1
|
Qi S, Cao J, Wu T, Shi C, Wang J, Wang B, Qi Z, Wu H, Wu Y, Wang A, Liu J, Wang W, Liu Q. Discovery of IHMT-15130 as a Highly Potent Irreversible BMX Inhibitor for the Treatment of Myocardial Hypertrophy and Remodeling. ACS Chem Biol 2025. [PMID: 40388356 DOI: 10.1021/acschembio.4c00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Cardiac hypertrophy is usually accompanied by many forms of heart disease, including hypertension, vascular disease, ischemic disease, and heart failure, and thus effectively predicts the increased cardiovascular morbidity and mortality. Bone marrow kinase in chromosome X (BMX) has been reported to be the major signaling transduction protein in cardiac arterial endothelial cells and is thought to be involved in the pathology of cardiac hypertrophy. We report here the discovery of a potent irreversible BMX kinase inhibitor, IHMT-15130, which covalently targets cysteine 496 of BMX and exhibits potent inhibitory activity against BMX kinase (IC50: 1.47 ± 0.07 nM). Compared to recently approved BTK/BMX dual inhibitor Ibrutinib, IHMT-15130 displayed selectivity over CSK kinase (IC50 > 25,000 nM), targeting of which may cause severe atrial fibrillation and bleeding. IHMT-15130 effectively reduced the secretion of inflammatory cytokines, inhibited the inflammatory signaling pathway in vitro and in vivo, and alleviated angiotensin II (Ang II)-induced myocardial hypertrophy in a murine model. This study provides further experimental evidence for the application of BMX kinase inhibitors in the treatment of cardiac hypertrophy.
Collapse
Affiliation(s)
- Shuang Qi
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Precision Cancer Medicine Engineering Research Center of Anhui Province, Hefei, Anhui 230088, P. R. China
- Primary Cell Engineering Joint Laboratory of Anhui Province, Hefei, Anhui 230088, P. R. China
| | - Jiangyan Cao
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Ting Wu
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chenliang Shi
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Junjie Wang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Beilei Wang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Precision Cancer Medicine Engineering Research Center of Anhui Province, Hefei, Anhui 230088, P. R. China
| | - Ziping Qi
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Precision Cancer Medicine Engineering Research Center of Anhui Province, Hefei, Anhui 230088, P. R. China
| | - Hong Wu
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Precision Cancer Medicine Engineering Research Center of Anhui Province, Hefei, Anhui 230088, P. R. China
- Primary Cell Engineering Joint Laboratory of Anhui Province, Hefei, Anhui 230088, P. R. China
| | - Yun Wu
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Precision Cancer Medicine Engineering Research Center of Anhui Province, Hefei, Anhui 230088, P. R. China
| | - Aoli Wang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Precision Cancer Medicine Engineering Research Center of Anhui Province, Hefei, Anhui 230088, P. R. China
| | - Jing Liu
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Precision Cancer Medicine Engineering Research Center of Anhui Province, Hefei, Anhui 230088, P. R. China
- Primary Cell Engineering Joint Laboratory of Anhui Province, Hefei, Anhui 230088, P. R. China
| | - Wenchao Wang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Precision Cancer Medicine Engineering Research Center of Anhui Province, Hefei, Anhui 230088, P. R. China
- Primary Cell Engineering Joint Laboratory of Anhui Province, Hefei, Anhui 230088, P. R. China
| | - Qingsong Liu
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Precision Cancer Medicine Engineering Research Center of Anhui Province, Hefei, Anhui 230088, P. R. China
- Primary Cell Engineering Joint Laboratory of Anhui Province, Hefei, Anhui 230088, P. R. China
| |
Collapse
|
2
|
Liu S, Liu C, He Y, Li J. Benign non-immune cells in tumor microenvironment. Front Immunol 2025; 16:1561577. [PMID: 40248695 PMCID: PMC12003390 DOI: 10.3389/fimmu.2025.1561577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/24/2025] [Indexed: 04/19/2025] Open
Abstract
The tumor microenvironment (TME) is a highly complex and continuous evolving ecosystem, consisting of a diverse array of cellular and non-cellular components. Among these, benign non-immune cells, including cancer-associated fibroblasts (CAFs), adipocytes, endothelial cells (ECs), pericytes (PCs), Schwann cells (SCs) and others, are crucial factors for tumor development. Benign non-immune cells within the TME interact with both tumor cells and immune cells. These interactions contribute to tumor progression through both direct contact and indirect communication. Numerous studies have highlighted the role that benign non-immune cells exert on tumor progression and potential tumor-promoting mechanisms via multiple signaling pathways and factors. However, these benign non-immune cells may play different roles across cancer types. Therefore, it is important to understand the potential roles of benign non-immune cells within the TME based on tumor heterogeneity. A deep understanding allows us to develop novel cancer therapies by targeting these cells. In this review, we will introduce several types of benign non-immune cells that exert on different cancer types according to tumor heterogeneity and their roles in the TME.
Collapse
Affiliation(s)
- Shaowen Liu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chunhui Liu
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, China
| | - Yuan He
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jun Li
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, China
- Department of Molecular Pathology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
3
|
Ruiz‐Malagón AJ, Rodríguez‐Sojo MJ, Redondo E, Rodríguez‐Cabezas ME, Gálvez J, Rodríguez‐Nogales A. Systematic review: The gut microbiota as a link between colorectal cancer and obesity. Obes Rev 2025; 26:e13872. [PMID: 39614602 PMCID: PMC11884970 DOI: 10.1111/obr.13872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 10/11/2024] [Accepted: 10/25/2024] [Indexed: 12/01/2024]
Abstract
Microbiome modulation is one of the novel strategies in medicine with the greatest future to improve the health of individuals and reduce the risk of different conditions, including metabolic, immune, inflammatory, and degenerative diseases, as well as cancer. Regarding the latter, many studies have reported the role of the gut microbiome in carcinogenesis, formation and progression of colorectal cancer (CRC), as well as its response to different systemic therapies. Likewise, obesity, one of the most important risk factors for CRC, is also well known for its association with gut dysbiosis. Moreover, obesity and CRC display, apart from microbial dysbiosis, chronic inflammation, which participates in their pathogenesis. Although human and murine studies demonstrate the significant impact of the microbiome in regulating energy metabolism and CRC development, little is understood about the contribution of the microbiome to the development of obesity-associated CRC. Therefore, this systematic review explores the evidence for microbiome changes associated with these conditions and hypothesizes that this may contribute to the pathogenesis of obesity-related CRC. Two databases were searched, and different studies on the relationship among obesity, intestinal microbiota and CRC in clinical and preclinical models were selected. Data extraction was carried out by two reviewers independently, and 101 studies were finally considered. Findings indicate the existence of a risk association between obesity and CRC derived from metabolic, immune, and microbial disorders.
Collapse
Affiliation(s)
- Antonio Jesús Ruiz‐Malagón
- Department of Pharmacology, Center for Biomedical Research (CIBM)University of GranadaGranadaSpain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA)GranadaSpain
- Instituto de Investigación Biomédica de Málaga (IBIMA)MalgaSpain
| | - María Jesús Rodríguez‐Sojo
- Department of Pharmacology, Center for Biomedical Research (CIBM)University of GranadaGranadaSpain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA)GranadaSpain
| | - Eduardo Redondo
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA)GranadaSpain
- Servicio de DigestivoHospital Universitario Virgen de las NievesGranadaSpain
| | - María Elena Rodríguez‐Cabezas
- Department of Pharmacology, Center for Biomedical Research (CIBM)University of GranadaGranadaSpain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA)GranadaSpain
| | - Julio Gálvez
- Department of Pharmacology, Center for Biomedical Research (CIBM)University of GranadaGranadaSpain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA)GranadaSpain
| | - Alba Rodríguez‐Nogales
- Department of Pharmacology, Center for Biomedical Research (CIBM)University of GranadaGranadaSpain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA)GranadaSpain
| |
Collapse
|
4
|
Zhang S, Wen H, Chen Y, Ning J, Hu D, Dong Y, Yao C, Yuan B, Yang S. Crosstalk between gut microbiota and tumor: tumors could cause gut dysbiosis and metabolic imbalance. Mol Oncol 2024. [PMID: 39592438 DOI: 10.1002/1878-0261.13763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/20/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Gut microbiota has a proven link with the development and treatment of cancer. However, the causality between gut microbiota and cancer development is still unknown and deserves exploration. In this study, we aimed to explore the alterations in gut microbiota in murine tumor models and the crosstalk between the tumor and the gut microbiota. The subcutaneous and intravenous murine tumor models using both the colorectal cancer cell line MC38 and lung cancer cell line LLC were constructed. Then fecal samples before and after tumor inoculation were collected for whole metagenomics sequencing. Both subcutaneous and metastatic tumors markedly elevated the α-diversity of the gut microbiota. Relative abundance of Ligilactobacillus and Lactobacillus was reduced after subcutaneously inoculating tumor cells, whereas Bacteroides and Duncaniella were reduced in metastatic tumors, regardless of tumor type. At the species level, Lachnospiraceae bacterium was enriched after both subcutaneous and intravenous tumors inoculation, whereas levels of Muribaculaceae bacterium Isolate-110 (HZI), Ligilactobacillus murinus and Bacteroides acidifaciens reduced. Metabolic function analysis showed that the reductive pentose phosphate cycle, urea cycle, ketone body biosynthesis, ectoine biosynthesis, C4-dicarboxylic acid cycle, isoleucine biosynthesis, inosine 5'-monophosphate (IMP), and uridine 5'-monophosphate (UMP) biosynthesis were elevated after tumor inoculation, whereas the cofactor and vitamin biosynthesis were deficient. Principal coordinates analysis (PCoA) showed that subcutaneous and metastatic tumors partially shared the same effect patterns on gut microbiota. Furthermore, fecal microbiota transplantation revealed that this altered microbiota could influence tumor growth. Taken together, this study demonstrated that both colorectal cancer (MC38) and non-colorectal cancer (LLC) can cause gut dysbiosis and metabolic imbalance, regardless of tumor type and process of tumor inoculation, and this dysbiosis influenced the tumor growth. This research gives novel insights into the crosstalk between tumors and the gut microbiota.
Collapse
Affiliation(s)
- Siyuan Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, China
- School of Medicine, Xi'an Jiaotong University, China
| | - Haimei Wen
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, China
- School of Medicine, Xi'an Jiaotong University, China
| | - Ying Chen
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, China
| | - Jingya Ning
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, China
- Xi'an Jiaotong University School of Medicine Affiliated Honghui Hospital, China
| | - Di Hu
- Department of Pathology, The First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Yujiao Dong
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, China
- School of Medicine, Xi'an Jiaotong University, China
| | - Chenyu Yao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, China
- School of Medicine, Xi'an Jiaotong University, China
| | - Bo Yuan
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, China
| | - Shuanying Yang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, China
| |
Collapse
|
5
|
Liu J, Yang H, Li P, Zhou Y, Zhang Z, Zeng Q, Zhang X, Sun Y. Microarray analysis points to LMNB1 and JUN as potential target genes for predicting metastasis promotion by etoposide in colorectal cancer. Sci Rep 2024; 14:23661. [PMID: 39390002 PMCID: PMC11467296 DOI: 10.1038/s41598-024-72674-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024] Open
Abstract
Etoposide is a second-line chemotherapy agent widely used for metastatic colorectal cancer. However, we discovered that etoposide treatment induced greater motility potential in four colorectal cancer cell lines. Therefore, we used microarrays to test the mRNA of these cancer cell lines to investigate the mechanisms of etoposide promoting colorectal cancer metastasis. Differentially expressed genes (DEGs) were identified by comparing the gene expression profiles in samples from etoposide-treated cells and untreated cells in all four colorectal cancer cell lines. Next, these genes went through the Gene Set Enrichment Analysis (GSEA), Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway analysis. Among the top 10 genes including the upregulated and downregulated, eight genes had close interaction according to the STRING database: FAS, HMMR, JUN, LMNB1, MLL3, PLK2, STAG1 and TBL1X. After etoposide treatment, the cell cycle, metabolism-related and senescence signaling pathways in the colorectal cancer cell lines were significantly downregulated, whereas necroptosis and oncogene pathways were significantly upregulated. We suggest that the differentially expressed genes LMNB1 and JUN are potential targets for predicting colorectal cancer metastasis. These results provide clinical guidance in chemotherapy, and offer direction for further research in the mechanism of colorectal cancer metastasis.
Collapse
Affiliation(s)
- Jiafei Liu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
- Tianjin Institute of Coloproctology, Tianjin, People's Republic of China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, People's Republic of China
| | - Hongjie Yang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
- Tianjin Institute of Coloproctology, Tianjin, People's Republic of China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, People's Republic of China
| | - Peng Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
- Tianjin Institute of Coloproctology, Tianjin, People's Republic of China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, People's Republic of China
| | - Yuanda Zhou
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
- Tianjin Institute of Coloproctology, Tianjin, People's Republic of China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, People's Republic of China
| | - Zhichun Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
- Tianjin Institute of Coloproctology, Tianjin, People's Republic of China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, People's Republic of China
| | - Qingsheng Zeng
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
- Tianjin Institute of Coloproctology, Tianjin, People's Republic of China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, People's Republic of China
| | - Xipeng Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
- Tianjin Institute of Coloproctology, Tianjin, People's Republic of China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, People's Republic of China
| | - Yi Sun
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China.
- Tianjin Institute of Coloproctology, Tianjin, People's Republic of China.
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, People's Republic of China.
| |
Collapse
|
6
|
Zheng Y, Chen J, Macwan V, Dixon CL, Li X, Liu S, Yu Y, Xu P, Sun Q, Hu Q, Liu W, Raught B, Fairn GD, Neculai D. S-acylation of ATGL is required for lipid droplet homoeostasis in hepatocytes. Nat Metab 2024; 6:1549-1565. [PMID: 39143266 DOI: 10.1038/s42255-024-01085-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/21/2024] [Indexed: 08/16/2024]
Abstract
Lipid droplets (LDs) are organelles specialized in the storage of neutral lipids, cholesterol esters and triglycerides, thereby protecting cells from the toxicity of excess lipids while allowing for the mobilization of lipids in times of nutrient deprivation. Defects in LD function are associated with many diseases. S-acylation mediated by zDHHC acyltransferases modifies thousands of proteins, yet the physiological impact of this post-translational modification on individual proteins is poorly understood. Here, we show that zDHHC11 regulates LD catabolism by modifying adipose triacylglyceride lipase (ATGL), the rate-limiting enzyme of lipolysis, both in hepatocyte cultures and in mice. zDHHC11 S-acylates ATGL at cysteine 15. Preventing the S-acylation of ATGL renders it catalytically inactive despite proper localization. Overexpression of zDHHC11 reduces LD size, whereas its elimination enlarges LDs. Mutating ATGL cysteine 15 phenocopies zDHHC11 loss, causing LD accumulation, defective lipolysis and lipophagy. Our results reveal S-acylation as a mode of regulation of ATGL function and LD homoeostasis. Modulating this pathway may offer therapeutic potential for treating diseases linked to defective lipolysis, such as fatty liver disease.
Collapse
Affiliation(s)
- Yuping Zheng
- Center for Metabolism Research, The Fourth Affiliated Hospital of School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Jishun Chen
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Vinitha Macwan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Charneal L Dixon
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University Health Network, Toronto, Ontario, Canada
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Xinran Li
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Shengjie Liu
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, China
| | - Yuyun Yu
- Center for Metabolism Research, The Fourth Affiliated Hospital of School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Pinglong Xu
- Life Science Institute, Zhejiang University, Hangzhou, China
| | - Qiming Sun
- Center for Metabolism Research, The Fourth Affiliated Hospital of School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Qi Hu
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, China
| | - Wei Liu
- Center for Metabolism Research, The Fourth Affiliated Hospital of School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China.
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
| | - Gregory D Fairn
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University Health Network, Toronto, Ontario, Canada.
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | - Dante Neculai
- Center for Metabolism Research, The Fourth Affiliated Hospital of School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China.
| |
Collapse
|
7
|
Sundaramoorthy S, Colombo DF, Sanalkumar R, Broye L, Balmas Bourloud K, Boulay G, Cironi L, Stamenkovic I, Renella R, Kuttler F, Turcatti G, Rivera MN, Mühlethaler-Mottet A, Bardet AF, Riggi N. Preclinical spheroid models identify BMX as a therapeutic target for metastatic MYCN nonamplified neuroblastoma. JCI Insight 2024; 9:e169647. [PMID: 39133652 PMCID: PMC11383371 DOI: 10.1172/jci.insight.169647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/10/2024] [Indexed: 09/11/2024] Open
Abstract
The development of targeted therapies offers new hope for patients affected by incurable cancer. However, multiple challenges persist, notably in controlling tumor cell plasticity in patients with refractory and metastatic illness. Neuroblastoma (NB) is an aggressive pediatric malignancy originating from defective differentiation of neural crest-derived progenitors with oncogenic activity due to genetic and epigenetic alterations and remains a clinical challenge for high-risk patients. To identify critical genes driving NB aggressiveness, we performed combined chromatin and transcriptome analyses on matched patient-derived xenografts (PDXs), spheroids, and differentiated adherent cultures derived from metastatic MYCN nonamplified tumors. Bone marrow kinase on chromosome X (BMX) was identified among the most differentially regulated genes in PDXs and spheroids versus adherent models. BMX expression correlated with high tumor stage and poor patient survival and was crucial to the maintenance of the self-renewal and tumorigenic potential of NB spheroids. Moreover, BMX expression positively correlated with the mesenchymal NB cell phenotype, previously associated with increased chemoresistance. Finally, BMX inhibitors readily reversed this cellular state, increased the sensitivity of NB spheroids toward chemotherapy, and partially reduced tumor growth in a preclinical NB model. Altogether, our study identifies BMX as a promising innovative therapeutic target for patients with high-risk MYCN nonamplified NB.
Collapse
Affiliation(s)
| | | | - Rajendran Sanalkumar
- Experimental Pathology Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Liliane Broye
- Experimental Pathology Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Katia Balmas Bourloud
- Department Woman-Mother-Child, Division of Pediatrics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Gaylor Boulay
- Department of Pathology and Cancer Center, Massachusetts General Hospital and Harvard Medical School
| | - Luisa Cironi
- Experimental Pathology Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ivan Stamenkovic
- Experimental Pathology Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Raffaele Renella
- Department Woman-Mother-Child, Division of Pediatrics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Fabien Kuttler
- Biomolecular Screening Facility, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Gerardo Turcatti
- Biomolecular Screening Facility, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Miguel N Rivera
- Department of Pathology and Cancer Center, Massachusetts General Hospital and Harvard Medical School
| | - Annick Mühlethaler-Mottet
- Department Woman-Mother-Child, Division of Pediatrics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Anaïs Flore Bardet
- Biotechnology and Cell Signaling (BSC), CNRS UMR7242, University of Strasbourg, Illkirch, France
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), CNRS UMR7104, University of Strasbourg, INSERM U1258, Illkirch, France
| | - Nicolò Riggi
- Experimental Pathology Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
8
|
Liu H, Guo X, Jiang K, Shi B, Liu L, Hou R, Chen G, Farag MA, Yan N, Liu L. Dietary polyphenols regulate appetite mechanism via gut-brain axis and gut homeostasis. Food Chem 2024; 446:138739. [PMID: 38412807 DOI: 10.1016/j.foodchem.2024.138739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/04/2024] [Accepted: 02/10/2024] [Indexed: 02/29/2024]
Abstract
Nowadays, due to the rise of fast-food consumption, the metabolic diseases are increasing as a result of high-sugar and high-fat diets. Therefore, there is an urgent need for natural, healthy and side-effect-free diets in daily life. Whole grain supplementation can enhance satiety and regulate energy metabolism, effects that have been attributed to polyphenol content. Dietary polyphenols interact with gut microbiota to produce intermediate metabolites that can regulate appetite while also enhancing prebiotic effects. This review considers how interactions between gut metabolites and dietary polyphenols might regulate appetite by acting on the gut-brain axis. In addition, further advances in the study of dietary polyphenols and gut microbial metabolites on energy metabolism and gut homeostasis are summarized. This review contributes to a better understanding of how dietary polyphenols regulate appetite via the gut-brain axis, thereby providing nutritional references for citizens' dietary preferences.
Collapse
Affiliation(s)
- Hongyan Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Xue Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Kexin Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Boshan Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska-Lincoln, NE, USA
| | - Ruyan Hou
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Guijie Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Ning Yan
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, No. 11 Forth Longitudinal Keyuan Rd, Laoshan District, Qingdao 266101, China
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
9
|
Bae S, Ullah I, Beloor J, Lim J, Chung K, Yi Y, Kang E, Yun G, Rhim T, Lee SK. Blocking Fas-signaling in adipocytes and hepatocytes prevents obesity-associated inflammation, insulin resistance, and hepatosteatosis. J IND ENG CHEM 2024; 135:434-443. [DOI: 10.1016/j.jiec.2024.01.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Lv JL, Tan YJ, Ren YS, Ma R, Wang X, Wang SY, Liu WQ, Zheng QS, Yao JC, Tian J, Li J. Procyanidin C1 inhibits tumor growth and metastasis in colon cancer via modulating miR-501-3p/HIGD1A axis. J Adv Res 2024; 60:215-231. [PMID: 37479180 PMCID: PMC11156609 DOI: 10.1016/j.jare.2023.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023] Open
Abstract
INTRODUCTION Although colon (COAD) and rectal adenocarcinoma (READ) combined to refer to colorectal cancer (CRC), substantial clinical evidence urged that CRC should be treated as two different cancers due to compared with READ, COAD showed higher morbidity and worse 5-year survival. OBJECTIVES This study has tried to screen for the crucial gene that caused the worse prognosis and investigate its mechanism for mediating tumor growth and metastases in COAD. Meanwhile, the potential anti-COAD compound implicated in this mechanism was identified and testified from 1,855 food-borne chemical kits. This study aims to bring a new perspective to the development of new anti-COAD drugs and personalized medicine for patients with COAD. METHODS AND RESULTS The survival-related hub genes in COAD and READ were screened out from The Cancer Genome Atlas (TCGA) database and the results showed that HIGD1A, lower expressed in COAD than in READ, was associated with poor prognosis in COAD patients, but not in READ. Over-expressed HIGD1A suppressed CRC cell proliferation, invasion, and migration in vitro and in vivo. Meanwhile, the different expressed microRNA profiles between COAD and READ showed that miR-501-3p was highly expressed in COAD and inhibited HIGD1A expression by targeting 3'UTR of HIGD1A. MiR-501-3p mimics promoted cell proliferation and metastasis in CRC cells. In addition, Procyanidin C1 (PCC1), a kind of natural polyphenol has been verified as a potential miR-501-3p inhibitor. In vitro and in vivo, PCC1 promoted HIGD1A expression by suppressing miR-501-3p and resulted in inhibited tumor growth and metastasis. CONCLUSION The present study verified that miR-501-3p/HIGD1A axis mediated tumor growth and metastasis in COAD. PCC1, a flavonoid that riched in food exerts anti-COAD effects by inhibiting miR-501-3p and results in the latter losing the ability to suppress HIGD1A expression. Subsequently, unfettered HIGD1A inhibited tumor growth and metastasis in COAD.
Collapse
Affiliation(s)
- Jun-Lin Lv
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003 Yantai, China
| | - Yu-Jun Tan
- School of Life Science, Jiangsu Normal University, 221116 Xuzhou, China
| | - Yu-Shan Ren
- Department of Immunology, Medicine & Pharmacy Research Center, Binzhou Medical University, 264003 Yantai, China
| | - Ru Ma
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003 Yantai, China
| | - Xiao Wang
- Department of Immunology, Medicine & Pharmacy Research Center, Binzhou Medical University, 264003 Yantai, China
| | - Shu-Yan Wang
- Department of Immunology, Medicine & Pharmacy Research Center, Binzhou Medical University, 264003 Yantai, China
| | - Wan-Qing Liu
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003 Yantai, China
| | - Qiu-Sheng Zheng
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003 Yantai, China
| | - Jing-Chun Yao
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd, 276000 Linyi, China.
| | - Jun Tian
- School of Life Science, Jiangsu Normal University, 221116 Xuzhou, China.
| | - Jie Li
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003 Yantai, China.
| |
Collapse
|
11
|
Huang G, Zhang S, Liao J, Qin Y, Hong Y, Chen Q, Lin Y, Li Y, Lan L, Hu W, Huang K, Tang F, Tang N, Jiang L, Shen C, Cui L, Zhong H, Li M, Lu P, Shu Q, Wei Y, Xu F. BMX deletion mitigates neuroinflammation induced by retinal ischemia/reperfusion through modulation of the AKT/ERK/STAT3 signaling cascade. Heliyon 2024; 10:e27114. [PMID: 38434304 PMCID: PMC10907772 DOI: 10.1016/j.heliyon.2024.e27114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/13/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024] Open
Abstract
Aims Retinal ischemia/reperfusion (I/R) injury is implicated in the etiology of various ocular disorders. Prior research has demonstrated that bone marrow tyrosine kinase on chromosome X (BMX) contributes to the advancement of ischemic disease and inflammatory reactions. Consequently, the current investigation aims to evaluate BMX's impact on retinal I/R injury and clarify its implied mechanism of action. Main methods This study utilized male and female systemic BMX knockout (BMX-/-) mice to conduct experiments. The utilization of Western blot assay and immunofluorescence labeling techniques was employed to investigate variations in the expression of protein and tissue localization. Histomorphological changes were observed through H&E staining and SD-OCT examination. Visual function changes were assessed through electrophysiological experiments. Furthermore, apoptosis in the retina was identified using the TUNEL assay, as well as the ELISA technique, which has been utilized to determine the inflammatory factors level. Key findings Our investigation results revealed that the knockdown of BMX did not yield a significant effect on mouse retina. In mice, BMX knockdown mitigated the negative impact of I/R injury on retinal tissue structure and visual function. BMX knockdown effectively reduced apoptosis, suppressed inflammatory responses, and decreased inflammatory factors subsequent to I/R injury. The outcomes of the current investigation revealed that BMX knockdown partially protected the retina through downregulating phosphorylation of AKT/ERK/STAT3 pathway. Significance Our investigation showed that BMX-/- reduces AKT, ERK, and STAT3 phosphorylation, reducing apoptosis and inflammation. Thus, this strategy protected the retina from structural and functional damage after I/R injury.
Collapse
Affiliation(s)
- Guangyi Huang
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Shaoyang Zhang
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Jing Liao
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Yuanjun Qin
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Yiyi Hong
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Qi Chen
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Yunru Lin
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Yue Li
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Lin Lan
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Wen Hu
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Kongqian Huang
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Fen Tang
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Ningning Tang
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Li Jiang
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Chaolan Shen
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Ling Cui
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Haibin Zhong
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Min Li
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Peng Lu
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Qinmeng Shu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission, Shanghai, China
| | - Yantao Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 7 Jinsui Road, Guangzhou, 510060, China
| | - Fan Xu
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| |
Collapse
|
12
|
Wang Q, Su Y, Sun R, Xiong X, Guo K, Wei M, Yang G, Ru Y, Zhang Z, Li J, Zhang J, Qiao Q, Li X. MIIP downregulation drives colorectal cancer progression through inducing peri-cancerous adipose tissue browning. Cell Biosci 2024; 14:12. [PMID: 38245780 PMCID: PMC10800076 DOI: 10.1186/s13578-023-01179-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 12/05/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND The enrichment of peri-cancerous adipose tissue is a distinctive feature of colorectal cancer (CRC), accelerating disease progression and worsening prognosis. The communication between tumor cells and adjacent adipocytes plays a crucial role in CRC advancement. However, the precise regulatory mechanisms are largely unknown. This study aims to explore the mechanism of migration and invasion inhibitory protein (MIIP) downregulation in the remodeling of tumor cell-adipocyte communication and its role in promoting CRC. RESULTS MIIP expression was found to be decreased in CRC tissues and closely associated with adjacent adipocyte browning. In an in vitro co-culture model, adipocytes treated with MIIP-downregulated tumor supernatant exhibited aggravated browning and lipolysis. This finding was further confirmed in subcutaneously allografted mice co-injected with adipocytes and MIIP-downregulated murine CRC cells. Mechanistically, MIIP interacted with the critical lipid mobilization factor AZGP1 and regulated AZGP1's glycosylation status by interfering with its association with STT3A. MIIP downregulation promoted N-glycosylation and over-secretion of AZGP1 in tumor cells. Subsequently, AZGP1 induced adipocyte browning and lipolysis through the cAMP-PKA pathway, releasing free fatty acids (FFAs) into the microenvironment. These FFAs served as the primary energy source, promoting CRC cell proliferation, invasion, and apoptosis resistance, accompanied by metabolic reprogramming. In a tumor-bearing mouse model, inhibition of β-adrenergic receptor or FFA uptake, combined with oxaliplatin, significantly improved therapeutic efficacy in CRC with abnormal MIIP expression. CONCLUSIONS Our data demonstrate that MIIP plays a regulatory role in the communication between CRC and neighboring adipose tissue by regulating AZGP1 N-glycosylation and secretion. MIIP reduction leads to AZGP1 oversecretion, resulting in adipose browning-induced CRC rapid progression and poor prognosis. Inhibition of β-adrenergic receptor or FFA uptake, combined with oxaliplatin, may represent a promising therapeutic strategy for CRC with aberrant MIIP expression.
Collapse
Affiliation(s)
- Qinhao Wang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Yuanyuan Su
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
- Department of Pharmacology, Medical College, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Ruiqi Sun
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Xin Xiong
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Kai Guo
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Mengying Wei
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Guodong Yang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yi Ru
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Zhengxiang Zhang
- Department of Pharmacology, Medical College, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Jing Li
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jing Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Qing Qiao
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, No. 569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| | - Xia Li
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
13
|
Oh J, Kim SA, Kwon KW, Choi SR, Lee CH, Hossain MA, Kim ES, Kim C, Lee BH, Lee S, Kim JH, Cho JY. Sophora flavescens Aiton methanol extract exerts anti-inflammatory effects via reduction of Src kinase phosphorylation. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116015. [PMID: 36563890 DOI: 10.1016/j.jep.2022.116015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/21/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sophora flavescens Aiton (Family: Leguminosae), an herbal plant, has been used in East Asian home remedies for centuries for treating ulcers, skin burns, fevers, and inflammatory disorders. In addition, the dried root of S. flavescens was also applied for antipyretic, analgesic, antihelmintic, and stomachic uses. AIM OF STUDY Nonetheless, how this plant can show various pharmacological activities including anti-inflammatory responses was not fully elucidated. In this study, therefore, we aimed to investigate the curative effects of S. flavescens on inflammation and its molecular mechanism. MATERIALS AND METHODS For reaching this aim, various in vitro and in vivo experimental models with LPS-treated RAW264.7 cells, HCl/EtOH-induced gastric ulcer, and LPS-triggered lung injury conditions were employed and anti-inflammatory activity of S. flavescens methanol extract (Sf-ME) was also tested. Fingerprinting profile of Sf-ME was identified via LC-MS analysis. Its anti-inflammatory molecular mechanism was also examined by immunoblotting analysis. RESULTS Nitric oxide production and mRNA expression levels of iNOS, COX-2, IL-1β, and TNF-α were decreased. Additionally, phosphorylation of Src in the signaling cascade was decreased, and activities of the transcriptional factor NF-κB were reduced as determined by a luciferase reporter assay. Moreover, in vivo, gastritis and lung injury lesions were attenuated by Sf-ME. CONCLUSION Taken together, these findings suggest that Sf-ME could be a potential anti-inflammatory therapeutic agent via suppression of Src kinase activity and regulation of IL-1β secretion.
Collapse
Affiliation(s)
- Jieun Oh
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, South Korea.
| | - Seung A Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, South Korea.
| | - Ki Woong Kwon
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, South Korea.
| | - Se Rin Choi
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, South Korea.
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, South Korea.
| | - Mohammad Amjad Hossain
- College of Veterinary Medicine, Chonbuk National University, Icksan, 54596, South Korea.
| | - Eun Sil Kim
- National Institute of Biological Resources, Environmental Research Complex, Incheon, 22689, South Korea.
| | - Changmu Kim
- National Institute of Biological Resources, Environmental Research Complex, Incheon, 22689, South Korea.
| | - Byoung-Hee Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon, 22689, South Korea.
| | - Sarah Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon, 22689, South Korea.
| | - Jong-Hoon Kim
- College of Veterinary Medicine, Chonbuk National University, Icksan, 54596, South Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, South Korea.
| |
Collapse
|
14
|
Lee D, Kim JW, Lee CY, Oh J, Hwang SH, Jo M, Kim SA, Choi W, Noh JK, Yi DK, Song M, Kim HG, Cho JY. Guettarda crispiflora Vahl Methanol Extract Ameliorates Acute Lung Injury and Gastritis by Suppressing Src Phosphorylation. PLANTS (BASEL, SWITZERLAND) 2022; 11:3560. [PMID: 36559672 PMCID: PMC9784507 DOI: 10.3390/plants11243560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Many species in the genus Guettarda are known to exert anti-inflammatory effects and are used as traditional medicinal plants to treat various inflammatory symptoms. However, no studies on the inflammatory activities of Guettarda crispiflora Vahl have been reported. The aim of the study was to investigate in vitro and in vivo the anti-inflammatory effects of a methanol extract of Guettarda crispiflora Vahl (Gc-ME). To determine the anti-inflammatory activity of Gc-ME, lipopolysaccharide (LPS)-, poly(I:C)-, or Pam3CSK4-treated RAW264.7 cells, HCl/EtOH- and LPS-treated mice were employed for in vitro and in vivo tests. LPS-induced nitric oxide production in RAW264.7 cells was determined by Griess assays and cytokine gene expression in LPS-activated RAW264.7 cells, confirmed by RT- and real-time PCR. Transcriptional activation was evaluated by luciferase reporter gene assay. Target protein validation was assessed by Western blot analysis and cellular thermal shift assays (CETSA) with LPS-treated RAW264.7 and gene-transfected HEK293 cells. Using both a HCl/EtOH-induced gastritis model and an LPS-induced lung injury model, inflammatory states were checked by scoring or evaluating gastric lesions, lung edema, and lung histology. Phytochemical fingerprinting of Gc-ME was observed by using liquid chromatography-mass spectrometry. Nitric oxide production induced by LPS and Pam3CSK4 in RAW264.7 cells was revealed to be reduced by Gc-ME. The LPS-induced upregulation of iNOS, COX-2, IL-6, and IL-1β was also suppressed by Gc-ME treatment. Gc-ME downregulated the promotor activities of AP-1 and NF-κB triggered by MyD88- and TRIF induction. Upstream signaling proteins for NF-κB activation, namely, p-p50, p-p65, p-IκBα, and p-Src were all downregulated by Ch-EE. Moreover, Src was revealed to be directly targeted by Gc-ME. This extract, orally treated strongly, attenuated the inflammatory symptoms in HCl/EtOH-treated stomachs and LPS-treated lungs. Therefore, these results strongly imply that Guettarda crispiflora can be developed as a promising anti-inflammatory remedy with Src-suppressive properties.
Collapse
Affiliation(s)
- Dahae Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ji Won Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Chae Young Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jieun Oh
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - So Hyun Hwang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Minkyeong Jo
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seung A Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Wooram Choi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | | | - Dong-Keun Yi
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Minkyung Song
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Han Gyung Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Research Institute of Biomolecule Control, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Research Institute of Biomolecule Control, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
15
|
Jang WY, Kim MY, Cho JY. Antioxidant, Anti-Inflammatory, Anti-Menopausal, and Anti-Cancer Effects of Lignans and Their Metabolites. Int J Mol Sci 2022; 23:ijms232415482. [PMID: 36555124 PMCID: PMC9778916 DOI: 10.3390/ijms232415482] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Since chronic inflammation can be seen in severe, long-lasting diseases such as cancer, there is a high demand for effective methods to modulate inflammatory responses. Among many therapeutic candidates, lignans, absorbed from various plant sources, represent a type of phytoestrogen classified into secoisolariciresionol (Seco), pinoresinol (Pino), matairesinol (Mat), medioresinol (Med), sesamin (Ses), syringaresinol (Syr), and lariciresinol (Lari). Lignans consumed by humans can be further modified into END or ENL by the activities of gut microbiota. Lignans are known to exert antioxidant and anti-inflammatory activities, together with activity in estrogen receptor-dependent pathways. Lignans may have therapeutic potential for postmenopausal symptoms, including cardiovascular disease, osteoporosis, and psychological disorders. Moreover, the antitumor efficacy of lignans has been demonstrated in various cancer cell lines, including hormone-dependent breast cancer and prostate cancer, as well as colorectal cancer. Interestingly, the molecular mechanisms of lignans in these diseases involve the inhibition of inflammatory signals, including the nuclear factor (NF)-κB pathway. Therefore, we summarize the recent in vitro and in vivo studies evaluating the biological effects of various lignans, focusing on their values as effective anti-inflammatory agents.
Collapse
Affiliation(s)
- Won Young Jang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea
- Correspondence: (M.-Y.K.); (J.Y.C.); Tel.: +82-2-820-0458 (M.-Y.K.); +82-31-290-7868 (J.Y.C.)
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Correspondence: (M.-Y.K.); (J.Y.C.); Tel.: +82-2-820-0458 (M.-Y.K.); +82-31-290-7868 (J.Y.C.)
| |
Collapse
|
16
|
Ha AT, Cho JY, Kim D. MLK3 Regulates Inflammatory Response via Activation of AP-1 Pathway in HEK293 and RAW264.7 Cells. Int J Mol Sci 2022; 23:ijms231810874. [PMID: 36142785 PMCID: PMC9501218 DOI: 10.3390/ijms231810874] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 12/02/2022] Open
Abstract
Inflammation is a critically important barrier found in innate immunity. However, severe and sustained inflammatory conditions are regarded as causes of many different serious diseases, such as cancer, atherosclerosis, and diabetes. Although numerous studies have addressed how inflammatory responses proceed and what kinds of proteins and cells are involved, the exact mechanism and protein components regulating inflammatory reactions are not fully understood. In this paper, to determine the regulatory role of mixed lineage kinase 3 (MLK3), which functions as mitogen-activated protein kinase kinase kinase (MAP3K) in cancer cells in inflammatory response to macrophages, we employed an overexpression strategy with MLK3 in HEK293 cells and used its inhibitor URMC-099 in lipopolysaccharide (LPS)-treated RAW264.7 cells. It was found that overexpressed MLK3 increased the mRNA expression of inflammatory genes (COX-2, IL-6, and TNF-α) via the activation of AP-1, according to a luciferase assay carried out with AP-1-Luc. Overexpression of MLK3 also induced phosphorylation of MAPKK (MEK1/2, MKK3/6, and MKK4/7), MAPK (ERK, p38, and JNK), and AP-1 subunits (c-Jun, c-Fos, and FRA-1). Phosphorylation of MLK3 was also observed in RAW264.7 cells stimulated by LPS, Pam3CSK, and poly(I:C). Finally, inhibition of MLK3 by URMC-099 reduced the expression of COX-2 and CCL-12, phosphorylation of c-Jun, luciferase activity mediated by AP-1, and phosphorylation of MAPK in LPS-treated RAW264.7 cells. Taken together, our findings strongly suggest that MLK3 plays a central role in controlling AP-1-mediated inflammatory responses in macrophages and that this enzyme can serve as a target molecule for treating AP-1-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Anh Thu Ha
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea
- Correspondence: (J.Y.C.); (D.K.); Tel.: +82-31-290-7868 (J.Y.C.); +82-10-9530-5269 (D.K.)
| | - Daewon Kim
- Laboratory of Bio-Informatics, Department of Multimedia Engineering, Dankook University, Yongin 16890, Korea
- Correspondence: (J.Y.C.); (D.K.); Tel.: +82-31-290-7868 (J.Y.C.); +82-10-9530-5269 (D.K.)
| |
Collapse
|
17
|
Dioguardi M, Spirito F, Sovereto D, La Femina L, Campobasso A, Cazzolla AP, Di Cosola M, Zhurakivska K, Cantore S, Ballini A, Lo Muzio L, Troiano G. Biological Prognostic Value of miR-155 for Survival Outcome in Head and Neck Squamous Cell Carcinomas: Systematic Review, Meta-Analysis and Trial Sequential Analysis. BIOLOGY 2022; 11:651. [PMID: 35625379 PMCID: PMC9138061 DOI: 10.3390/biology11050651] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 12/12/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most common cancers worldwide; in fact, it is among the top six neoplasms, with an incidence of about 370,000 new cases per year. The 5-year survival rate, despite chemotherapy, radiotherapy, and surgery for stages 3 and 4 of the disease, is low. MicroRNAs (miRNAs) are a large group of small single-stranded non-coding endogenous RNAs, approximately 18-25 nucleotides in length, that play a significant role in the post-transcriptional regulation of genes. Recent studies investigated the tissue expression of miR-155 as a prognostic biomarker of survival in HNSCC. The purpose of this systematic review is, therefore, to investigate and summarize the current findings in the literature concerning the potential prognostic expression of tissue miR-155 in patients with HNSCC. The revision was performed according to PRISMA indications: three databases (PubMed, Scopus, and the Cochrane Register) were consulted through the use of keywords relevant to the revision topic. Totally, eight studies were included and meta-analyzed. The main results report for the aggregate HR values of 1.40 for OS, 1.36 for DFS, and 1.09 for DPS. Finally, a trial sequencing analysis was also conducted to test the robustness of the proposed meta-analysis.
Collapse
Affiliation(s)
- Mario Dioguardi
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (D.S.); (L.L.F.); (A.C.); (A.P.C.); (M.D.C.); (K.Z.); (L.L.M.); (G.T.)
| | - Francesca Spirito
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (D.S.); (L.L.F.); (A.C.); (A.P.C.); (M.D.C.); (K.Z.); (L.L.M.); (G.T.)
| | - Diego Sovereto
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (D.S.); (L.L.F.); (A.C.); (A.P.C.); (M.D.C.); (K.Z.); (L.L.M.); (G.T.)
| | - Lucia La Femina
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (D.S.); (L.L.F.); (A.C.); (A.P.C.); (M.D.C.); (K.Z.); (L.L.M.); (G.T.)
| | - Alessandra Campobasso
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (D.S.); (L.L.F.); (A.C.); (A.P.C.); (M.D.C.); (K.Z.); (L.L.M.); (G.T.)
| | - Angela Pia Cazzolla
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (D.S.); (L.L.F.); (A.C.); (A.P.C.); (M.D.C.); (K.Z.); (L.L.M.); (G.T.)
| | - Michele Di Cosola
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (D.S.); (L.L.F.); (A.C.); (A.P.C.); (M.D.C.); (K.Z.); (L.L.M.); (G.T.)
| | - Khrystyna Zhurakivska
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (D.S.); (L.L.F.); (A.C.); (A.P.C.); (M.D.C.); (K.Z.); (L.L.M.); (G.T.)
| | - Stefania Cantore
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy; (S.C.); (A.B.)
- Faculty of Dentistry (Fakulteti i Mjekësisë Dentare-FMD), University of Medicine, 1001 Tirana, Albania
| | - Andrea Ballini
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy; (S.C.); (A.B.)
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (D.S.); (L.L.F.); (A.C.); (A.P.C.); (M.D.C.); (K.Z.); (L.L.M.); (G.T.)
| | - Giuseppe Troiano
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (D.S.); (L.L.F.); (A.C.); (A.P.C.); (M.D.C.); (K.Z.); (L.L.M.); (G.T.)
| |
Collapse
|
18
|
Nussinov R, Tsai CJ, Jang H. Allostery, and how to define and measure signal transduction. Biophys Chem 2022; 283:106766. [PMID: 35121384 PMCID: PMC8898294 DOI: 10.1016/j.bpc.2022.106766] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/15/2022]
Abstract
Here we ask: What is productive signaling? How to define it, how to measure it, and most of all, what are the parameters that determine it? Further, what determines the strength of signaling from an upstream to a downstream node in a specific cell? These questions have either not been considered or not entirely resolved. The requirements for the signal to propagate downstream to activate (repress) transcription have not been considered either. Yet, the questions are pivotal to clarify, especially in diseases such as cancer where determination of signal propagation can point to cell proliferation and to emerging drug resistance, and to neurodevelopmental disorders, such as RASopathy, autism, attention-deficit/hyperactivity disorder (ADHD), and cerebral palsy. Here we propose a framework for signal transduction from an upstream to a downstream node addressing these questions. Defining cellular processes, experimentally measuring them, and devising powerful computational AI-powered algorithms that exploit the measurements, are essential for quantitative science.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|