1
|
Hsu CY, Jasim SA, Bansal P, Kaur H, Ahmad I, Saud A, Deorari M, Al-Mashhadani ZI, Kumar A, Zwamel AH. Delving Into lncRNA-Mediated Regulation of Autophagy-Associated Signaling Pathways in the Context of Breast Cancer. Cell Biol Int 2025; 49:221-234. [PMID: 39873206 DOI: 10.1002/cbin.12277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 12/15/2024] [Accepted: 01/10/2025] [Indexed: 01/30/2025]
Abstract
Breast cancer is a multifaceted and prevalent malignancy, impacting a considerable proportion of women globally. Numerous signaling pathways intricately regulate cellular functions such as growth, proliferation, and survival. Among the various regulators, lncRNAs have emerged as significant players despite their inability to encode proteins. An expanding body of literature underscores the pivotal roles lncRNAs play in cancer biology, particularly in the context of breast cancer. Autophagy, the cellular process dedicated to the degradation and recycling of cellular components, is now recognized as a crucial factor in cancer initiation and progression. The interplay between lncRNAs, various signaling pathways, and autophagy in the pathophysiology of breast cancer remains an active area of investigation. Researchers have identified specific lncRNAs that are dysregulated in breast cancer patients, influencing the modulation of key signaling pathways. Using experimental methodologies and bioinformatics approaches, multiple lncRNAs have been elucidated, providing deeper insights into their contributions to breast cancer pathogenesis and metastatic processes. In summary, the pathophysiological landscape of breast cancer is characterized by the complex interactions involving lncRNA-mediated autophagy. This understanding paves the way for identifying novel therapeutic targets, prognostic markers, and diagnostic markers, ultimately contributing to improved treatment outcomes in breast cancer management.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University, Tempe Campus, Phoenix, Arizona, USA
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, College of Health and Medical Technology, Al-Maarif University College, Anbar, Iraq
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Abdulnaser Saud
- Department of Pharmacy, Al-Hadi University College, Baghdad, Iraq
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | | | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named After the First President of Russia Boris Yeltsin, Ekaterinburg, Russia
- Department of Mechanical Engineering, Karpagam Academy of Higher Education, Coimbatore, India
| | - Ahmed Hussein Zwamel
- Department of Medical Laboratory Technology, College of Medical Technology, The Islamic University, Najaf, Iraq
| |
Collapse
|
2
|
Li Z, Wang D, Zhu X. Unveiling the functions of five recently characterized lncRNAs in cancer progression. Clin Transl Oncol 2025; 27:458-465. [PMID: 39066874 DOI: 10.1007/s12094-024-03619-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024]
Abstract
Numerous studies over the past few decades have shown that RNAs are multifaceted, multifunctional regulators of most cellular processes, contrary to the initial belief that they only act as mediators for translating DNA into proteins. LncRNAs, which refer to transcripts longer than 200nt and lack the ability to code for proteins, have recently been identified as central regulators of a variety of biochemical and cellular processes, particularly cancer. When they are abnormally expressed, they are closely associated with tumor occurrence, metastasis, and tumor staging. Therefore, through searches on Google Scholar, PubMed, and CNKI, we identified five five recently characterized lncRNAs-Lnc-SLC2A12-10:1, LncRNA BCRT1, lncRNA IGFBP4-1, LncRNA PCNAP1, and LncRNA CDC6-that have been linked to the promotion of cancer cell proliferation, invasion, and metastasis. Consequently, this review encapsulates the existing research and molecular underpinnings of these five newly identified lncRNAs across various types of cancer. It suggests that these novel lncRNAs hold potential as independent biomarkers for clinical diagnosis and prognosis, as well as candidates for therapeutic intervention. In parallel, we discuss the challenges inherent in the research on these five newly discovered lncRNAs and look forward to the avenues for future exploration in this field.
Collapse
Affiliation(s)
- Zhicheng Li
- Department of Urology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China
| | - Dan Wang
- Department of Urology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China
| | - Xiaojun Zhu
- Department of Urology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China.
| |
Collapse
|
3
|
Tang Y, Fahira A, Lin S, Shao Y, Huang Z. Shared and specific competing endogenous RNAs network mining in four digestive system tumors. Comput Struct Biotechnol J 2024; 23:4271-4287. [PMID: 39669749 PMCID: PMC11635987 DOI: 10.1016/j.csbj.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/17/2024] [Accepted: 11/02/2024] [Indexed: 12/14/2024] Open
Abstract
Background Digestive system malignancies, including esophageal carcinoma (ESCA), stomach adenocarcinoma (STAD), liver hepatocellular carcinoma (LIHC), and colon adenocarcinoma (COAD), pose significant global health challenges. Identifying shared and distinct regulatory mechanisms across these cancers can lead to improved therapies. This study aims to construct and compare competing endogenous RNA (ceRNA) networks across ESCA, STAD, LIHC, and COAD to identify RNA biomarkers that could serve as precision therapeutic targets to enhance clinical outcomes and advance personalized cancer care. Methods Clinical and transcriptomic data from The Cancer Genome Atlas (TCGA) were analyzed to predict differentially expressed RNAs using the edgeR package. The ceRNA networks were constructed using the miRcode and ENCORI databases. Functional enrichment analysis and prognostic RNA screening were performed with ConsensusPathDB and univariate Cox regression analysis. Results we identified 6, 88, 55, and 41 RNA biomarkers in ESCA, STAD, LIHC, and COAD, respectively. Network analysis revealed shared and specific elements, with shared nodes enriched in cell cycle and mitotic processes. Several biomarkers, including HMGB3 and RGS16 (ESCA), COL4A1 and COL6A3 (STAD), CDCA5 and CDCA8 (LIHC), and LIMK1 and OSBPL3 (COAD), were consistent with prior studies, while novel biomarkers, such as C3P1 (ESCA), P2RY6 (STAD), and N4BP2L1 and PPP1R3B (LIHC), were discovered. Based on RNA correlation analysis, 1, 23, and 2 potential ceRNA regulatory axes were identified in STAD (PVT1/miR-490-3p/HMGA2), LIHC (DLX6-AS1/miR-139-5p/TOP2A, etc.), and COAD (STRCP1 & LINC00488/miR-142-3p/GAB1), respectively. Conclusions This study advances the understanding of ceRNA networks in digestive cancers, highlighting RNA biomarkers with potential as therapeutic targets for personalized treatment strategies.
Collapse
Affiliation(s)
- Yulai Tang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523710, China
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
- Dongguan Key Laboratory of Sepsis Translational Medicine, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710
| | - Aamir Fahira
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Siying Lin
- Dongguan Key Laboratory of Sepsis Translational Medicine, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710
| | - Yiming Shao
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523710, China
| | - Zunnan Huang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523710, China
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
4
|
Wang S, Zhang Y. Construction of an immunogenic cell death-related LncRNA signature to predict the prognosis of patients with lung adenocarcinoma. BMC Med Genomics 2024; 17:277. [PMID: 39604972 PMCID: PMC11600735 DOI: 10.1186/s12920-024-02042-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is one of the most common malignant diseases worldwide. This study aimed to construct an immunogenic cell death (ICD)-related long non-coding RNA (lncRNA) signature to effectively predict the prognosis of LUAD. METHODS The RNA-sequencing and clinical data of LUAD were downloaded from The Cancer Genome Atlas (TCGA). Least absolute shrinkage and selection operator (LASSO) and stepwise multivariate Cox proportional hazard regression analysis were utilized to construct lncRNA signature. Then, the reliability of the signature was evaluated in the training, validation and whole cohorts. The differences in the immune landscape and drug sensitivity between the low- and high-risk groups were analyzed. Finally, the expression level of the selected ICD-related lncRNAs in LUAD cell lines via reverse transcription quantitative PCR (RT-qPCR). CCK-8 and transwell assays were performed to study biological function of AC245014.3. RESULTS A signature consisting of 5 ICD-related lncRNAs was constructed. Kaplan Meier (K-M) survival analysis showed shorter overall survival (OS) in high-risk group. The receiver operating characteristic (ROC) curves and Multivariate Cox regression analysis showed the signature was good predictive and independent prognostic factor in LUAD. Moreover, the high-risk group had a lower level of antitumor immunity and was less sensitive to some chemotherapeutics and targeted drugs. Finally, the expression level of selected ICD-related lncRNAs was validated in LUAD cell lines by RT-qPCR. Knockdown of AC245014.3 significantly suppressed LUAD proliferation, migration and invasion. CONCLUSIONS In this study, an ICD-related lncRNA signature was constructed, which could accurately predict the prognosis of LUAD patients and guide clinical treatment.
Collapse
Affiliation(s)
- Shuaishuai Wang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Yi Zhang
- Department of Orthopedic, Jinan Third People's Hospital, Jinan, Shandong, China
| |
Collapse
|
5
|
Tiwari P, Tripathi LP. Long Non-Coding RNAs, Nuclear Receptors and Their Cross-Talks in Cancer-Implications and Perspectives. Cancers (Basel) 2024; 16:2920. [PMID: 39199690 PMCID: PMC11352509 DOI: 10.3390/cancers16162920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/30/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) play key roles in various epigenetic and post-transcriptional events in the cell, thereby significantly influencing cellular processes including gene expression, development and diseases such as cancer. Nuclear receptors (NRs) are a family of ligand-regulated transcription factors that typically regulate transcription of genes involved in a broad spectrum of cellular processes, immune responses and in many diseases including cancer. Owing to their many overlapping roles as modulators of gene expression, the paths traversed by lncRNA and NR-mediated signaling often cross each other; these lncRNA-NR cross-talks are being increasingly recognized as important players in many cellular processes and diseases such as cancer. Here, we review the individual roles of lncRNAs and NRs, especially growth factor modulated receptors such as androgen receptors (ARs), in various types of cancers and how the cross-talks between lncRNAs and NRs are involved in cancer progression and metastasis. We discuss the challenges involved in characterizing lncRNA-NR associations and how to overcome them. Furthering our understanding of the mechanisms of lncRNA-NR associations is crucial to realizing their potential as prognostic features, diagnostic biomarkers and therapeutic targets in cancer biology.
Collapse
Affiliation(s)
- Prabha Tiwari
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Lokesh P. Tripathi
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Kanagawa, Japan
- AI Center for Health and Biomedical Research (ArCHER), National Institutes of Biomedical Innovation, Health and Nutrition, Kento Innovation Park NK Building, 3-17 Senrioka Shinmachi, Settsu 566-0002, Osaka, Japan
| |
Collapse
|
6
|
Piergentili R, Sechi S. Non-Coding RNAs of Mitochondrial Origin: Roles in Cell Division and Implications in Cancer. Int J Mol Sci 2024; 25:7498. [PMID: 39000605 PMCID: PMC11242419 DOI: 10.3390/ijms25137498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Non-coding RNAs (ncRNAs) are a heterogeneous group, in terms of structure and sequence length, consisting of RNA molecules that do not code for proteins. These ncRNAs have a central role in the regulation of gene expression and are virtually involved in every process analyzed, ensuring cellular homeostasis. Although, over the years, much research has focused on the characterization of non-coding transcripts of nuclear origin, improved bioinformatic tools and next-generation sequencing (NGS) platforms have allowed the identification of hundreds of ncRNAs transcribed from the mitochondrial genome (mt-ncRNA), including long non-coding RNA (lncRNA), circular RNA (circRNA), and microRNA (miR). Mt-ncRNAs have been described in diverse cellular processes such as mitochondrial proteome homeostasis and retrograde signaling; however, the function of the majority of mt-ncRNAs remains unknown. This review focuses on a subgroup of human mt-ncRNAs whose dysfunction is associated with both failures in cell cycle regulation, leading to defects in cell growth, cell proliferation, and apoptosis, and the development of tumor hallmarks, such as cell migration and metastasis formation, thus contributing to carcinogenesis and tumor development. Here we provide an overview of the mt-ncRNAs/cancer relationship that could help the future development of new biomedical applications in the field of oncology.
Collapse
Affiliation(s)
| | - Stefano Sechi
- Istituto di Biologia e Patologia Molecolari del Consiglio Nazionale delle Ricerche, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| |
Collapse
|
7
|
Shang T, Jiang T, Cui X, Pan Y, Feng X, Dong L, Wang H. Diverse functions of SOX9 in liver development and homeostasis and hepatobiliary diseases. Genes Dis 2024; 11:100996. [PMID: 38523677 PMCID: PMC10958229 DOI: 10.1016/j.gendis.2023.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/13/2023] [Accepted: 03/19/2023] [Indexed: 03/26/2024] Open
Abstract
The liver is the central organ for digestion and detoxification and has unique metabolic and regenerative capacities. The hepatobiliary system originates from the foregut endoderm, in which cells undergo multiple events of cell proliferation, migration, and differentiation to form the liver parenchyma and ductal system under the hierarchical regulation of transcription factors. Studies on liver development and diseases have revealed that SRY-related high-mobility group box 9 (SOX9) plays an important role in liver embryogenesis and the progression of hepatobiliary diseases. SOX9 is not only a master regulator of cell fate determination and tissue morphogenesis, but also regulates various biological features of cancer, including cancer stemness, invasion, and drug resistance, making SOX9 a potential biomarker for tumor prognosis and progression. This review systematically summarizes the latest findings of SOX9 in hepatobiliary development, homeostasis, and disease. We also highlight the value of SOX9 as a novel biomarker and potential target for the clinical treatment of major liver diseases.
Collapse
Affiliation(s)
- Taiyu Shang
- School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Tianyi Jiang
- National Center for Liver Cancer, The Naval Medical University, Shanghai 201805, China
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
| | - Xiaowen Cui
- National Center for Liver Cancer, The Naval Medical University, Shanghai 201805, China
| | - Yufei Pan
- National Center for Liver Cancer, The Naval Medical University, Shanghai 201805, China
| | - Xiaofan Feng
- National Center for Liver Cancer, The Naval Medical University, Shanghai 201805, China
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
| | - Liwei Dong
- National Center for Liver Cancer, The Naval Medical University, Shanghai 201805, China
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
| | - Hongyang Wang
- School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
- National Center for Liver Cancer, The Naval Medical University, Shanghai 201805, China
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
- Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Second Military Medical University & Ministry of Education, Shanghai 200438, China
| |
Collapse
|
8
|
Yildiz SN, Entezari M, Paskeh MDA, Mirzaei S, Kalbasi A, Zabolian A, Hashemi F, Hushmandi K, Hashemi M, Raei M, Goharrizi MASB, Aref AR, Zarrabi A, Ren J, Orive G, Rabiee N, Ertas YN. Nanoliposomes as nonviral vectors in cancer gene therapy. MedComm (Beijing) 2024; 5:e583. [PMID: 38919334 PMCID: PMC11199024 DOI: 10.1002/mco2.583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 06/27/2024] Open
Abstract
Nonviral vectors, such as liposomes, offer potential for targeted gene delivery in cancer therapy. Liposomes, composed of phospholipid vesicles, have demonstrated efficacy as nanocarriers for genetic tools, addressing the limitations of off-targeting and degradation commonly associated with traditional gene therapy approaches. Due to their biocompatibility, stability, and tunable physicochemical properties, they offer potential in overcoming the challenges associated with gene therapy, such as low transfection efficiency and poor stability in biological fluids. Despite these advancements, there remains a gap in understanding the optimal utilization of nanoliposomes for enhanced gene delivery in cancer treatment. This review delves into the present state of nanoliposomes as carriers for genetic tools in cancer therapy, sheds light on their potential to safeguard genetic payloads and facilitate cell internalization alongside the evolution of smart nanocarriers for targeted delivery. The challenges linked to their biocompatibility and the factors that restrict their effectiveness in gene delivery are also discussed along with exploring the potential of nanoliposomes in cancer gene therapy strategies by analyzing recent advancements and offering future directions.
Collapse
Affiliation(s)
| | - Maliheh Entezari
- Department of GeneticsFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of Medical Convergence SciencesFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mahshid Deldar Abad Paskeh
- Department of GeneticsFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of Medical Convergence SciencesFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Sepideh Mirzaei
- Department of BiologyFaculty of ScienceIslamic Azad UniversityScience and Research BranchTehranIran
| | - Alireza Kalbasi
- Department of PharmacyBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Amirhossein Zabolian
- Department of OrthopedicsShahid Beheshti University of Medical SciencesTehranIran
| | - Farid Hashemi
- Department of Comparative BiosciencesFaculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Kiavash Hushmandi
- Department of Clinical Sciences InstituteNephrology and Urology Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | - Mehrdad Hashemi
- Department of GeneticsFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of Medical Convergence SciencesFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mehdi Raei
- Department of Epidemiology and BiostatisticsSchool of HealthBaqiyatallah University of Medical SciencesTehranIran
| | | | - Amir Reza Aref
- Belfer Center for Applied Cancer ScienceDana‐Farber Cancer InstituteHarvard Medical SchoolBostonMassachusettsUSA
- Department of Translational SciencesXsphera Biosciences Inc.BostonMassachusettsUSA
| | - Ali Zarrabi
- Department of Biomedical EngineeringFaculty of Engineering and Natural SciencesIstinye UniversityIstanbulTurkey
| | - Jun Ren
- Shanghai Institute of Cardiovascular DiseasesDepartment of CardiologyZhongshan HospitalFudan UniversityShanghaiChina
| | - Gorka Orive
- NanoBioCel Research GroupSchool of PharmacyUniversity of the Basque Country (UPV/EHU)Vitoria‐GasteizSpain
- University Institute for Regenerative Medicine and Oral Implantology ‐ UIRMI (UPV/EHU‐Fundación Eduardo Anitua)Vitoria‐GasteizSpain
- Bioaraba, NanoBioCel Research GroupVitoria‐GasteizSpain
- The AcademiaSingapore Eye Research InstituteSingaporeSingapore
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative TherapeuticsMurdoch UniversityPerthWestern AustraliaAustralia
| | - Yavuz Nuri Ertas
- Department of Biomedical EngineeringErciyes UniversityKayseriTurkey
- ERNAM—Nanotechnology Research and Application CenterErciyes UniversityKayseriTurkey
- UNAM−National Nanotechnology Research CenterBilkent UniversityAnkaraTurkey
| |
Collapse
|
9
|
Davodabadi F, Mirinejad S, Malik S, Dhasmana A, Ulucan-Karnak F, Sargazi S, Sargazi S, Fathi-Karkan S, Rahdar A. Nanotherapeutic approaches for delivery of long non-coding RNAs: an updated review with emphasis on cancer. NANOSCALE 2024; 16:3881-3914. [PMID: 38353296 DOI: 10.1039/d3nr05656b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The long noncoding RNAs (lncRNAs) comprise a wide range of RNA species whose length exceeds 200 nucleotides, which regulate the expression of genes and cellular functions in a wide range of organisms. Several diseases, including malignancy, have been associated with lncRNA dysregulation. Due to their functions in cancer development and progression, lncRNAs have emerged as promising biomarkers and therapeutic targets in cancer diagnosis and treatment. Several studies have investigated the anti-cancer properties of lncRNAs; however, only a few lncRNAs have been found to exhibit tumor suppressor properties. Furthermore, their length and poor stability make them difficult to synthesize. Thus, to overcome the instability of lncRNAs, poor specificity, and their off-target effects, researchers have constructed nanocarriers that encapsulate lncRNAs. Recently, translational medicine research has focused on delivering lncRNAs into tumor cells, including cancer cells, through nano-drug delivery systems in vivo. The developed nanocarriers can protect, target, and release lncRNAs under controlled conditions without appreciable adverse effects. To deliver lncRNAs to cancer cells, various nanocarriers, such as exosomes, microbubbles, polymer nanoparticles, 1,2-dioleyl-3-trimethylammoniumpropane chloride nanocarriers, and virus-like particles, have been successfully developed. Despite this, every nanocarrier has its own advantages and disadvantages when it comes to delivering nucleic acids effectively and safely. This article examines the current status of nanocarriers for lncRNA delivery in cancer therapy, focusing on their potential to enhance cancer treatment.
Collapse
Affiliation(s)
- Fatemeh Davodabadi
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran.
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi-834002, India.
| | - Archna Dhasmana
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun, Uttarakhand, 248140, India.
| | - Fulden Ulucan-Karnak
- Department of Medical Biochemistry, Institute of Health Sciences, Ege University, İzmir 35100, Turkey.
| | - Sara Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 94531-55166, Iran
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd 9414974877, Iran.
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, P. O. Box. 98613-35856, Iran.
| |
Collapse
|
10
|
Li Y, Wei C, Huang C, Ling Q, Zhang L, Huang S, Liao N, Liang W, Cheng J, Wang F, Mo L, Mo Z, Li L. Long noncoding RNA as a potential diagnostic tool for prostate cancer: a systematic review and meta-analysis. Biomarkers 2023; 28:1-10. [PMID: 36323640 DOI: 10.1080/1354750x.2022.2142293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
PURPOSE To identify consistently expressed lncRNAs and suitable lncRNAs with high sensitivity and specificity from multiple independent studies as potential biomarkers for PCa diagnostics. METHODS We searched multiple electronic databases including PubMed, Web of Science, EMBASE, Cochrane Library, CNKI, CQVIP, Wanfang, and CBMdisc for studies published up to July 2022. The quality of the included studies was assessed by two independent reviewers based on the QUADAS-2 tool using Review Manager 5.3. A vote-counting method was used based on the ranking of potential molecular biomarkers. The top-ranked lncRNAs were further assessed for diagnostic value using Meta-disc version 1.4 software. RESULTS Among the 26 included studies, 2 circulating lncRNAs (PCA3 and MALAT-1) were reported 3 or more times in PCa patients versus non-PCa patients. In further analysis, the areas under the curve of the summary receiver operating characteristic curves for PCA3 and MALAT-1 distinguishing PCa patients were 0.775 and 0.771, respectively. CONCLUSIONS Based on the current evidence, PCA3 and MALAT-1 are reliable lncRNAs for the diagnosis of PCa.
Collapse
Affiliation(s)
- Yexin Li
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Department of Urology, Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Chunmeng Wei
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Department of Urology, Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Caihong Huang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Department of Urology, Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Qiang Ling
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Department of Urology, Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Lulu Zhang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Shengzhu Huang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Department of Urology, Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Naikai Liao
- Department of Urology, Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Weixia Liang
- Department of Urology, Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiwen Cheng
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Department of Urology, Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Fubo Wang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Department of Urology, Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Linjian Mo
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Department of Urology, Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Department of Urology, Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Longman Li
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Department of Urology, Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
11
|
Ye Z, Zhang H, Liang J, Yi S, Zhan X. Significance of logistic regression scoring model based on natural killer cell-mediated cytotoxic pathway in the diagnosis of colon cancer. Front Immunol 2023; 14:1117908. [PMID: 36742322 PMCID: PMC9895796 DOI: 10.3389/fimmu.2023.1117908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/04/2023] [Indexed: 01/22/2023] Open
Abstract
Background The poor clinical accuracy to predict the survival of colon cancer patients is associated with a high incidence rate and a poor 3-year survival rate. This study aimed to identify the poor prognostic biomarkers of colon cancer from natural killer cell-mediated cytotoxic pathway (NKCP), and establish a logistical regression scoring model to predict its prognosis. Methods Based on the expressions and methylations of NKCP-related genes (NRGs) and the clinical information, dimensionality reduction screening was performed to establish a logistic regression scoring model to predict survival and prognosis. Risk score, clinical stage, and ULBP2 were used to establish a logistic regression scoring model to classify the 3-year survival period and compare with each other. Comparison of survival, tumor mutation burden (TMB), estimation of immune invasion, and prediction of chemotherapeutic drug IC50 were performed between low- and high-risk score groups. Results This study found that ULBP2 was significantly overexpressed in colon cancer tissues and colon cancer cell lines. The logistic regression scoring model was established to include six statistically significant features: S = 1.70 × stage - 9.32 × cg06543087 + 6.19 × cg25848557 + 1.29 × IFNA1 + 0.048 × age + 4.37 × cg21370856 - 8.93, which was used to calculate risk score of each sample. The risk scores, clinical stage, and ULBP2 were classified into three-year survival, the 3-year prediction accuracy based on 10-fold cross-validation was 80.17%, 67.24, and 59.48%, respectively. The survival time of low-risk score group was better than that of the high-risk score group. Moreover, compared to high-risk score group, low-risk score group had lower TMB [2.20/MB (log10) vs. 2.34/MB (log10)], higher infiltration score of M0 macrophages (0.17 vs. 0.14), and lower mean IC50 value of oxaliplatin (3.65 vs 3.78) (p < 0.05). Conclusions The significantly upregulated ULBP2 was a poor prognostic biomarker of colon cancer. The risk score based on the six-feature logistic regression model can effectively predict the 3-year survival time. High-risk score group demonstrated a poorer prognosis, higher TMB, lower M0 macrophage infiltration score, and higher IC50 value of oxaliplatin. The six-feature logistic scoring model has certain clinical significance in colon cancer.
Collapse
Affiliation(s)
- Zhen Ye
- Medical Science and Technology Innovation Center, The Second Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Huanhuan Zhang
- Medical Science and Technology Innovation Center, The Second Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Jianwei Liang
- Department of General Surgery, Tai ‘an Central Hospital, Taian, Shandong, China
| | - Shuying Yi
- Medical Science and Technology Innovation Center, The Second Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China,*Correspondence: Xianquan Zhan, ; Shuying Yi,
| | - Xianquan Zhan
- Medical Science and Technology Innovation Center, The Second Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China,*Correspondence: Xianquan Zhan, ; Shuying Yi,
| |
Collapse
|
12
|
Liao C, Liu X, Zhang C, Zhang Q. Tumor hypoxia: From basic knowledge to therapeutic implications. Semin Cancer Biol 2023; 88:172-186. [PMID: 36603793 PMCID: PMC9929926 DOI: 10.1016/j.semcancer.2022.12.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/07/2022] [Accepted: 12/31/2022] [Indexed: 01/04/2023]
Abstract
Diminished oxygen availability, termed hypoxia, within solid tumors is one of the most common characteristics of cancer. Hypoxia shapes the landscape of the tumor microenvironment (TME) into a pro-tumorigenic and pro-metastatic niche through arrays of pathological alterations such as abnormal vasculature, altered metabolism, immune-suppressive phenotype, etc. In addition, emerging evidence suggests that limited efficacy or the development of resistance towards antitumor therapy may be largely due to the hypoxic TME. This review will focus on summarizing the knowledge about the molecular machinery that mediates the hypoxic cellular responses and adaptations, as well as highlighting the effects and consequences of hypoxia, especially for angiogenesis regulation, cellular metabolism alteration, and immunosuppressive response within the TME. We also outline the current advances in novel therapeutic implications through targeting hypoxia in TME. A deep understanding of the basics and the role of hypoxia in the tumor will help develop better therapeutic avenues in cancer treatment.
Collapse
Affiliation(s)
- Chengheng Liao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xijuan Liu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599, USA
| | - Cheng Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qing Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
13
|
LINC00472 inhibits cell migration by enhancing intercellular adhesion and regulates H3K27ac level via interacting with P300 in renal clear cell carcinoma. Cell Death Dis 2022; 8:454. [PMID: 36371410 PMCID: PMC9653443 DOI: 10.1038/s41420-022-01243-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/14/2022]
Abstract
Renal clear cell carcinoma (RCCC) is the most common type of renal cell carcinoma, which is also difficult to diagnose and easy to metastasize. Currently, there is still a lack of effective clinical diagnostic indicators and treatment targets. This study aims to find effective diagnostic markers and therapeutic targets from the perspective of noncoding RNA. In this study, we found that the expression of Long noncoding RNA LINC00472 was significantly decreased in RCCC and showed a downward trend with the progression of cancer stage. Patients with low LINC00472 expression have poor prognosis. Inhibition of LINC00472 significantly increased cell proliferation and migration, while overexpression of LINC00472 obviously inhibited cell proliferation and enhanced intercellular adhesion. Transcriptome sequencing analysis demonstrated that LINC00472 was highly correlated with extracellular matrix and cell metastasis-related pathways, and the consistent results were obtained by The Cancer Genome Atlas (TCGA) data analysis. Additionally, we discovered that the integrin family protein ITGB8 is a potential target gene of LINC00472. Mechanistically, we found that the change of LINC00472 affected the acetylation level of H3K27 site in cells, and we speculate that this effect is likely to be generated through the interaction with acetyltransferase P300. In conclusion, LINC00472 has an important impact on the proliferation and metastasis of renal clear cells, and probably participate in the regulation of histone modification, and it may be used as a potential diagnostic marker of RCCC.
Collapse
|
14
|
Zhou S, Zhang W, Cao W, Jin Q, Jiang X, Jiang X, Yang Y, Yao H, Chen G, Gao W, Zhu Y, Qi J, Tong Z. Development and validation of an autophagy-related long non-coding RNA prognostic signature for cervical squamous cell carcinoma and endocervical adenocarcinoma. Front Oncol 2022; 12:1049773. [DOI: 10.3389/fonc.2022.1049773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
BackgroundIn this study, we aimed to investigate the signature of the autophagy-related lncRNAs (ARLs) and perform integrated analysis with immune infiltration in cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC).Methods and resultsThe UCSC Xena and HADb databases provided the corresponding data. The ARLs were selected via constructing a co-expression network of autophagy-related genes (ARGs) and lncRNAs. Univariate Cox regression analysis combined with LASSO regression and multivariate Cox regression analysis were utilized to screen lncRNAs. The ARL risk signature was established by Cox regression and tested if it was an independent element bound up with patient prognosis. We used the xCell algorithm and ssGSEA to clarify the pertinence between immune infiltration and the expression of ARLs. Finally, we predicted the sensitivity of drug treatment as well as the immune response. Results indicated that the three prognostic ARLs (SMURF2P1, MIR9-3HG, and AC005332.4) possessed significant diversity and constituted the ARL signature. Risk score was an individual element (HR = 2.82, 95% CI = 1.87–4.30; p < 0.001). Immune infiltration analysis revealed significant increases in central memory CD8+ T cells, endothelial cells, CD8+ naive T cells, and preadipocytes in the high-risk group (p < 0.05). There were 10 therapeutic agents that varied significantly in their estimated half-maximal inhibitory concentrations in the two groups. According to the experimental validation, we found that SMURF2P1 belongs to the co-stimulatory genes and might assume greater importance in the development of cervical adenocarcinoma. MIR9-3HG and AC005332.4 belonged to the tumor-suppressor genes and they may play a more positive role in cervical squamous cell carcinoma.ConclusionsThis research explored and validated a novel signature of the ARLs, which can be applied to forecast the prognosis of patients with CESC and is closely associated with immune infiltration.
Collapse
|
15
|
Kim D, Yu J, Kim J, Hwang YA, Kim JK, Ku CR, Yoon JH, Kwak JY, Nam KH, Lee EJ. Use of long non-coding RNAs for the molecular diagnosis of papillary thyroid cancer. Front Oncol 2022; 12:924409. [PMID: 36132147 PMCID: PMC9483125 DOI: 10.3389/fonc.2022.924409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/19/2022] [Indexed: 12/03/2022] Open
Abstract
Objective Improved molecular testing for common somatic mutations and the identification of mRNA and microRNA expression classifiers are promising approaches for the diagnosis of thyroid nodules. However, there is a need to improve the diagnostic accuracy of such tests for identifying thyroid cancer. Recent findings have revealed a crucial role of long non-coding RNAs (lncRNAs) in gene modulation. Thus, we aimed to evaluate the diagnostic value of selected lncRNAs from The Atlas of Noncoding RNAs in Cancer (TANRIC) thyroid cancer dataset. Methods LncRNAs in TANRIC thyroid cancer dataset that have significantly increased or decreased expression in papillary thyroid cancer (PTC) tissues were selected as candidates for PTC diagnosis. Surgical specimens from patients who underwent thyroidectomy were used to determine the separation capability of candidate lncRNAs between malignant and benign nodules. Fine needle aspiration samples were obtained and screened for candidate lncRNAs to verify their diagnostic value. Results LRRC52-AS1, LINC02471, LINC02082, UNC5B-AS1, LINC02408, MPPED2-AS1, LNCNEF, LOC642484, ATP6V0E2-AS1, and LOC100129129 were selected as the candidate lncRNAs. LRRC52-AS1, LINC02082, UNC5B-AS1, MPPED2-AS1, LNCNEF, and LOC100129129 expression levels were significantly increased or decreased in malignant nodules compared to those in benign nodules and paired normal thyroid tissues. The combination of LRRC52-AS1, LINC02082, and UNC5B-AS1 showed favorable results for the diagnosis of PTC from fine needle aspirates, with 88.9% sensitivity and 100.0% specificity. Conclusions LncRNA expression analysis is a promising approach for advancing the molecular diagnosis of PTC. Further studies are needed to identify lncRNAs of additional diagnostic value.
Collapse
Affiliation(s)
- Daham Kim
- Department of Internal Medicine, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Juyeon Yu
- Department of Internal Medicine, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Jiwon Kim
- Department of Internal Medicine, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Yoon-a Hwang
- Department of Internal Medicine, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Kyong Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Cheol Ryong Ku
- Department of Internal Medicine, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Jung Hyun Yoon
- Department of Radiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Young Kwak
- Department of Radiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Kee-Hyun Nam
- Department of Surgery, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: Kee-Hyun Nam,
| | - Eun Jig Lee
- Department of Internal Medicine, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
16
|
Mirzaei S, Paskeh MDA, Okina E, Gholami MH, Hushmandi K, Hashemi M, Kalu A, Zarrabi A, Nabavi N, Rabiee N, Sharifi E, Karimi-Maleh H, Ashrafizadeh M, Kumar AP, Wang Y. Molecular Landscape of LncRNAs in Prostate Cancer: A focus on pathways and therapeutic targets for intervention. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:214. [PMID: 35773731 PMCID: PMC9248128 DOI: 10.1186/s13046-022-02406-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/27/2022] [Indexed: 02/08/2023]
Abstract
Background One of the most malignant tumors in men is prostate cancer that is still incurable due to its heterogenous and progressive natures. Genetic and epigenetic changes play significant roles in its development. The RNA molecules with more than 200 nucleotides in length are known as lncRNAs and these epigenetic factors do not encode protein. They regulate gene expression at transcriptional, post-transcriptional and epigenetic levels. LncRNAs play vital biological functions in cells and in pathological events, hence their expression undergoes dysregulation. Aim of review The role of epigenetic alterations in prostate cancer development are emphasized here. Therefore, lncRNAs were chosen for this purpose and their expression level and interaction with other signaling networks in prostate cancer progression were examined. Key scientific concepts of review The aberrant expression of lncRNAs in prostate cancer has been well-documented and progression rate of tumor cells are regulated via affecting STAT3, NF-κB, Wnt, PI3K/Akt and PTEN, among other molecular pathways. Furthermore, lncRNAs regulate radio-resistance and chemo-resistance features of prostate tumor cells. Overexpression of tumor-promoting lncRNAs such as HOXD-AS1 and CCAT1 can result in drug resistance. Besides, lncRNAs can induce immune evasion of prostate cancer via upregulating PD-1. Pharmacological compounds such as quercetin and curcumin have been applied for targeting lncRNAs. Furthermore, siRNA tool can reduce expression of lncRNAs thereby suppressing prostate cancer progression. Prognosis and diagnosis of prostate tumor at clinical course can be evaluated by lncRNAs. The expression level of exosomal lncRNAs such as lncRNA-p21 can be investigated in serum of prostate cancer patients as a reliable biomarker.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 180554, Singapore, Singapore
| | | | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Azuma Kalu
- School of Life, Health & Chemical Sciences, The Open University, Milton Keynes, United Kingdom.,Pathology, Sheffield Teaching Hospital, Sheffield, United Kingdom
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396, Istanbul, Turkey
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Navid Rabiee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Korea.,School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China.,Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.,Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, 2028, South Africa
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey.
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore. .,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 180554, Singapore, Singapore.
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada.
| |
Collapse
|
17
|
Ashrafizadeh M, Paskeh MDA, Mirzaei S, Gholami MH, Zarrabi A, Hashemi F, Hushmandi K, Hashemi M, Nabavi N, Crea F, Ren J, Klionsky DJ, Kumar AP, Wang Y. Targeting autophagy in prostate cancer: preclinical and clinical evidence for therapeutic response. J Exp Clin Cancer Res 2022; 41:105. [PMID: 35317831 PMCID: PMC8939209 DOI: 10.1186/s13046-022-02293-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/16/2022] [Indexed: 02/08/2023] Open
Abstract
Prostate cancer is a leading cause of death worldwide and new estimates revealed prostate cancer as the leading cause of death in men in 2021. Therefore, new strategies are pertinent in the treatment of this malignant disease. Macroautophagy/autophagy is a “self-degradation” mechanism capable of facilitating the turnover of long-lived and toxic macromolecules and organelles. Recently, attention has been drawn towards the role of autophagy in cancer and how its modulation provides effective cancer therapy. In the present review, we provide a mechanistic discussion of autophagy in prostate cancer. Autophagy can promote/inhibit proliferation and survival of prostate cancer cells. Besides, metastasis of prostate cancer cells is affected (via induction and inhibition) by autophagy. Autophagy can affect the response of prostate cancer cells to therapy such as chemotherapy and radiotherapy, given the close association between autophagy and apoptosis. Increasing evidence has demonstrated that upstream mediators such as AMPK, non-coding RNAs, KLF5, MTOR and others regulate autophagy in prostate cancer. Anti-tumor compounds, for instance phytochemicals, dually inhibit or induce autophagy in prostate cancer therapy. For improving prostate cancer therapy, nanotherapeutics such as chitosan nanoparticles have been developed. With respect to the context-dependent role of autophagy in prostate cancer, genetic tools such as siRNA and CRISPR-Cas9 can be utilized for targeting autophagic genes. Finally, these findings can be translated into preclinical and clinical studies to improve survival and prognosis of prostate cancer patients. • Prostate cancer is among the leading causes of death in men where targeting autophagy is of importance in treatment; • Autophagy governs proliferation and metastasis capacity of prostate cancer cells; • Autophagy modulation is of interest in improving the therapeutic response of prostate cancer cells; • Molecular pathways, especially involving non-coding RNAs, regulate autophagy in prostate cancer; • Autophagy possesses both diagnostic and prognostic roles in prostate cancer, with promises for clinical application.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey.
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396, Istanbul, Turkey
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 1417466191, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine University of Tehran, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Francesco Crea
- Cancer Research Group-School of Life Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Jun Ren
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA.,Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Daniel J Klionsky
- Life Sciences Institute & Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore. .,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Yuzhuo Wang
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada.
| |
Collapse
|
18
|
Mirzaei S, Gholami MH, Hushmandi K, Hashemi F, Zabolian A, Canadas I, Zarrabi A, Nabavi N, Aref AR, Crea F, Wang Y, Ashrafizadeh M, Kumar AP. The long and short non-coding RNAs modulating EZH2 signaling in cancer. J Hematol Oncol 2022; 15:18. [PMID: 35236381 PMCID: PMC8892735 DOI: 10.1186/s13045-022-01235-1] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/09/2022] [Indexed: 02/08/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are a large family of RNA molecules with no capability in encoding proteins. However, they participate in developmental and biological processes and their abnormal expression affects cancer progression. These RNA molecules can function as upstream mediators of different signaling pathways and enhancer of zeste homolog 2 (EZH2) is among them. Briefly, EZH2 belongs to PRCs family and can exert functional roles in cells due to its methyltransferase activity. EZH2 affects gene expression via inducing H3K27me3. In the present review, our aim is to provide a mechanistic discussion of ncRNAs role in regulating EZH2 expression in different cancers. MiRNAs can dually induce/inhibit EZH2 in cancer cells to affect downstream targets such as Wnt, STAT3 and EMT. Furthermore, miRNAs can regulate therapy response of cancer cells via affecting EZH2 signaling. It is noteworthy that EZH2 can reduce miRNA expression by binding to promoter and exerting its methyltransferase activity. Small-interfering RNA (siRNA) and short-hairpin RNA (shRNA) are synthetic, short ncRNAs capable of reducing EZH2 expression and suppressing cancer progression. LncRNAs mainly regulate EZH2 expression via targeting miRNAs. Furthermore, lncRNAs induce EZH2 by modulating miRNA expression. Circular RNAs (CircRNAs), like lncRNAs, affect EZH2 expression via targeting miRNAs. These areas are discussed in the present review with a focus on molecular pathways leading to clinical translation.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology and Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, 1417466191, Tehran, Iran
| | - Amirhossein Zabolian
- Department of Orthopedics, School of Medicine, 5th Azar Hospital, Golestan University of Medical Sciences, Gorgan, Golestan, Iran
| | - Israel Canadas
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Translational Sciences, Xsphera Biosciences Inc., Boston, MA, USA
| | - Francesco Crea
- Cancer Research Group-School of Life Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Yuzhuo Wang
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada.
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, 34956, Turkey.
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
19
|
Yuan H, Yan L, Wu M, Shang Y, Guo Q, Ma X, Zhang X, Zhu Y, Wu Z, Lobie PE, Zhu T. Analysis of the estrogen receptor-associated lncRNA landscape identifies a role for ERLC1 in breast cancer progression. Cancer Res 2021; 82:391-405. [PMID: 34810200 DOI: 10.1158/0008-5472.can-21-1155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/11/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022]
Abstract
Estrogen receptor alpha (ERα) plays a vital role in the development of normal breast tissue and in breast cancer. By cross-analyzing The Cancer Genome Atlas (TCGA) database, ERα-regulated long noncoding RNA 1 (ERLC1) was identified as a long noncoding RNA exhibiting a strong association with ERα signaling and high specificity of expression in breast tissue. ERLC1 was transcriptionally activated by ERα, and ERLC1 stabilized the ESR1 transcript by sequestering miR-129 and tethering FXR1 to maintain a positive feedback loop that potentiated ERα signaling. ERLC1 was elevated in tamoxifen-resistant breast cancer cells, where ERLC1 depletion restored sensitivity to tamoxifen and increased the efficacy of palbociclib or fulvestrant therapy. Collectively, these data warrant further investigation of ERLC1 as a modulator of therapeutic response and potential therapeutic target in ER+ breast cancer.
Collapse
Affiliation(s)
- Hui Yuan
- Cell Biology, Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Linlin Yan
- Cell Biology, Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Mingming Wu
- Cell Biology, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China
| | - Yinzhong Shang
- Cell Biology, Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | | | - Xin Ma
- Cell Biology, Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xiao Zhang
- School of Life Sciences, University of Science and Technology of China
| | - Yong Zhu
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University
| | | | - Peter E Lobie
- Centre for Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University
| | - Tao Zhu
- Cell Biology, Hefei National Laboratory for Physical Sciences at Microscale and Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| |
Collapse
|
20
|
Li H, Liu F, Wang X, Li M, Li Z, Xie Y, Guo Y. Identification of Hub lncRNAs Along With lncRNA-miRNA-mRNA Network for Effective Diagnosis and Prognosis of Papillary Thyroid Cancer. Front Pharmacol 2021; 12:748867. [PMID: 34721037 PMCID: PMC8548639 DOI: 10.3389/fphar.2021.748867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/22/2021] [Indexed: 02/05/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) play important roles in tumorigenesis and progression of different cancers and they have been potential biomarkers for cancer diagnosis and prognosis. As the most common endocrine malignancy, precise diagnosis and prognosis of papillary thyroid cancer (PTC) is of great clinical significance. Here, we aim to identify new hub lncRNAs for marking PTC and constructed prognostics signatures based on lncRNA- miRNA-mRNA competing endogenous RNAs (ceRNA) network to predict overall survival (OS) and disease-free survival (DFS) respectively. Five reliable hub lncRNAs were identified by integrating differential genes of four Gene Expression Omnibus (GEO) gene chips using the RobustRankAggreg (RRA) method. Based on differential analyses and interaction prediction, a lncRNA-mRNA co-expression network and a lncRNA-miRNA-mRNA ceRNA network were established. Then a comprehensive function characterization of the five hub lncRNAs was performed, including validation dataset testing, receiver operating characteristic (ROC) curve analysis, and functional analysis on two networks. All results suggest that these five hub lncRNAs could be potential biomarkers for marking PTC. The ceRNA network was used to identify RNAs which were associated with PTC prognosis. Two prognostic signatures were developed using univariate and step-wise multivariate Cox regression analyses and both of them were independent prognostic indicators for PTC OS and DFS. Tumor microenvironment difference analysis between high and low-risk patients showed that dendritic cells activated and macrophages M0 may be a possible target for immunotherapy of PTC. In addition, disclosing the potential drugs that may reverse the expression of hub genes may improve the prognosis of patients with PTC. Here, connectivity map (CMap) analysis indicates that three bioactive chemicals (pioglitazone, benserazide, and SB-203580) are promising therapeutic agents for PTC. So, the paper presents a comprehensive study on diagnosis, prognosis, and potential drug screening for PTC based on the five hub lncRNAs identified by us.
Collapse
Affiliation(s)
- Haiyan Li
- College of Chemistry, Sichuan University, Chengdu, China
| | - Feng Liu
- Department of Thyroid Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaoyang Wang
- College of Chemistry, Sichuan University, Chengdu, China
| | - Menglong Li
- College of Chemistry, Sichuan University, Chengdu, China
| | - Zhihui Li
- Department of Thyroid Surgery, West China Hospital of Sichuan University, Chengdu, China.,Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital of Sichuan University, Chengdu, China
| | - Yongmei Xie
- Department of Thyroid Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Yanzhi Guo
- College of Chemistry, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Peng PH, Hsu KW, Chieh-Yu Lai J, Wu KJ. The role of hypoxia-induced long noncoding RNAs (lncRNAs) in tumorigenesis and metastasis. Biomed J 2021; 44:521-533. [PMID: 34654684 PMCID: PMC8640553 DOI: 10.1016/j.bj.2021.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/23/2021] [Accepted: 03/18/2021] [Indexed: 12/11/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are noncoding RNAs with length greater than 200 nt. The biological roles and mechanisms mediated by lncRNAs have been extensively investigated. Hypoxia is a proven microenvironmental factor that promotes solid tumor metastasis. Epithelial-mesenchymal transition (EMT) is one of the major mechanisms induced by hypoxia to contribute to metastasis. Many lncRNAs have been shown to be induced by hypoxia and their roles have been delineated. In this review, we focus on the hypoxia-inducible lncRNAs that interact with protein/protein complex and chromatin/epigenetic factors, and the mechanisms that contribute to metastasis. The role of a recently discovered lncRNA RP11-390F4.3 in hypoxia-induced EMT is discussed. Whole genome approaches to delineating the association between lncRNAs and histone modifications are discussed. Other topics related to hypoxia-induced tumor progression but require further investigation are also mentioned. The clinical significance and treatment strategy targeted against lncRNAs are discussed. The review aims to identify suitable lncRNA targets that may provide feasible therapeutic venues for hypoxia-involved cancers.
Collapse
Affiliation(s)
- Pei-Hua Peng
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Kai-Wen Hsu
- Research Center for Cancer Biology, Institute of New Drug Development, China Medical University, Taichung, Taiwan
| | | | - Kou-Juey Wu
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan; Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
22
|
Zhou M, Li L, Xie W, He Z, Li J. Synthesis of a Thermal-Responsive Dual-Modal Supramolecular Probe for Magnetic Resonance Imaging and Fluorescence Imaging. Macromol Rapid Commun 2021; 42:e2100248. [PMID: 34272782 DOI: 10.1002/marc.202100248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/06/2021] [Indexed: 11/05/2022]
Abstract
Dual-modal imaging can integrate the advantages of different imaging technologies, which could improve the accuracy and efficiency of clinical diagnosis. Herein, a novel amphiphilic thermal-responsive copolymer obtained from three types of monomers, N-isopropyl acrylamide, 2-(acetoacetoxy) ethyl methacrylate, and propargyl methacrylate, by RAFT copolymerization, is reported. It can be grafted with β-cyclodextrin and aggregation-induced emission (AIE) luminogens tetraphenylethylene by click chemistry and Biginelli reaction. The multifunctional supramolecular polymer (P4) can be constructed by host-guest inclusion between the copolymer and the Gd-based contrast agent (CA) modified by adamantane [Ad-(DOTA-Gd)]. And it can form vesicles with a bilayer structure in aqueous which will enhance the AIE and magnetic resonance imaging effects. As fluorescent thermometer, P4 can enter HeLa cells for intracellular fluorescence imaging (FI) and is sensitive to temperature with detection limit value of 1.5 °C. As magnetic resonance CA, P4 exhibits higher relaxation compared to Magnevist, which can prolong the circulation time in vivo. In addition, Gd3+ in the polymer can be quickly released from the body by disassembly that reduced the biological toxicity. This work introduces new synthetic ideas for dual-modal probe, which has great potential for clinical diagnostic applications in bioimaging.
Collapse
Affiliation(s)
- Mi Zhou
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Li Li
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Wensheng Xie
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Zejian He
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Jie Li
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
23
|
Natua S, Dhamdhere SG, Mutnuru SA, Shukla S. Interplay within tumor microenvironment orchestrates neoplastic RNA metabolism and transcriptome diversity. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1676. [PMID: 34109748 DOI: 10.1002/wrna.1676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/03/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022]
Abstract
The heterogeneous population of cancer cells within a tumor mass interacts intricately with the multifaceted aspects of the surrounding microenvironment. The reciprocal crosstalk between cancer cells and the tumor microenvironment (TME) shapes the cancer pathophysiome in a way that renders it uniquely suited for immune tolerance, angiogenesis, metastasis, and therapy resistance. This dynamic interaction involves a dramatic reconstruction of the transcriptomic landscape of tumors by altering the synthesis, modifications, stability, and processing of gene readouts. In this review, we categorically evaluate the influence of TME components, encompassing a myriad of resident and infiltrating cells, signaling molecules, extracellular vesicles, extracellular matrix, and blood vessels, in orchestrating the cancer-specific metabolism and diversity of both mRNA and noncoding RNA, including micro RNA, long noncoding RNA, circular RNA among others. We also highlight the transcriptomic adaptations in response to the physicochemical idiosyncrasies of TME, which include tumor hypoxia, extracellular acidosis, and osmotic stress. Finally, we provide a nuanced analysis of existing and prospective therapeutics targeting TME to ameliorate cancer-associated RNA metabolism, consequently thwarting the cancer progression. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA Turnover and Surveillance > Regulation of RNA Stability RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Subhashis Natua
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Shruti Ganesh Dhamdhere
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Srinivas Abhishek Mutnuru
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Sanjeev Shukla
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| |
Collapse
|
24
|
Soleymani L, Zarrabi A, Hashemi F, Hashemi F, Zabolian A, Banihashemi SM, Moghadam SS, Hushmandi K, Samarghandian S, Ashrafizadeh M, Khan H. Role of ZEB family members in proliferation, metastasis and chemoresistance of prostate cancer cells: Revealing signaling networks. Curr Cancer Drug Targets 2021; 21:749-767. [PMID: 34077345 DOI: 10.2174/1568009621666210601114631] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/10/2021] [Accepted: 03/19/2021] [Indexed: 11/22/2022]
Abstract
Prostate cancer (PCa) is one of the leading causes of death worldwide. A variety of strategies including surgery, chemotherapy, radiotherapy and immunotherapy are applied for PCa treatment. PCa cells are responsive towards therapy at early stages, but they can obtain resistance in the advanced stage. Furthermore, their migratory ability is high in advanced stages. It seems that genetic and epigenetic factors play an important in this case. Zinc finger E-box-binding homeobox (ZEB) is a family of transcription with two key members including ZEB1 and ZEB2. ZEB family members are known due to their involvement in promoting cancer metastasis via EMT induction. Recent studies have shown their role in cancer proliferation and inducing therapy resistance. In the current review, we focus on revealing role of ZEB1 and ZEB2 in PCa. ZEB family members that are able to significantly promote proliferation and viability of cancer cells. ZEB1 and ZEB2 enhance migration and invasion of PCa cells via EMT induction. Overexpression of ZEB1 and ZEB2 is associated with poor prognosis of PCa. ZEB1 and ZEB2 upregulation occurs during PCa progression and can provide therapy resistance to cancer cells. PRMT1, Smad2, and non-coding RNAs can function as upstream mediators of the ZEB family. Besides, Bax, Bcl-2, MRP1, N-cadherin and E-cadherin can be considered as downstream targets of ZEB family in PCa.
Collapse
Affiliation(s)
- Leyla Soleymani
- Department of biology, school of science, Urmia university, Urmia, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul. Turkey
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Fardin Hashemi
- Student Research Committee, Department of Physiotherapy, Faculty of Rehabilitation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Shirin Sabouhi Moghadam
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite -Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul. Turkey
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200. Pakistan
| |
Collapse
|
25
|
Interplay between SOX9 transcription factor and microRNAs in cancer. Int J Biol Macromol 2021; 183:681-694. [PMID: 33957202 DOI: 10.1016/j.ijbiomac.2021.04.185] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023]
Abstract
SOX transcription factors are critical regulators of development, homeostasis and disease progression and their dysregulation is a common finding in various cancers. SOX9 belongs to SOXE family located on chromosome 17. MicroRNAs (miRNAs) possess the capacity of regulating different transcription factors in cancer cells by binding to 3'-UTR. Since miRNAs can affect differentiation, migration, proliferation and other physiological mechanisms, disturbances in their expression have been associated with cancer development. In this review, we evaluate the relationship between miRNAs and SOX9 in different cancers to reveal how this interaction can affect proliferation, metastasis and therapy response of cancer cells. The tumor-suppressor miRNAs can decrease the expression of SOX9 by binding to the 3'-UTR of mRNAs. Furthermore, the expression of downstream targets of SOX9, such as c-Myc, Wnt, PI3K/Akt can be affected by miRNAs. It is noteworthy that other non-coding RNAs including lncRNAs and circRNAs regulate miRNA/SOX9 expression to promote/inhibit cancer progression and malignancy. The pre-clinical findings can be applied as biomarkers for diagnosis and prognosis of cancer patients.
Collapse
|
26
|
Lin Z, Xie X, Lu S, Liu T. Noncoding RNAs in osteosarcoma: Implications for drug resistance. Cancer Lett 2021; 504:91-103. [PMID: 33587978 DOI: 10.1016/j.canlet.2021.02.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/13/2021] [Accepted: 02/08/2021] [Indexed: 02/09/2023]
Abstract
Osteosarcoma is the most frequent bone malignancy in children and adolescents. Despite advances of surgery and chemotherapy in osteosarcoma over the past decades, overall survival rates of osteosarcoma have reached a plateau. The development of multi-drug resistance (MDR) has become the main obstacle in improving chemotherapeutic effects in osteosarcoma treatment. Therefore, understanding detailed mechanisms of chemoresistance and developing novel therapeutic targets to overcome chemoresistance are crucial to improve the prognosis of osteosarcoma patients. Accumulating evidence has proved that multiple noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) play pivotal roles in osteosarcoma progression. Notably, a great number of ncRNAs are abnormally expressed and can regulate chemosensitivity through various mechanisms in osteosarcoma. In this review, we systematically summarize the roles of ncRNAs as well as the molecular mechanisms in modulating drug resistance of osteosarcoma and discuss the potential roles of ncRNAs as biomarkers and novel therapeutic targets for osteosarcoma.
Collapse
Affiliation(s)
- Zhengjun Lin
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, 410011, Hunan, People's Republic of China; Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China.
| | - Xubin Xie
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China.
| | - Shiyao Lu
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China.
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, 410011, Hunan, People's Republic of China.
| |
Collapse
|