1
|
Penugurti V, Dey O, Kalali S, Kashyap DK, Khumukcham SS, Kizhuvedath A, Satpathy S, Kiran M, Row AT, Surapaneni T, Manavathi B. Potential role of Hematopoietic PBX-Interacting Protein (HPIP) in trophoblast fusion and invasion: Implications in pre-eclampsia pathogenesis. Cell Signal 2025; 128:111633. [PMID: 39884641 DOI: 10.1016/j.cellsig.2025.111633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/06/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Pre-eclampsia is a known hypertensive disorder of pregnancy. While abnormal placentation and poor trophoblast invasion into maternal endometrium during blastocyst implantation are primary causes of pre-eclampsia, the underlying mechanisms remain elusive. Hematopoietic PBX-Interacting protein (HPIP) is an estrogen receptor (ER) interacting protein that plays a pivotal role in cell proliferation, migration, and differentiation; however, its role in trophoblast functions is largely unknown. In this study, we used BeWo cells as a model system to investigate trophoblast fusion and syncytialization, focusing on the role of HPIP in regulating these critical aspects of trophoblast functions. Herein, we report that HPIP expression declines during forskolin-induced trophoblast fusion in BeWo cells. In support of these observations, HPIP depletion enhanced forskolin-induced human chorionic gonadotropin-β (β-hCG), ERVWE1, and GCM1 expression, markers for trophoblast fusion. Furthermore, silencing of HPIP decreased cell invasion and epithelial to mesenchymal transition (EMT), a prerequisite for syncytialization in BeWo cells. Functional genomic studies further revealed a regulatory role for HPIP in a subset of gene networks involved in trophoblast fusion and EMT. We also uncovered that HPIP is a proteolytic substrate of furin, which is known to promote trophoblast cell fusion. Clinical data further indicated a significantly lower expression level of HPIP in pre-eclampsia subjects than in normal subjects. These findings imply that HPIP inhibits trophoblast fusion while promoting invasion and EMT, and its downregulation in trophoblasts might have implications for pre-eclampsia development.
Collapse
Affiliation(s)
- Vasudevarao Penugurti
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Oindrilla Dey
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Sruchytha Kalali
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Deepak Kumar Kashyap
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | | | - Ajnas Kizhuvedath
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Sarthak Satpathy
- Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Manjari Kiran
- Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Anupama T Row
- University Health Centre, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Tarakeswari Surapaneni
- Department of Obstetrics and Gynaecology, Fernandez Hospital, Bogulakunta, Abids, Hyderabad 500001, Telangana, India
| | - Bramanandam Manavathi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.
| |
Collapse
|
2
|
Penugurti V, Manne RK, Bai L, Kant R, Lin HK. AMPK: The energy sensor at the crossroads of aging and cancer. Semin Cancer Biol 2024; 106-107:15-27. [PMID: 39197808 PMCID: PMC11625618 DOI: 10.1016/j.semcancer.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024]
Abstract
AMP-activated protein kinase (AMPK) is a protein kinase that plays versatile roles in response to a variety of physiological stresses, including glucose deprivation, hypoxia, and ischemia. As a kinase with pleiotropic functions, it plays a complex role in tumor progression, exhibiting both tumor-promoting and tumor-suppressing activities. On one hand, AMPK enhances cancer cell proliferation and survival, promotes cancer metastasis, and impairs anti-tumor immunity. On the other hand, AMPK inhibits cancer cell growth and survival and stimulates immune responses in a context-dependent manner. Apart from these functions, AMPK plays a key role in orchestrating aging and aging-related disorders, including cardiovascular diseases (CVD), Osteoarthritis (OA), and Diabetes. In this review article, we summarized the functions of AMPK pathway based on its oncogenic and tumor-suppressive roles and highlighted the importance of AMPK pathway in regulating cellular aging. We also spotlighted the significant role of various signaling pathways, activators, and inhibitors of AMPK in serving as therapeutic strategies for anti-cancer and anti-aging therapy.
Collapse
Affiliation(s)
- Vasudevarao Penugurti
- Department of Pathology, School of Medicine, Duke University, Durham, NC 27710, United States
| | - Rajesh Kumar Manne
- Department of Pathology, School of Medicine, Duke University, Durham, NC 27710, United States
| | - Ling Bai
- Department of Pathology, School of Medicine, Duke University, Durham, NC 27710, United States
| | - Rajni Kant
- Department of Pathology, School of Medicine, Duke University, Durham, NC 27710, United States
| | - Hui-Kuan Lin
- Department of Pathology, School of Medicine, Duke University, Durham, NC 27710, United States.
| |
Collapse
|
3
|
Ye Z, Li Q, Hu Y, Hu H, Xu J, Guo M, Zhang W, Lou X, Wang Y, Gao H, Jing D, Fan G, Qin Y, Zhang Y, Chen X, Chen J, Xu X, Yu X, Liu M, Ji S. The stromal microenvironment endows pancreatic neuroendocrine tumors with spatially specific invasive and metastatic phenotypes. Cancer Lett 2024; 588:216769. [PMID: 38438098 DOI: 10.1016/j.canlet.2024.216769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/06/2024]
Abstract
Cancer-associated fibroblasts (CAFs) play an important role in a variety of cancers. However, the role of tumor stroma in nonfunctional pancreatic neuroendocrine tumors (NF-PanNETs) is often neglected. Profiling the heterogeneity of CAFs can reveal the causes of malignant phenotypes in NF-PanNETs. Here, we found that patients with high stromal proportion had poor prognosis, especially for that with infiltrating stroma (stroma and tumor cells that presented an infiltrative growth pattern and no regular boundary). In addition, myofibroblastic CAFs (myCAFs), characterized by FAP+ and α-SMAhigh, were spatially closer to tumor cells and promoted the EMT and tumor growth. Intriguingly, only tumor cells which were spatially closer to myCAFs underwent EMT. We further elucidated that myCAFs stimulate TGF-β expression in nearby tumor cells. Then, TGF-β promoted the EMT in adjacent tumor cells and promoted the expression of myCAFs marker genes in tumor cells, resulting in distant metastasis. Our results indicate that myCAFs cause spatial heterogeneity of EMT, which accounts for liver metastasis of NF-PanNETs. The findings of this study might provide possible targets for the prevention of liver metastasis.
Collapse
Affiliation(s)
- Zeng Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Qiang Li
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Marchioninistr.15, 81377, Munich, Germany
| | - Yuheng Hu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Haifeng Hu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Junfeng Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Muzi Guo
- Department of Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Wuhu Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xin Lou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yan Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Heli Gao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Desheng Jing
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Guixiong Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yue Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Xuemin Chen
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Jie Chen
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Mingyang Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Wang B, Zhang X, Li ZS, Wei C, Yu RZ, Du XZ, He YJ, Ren Y, Zhen YW, Han L. Polo-like kinase 4 promotes tumorigenesis and glucose metabolism in glioma by activating AKT1 signaling. Cancer Lett 2024; 585:216665. [PMID: 38290657 DOI: 10.1016/j.canlet.2024.216665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/27/2023] [Accepted: 01/18/2024] [Indexed: 02/01/2024]
Abstract
Glioblastoma (GBM) is an extremely aggressive tumor associated with a poor prognosis that impacts the central nervous system. Increasing evidence suggests an inherent association between glucose metabolism dysregulation and the aggression of GBM. Polo-like kinase 4 (PLK4), a highly conserved serine/threonine protein kinase, was found to relate to glioma progression and unfavorable prognosis. As revealed by the integration of proteomics and phosphoproteomics, PLK4 was found to be involved in governing metabolic processes and the PI3K/AKT/mTOR pathway. For the first time, this study supports evidence demonstrating that PLK4 activated PI3K/AKT/mTOR signaling through direct binding to AKT1 and subsequent phosphorylating AKT1 at S124, T308, and S473 to promote tumorigenesis and glucose metabolism in glioma. In addition, PLK4-mediated phosphorylation of AKT1 S124 significantly augmented the phosphorylation of AKT1 S473. Therefore, PLK4 exerted an influence on glucose metabolism by stimulating PI3K/AKT/mTOR signaling. Additionally, the expression of PLK4 protein exhibited a positive correlation with AKT1 phosphorylation in glioma patient tissues. These findings highlight the pivotal role of PLK4-mediated phosphorylation of AKT1 in glioma tumorigenesis and dysregulation of glucose metabolism.
Collapse
Affiliation(s)
- Bo Wang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xiaoyang Zhang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Ze-Sheng Li
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Cheng Wei
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Run-Ze Yu
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xue-Zhi Du
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Ying-Jie He
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yu Ren
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Ying-Wei Zhen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| | - Lei Han
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
5
|
Jia F, Sun S, Li J, Wang W, Huang H, Hu X, Pan S, Chen W, Shen L, Yao Y, Zheng S, Chen H, Xia W, Yuan H, Zhou J, Yu X, Zhang T, Zhang B, Huang J, Ni C. Neoadjuvant chemotherapy-induced remodeling of human hormonal receptor-positive breast cancer revealed by single-cell RNA sequencing. Cancer Lett 2024; 585:216656. [PMID: 38266804 DOI: 10.1016/j.canlet.2024.216656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
Hormone receptor-positive breast cancer (HR+ BC) is known to be relatively insensitive to chemotherapy, and since chemotherapy has remained the major neoadjuvant therapy for HR+ BC, the undetermined mechanism of chemoresistance and how chemotherapy reshapes the immune microenvironment need to be explored by high-throughput technology. By using single-cell RNA sequencing and multiplexed immunofluorescence staining analysis of HR+ BC samples (paired pre- and post-neoadjuvant chemotherapy (NAC)), the levels of previously unrecognized immune cell subsets, including CD8+ T cells with pronounced expression of T-cell development (LMNA) and cytotoxicity (FGFBP2) markers, CD4+ T cells characterized by proliferation marker (ATP1B3) expression and macrophages characterized by CD52 expression, were found to be increased post-NAC, which were predictive of chemosensitivity and their antitumor function was also validated with in vitro experiments. In terms of immune checkpoint expression of CD8+ T cells, we found their changes were inconsistent post-NAC, that LAG3, VSIR were decreased, and PDCD1, HAVCR2, CTLA4, KLRC1 and BTLA were increased. In addition, we have identified novel genomic and transcriptional patterns of chemoresistant cancer cells, both innate and acquired, and have confirmed their prognostic value with TCGA cohorts. By shedding light on the ecosystem of HR+ BC reshaped by chemotherapy, our results uncover valuable candidates for predicting chemosensitivity and overcoming chemoresistance in HR+ BC.
Collapse
Affiliation(s)
- Fang Jia
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China; Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, China
| | - Shanshan Sun
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China
| | - Jiaxin Li
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, China
| | - Wenwen Wang
- Department of Pathology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huanhuan Huang
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Xiaoxiao Hu
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sheng Pan
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wuzhen Chen
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lesang Shen
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yao Yao
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Siwei Zheng
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hailong Chen
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjie Xia
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Hongjun Yuan
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Jun Zhou
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiuyan Yu
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ting Zhang
- Department of Radiotherapy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bing Zhang
- Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, China
| | - Jian Huang
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China.
| | - Chao Ni
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China; Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, China.
| |
Collapse
|
6
|
Mirzaei S, Ranjbar B, Tackallou SH, Aref AR. Hypoxia inducible factor-1α (HIF-1α) in breast cancer: The crosstalk with oncogenic and onco-suppressor factors in regulation of cancer hallmarks. Pathol Res Pract 2023; 248:154676. [PMID: 37454494 DOI: 10.1016/j.prp.2023.154676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Low oxygen level at tumor microenvironment leads to a condition, known as hypoxia that is implicated in cancer progression. Upon hypoxia, HIF-1α undergoes activation and due to its oncogenic function and interaction with other molecular pathways, promotes tumor progression. The HIF-1α role in regulating breast cancer progression is described, Overall, HIF-1α has upregulation in breast tumor and due to its tumor-promoting function, its upregulation is in favor of breast tumor progression. HIF-1α overexpression prevents apoptosis in breast tumor and it promotes cell cycle progression. Silencing HIF-1α triggers cycle arrest and decreases growth. Migration of breast tumor enhances by HIF-1α signaling and it mainly induces EMT in providing metastasis. HIF-1α upregulation stimulates drug resistance and radio-resistance in breast tumor. Furthermore, HIF-1α signaling induces immune evasion of breast cancer. Berberine and pharmacological intervention suppress HIF-1α signaling in breast tumor and regulation of HIF-1α by non-coding RNAs occurs. Furthermore, HIF-1α is a biomarker in clinic.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Bijan Ranjbar
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran
| | | | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
7
|
Chen Z, Han F, Du Y, Shi H, Zhou W. Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:70. [PMID: 36797231 PMCID: PMC9935926 DOI: 10.1038/s41392-023-01332-8] [Citation(s) in RCA: 379] [Impact Index Per Article: 189.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/20/2022] [Accepted: 01/18/2023] [Indexed: 02/18/2023] Open
Abstract
Having a hypoxic microenvironment is a common and salient feature of most solid tumors. Hypoxia has a profound effect on the biological behavior and malignant phenotype of cancer cells, mediates the effects of cancer chemotherapy, radiotherapy, and immunotherapy through complex mechanisms, and is closely associated with poor prognosis in various cancer patients. Accumulating studies have demonstrated that through normalization of the tumor vasculature, nanoparticle carriers and biocarriers can effectively increase the oxygen concentration in the tumor microenvironment, improve drug delivery and the efficacy of radiotherapy. They also increase infiltration of innate and adaptive anti-tumor immune cells to enhance the efficacy of immunotherapy. Furthermore, drugs targeting key genes associated with hypoxia, including hypoxia tracers, hypoxia-activated prodrugs, and drugs targeting hypoxia-inducible factors and downstream targets, can be used for visualization and quantitative analysis of tumor hypoxia and antitumor activity. However, the relationship between hypoxia and cancer is an area of research that requires further exploration. Here, we investigated the potential factors in the development of hypoxia in cancer, changes in signaling pathways that occur in cancer cells to adapt to hypoxic environments, the mechanisms of hypoxia-induced cancer immune tolerance, chemotherapeutic tolerance, and enhanced radiation tolerance, as well as the insights and applications of hypoxia in cancer therapy.
Collapse
Affiliation(s)
- Zhou Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China.,The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Fangfang Han
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China.,The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yan Du
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Huaqing Shi
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Wence Zhou
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China. .,Lanzhou University Sencond Hospital, Lanzhou, Gansu, China.
| |
Collapse
|
8
|
Li W, Li R, Ye Q, Zou Y, Lu X, Zhang W, Chen J, Zhao Y. Mn 3 O 4 Nanoshell Coated Metal-Organic Frameworks with Microenvironment-Driven O 2 Production and GSH Exhaustion Ability for Enhanced Chemodynamic and Photodynamic Cancer Therapies. Adv Healthc Mater 2023:e2202280. [PMID: 36753620 DOI: 10.1002/adhm.202202280] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/21/2022] [Indexed: 02/10/2023]
Abstract
Nanomedicine exhibits emerging potentials to deliver advanced therapeutic strategies in the fight against triple-negative breast cancer (TNBC). Nevertheless, it is still difficult to develop a precise codelivery system that integrates highly effective photosensitizers, low toxicity, and hydrophobicity. In this study, PCN-224 is selected as the carrier to enable effective cancer therapy through light-activated reactive oxygen species (ROS) formation, and the PCN-224@Mn3 O4 @HA is created in a simple one-step process by coating Mn3 O4 nanoshells on the PCN-224 template, which can then be used as an "ROS activator" to exert catalase- and glutathione peroxidase-like activities to alleviate tumor hypoxia while reducing tumor reducibility, leading to improved photodynamic therapeutic (PDT) effect of PCN-224. Meanwhile, Mn2+ produced cytotoxic hydroxyl radicals (∙OH) via the Fenton-like reaction, thus producing a promising spontaneous chemodynamic therapeutic (CDT) effect. Importantly, by remodeling the tumor microenvironment (TME), Mn3 O4 nanoshells downregulated hypoxia-inducible factor 1α expression, inhibiting tumor growth and preventing tumor revival. Thus, the developed nanoshells, via light-controlled ROS formation and multimodality imaging abilities, can effectively inhibit tumor proliferation through synergistic PDT/CDT, and prevent tumor resurgence by remodeling TME.
Collapse
Affiliation(s)
- Wenya Li
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics, Guangdong Province), Guangzhou, 510630, P. R. China
| | - Rongtian Li
- Department of Clinical Pharmacy, Southern University of Science and Technology Hospital, Shenzhen, 51805, P. R. China
| | - Qiang Ye
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics, Guangdong Province), Guangzhou, 510630, P. R. China
| | - Yiming Zou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Xing Lu
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics, Guangdong Province), Guangzhou, 510630, P. R. China
| | - Wenhua Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Jinxiang Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Yinghua Zhao
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics, Guangdong Province), Guangzhou, 510630, P. R. China
| |
Collapse
|
9
|
Penugurti V, Mishra YG, Manavathi B. AMPK: An odyssey of a metabolic regulator, a tumor suppressor, and now a contextual oncogene. Biochim Biophys Acta Rev Cancer 2022; 1877:188785. [PMID: 36031088 DOI: 10.1016/j.bbcan.2022.188785] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022]
Abstract
Metabolic reprogramming is a unique but complex biochemical adaptation that allows solid tumors to tolerate various stresses that challenge cancer cells for survival. Under conditions of metabolic stress, mammalian cells employ adenosine monophosphate (AMP)-activated protein kinase (AMPK) to regulate energy homeostasis by controlling cellular metabolism. AMPK has been described as a cellular energy sensor that communicates with various metabolic pathways and networks to maintain energy balance. Earlier studies characterized AMPK as a tumor suppressor in the context of cancer. Later, a paradigm shift occurred in support of the oncogenic nature of AMPK, considering it a contextual oncogene. In support of this, various cellular and mouse models of tumorigenesis and clinicopathological studies demonstrated increased AMPK activity in various cancers. This review will describe AMPK's pro-tumorigenic activity in various malignancies and explain the rationale and context for using AMPK inhibitors in combination with anti-metabolite drugs to treat AMPK-driven cancers.
Collapse
Affiliation(s)
- Vasudevarao Penugurti
- Molecular and Cellular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Yasaswi Gayatri Mishra
- Molecular and Cellular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Bramanandam Manavathi
- Molecular and Cellular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.
| |
Collapse
|
10
|
Hypoxia signaling in human health and diseases: implications and prospects for therapeutics. Signal Transduct Target Ther 2022; 7:218. [PMID: 35798726 PMCID: PMC9261907 DOI: 10.1038/s41392-022-01080-1] [Citation(s) in RCA: 183] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 02/07/2023] Open
Abstract
Molecular oxygen (O2) is essential for most biological reactions in mammalian cells. When the intracellular oxygen content decreases, it is called hypoxia. The process of hypoxia is linked to several biological processes, including pathogenic microbe infection, metabolic adaptation, cancer, acute and chronic diseases, and other stress responses. The mechanism underlying cells respond to oxygen changes to mediate subsequent signal response is the central question during hypoxia. Hypoxia-inducible factors (HIFs) sense hypoxia to regulate the expressions of a series of downstream genes expression, which participate in multiple processes including cell metabolism, cell growth/death, cell proliferation, glycolysis, immune response, microbe infection, tumorigenesis, and metastasis. Importantly, hypoxia signaling also interacts with other cellular pathways, such as phosphoinositide 3-kinase (PI3K)-mammalian target of rapamycin (mTOR) signaling, nuclear factor kappa-B (NF-κB) pathway, extracellular signal-regulated kinases (ERK) signaling, and endoplasmic reticulum (ER) stress. This paper systematically reviews the mechanisms of hypoxia signaling activation, the control of HIF signaling, and the function of HIF signaling in human health and diseases. In addition, the therapeutic targets involved in HIF signaling to balance health and diseases are summarized and highlighted, which would provide novel strategies for the design and development of therapeutic drugs.
Collapse
|