnosis and a better tailoring of therapies for cancer patients.
Collapse
Affiliation(s)
- Margherita Puppo
- Oncology and Metabolism Department (OMD), Medical School, University of Sheffield, Sheffield, UK.
| | - Manoj K Valluru
- Infection Immunity and Cardiovascular Department (IICD), Medical School, University of Sheffield, Sheffield, UK
| | - Philippe Clézardin
- Oncology and Metabolism Department (OMD), Medical School, University of Sheffield, Sheffield, UK
- INSERM, Research Unit UMR S1033, LyOS, Faculty of Medicine Lyon-Est, University of Lyon 1, Lyon, France
| |
Collapse
|
37
|
Liang J, Oyang L, Rao S, Han Y, Luo X, Yi P, Lin J, Xia L, Hu J, Tan S, Tang L, Pan Q, Tang Y, Zhou Y, Liao Q. Rac1, A Potential Target for Tumor Therapy. Front Oncol 2021; 11:674426. [PMID: 34079763 PMCID: PMC8165220 DOI: 10.3389/fonc.2021.674426] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022] Open
Abstract
RAS-related C3 botulinum toxin substrate 1 (Rac.1) is one of the important members of Rho GTPases. It is well known that Rac1 is a cytoskeleton regulation protein that regulates cell adhesion, morphology, and movement. Rac1 is highly expressed in different types of tumors, which is related to poor prognosis. Studies have shown that Rac1 not only participates in the tumor cell cycle, apoptosis, proliferation, invasion, migration and angiogenesis, but also participates in the regulation of tumor stem cell, thus promoting the occurrence of tumors. Rac1 also plays a key role in anti-tumor therapy and participates in immune escape mediated by the tumor microenvironment. In addition, the good prospects of Rac1 inhibitors in cancer prevention and treatment are exciting. Therefore, Rac1 is considered as a potential target for the prevention and treatment of cancer. The necessity and importance of Rac1 are obvious, but it still needs further study.
Collapse
Affiliation(s)
- Jiaxin Liang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Shan Rao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yaqian Han
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xia Luo
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Pin Yi
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jiaqi Hu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Lu Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,University of South China, Hengyang, China
| | - Qing Pan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,University of South China, Hengyang, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Clinical Research Center for Wound Healing in Hunan Province, Changsha, China
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Clinical Research Center for Wound Healing in Hunan Province, Changsha, China
| |
Collapse
|
38
|
Chen L, Zhu X, Han B, Ji L, Yao L, Wang Z. High Expression of microRNA-223 Indicates a Good Prognosis in Triple-Negative Breast Cancer. Front Oncol 2021; 11:630432. [PMID: 33928027 PMCID: PMC8078593 DOI: 10.3389/fonc.2021.630432] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/12/2021] [Indexed: 12/19/2022] Open
Abstract
Purpose MicroRNAs can influence many biological processes and have shown promise as cancer biomarkers. Few studies have focused on the expression of microRNA-223 (miR-223) and its precise role in breast cancer (BC). We aimed to examine the expression level of miR-223 and its prognostic value in BC. Methods Tissue microarray (TMA)-based miRNA detection in situ hybridization (ISH) with a locked nucleic acid (LNA) probe was used to detect miR-223 expression in 450 BC tissue samples. Overall survival (OS) and disease-free survival (DFS) were compared between two groups using the Kaplan-Meier method and Cox regression model. Results OS and DFS were prolonged in the high miR-223 expression group compared to the low miR-223 expression group (p < 0.0001 and p = 0.017, respectively), especially in patients with the triple-negative breast cancer (TNBC) subtype (p = 0.046 and p < 0.001, respectively). Univariate and multivariate Cox regression analyses revealed that TNM stage (p = 0.008), the molecular subtype (p = 0.049), and miR-223 (p < 0.001) were independently associated with OS and DFS. External validation was performed with the METABRIC and The Cancer Genome Atlas (TCGA) databases via online webtools and was consistent with the data described above. Conclusions This study provides evidence that high miR-223 expression at diagnosis is associated with improved DFS and OS for BC patients, especially those with the TNBC subtype. miR-223 is a valid and independent prognostic biomarker in BC.
Collapse
Affiliation(s)
- Li Chen
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiuzhi Zhu
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Boyue Han
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Ji
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ling Yao
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhonghua Wang
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
39
|
Humphries B, Wang Z, Yang C. MicroRNA Regulation of Breast Cancer Stemness. Int J Mol Sci 2021; 22:3756. [PMID: 33916548 PMCID: PMC8038508 DOI: 10.3390/ijms22073756] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/22/2022] Open
Abstract
Recent advances in our understanding of breast cancer have demonstrated that cancer stem-like cells (CSCs, also known as tumor-initiating cell (TICs)) are central for progression and recurrence. CSCs are a small subpopulation of cells present in breast tumors that contribute to growth, metastasis, therapy resistance, and recurrence, leading to poor clinical outcome. Data have shown that cancer cells can gain characteristics of CSCs, or stemness, through alterations in key signaling pathways. The dysregulation of miRNA expression and signaling have been well-documented in cancer, and recent studies have shown that miRNAs are associated with breast cancer initiation, progression, and recurrence through regulating CSC characteristics. More specifically, miRNAs directly target central signaling nodes within pathways that can drive the formation, maintenance, and even inhibition of the CSC population. This review aims to summarize these research findings specifically in the context of breast cancer. This review also discusses miRNAs as biomarkers and promising clinical therapeutics, and presents a comprehensive summary of currently validated targets involved in CSC-specific signaling pathways in breast cancer.
Collapse
Affiliation(s)
- Brock Humphries
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Zhishan Wang
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, 2500 MetroHealth Drive, Cleveland, OH 44109, USA;
| | - Chengfeng Yang
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, 2500 MetroHealth Drive, Cleveland, OH 44109, USA;
| |
Collapse
|
40
|
Zhu H, Xu Y, Li M, Chen Z. Inhibition Sequence of miR-205 Hinders the Cell Proliferation and Migration of Lung Cancer Cells by Regulating PETN-Mediated PI3K/AKT Signal Pathway. Mol Biotechnol 2021; 63:587-594. [PMID: 33783672 DOI: 10.1007/s12033-021-00321-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/20/2021] [Indexed: 01/11/2023]
Abstract
The aim of this study was to identify the pro-tumor role of miR-205 in patients with lung cancer (LC) on the cell proliferation and migration through regulating PTEN-mediated PI3K/AKT signal pathway. Paired cancer tissues and adjacent tissues were collected from 107 LC patients who received treatment in Jinan Central hospital. In addition, the purchased LC cell lines were transfected into HCC827 cell line to observe and compare the biological behaviors. Compared with adjacent tissues, miR-205 was statistically higher in LC tissues, while PTEN was notably lower (P < 0.05). Inhibition of miR-205 not only suppressed cell proliferation, migration and invasion, increased apoptosis rate, but regulated epithelial mesenchymal transformation (EMT)-related proteins. Likewise, overexpression of PETN played the same role as that of miR-205 inhibition sequence. Inhibited miR-205 or PTEN overexpression brought dramatically decreased PI3K and p-Akt. The relationship between miR-205 and PTEN was verified through the biological prediction website and luciferase reporter. Co-transfection experiments revealed that after cotransfection of miR-205 inhibitor and si-PETN, the cell proliferation and invasion showed no marked difference between cotransfection group and NC group. MiR-205 is involved in LC cell proliferation and migration by regulating PETN-mediated PI3K/AKT signal pathway, which may be a feasible treatment target for LC in clinical practice.
Collapse
Affiliation(s)
- Huizhen Zhu
- Department of Urological Surgery, Jinan Central Hospital Affiliated To Shandong University, Shandong, 250013, P.R. China
| | - Yan Xu
- Outpatient Injection Room, The First Affiliated Hospital of Shandong First Medical University, Shandong, 250014, P.R. China
| | - Meng Li
- Department of Thoracic Surgery, Jinan Central Hospital Affiliated to Shandong University, No. 105 Jiefang Road, Jinan, Shandong, 250013, P.R. China
| | - Zhitao Chen
- Department of Thoracic Surgery, Jinan Central Hospital Affiliated to Shandong University, No. 105 Jiefang Road, Jinan, Shandong, 250013, P.R. China.
| |
Collapse
|
41
|
Zhu H, Wang G, Zhu H, Xu A. ITGA5 is a prognostic biomarker and correlated with immune infiltration in gastrointestinal tumors. BMC Cancer 2021; 21:269. [PMID: 33711961 PMCID: PMC7953822 DOI: 10.1186/s12885-021-07996-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/28/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Integrin Subunit Alpha 5 (ITGA5), belongs to the integrin alpha chain family, is vital for promoting cancer cell invasion, metastasis. However, the correlation between ITGA5 expression and immune infiltration in gastrointestinal tumors remain unclear. METHODS The expression level of ITGA5 was detected by Oncomine and Tumor Immune Estimation Resource (TIMER). The association between ITGA5 and prognosis of patients was identified by Kaplan-Meier plotter, Gene Expression Profiling Interactive Analysis 2 (GEPIA2) and PrognoScan. We evaluated the correlation between ITGA5 expression and immune infiltrating level via TIMER. Besides, TIMER, immunohistochemistry (IHC) staining and western blot were used to explore correlations between ITGA5 expression and markers of immune infiltrates cells. Furthermore, we constructed protein-protein interaction (PPI) network and performed functional enrichment by GeneMANIA and Metascape. RESULTS ITGA5 was generally overexpressed and correlated with worse prognosis in multiple types of gastrointestinal tumors. In addition, ITGA5 expression level was significantly associated with tumor purity and immune infiltration levels of different immune cells in gastrointestinal tumors. Interestingly, immune markers for monocytes, tumor - associated macrophages (TAMs), macrophages 2 (M2) cells and T-helper 2 (Th2) cells were found to be significantly and positively correlated with ITGA5 expression levels in colon and gastric cancer. Results from IHC staining and western blot further proved that markers of Th2 and M2 cell were significantly increased in gastric cancer patients with high ITGA5 expression levels. Lastly, interaction network and function enrichment analysis revealed ITGA5 was mainly involved in "integrin mediated signaling pathway", "leukocyte migration", "cell-substrate adhesion". CONCLUTIONS Our study demonstrated that ITGA5 may act as an essential regulator of tumor immune cell infiltration and a valuable prognostic biomarker in gastrointestinal tumors. Additional work is needed to fully elucidate the underlying mechanisms behind these observations.
Collapse
Affiliation(s)
- Hai Zhu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230001, People's Republic of China
| | - Gang Wang
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, 230001, People's Republic of China
| | - Haixing Zhu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, People's Republic of China
| | - Aman Xu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230001, People's Republic of China. .,Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, 230001, People's Republic of China.
| |
Collapse
|
42
|
Noncoding RNAs Associated with Therapeutic Resistance in Pancreatic Cancer. Biomedicines 2021; 9:biomedicines9030263. [PMID: 33799952 PMCID: PMC7998345 DOI: 10.3390/biomedicines9030263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Therapeutic resistance is an inevitable impediment towards effective cancer therapies. Evidence accumulated has shown that the signaling pathways and related factors are fundamentally responsible for therapeutic resistance via regulating diverse cellular events, such as epithelial-to-mesenchymal transition (EMT), stemness, cell survival/apoptosis, autophagy, etcetera. Noncoding RNAs (ncRNAs) have been identified as essential cellular components in gene regulation. The expression of ncRNAs is altered in cancer, and dysregulated ncRNAs participate in gene regulatory networks in pathological contexts. An in-depth understanding of molecular mechanisms underlying the modulation of therapeutic resistance is required to refine therapeutic benefits. This review presents an overview of the recent evidence concerning the role of human ncRNAs in therapeutic resistance, together with the feasibility of ncRNAs as therapeutic targets in pancreatic cancer.
Collapse
|
43
|
Abstract
Despite the decline in death rate from breast cancer and recent advances in targeted therapies and combinations for the treatment of metastatic disease, metastatic breast cancer remains the second leading cause of cancer-associated death in U.S. women. The invasion-metastasis cascade involves a number of steps and multitudes of proteins and signaling molecules. The pathways include invasion, intravasation, circulation, extravasation, infiltration into a distant site to form a metastatic niche, and micrometastasis formation in a new environment. Each of these processes is regulated by changes in gene expression. Noncoding RNAs including microRNAs (miRNAs) are involved in breast cancer tumorigenesis, progression, and metastasis by post-transcriptional regulation of target gene expression. miRNAs can stimulate oncogenesis (oncomiRs), inhibit tumor growth (tumor suppressors or miRsupps), and regulate gene targets in metastasis (metastamiRs). The goal of this review is to summarize some of the key miRNAs that regulate genes and pathways involved in metastatic breast cancer with an emphasis on estrogen receptor α (ERα+) breast cancer. We reviewed the identity, regulation, human breast tumor expression, and reported prognostic significance of miRNAs that have been documented to directly target key genes in pathways, including epithelial-to-mesenchymal transition (EMT) contributing to the metastatic cascade. We critically evaluated the evidence for metastamiRs and their targets and miRNA regulation of metastasis suppressor genes in breast cancer progression and metastasis. It is clear that our understanding of miRNA regulation of targets in metastasis is incomplete.
Collapse
Affiliation(s)
- Belinda J Petri
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Carolyn M Klinge
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
| |
Collapse
|
44
|
Alsawaftah N, Farooq A, Dhou S, Majdalawieh AF. Bioluminescence Imaging Applications in Cancer: A Comprehensive Review. IEEE Rev Biomed Eng 2021; 14:307-326. [PMID: 32746363 DOI: 10.1109/rbme.2020.2995124] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Bioluminescence imaging (BLI), an optical preclinical imaging modality, is an invaluable imaging modality due to its low-cost, high throughput, fast acquisition times, and functional imaging capabilities. BLI is being extensively used in the field of cancer imaging, especially with the recent developments in genetic-engineering, stem cell, and gene therapy treatments. The purpose of this paper is to provide a comprehensive review of the principles, developments, and current status of BLI in cancer research. This paper covers the fundamental BLI concepts including BLI reporters and enzyme-substrate systems, data acquisition, and image characteristics. It reviews the studies discussing the use of BLI in cancer research such as imaging tumor-characteristic phenomena including tumorigenesis, metastasis, cancer metabolism, apoptosis, hypoxia, and angiogenesis, and response to cancer therapy treatments including chemotherapy, radiotherapy, immunotherapy, gene therapy, and stem cell therapy. The key advantages and disadvantages of BLI compared to other common imaging modalities are also discussed.
Collapse
|
45
|
Interplay between p53 and non-coding RNAs in the regulation of EMT in breast cancer. Cell Death Dis 2021; 12:17. [PMID: 33414456 PMCID: PMC7791039 DOI: 10.1038/s41419-020-03327-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
The epithelial-mesenchymal transition (EMT) plays a pivotal role in the differentiation of vertebrates and is critically important in tumorigenesis. Using this evolutionarily conserved mechanism, cancer cells become drug-resistant and acquire the ability to escape the cytotoxic effect of anti-cancer drugs. In addition, these cells gain invasive features and increased mobility thereby promoting metastases. In this respect, the process of EMT is critical for dissemination of solid tumors including breast cancer. It has been shown that miRNAs are instrumental for the regulation of EMT, where they play both positive and negative roles often as a part of a feed-back loop. Recent studies have highlighted a novel association of p53 and EMT where the mutation status of p53 is critically important for the outcome of this process. Interestingly, p53 has been shown to mediate its effects via the miRNA-dependent mechanism that targets master-regulators of EMT, such as Zeb1/2, Snail, Slug, and Twist1. This regulation often involves interactions of miRNAs with lncRNAs. In this review, we present a detailed overview of miRNA/lncRNA-dependent mechanisms that control interplay between p53 and master-regulators of EMT and their importance for breast cancer.
Collapse
|
46
|
miR-205 in Breast Cancer: State of the Art. Int J Mol Sci 2020; 22:ijms22010027. [PMID: 33375067 PMCID: PMC7792793 DOI: 10.3390/ijms22010027] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
Despite its controversial roles in different cancer types, miR-205 has been mainly described as an oncosuppressive microRNA (miRNA), with some contrasting results, in breast cancer. The role of miR-205 in the occurrence or progression of breast cancer has been extensively studied since the first evidence of its aberrant expression in tumor tissues versus normal counterparts. To date, it is known that the expression of miR-205 in the different subtypes of breast cancer is decreasing from the less aggressive subtype, estrogen receptor/progesterone receptor positive breast cancer, to the more aggressive, triple negative breast cancer, influencing metastasis capability, response to therapy and patient survival. In this review, we summarize the most important discoveries that have highlighted the functional role of this miRNA in breast cancer initiation and progression, in stemness maintenance, in the tumor microenvironment, its potential role as a biomarker and its relevance in normal breast physiology—the still open questions. Finally, emerging evidence reveals the role of some lncRNAs in breast cancer progression as sponges of miR-205. Here, we also reviewed the studies in this field.
Collapse
|
47
|
Triple negative breast cancer in the era of miRNA. Crit Rev Oncol Hematol 2020; 157:103196. [PMID: 33307198 DOI: 10.1016/j.critrevonc.2020.103196] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 11/12/2020] [Accepted: 12/06/2020] [Indexed: 02/07/2023] Open
Abstract
The objective of this review is to elucidate the role of miRNAs in triple negative breast cancer (TNBC). To achieve our goal, we searched databases such as PubMed, ScienceDirect, Springer, Web of Science and Scopus. We retrieved up to 1233 articles, based a rigorous selection criterion, only 197 articles were extensively reviewed. We selected articles only addressing TNBC, but not other types of breast cancer, with the employed approach being miRNA analysis and/or profiling. Our extensive review resulted in grouping of miRNAs into categories in which specific members of miRNAs have roles in specific mechanism in TNBC i.e., carcinogenesis, invasion, metastasis, apoptosis, diagnosis, prognosis, and treatment. TNBC is an aggressive subtype of breast cancer; therefore, different approaches for accurate diagnosis, prognosis and treatment are needed. In this review we summarize the up-to-date miRNA profiling, prognostic, and therapeutic findings that add to the route of controlling TNBC.
Collapse
|
48
|
Li T, Wu Q, Liu D, Wang X. miR-27b Suppresses Tongue Squamous Cell Carcinoma Epithelial-Mesenchymal Transition by Targeting ITGA5. Onco Targets Ther 2020; 13:11855-11867. [PMID: 33239888 PMCID: PMC7680796 DOI: 10.2147/ott.s281211] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/31/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND MicroRNA27b-3p (miR-27b) has been reported to be dysregulated in multiple types of human cancer. However, the expression levels, biological roles, and underlying mechanism of miR-27b in tongue squamous cell carcinoma (TSCC) remain to be elucidated. METHODS Bioinformatics analyses and quantitative real-time PCR (qRT-PCR) were used to determine miR-27b expression in TSCC tissues and cell lines. The influence of miR-27b overexpression or inhibition on TSCC cell proliferation, migration, and invasion in vitro, and on tumor growth in vivo, was explored via CCK8, colony formation, wound healing, and transwell assays, and in xenograft tumors in nude mice, respectively. Luciferase reporter assays, qRT-PCR, and Western blotting were performed to clarify the potential mechanisms involving miR-27b in TSCC cells. RESULTS miR-27b was significantly downregulated in TSCC tissues and cell lines, and its expression was correlated with cancer status. Overexpression of miR-27b led to diminished proliferation, migration, and invasion, and notably reduced tumor growth in vivo. Bioinformatics analysis followed by luciferase reporter assays demonstrated that miR-27b expression was inversely correlated with that of integrin subunit α5 (ITGA5)and that miR-27b directly bound to the 3'-untranslated region of ITGA5 in TSCC cells. The bioinformatics analysis also indicated that ITGA5 was upregulated in TSCC and that its expression was correlated with epithelial-mesenchymal transition (EMT) and poor prognosis. Moreover, we found that miRNA-27b could reverse ITGA5-induced promotion of TSCC cell proliferation and migration. Finally, we demonstrated that regulation of miR-27b expression in TSCC may result in alterations in the expression of ITGA5 and EMT-related marker genes at the mRNA and protein levels. CONCLUSION These results indicate that miR-27b hampers TSCC proliferation and migration via suppressing the EMT process by targeting ITGA5. These findings support consideration of miR-27b/ITGA5 as a valuable marker for the metastatic potential of TSCC, or as a therapeutic target for the treatment of TSCC.
Collapse
Affiliation(s)
- Tao Li
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, People’s Republic of China
| | - Qian Wu
- Department of Nursing, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Duanqin Liu
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, People’s Republic of China
| | - Xuxia Wang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
49
|
Xie J, Yang P, Lin HP, Li Y, Clementino M, Fenske W, Yang C, Wang C, Wang Z. Integrin α4 up-regulation activates the hedgehog pathway to promote arsenic and benzo[α]pyrene co-exposure-induced cancer stem cell-like property and tumorigenesis. Cancer Lett 2020; 493:143-155. [DOI: 10.1016/j.canlet.2020.08.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/26/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022]
|
50
|
Mosayebi A, Mojaradi B, Bonyadi Naeini A, Khodadad Hosseini SH. Modeling and comparing data mining algorithms for prediction of recurrence of breast cancer. PLoS One 2020; 15:e0237658. [PMID: 33057328 PMCID: PMC7561198 DOI: 10.1371/journal.pone.0237658] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is the most common invasive cancer and the second leading cause of cancer death in women. and regrettably, this rate is increasing every year. One of the aspects of all cancers, including breast cancer, is the recurrence of the disease, which causes painful consequences to the patients. Moreover, the practical application of data mining in the field of breast cancer can help to provide some necessary information and knowledge required by physicians for accurate prediction of breast cancer recurrence and better decision-making. The main objective of this study is to compare different data mining algorithms to select the most accurate model for predicting breast cancer recurrence. This study is cross-sectional and data gathering of this research performed from June 2018 to June 2019 from the official statistics of Ministry of Health and Medical Education and the Iran Cancer Research Center for patients with breast cancer who had been followed for a minimum of 5 years from February 2014 to April 2019, including 5471 independent records. After initial pre-processing in dataset and variables, seven new and conventional data mining algorithms have been applied that each one represents one kind of data mining approach. Results show that the C5.0 algorithm possibly could be a helpful tool for the prediction of breast cancer recurrence at the stage of distant recurrence and nonrecurrence, especially in the first to third years. also, LN involvement rate, Her2 value, Tumor size, free or closed tumor margin were found to be the most important features in our dataset to predict breast cancer recurrence.
Collapse
Affiliation(s)
- Alireza Mosayebi
- Department of Management and Business Engineering, School of Progress Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Barat Mojaradi
- Department of Geomatics, School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran
- * E-mail:
| | - Ali Bonyadi Naeini
- Department of Management and Business Engineering, School of Progress Engineering, Iran University of Science and Technology, Tehran, Iran
| | | |
Collapse
|