1
|
Panico F, Bianconi A, Bertero L, Palmiero R, Zeppa P, Ricci AA, Mangherini L, Cofano F, Rudà R, Garbossa D, Zenga F. Multidisciplinary treatment of a rare rapidly progressive intracranial myxoid mesenchymal tumor of uncertain differentiation FET-CREB fusion-negative. Neurol Sci 2025; 46:1867-1873. [PMID: 39673042 DOI: 10.1007/s10072-024-07907-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/25/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND Non-meningothelial intracranial mesenchymal tumors are a heterogeneous group of central nervous system neoplasms endowed with great variability clinically and histologically. For this precise reason, significant difficulties exist in specifically cataloguing tumor entities with such distant characteristics and such uncertain clinical course. CASE DESCRIPTION In an attempt to increase the knowledge inherent in this type of central nervous system lesions we report a case of a rare and unusual myxoid mesenchymal tumor of difficult anatomopathological classification characterized by rapid progression and optimal therapeutic response after combined surgical and radiotherapy treatment, with histo-molecular definition and DNA methylation profile. In this case, multidisciplinary management led to timely surgical intervention based on the rapid clinical deterioration and radiological progression; after adjuvant therapy with hadron therapy, the patient has no signs of recurrence two years after the surgical procedure. No FET-CREB fusion was detected, and the DNA methylation profile suggested the presence of multiple chromosomal gains and losses. CONCLUSIONS The molecular definition as well the optimal therapeutic regimen of these tumors is not clearly defined yet and analysis of larger series is strongly warranted.
Collapse
Affiliation(s)
- Flavio Panico
- Neurosurgery Unit, Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy.
| | - Andrea Bianconi
- Neurosurgery Unit, Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Rosa Palmiero
- Neuro-Oncology Unit, Department of Neuroscience, University of Turin, Turin, Italy
| | - Pietro Zeppa
- Neurosurgery Unit, Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - Alessia Andrea Ricci
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Luca Mangherini
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Fabio Cofano
- Neurosurgery Unit, Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - Roberta Rudà
- Neuro-Oncology Unit, Department of Neuroscience, University of Turin, Turin, Italy
| | - Diego Garbossa
- Neurosurgery Unit, Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - Francesco Zenga
- Neurosurgery Unit, Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
| |
Collapse
|
2
|
Corrales-García EM, Aristu-Mendioroz JJ, Castro-Novais J, Matute-Martín R, Learra-Martínez MC, Delgado-López PD. Current state of proton therapy for tumors of the central nervous system in Spain: physical bases, indications, controversies and perspectives. Clin Transl Oncol 2025; 27:858-870. [PMID: 39207674 DOI: 10.1007/s12094-024-03624-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024]
Abstract
The unique biophysical properties of proton therapy (PT), regarding the precise dose distribution, a remarkable better sparing of surrounding normal tissues, and the decreasing costs have promoted the spread of this technique worldwide. In Spain, eleven new PT centers, added to the currently two in function, are expected to be available in the near future. Indications for PT are currently evolving. The suitability of PT in central nervous system tumors of the adult population has been extrapolated from the favorable experience in children and adolescents. Given the lack of appropriate randomized trials, controversies remain regarding its use in lower grade tumors, re-irradiation, and other clinical scenarios in which an a priori dose distribution benefit is expected compared to photon-based radiotherapy. PT is a reasonable option in many brain and spinal tumors associating long life expectancy, in which cognitive decline, and the appearance of radiation-induced neoplasms can be minimized.Estado actual de la terapia con protones en los tumores del sistema nervioso central en España: bases físicas, indicaciones, controversias y perspectivas.
Collapse
Affiliation(s)
| | | | - Juan Castro-Novais
- Servicio de Radiofísica y Protección Radiológica, Centro de Protonterapia. Hospital Universitario Quironsalud, Madrid, Spain
| | - Raúl Matute-Martín
- Servicio Oncología Radioterápica, Centro de Protonterapia, Hospital Quironsalud, Madrid, Spain
| | - María Concepción Learra-Martínez
- Comisión de Protonterapia de La Comunidad de Castilla y LeónServicio de Atención Hospitalaria y CoordinaciónDirección Técnica de Asistencia SanitariaDirección General de Asistencia Sanitaria y HumanizaciónGerencia Regional de Salud de Castilla y León, Valladolid, Spain
| | - Pedro David Delgado-López
- Servicio de Neurocirugía, Hospital Universitario de Burgos, Avda Islas Baleares 3, 09006, Burgos, Spain.
| |
Collapse
|
3
|
Stokkevåg CH, Journy N, Vogelius IR, Howell RM, Hodgson D, Bentzen SM. Radiation Therapy Technology Advances and Mitigation of Subsequent Neoplasms in Childhood Cancer Survivors. Int J Radiat Oncol Biol Phys 2024; 119:681-696. [PMID: 38430101 DOI: 10.1016/j.ijrobp.2024.01.206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/17/2023] [Accepted: 01/13/2024] [Indexed: 03/03/2024]
Abstract
PURPOSE In this Pediatric Normal Tissue Effects in the Clinic (PENTEC) vision paper, challenges and opportunities in the assessment of subsequent neoplasms (SNs) from radiation therapy (RT) are presented and discussed in the context of technology advancement. METHODS AND MATERIALS The paper discusses the current knowledge of SN risks associated with historic, contemporary, and future RT technologies. Opportunities for research and SN mitigation strategies in pediatric patients with cancer are reviewed. RESULTS Present experience with radiation carcinogenesis is from populations exposed during widely different scenarios. Knowledge gaps exist within clinical cohorts and follow-up; dose-response and volume effects; dose-rate and fractionation effects; radiation quality and proton/particle therapy; age considerations; susceptibility of specific tissues; and risks related to genetic predisposition. The biological mechanisms associated with local and patient-level risks are largely unknown. CONCLUSIONS Future cancer care is expected to involve several available RT technologies, necessitating evidence and strategies to assess the performance of competing treatments. It is essential to maximize the utilization of existing follow-up while planning for prospective data collection, including standardized registration of individual treatment information with linkage across patient databases.
Collapse
Affiliation(s)
- Camilla H Stokkevåg
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway; Department of Physics and Technology, University of Bergen, Bergen, Norway.
| | - Neige Journy
- French National Institute of Health and Medical Research (INSERM) Unit 1018, Centre for Research in Epidemiology and Population Health, Paris Saclay University, Gustave Roussy, Villejuif, France
| | - Ivan R Vogelius
- Department of Clinical Oncology, Centre for Cancer and Organ Diseases and University of Copenhagen, Copenhagen, Denmark
| | - Rebecca M Howell
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas
| | - David Hodgson
- Department of Radiation Oncology, University of Toronto, Princess Margaret Cancer Center, Toronto, Ontario, Canada
| | - Søren M Bentzen
- Department of Epidemiology and Public Health, University of Maryland, Baltimore, Maryland
| |
Collapse
|
4
|
Hoeltgen L, Meixner E, Hoegen-Saßmannshausen P, Kim JY, Deng M, Seidensaal K, Held T, Herfarth K, Haberer T, Debus J, Mairani A, Harrabi S, Tessonnier T. Helium Ion Therapy for Advanced Juvenile Nasopharyngeal Angiofibroma. Cancers (Basel) 2024; 16:1993. [PMID: 38893114 PMCID: PMC11171253 DOI: 10.3390/cancers16111993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Helium ion therapy (HRT) is a promising modality for the treatment of pediatric tumors and those located close to critical structures due to the favorable biophysical properties of helium ions. This in silico study aimed to explore the potential benefits of HRT in advanced juvenile nasopharyngeal angiofibroma (JNA) compared to proton therapy (PRT). We assessed 11 consecutive patients previously treated with PRT for JNA in a definitive or postoperative setting with a relative biological effectiveness (RBE) weighted dose of 45 Gy (RBE) in 25 fractions at the Heidelberg Ion-Beam Therapy Center. HRT plans were designed retrospectively for dosimetric comparisons and risk assessments of radiation-induced complications. HRT led to enhanced target coverage in all patients, along with sparing of critical organs at risk, including a reduction in the brain integral dose by approximately 27%. In terms of estimated risks of radiation-induced complications, HRT led to a reduction in ocular toxicity, cataract development, xerostomia, tinnitus, alopecia and delayed recall. Similarly, HRT led to reduced estimated risks of radiation-induced secondary neoplasms, with a mean excess absolute risk reduction of approximately 30% for secondary CNS malignancies. HRT is a promising modality for advanced JNA, with the potential for enhanced sparing of healthy tissue and thus reduced radiation-induced acute and long-term complications.
Collapse
Affiliation(s)
- Line Hoeltgen
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (L.H.)
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Eva Meixner
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (L.H.)
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Philipp Hoegen-Saßmannshausen
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (L.H.)
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Ji-Young Kim
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (L.H.)
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Maximilian Deng
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (L.H.)
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Katharina Seidensaal
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (L.H.)
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Thomas Held
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (L.H.)
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Klaus Herfarth
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (L.H.)
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Thomas Haberer
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (L.H.)
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- Partner Site, German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Andrea Mairani
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Centro Nazionale di Adroterapia Oncologica (CNAO), Medical Physics Department, 27100 Pavia, Italy
| | - Semi Harrabi
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (L.H.)
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Thomas Tessonnier
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
5
|
Wilson JS, Main C, Thorp N, Taylor RE, Majothi S, Kearns PR, English M, Dandapani M, Phillips R, Wheatley K, Pizer B. The effectiveness and safety of proton beam radiation therapy in children and young adults with Central Nervous System (CNS) tumours: a systematic review. J Neurooncol 2024; 167:1-34. [PMID: 38294638 PMCID: PMC10978619 DOI: 10.1007/s11060-023-04510-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/14/2023] [Indexed: 02/01/2024]
Abstract
BACKGROUND Central nervous system (CNS) tumours account for around 25% of childhood neoplasms. With multi-modal therapy, 5-year survival is at around 75% in the UK. Conventional photon radiotherapy has made significant contributions to survival, but can be associated with long-term side effects. Proton beam radiotherapy (PBT) reduces the volume of irradiated tissue outside the tumour target volume which may potentially reduce toxicity. Our aim was to assess the effectiveness and safety of PBT and make recommendations for future research for this evolving treatment. METHODS A systematic review assessing the effects of PBT for treating CNS tumours in children/young adults was undertaken using methods recommended by Cochrane and reported using PRISMA guidelines. Any study design was included where clinical and toxicity outcomes were reported. Searches were to May 2021, with a narrative synthesis employed. RESULTS Thirty-one case series studies involving 1731 patients from 10 PBT centres were included. Eleven studies involved children with medulloblastoma / primitive neuroectodermal tumours (n = 712), five ependymoma (n = 398), four atypical teratoid/rhabdoid tumour (n = 72), six craniopharyngioma (n = 272), three low-grade gliomas (n = 233), one germ cell tumours (n = 22) and one pineoblastoma (n = 22). Clinical outcomes were the most frequently reported with overall survival values ranging from 100 to 28% depending on the tumour type. Endocrine outcomes were the most frequently reported toxicity outcomes with quality of life the least reported. CONCLUSIONS This review highlights areas of uncertainty in this research area. A well-defined, well-funded research agenda is needed to best maximise the potential of PBT. SYSTEMATIC REVIEW REGISTRATION PROSPERO-CRD42016036802.
Collapse
Affiliation(s)
- Jayne S Wilson
- Cancer Research UK Clinical Trials Unit (CRCTU), Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.
| | - Caroline Main
- Cancer Research UK Clinical Trials Unit (CRCTU), Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Nicky Thorp
- The Clatterbridge Cancer Centre, Liverpool, UK
- The Christie Hospital Foundation Trust Proton Beam Therapy Centre, Manchester, UK
| | | | - Saimma Majothi
- Cancer Research UK Clinical Trials Unit (CRCTU), Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Pamela R Kearns
- Cancer Research UK Clinical Trials Unit (CRCTU), Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Martin English
- Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Madhumita Dandapani
- Children's Brain Tumour Research Centre, University of Nottingham, Nottingham, UK
- Queen's Medical Centre, Nottingham University Hospitals' NHS Trust, Nottingham, UK
| | - Robert Phillips
- Centre for Reviews and Dissemination (CRD), University of York, York, UK
| | - Keith Wheatley
- Cancer Research UK Clinical Trials Unit (CRCTU), Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Barry Pizer
- Alder Hey Children's NHS Foundation Trust, Liverpool, UK
- University of Liverpool, Liverpool, UK
| |
Collapse
|
6
|
Claude L, Bouter J, Le Quellenec G, Padovani L, Laprie A. Radiotherapy management of paediatric cancers with synchronous metastasis. Cancer Radiother 2024; 28:131-140. [PMID: 37633767 DOI: 10.1016/j.canrad.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/27/2023] [Indexed: 08/28/2023]
Abstract
Cancer in childhood represent 1% of all the new diagnosed cancers. About 30% of children with cancer receive radiation therapy, representing about 600 to 700 patients per year in France. As a consequence, paediatric cancers with synchronous metastasis is a very rare situation in oncology, with usually poor standard of care. However, considerable efforts are made by paediatric oncology scientific societies to offer trials or treatment consensus despite these rare situations. The article proposes to synthesize the radiotherapy management of both primary tumour and synchronous metastasis in the most "common" childhood or adolescent cancers.
Collapse
Affiliation(s)
- L Claude
- Service de radiothérapie, centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France.
| | - J Bouter
- Service de radiothérapie, centre François-Baclesse, Caen, France
| | - G Le Quellenec
- Radiotherapy department, institut de cancérologie de l'Ouest centre René-Gauducheau, Saint-Herblain, France
| | - L Padovani
- Oncology Radiotherapy Department, Aix-Marseille Université, CRCM Inserm, UMR1068, CNRS UMR7258, AMU UM105, Genome Instability and Carcinogenesis, Assistance publique des hôpitaux de Marseille, Marseille, France
| | - A Laprie
- Service d'oncologie-radiothérapie, Institut universitaire du cancer de Toulouse-Oncopole, Toulouse, France
| |
Collapse
|
7
|
Goldstein M. Targeting H3K27me3 loss in pediatric brain tumors - a perspective on epigenetically guided cancer therapy. Oncotarget 2023; 14:444-447. [PMID: 37171381 PMCID: PMC10178451 DOI: 10.18632/oncotarget.28427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Indexed: 05/13/2023] Open
Affiliation(s)
- Michael Goldstein
- Correspondence to:Michael Goldstein, Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA email
| |
Collapse
|
8
|
Fernández-García P, Malet-Engra G, Torres M, Hanson D, Rosselló CA, Román R, Lladó V, Escribá PV. Evolving Diagnostic and Treatment Strategies for Pediatric CNS Tumors: The Impact of Lipid Metabolism. Biomedicines 2023; 11:biomedicines11051365. [PMID: 37239036 DOI: 10.3390/biomedicines11051365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Pediatric neurological tumors are a heterogeneous group of cancers, many of which carry a poor prognosis and lack a "standard of care" therapy. While they have similar anatomic locations, pediatric neurological tumors harbor specific molecular signatures that distinguish them from adult brain and other neurological cancers. Recent advances through the application of genetics and imaging tools have reshaped the molecular classification and treatment of pediatric neurological tumors, specifically considering the molecular alterations involved. A multidisciplinary effort is ongoing to develop new therapeutic strategies for these tumors, employing innovative and established approaches. Strikingly, there is increasing evidence that lipid metabolism is altered during the development of these types of tumors. Thus, in addition to targeted therapies focusing on classical oncogenes, new treatments are being developed based on a broad spectrum of strategies, ranging from vaccines to viral vectors, and melitherapy. This work reviews the current therapeutic landscape for pediatric brain tumors, considering new emerging treatments and ongoing clinical trials. In addition, the role of lipid metabolism in these neoplasms and its relevance for the development of novel therapies are discussed.
Collapse
Affiliation(s)
- Paula Fernández-García
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
- Laminar Pharmaceuticals, Isaac Newton, 07121 Palma de Mallorca, Spain
| | - Gema Malet-Engra
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
- Laminar Pharmaceuticals, Isaac Newton, 07121 Palma de Mallorca, Spain
| | - Manuel Torres
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Derek Hanson
- Hackensack Meridian Health, 343 Thornall Street, Edison, NJ 08837, USA
| | - Catalina A Rosselló
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
- Laminar Pharmaceuticals, Isaac Newton, 07121 Palma de Mallorca, Spain
| | - Ramón Román
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
- Laminar Pharmaceuticals, Isaac Newton, 07121 Palma de Mallorca, Spain
| | - Victoria Lladó
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
- Laminar Pharmaceuticals, Isaac Newton, 07121 Palma de Mallorca, Spain
| | - Pablo V Escribá
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
- Laminar Pharmaceuticals, Isaac Newton, 07121 Palma de Mallorca, Spain
| |
Collapse
|
9
|
Guyer G, Mueller S, Koechli C, Frei D, Volken W, Bertholet J, Mackeprang PH, Loebner HA, Aebersold DM, Manser P, Fix MK. Enabling non-isocentric dynamic trajectory radiotherapy by integration of dynamic table translations. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac840d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 07/25/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. The purpose of this study is to develop a treatment planning process (TPP) for non-isocentric dynamic trajectory radiotherapy (DTRT) using dynamic gantry rotation, collimator rotation, table rotation, longitudinal, vertical and lateral table translations and intensity modulation and to validate the dosimetric accuracy. Approach. The TPP consists of two steps. First, a path describing the dynamic gantry rotation, collimator rotation and dynamic table rotation and translations is determined. Second, an optimization of the intensity modulation along the path is performed. We demonstrate the TPP for three use cases. First, a non-isocentric DTRT plan for a brain case is compared to an isocentric DTRT plan in terms of dosimetric plan quality and delivery time. Second, a non-isocentric DTRT plan for a craniospinal irradiation (CSI) case is compared to a multi-isocentric intensity modulated radiotherapy (IMRT) plan. Third, a non-isocentric DTRT plan for a bilateral breast case is compared to a multi-isocentric volumetric modulated arc therapy (VMAT) plan. The non-isocentric DTRT plans are delivered on a TrueBeam in developer mode and their dosimetric accuracy is validated using radiochromic films. Main results. The non-isocentric DTRT plan for the brain case is similar in dosimetric plan quality and delivery time to the isocentric DTRT plan but is expected to reduce the risk of collisions. The DTRT plan for the CSI case shows similar dosimetric plan quality while reducing the delivery time by 45% in comparison with the IMRT plan. The DTRT plan for the breast case showed better treatment plan quality in comparison with the VMAT plan. The gamma passing rates between the measured and calculated dose distributions are higher than 95% for all three plans. Significance. The versatile benefits of non-isocentric DTRT are demonstrated with three use cases, namely reduction of collision risk, reduced setup and delivery time and improved dosimetric plan quality.
Collapse
|
10
|
Taste and smell function in long-term survivors after childhood medulloblastoma/CNS-PNET. Support Care Cancer 2022; 30:6155-6162. [PMID: 35426047 PMCID: PMC9135811 DOI: 10.1007/s00520-022-07048-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/06/2022] [Indexed: 11/25/2022]
Abstract
Purpose To investigate taste and smell function in survivors, with a minimum of 2 years since treatment of childhood medulloblastoma (MB)/central nervous system supratentorial primitive neuroectodermal tumor (CNS-PNET). Methods This cross-sectional study included 40 survivors treated ≤ 20 years of age. Taste strips with four concentrations of sweet, sour, salt, and bitter were used to assess taste function in all participants. Score from 0 to 16; ≥ 9 normogeusia, < 9 hypogeusia, and complete ageusia which equals no sensation. No sensation of a specific taste quality equals ageusia of that quality. Thirty-two participants conducted smell testing using three subtests of Sniffin’ sticks: threshold, discrimination, and identification. Together they yield a TDI-score from 1 to 48; functional anosmia ≤ 16.00, hyposmia > 16.00– < 30.75, normosmia ≥ 30.75– < 41.50, and ≥ 41.50 hyperosmia. Results were compared with normative data. Survivors rated their taste and smell function using a numerical rating scale (NRS) score 0–10. Results Forty survivors with a mean time since treatment of 20.5 years, 13 (32.5%) were diagnosed with hypogeusia, nine (22.5%) of these being ageusic to one or more taste qualities. Seventeen (53%) of 32 participants were diagnosed with hyposmia. The mean scores of the olfactory subtests, and TDI score were significantly lower than normative data (P < 0.0001). The mean NRS scores of smell and taste function were 7.9 ± 1.5 and 8 ± 1.3, respectively. Conclusion Our study showed impaired taste and smell function in survivors of childhood MB/CNS-PNET using objective measurements. However, subjective ratings did not reflect objective findings. Supplementary information The online version contains supplementary material available at 10.1007/s00520-022-07048-9.
Collapse
|
11
|
Gabriel NN, Balaji K, Jayachandran K, Inkman M, Zhang J, Dahiya S, Goldstein M. Loss of H3K27 trimethylation promotes radiotherapy resistance in medulloblastoma and induces an actionable vulnerability to BET inhibition. Cancer Res 2022; 82:2019-2030. [PMID: 35315927 DOI: 10.1158/0008-5472.can-21-0871] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 01/20/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022]
Abstract
Medulloblastoma has been categorized into four subgroups based on genetic, epigenetic, and transcriptional profiling. Radiation is used for treating medulloblastoma regardless of the subgroup. A better understanding of the molecular pathways determining radiotherapy response could help improve medulloblastoma treatment. Here, we investigated the role of the EZH2-dependent histone H3K27 trimethylation in radiotherapy response in medulloblastoma. The tumors in 47.2% of group 3 and 4 medulloblastoma patients displayed H3K27me3 deficiency. Loss of H3K27me3 was associated with a radioresistant phenotype, high relapse rates, and poor overall survival. In H3K27me3-deficient medulloblastoma cells, an epigenetic switch from H3K27me3 to H3K27ac occurred at specific genomic loci, altering the transcriptional profile. The resulting upregulation of EPHA2 stimulated excessive activation of the pro-survival AKT signaling pathway, leading to radiotherapy resistance. BET inhibition overcame radiation resistance in H3K27me3-deficient medulloblastoma cells by suppressing H3K27ac levels, blunting EPHA2 overexpression, and mitigating excessive AKT signaling. Additionally, BET inhibition sensitized medulloblastoma cells to radiation by enhancing the apoptotic response through suppression of Bcl-xL and upregulation of Bim. This work demonstrates a novel mechanism of radiation resistance in medulloblastoma and identifies an epigenetic marker predictive of radiotherapy response. Based on these findings, we propose an epigenetically guided treatment approach targeting radiotherapy resistance in medulloblastoma patients.
Collapse
Affiliation(s)
- Nishanth N Gabriel
- Washington University in St. Louis School of Medicine, Saint Louis, MO, United States
| | - Kumaresh Balaji
- Washington University in St. Louis School of Medicine, Saint Louis, MO, United States
| | - Kay Jayachandran
- Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Matthew Inkman
- Washington University in St. Louis School of Medicine, Saint Louis, MO, United States
| | - Jin Zhang
- Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | - Sonika Dahiya
- Washington University in St. Louis School of Medicine, St Louis, MO, United States
| | - Michael Goldstein
- Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
12
|
Pham TT, Whelan B, Oborn BM, Delaney GP, Vinod S, Brighi C, Barton M, Keall P. Magnetic resonance imaging (MRI) guided proton therapy: A review of the clinical challenges, potential benefits and pathway to implementation. Radiother Oncol 2022; 170:37-47. [DOI: 10.1016/j.radonc.2022.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/09/2022] [Accepted: 02/25/2022] [Indexed: 10/18/2022]
|
13
|
Bazyar S, O’Brien ET, Benefield T, Roberts VR, Kumar RJ, Gupta GP, Zhou O, Lee YZ. Immune-Mediated Effects of Microplanar Radiotherapy with a Small Animal Irradiator. Cancers (Basel) 2021; 14:155. [PMID: 35008319 PMCID: PMC8750301 DOI: 10.3390/cancers14010155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/15/2021] [Accepted: 12/23/2021] [Indexed: 12/30/2022] Open
Abstract
Spatially fractionated radiotherapy has been shown to have effects on the immune system that differ from conventional radiotherapy (CRT). We compared several aspects of the immune response to CRT relative to a model of spatially fractionated radiotherapy (RT), termed microplanar radiotherapy (MRT). MRT delivers hundreds of grays of radiation in submillimeter beams (peak), separated by non-radiated volumes (valley). We have developed a preclinical method to apply MRT by a commercial small animal irradiator. Using a B16-F10 murine melanoma model, we first evaluated the in vitro and in vivo effect of MRT, which demonstrated significant treatment superiority relative to CRT. Interestingly, we observed insignificant treatment responses when MRT was applied to Rag-/- and CD8-depleted mice. An immuno-histological analysis showed that MRT recruited cytotoxic lymphocytes (CD8), while suppressing the number of regulatory T cells (Tregs). Using RT-qPCR, we observed that, compared to CRT, MRT, up to the dose that we applied, significantly increased and did not saturate CXCL9 expression, a cytokine that plays a crucial role in the attraction of activated T cells. Finally, MRT combined with anti-CTLA-4 ablated the tumor in half of the cases, and induced prolonged systemic antitumor immunity.
Collapse
Affiliation(s)
- Soha Bazyar
- Department of Radiation Oncology, University of Maryland, Maryland, MD 21201, USA;
| | - Edward Timothy O’Brien
- Department of Physics and Astronomy, The University of North Carolina, Chapel Hill, NC 27514, USA;
| | - Thad Benefield
- Department of Radiology, The University of North Carolina, Chapel Hill, NC 27514, USA;
| | | | - Rashmi J. Kumar
- Medical Scientist Training Program, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA;
| | - Gaorav P. Gupta
- Department of Radiation Oncology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA;
| | - Otto Zhou
- Department of Applied Physics Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA;
| | - Yueh Z. Lee
- Department of Radiology, The University of North Carolina, Chapel Hill, NC 27514, USA;
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| |
Collapse
|
14
|
Hymers D, Kasanda E, Bildstein V, Easter J, Richard A, Spyrou A, Höhr C, Mücher D. Intra- and inter-fraction relative range verification in heavy-ion therapy using filtered interaction vertex imaging. Phys Med Biol 2021; 66. [PMID: 34794127 DOI: 10.1088/1361-6560/ac3b33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/18/2021] [Indexed: 12/09/2022]
Abstract
Heavy-ion therapy, particularly using scanned (active) beam delivery, provides a precise and highly conformal dose distribution, with maximum dose deposition for each pencil beam at its endpoint (Bragg peak), and low entrance and exit dose. To take full advantage of this precision, robust range verification methods are required; these methods ensure that the Bragg peak is positioned correctly in the patient and the dose is delivered as prescribed. Relative range verification allows intra-fraction monitoring of Bragg peak spacing to ensure full coverage with each fraction, as well as inter-fraction monitoring to ensure all fractions are delivered consistently. To validate the proposed filtered interaction vertex imaging (IVI) method for relative range verification, a16O beam was used to deliver 12 Bragg peak positions in a 40 mm poly-(methyl methacrylate) phantom. Secondary particles produced in the phantom were monitored using position-sensitive silicon detectors. Events recorded on these detectors, along with a measurement of the treatment beam axis, were used to reconstruct the sites of origin of these secondary particles in the phantom. The distal edge of the depth distribution of these reconstructed points was determined with logistic fits, and the translation in depth required to minimize theχ2statistic between these fits was used to compute the range shift between any two Bragg peak positions. In all cases, the range shift was determined with sub-millimeter precision, to a standard deviation of the mean of 220(10)μm. This result validates filtered IVI as a reliable relative range verification method, which should be capable of monitoring each energy step in each fraction of a scanned heavy-ion treatment plan.
Collapse
Affiliation(s)
- Devin Hymers
- Department of Physics, University of Guelph, Guelph, ON, Canada
| | - Eva Kasanda
- Department of Physics, University of Guelph, Guelph, ON, Canada
| | | | - Joelle Easter
- Department of Physics, University of Guelph, Guelph, ON, Canada
| | - Andrea Richard
- National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI, United States of America.,Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Artemis Spyrou
- National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI, United States of America
| | | | - Dennis Mücher
- Department of Physics, University of Guelph, Guelph, ON, Canada.,TRIUMF, Vancouver, BC, Canada
| |
Collapse
|
15
|
Ferrari B, Roda E, Priori EC, De Luca F, Facoetti A, Ravera M, Brandalise F, Locatelli CA, Rossi P, Bottone MG. A New Platinum-Based Prodrug Candidate for Chemotherapy and Its Synergistic Effect With Hadrontherapy: Novel Strategy to Treat Glioblastoma. Front Neurosci 2021; 15:589906. [PMID: 33828444 PMCID: PMC8019820 DOI: 10.3389/fnins.2021.589906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 02/08/2021] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma (GBM) is the most common tumor of the central nervous system. Current therapies, often associated with severe side effects, are inefficacious to contrast the GBM relapsing forms. In trying to overcome these drawbacks, (OC-6-44)-acetatodiamminedichlorido(2-(2-propynyl)octanoato)platinum(IV), also called Pt(IV)Ac-POA, has been recently synthesized. This new prodrug bearing as axial ligand (2-propynyl)octanoic acid (POA), a histone deacetylase inhibitor, has a higher activity due to (i) its high cellular accumulation by virtue of its high lipophilicity and (ii) the inhibition of histone deacetylase, which leads to the increased exposure of nuclear DNA, permitting higher platination and promoting cancer cell death. In the present study, we investigated the effects induced by Pt(IV)Ac-POA and its potential antitumor activity in human U251 glioblastoma cell line using a battery of complementary techniques, i.e., flow cytometry, immunocytochemistry, TEM, and Western blotting analyses. In addition, the synergistic effect of Pt(IV)Ac-POA associated with the innovative oncological hadrontherapy with carbon ions was investigated, with the aim to identify the most efficient anticancer treatment combination. Our in vitro data demonstrated that Pt(IV)Ac-POA is able to induce cell death, through different pathways, at concentrations lower than those tested for other platinum analogs. In particular, an enduring Pt(IV)Ac-POA antitumor effect, persisting in long-term treatment, was demonstrated. Interestingly, this effect was further amplified by the combined exposure to carbon ion radiation. In conclusion, Pt(IV)Ac-POA represents a promising prodrug to be incorporated into the treatment regimen for GBM. Moreover, the synergistic efficacy of the combined protocol using chemotherapeutic Pt(IV)Ac-POA followed by carbon ion radiation may represent a promising approach, which may overcome some typical limitations of conventional therapeutic protocols for GBM treatment.
Collapse
Affiliation(s)
- Beatrice Ferrari
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Elisa Roda
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy.,Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Erica Cecilia Priori
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Fabrizio De Luca
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Angelica Facoetti
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
| | - Mauro Ravera
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", Alessandria, Italy
| | - Federico Brandalise
- Department of Fundamental Neurosciences (NEUFO), University of Geneva, Geneva, Switzerland
| | - Carlo Alessandro Locatelli
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Paola Rossi
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Maria Grazia Bottone
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|
16
|
Dietzsch S, Braesigk A, Seidel C, Remmele J, Kitzing R, Schlender T, Mynarek M, Geismar D, Jablonska K, Schwarz R, Pazos M, Walser M, Frick S, Gurtner K, Matuschek C, Harrabi SB, Glück A, Lewitzki V, Dieckmann K, Benesch M, Gerber NU, Rutkowski S, Timmermann B, Kortmann RD. Pretreatment central quality control for craniospinal irradiation in non-metastatic medulloblastoma : First experiences of the German radiotherapy quality control panel in the SIOP PNET5 MB trial. Strahlenther Onkol 2020; 197:674-682. [PMID: 33226469 PMCID: PMC8292275 DOI: 10.1007/s00066-020-01707-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022]
Abstract
Purpose Several studies have demonstrated the negative impact of radiotherapy protocol deviations on tumor control in medulloblastoma. In the SIOP PNET5 MB trial, a pretreatment radiotherapy quality control (RT-QC) program was introduced. A first analysis for patients enrolled in Germany, Switzerland and Austria with focus on types of deviations in the initial plan proposals and review criteria for modern radiation technologies was performed. Methods and patients Sixty-nine craniospinal irradiation (CSI) plans were available for detailed analyses. RT-QC was performed according to protocol definitions on dose uniformity. Because of the lack of definitions for high-precision 3D conformal radiotherapy within the protocol, additional criteria for RT-QC on delineation and coverage of clinical target volume (CTV) and planning target volume (PTV) were defined and evaluated. Results Target volume (CTV/PTV) deviations occurred in 49.3% of initial CSI plan proposals (33.3% minor, 15.9% major). Dose uniformity deviations were less frequent (43.5%). Modification of the RT plan was recommended in 43.5% of CSI plans. Unacceptable RT plans were predominantly related to incorrect target delineation rather than dose uniformity. Unacceptable plans were negatively correlated to the number of enrolled patients per institution with a cutoff of 5 patients (p = 0.001). Conclusion This prospective pretreatment individual case review study revealed a high rate of deviations and emphasizes the strong need of pretreatment RT-QC in clinical trials for medulloblastoma. Furthermore, the experiences point out the necessity of new RT-QC criteria for high-precision CSI techniques. Electronic supplementary material The online version of this article (10.1007/s00066-020-01707-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stefan Dietzsch
- Department for Radiation Oncology, University of Leipzig Medical Center, Stephanstr. 9a, 04103, Leipzig, Germany.
| | - Annett Braesigk
- Department for Radiation Oncology, University of Leipzig Medical Center, Stephanstr. 9a, 04103, Leipzig, Germany
| | - Clemens Seidel
- Department for Radiation Oncology, University of Leipzig Medical Center, Stephanstr. 9a, 04103, Leipzig, Germany
| | - Julia Remmele
- Department for Radiation Oncology, University of Leipzig Medical Center, Stephanstr. 9a, 04103, Leipzig, Germany
| | - Ralf Kitzing
- Department for Radiation Oncology, University of Leipzig Medical Center, Stephanstr. 9a, 04103, Leipzig, Germany
| | - Tina Schlender
- Department for Radiation Oncology, University of Leipzig Medical Center, Stephanstr. 9a, 04103, Leipzig, Germany
| | - Martin Mynarek
- Departement of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dirk Geismar
- Clinic for Particle Therapy, West German Proton Therapy Centre, University of Essen, Essen, Germany
| | - Karolina Jablonska
- Faculty of Medicine, Department of Radiation Oncology, University of Cologne, Cologne, Germany
| | - Rudolf Schwarz
- Department of Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Montserrat Pazos
- Department of Radiotherapy and Radiation Oncology, Ludwig Maximilian University Munich, Munich, Germany
| | - Marc Walser
- Center for Protontherapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Silke Frick
- Department of Radiotherapy and Radiation Oncology, Hospital Bremen Mitte, Bremen, Germany
| | - Kristin Gurtner
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Christiane Matuschek
- Department of Radiation Oncology, Medical Faculty Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Semi Ben Harrabi
- Department of Radiation Oncology and Radiotherapy, Heidelberg University Hospital, Heidelberg, Germany
| | - Albrecht Glück
- Radiation Oncology, Munich-Schwabing Municipal Hospital, Munich, Germany
| | - Victor Lewitzki
- Department of Radiotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Karin Dieckmann
- Department of Radiotherapy, Medical University of Vienna, Vienna, Austria
| | - Martin Benesch
- Division of Pediatric Hematology/Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | | | - Stefan Rutkowski
- Departement of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Beate Timmermann
- Clinic for Particle Therapy, West German Proton Therapy Centre, University of Essen, Essen, Germany
| | - Rolf-Dieter Kortmann
- Department for Radiation Oncology, University of Leipzig Medical Center, Stephanstr. 9a, 04103, Leipzig, Germany
| |
Collapse
|
17
|
Stadskleiv K, Stensvold E, Stokka K, Bechensteen AG, Brandal P. Neuropsychological functioning in survivors of childhood medulloblastoma/CNS-PNET: The role of secondary medical complications. Clin Neuropsychol 2020; 36:600-625. [PMID: 32729777 DOI: 10.1080/13854046.2020.1794045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To investigate the long-term cognitive consequences of malignant pediatric brain tumor and its treatment, and factors explaining variability in cognitive functioning among survivors. Method: A geographical cohort of survivors of pediatric medulloblastoma (MB) and supratentorial primitive neuroectodermal tumor (CNS-PNET), treated between 1974 and 2013, was invited to participate. Of the 63 surviving patients, 50 (79%) consented to participation. The participants were tested with a battery of neuropsychological tests covering a wide age range. Verbal cognition, nonverbal cognition, processing speed, attention, memory, executive functioning, and manual dexterity were assessed. The participants were between 5:5 and 51:11 years of age at time of assessment. Assessments took place on average 19 years after primary tumor resective surgery. Results: One participant had a severe intellectual disability. For the rest, IQ varied from 52 to 125, with a mean score of 88.0 (SD 19.7). Twenty-eight (56%) of the participants had full-scale IQ scores in the age-average range or above. Gender, age at operation, time since operation, the presence of secondary medical complications, and treatment variables explained 46% of the variability in IQ scores, F(4,44) = 9.5, p<.001. The presence of endocrine insufficiency in combination with either epilepsy and/or hydrocephalus was associated with lowered IQ, lowered processing speed, and memory impairments. Conclusion: Patients treated for childhood MB and CNS-PNET have a lifelong risk of medical sequelae, including impaired cognitive functioning. This study adds to the literature by demonstrating the importance of following neuropsychological functioning closely, especially processing speed, learning, and memory, in survivors who have multiple secondary medical complications.
Collapse
Affiliation(s)
- Kristine Stadskleiv
- Department of Special Needs Education, University of Oslo, Oslo, Norway.,Department of Clinical Neurosciences for Children, Oslo University Hospital, Oslo, Norway
| | - Einar Stensvold
- The Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Pediatric Research, Oslo University Hospital, Oslo, Norway.,Department of Pediatrics, Oslo University Hospital, Oslo, Norway
| | - Kjersti Stokka
- Department of Psychology, University of Oslo, Oslo, Norway
| | | | - Petter Brandal
- Department of Oncology, Oslo University Hospital, Oslo, Norway.,Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
18
|
Hwang EJ, Gorayski P, Le H, Hanna GG, Kenny L, Penniment M, Buck J, Thwaites D, Ahern V. Particle therapy toxicity outcomes: A systematic review. J Med Imaging Radiat Oncol 2020; 64:725-737. [PMID: 32421259 DOI: 10.1111/1754-9485.13036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023]
Abstract
Owing to its physical properties, particle therapy (PT), including proton beam therapy (PBT) and carbon ion therapy (CIT), can enhance the therapeutic ratio in radiation therapy. The major factor driving PT implementation is the reduction in exit and integral dose compared to photon plans, which is expected to translate to reduced toxicity and improved quality of life. This study extends the findings from a recent systematic review by the current authors which concentrated on tumour outcomes for PT, to now examine toxicity as a separate focus. Together, these reviews provide a comprehensive collation of the evidence relating to PT outcomes in clinical practice. Three major databases were searched by two independent researchers, and evidence quality was classified according to the National Health and Medical Research Council evidence hierarchy. One hundred and seventy-nine studies were included. Most demonstrated acceptable and favourable toxicity results. Comparative evidence reported reduced morbidities and improvement in quality of life in head and neck, paediatrics, sarcomas, adult central nervous system, gastrointestinal, ocular and prostate cancers compared to photon radiotherapy. This suggestion for reduced morbidity must be counterbalanced by the overall low quality of evidence. A concerted effort in the design of appropriate comparative clinical trials is needed which takes into account integration of PT's pace of technological advancements, including evolving delivery techniques, image guidance availability and sophistication of planning algorithms.
Collapse
Affiliation(s)
- Eun Ji Hwang
- Department of Radiation Oncology, Sydney West Radiation Oncology Network, Crown Princess Mary Cancer Centre, Sydney, New South Wales, Australia.,Medicine, Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia.,Institute of Medical Physics, School of Physics, University of Sydney, Sydney, New South Wales, Australia
| | - Peter Gorayski
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Hien Le
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,School of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Gerard G Hanna
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum, Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Liz Kenny
- Department of Radiation Oncology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia.,School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Michael Penniment
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Jacqueline Buck
- Department of Radiation Oncology, Sydney West Radiation Oncology Network, Crown Princess Mary Cancer Centre, Sydney, New South Wales, Australia
| | - David Thwaites
- Department of Radiation Oncology, Sydney West Radiation Oncology Network, Crown Princess Mary Cancer Centre, Sydney, New South Wales, Australia.,Institute of Medical Physics, School of Physics, University of Sydney, Sydney, New South Wales, Australia
| | - Verity Ahern
- Department of Radiation Oncology, Sydney West Radiation Oncology Network, Crown Princess Mary Cancer Centre, Sydney, New South Wales, Australia
| |
Collapse
|
19
|
Lovo EE, Barahona KC, Campos F, Caceros V, Tobar C, Reyes WA. Two-Session Radiosurgery for Large Primary Tumors Affecting the Brain. Cureus 2020; 12:e7850. [PMID: 32483501 PMCID: PMC7255071 DOI: 10.7759/cureus.7850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/26/2020] [Indexed: 12/03/2022] Open
Abstract
Introduction Surgery is an option for patients with large, symptomatic primary tumors affecting the brain. However, surgery might not be suitable for all tumors, especially those located in sensitive areas such as the pineal region and the hypothalamus. Single-session stereotactic radiosurgery (SRS) might not provide an adequate dose for long-term local control due to the initial tumor volume and the involvement of radiation sensitive organs at risk (OARs). Two-session radiosurgery has been described as a feasible strategy for dose escalation in large secondary brain tumors. This report describes a series of patients treated upfront with two-session radiosurgery for primary tumors affecting the brain. Materials and methods From May 2017 to January 2020, eight patients with primary tumors affecting the brain were treated with two-session radiosurgery due to either an initial large tumor volume or tumor localization and the involvement of OARs. The response was assessed by imaging and clinical evaluations. Results A total of eight patients were treated, nine tumors were treated with two-session radiosurgery, four patients had tumors in the pineal region (50%), and the rest were in the hypothalamic region (25%) or elsewhere. The mean tumor volume for the first SRS session was 15 mL (range 5.2 to 51.6 mL), the mean prescription dose was 13 Gy, and the timespan between both sessions was 30 days (range, 30 to 42 days). During the second session, tumor volume was reduced to 73.6% (range, -20% to 98.7%) of the original dimension, mean tumor volume was 5 mL (range, 0.1 to 17.8 ml), mean prescription dose for the second session was 16.2 Gy estimated by time, dose, and fractionation and by bioequivalent dose under alpha-beta values often to be equivalent to a single dose of 15.8 Gy. Doses to the OARs for the optic pathway were equivalent to a single maximum dose of 9.75 Gy (range, 7.12 to 10.92), and to the brainstem, the equivalent was a maximum dose of 12.3 Gy (range, 5.6 to 15.07). At last follow-up, at a mean of 336.5 days (range, 65 to 962 days), seven patients were alive, five tumors had a partial response (PR), and three had stable disease in accordance to Response Evaluation Criteria in Solid Tumors (RECIST) criteria. One patient died 435 days after treatment, the Karnofsky Performance Status (KPS) was 90 at the first session, 90 at the second session, and was maintained at last follow-up. No adverse radiation effects were reported. Conclusions Two-stage SRS proved to be a safe method to escalate dose in proportionately large volume primary brain tumors whose histology is expected to have a quick biological response to radiation. Longer follow-up is needed to determine the long-term effectiveness by tumor subtypes of two-stage SRS in the same manner as it has been proven in single session SRS series in smaller tumor volumes.
Collapse
Affiliation(s)
- Eduardo E Lovo
- Radiosurgery, International Cancer Center, Diagnostic Hospital, San Salvador, SLV
| | - Kaory C Barahona
- Radiation Oncology, International Cancer Center, Diagnostic Hospital, San Salvador, SLV
| | - Fidel Campos
- Radiosurgery, International Cancer Center, Diagnostic Hospital, San Salvador, SLV
| | - Victor Caceros
- Radiosurgery, International Cancer Center, Diagnostic Hospital, San Salvador, SLV
| | - Carlos Tobar
- Radiation Oncology, International Cancer Center, San Salvador, SLV
| | - William A Reyes
- Radiosurgery, International Cancer Center, Diagnostic Hospital, San Salvador, SLV
| |
Collapse
|
20
|
Seidel C, Dietzsch S, Kortmann RD, Schackert G, Hau P. Radiation Therapy in Ependymal Tumors. Radiat Oncol 2020. [DOI: 10.1007/978-3-319-52619-5_4-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
21
|
Carbonara R, Di Rito A, Monti A, Rubini G, Sardaro A. Proton versus Photon Radiotherapy for Pediatric Central Nervous System Malignancies: A Systematic Review and Meta-Analysis of Dosimetric Comparison Studies. JOURNAL OF ONCOLOGY 2019; 2019:5879723. [PMID: 31885580 PMCID: PMC6900940 DOI: 10.1155/2019/5879723] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/21/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Radiotherapy (RT) plays a fundamental role in the treatment of pediatric central nervous system (CNS) malignancies, but its late sequelae are still a challenging question. Despite developments in modern high-conformal photon techniques and proton beam therapy (PBT) are improving the normal tissues dose-sparing while maintaining satisfactory target coverage, clinical advantages supporting the optimal treatment strategy have to be better evaluated in long-term clinical studies and assessed in further radiobiological analyses. Our analysis aimed to systematically review current knowledge on the dosimetric advantages of PBT in the considered setting, which should be the basis for future specific studies. MATERIALS AND METHODS A PubMed and Google Scholar search was conducted in June 2019 to select dosimetric studies comparing photon versus proton RT for pediatric patients affected by CNS tumors. Then, a systematic review and meta-analysis according to the PRISMA statement was performed. Average and standard deviation values of Conformity Index, Homogeneity Index, and mean and maximum doses to intracranial and extracranial organs at risk (OARs) were specifically evaluated for secondary dosimetric comparisons. The standardized mean differences (SMDs) for target parameters and the mean differences (MDs) for OARs were summarized in forest plots (P < 0.05 was considered statistically significant). Publication bias was also assessed by the funnel plot and Egger's regression test. RESULTS Among the 88 identified papers, a total of twelve studies were included in the meta-analysis. PBT showed dosimetric advantages in target homogeneity (significant especially in the subgroup comparing PBT and 3D conformal RT), as well as in the dose sparing of almost all analyzed OARs (significantly superior results for brainstem, normal brain, and hippocampal dose constraints and for extracranial OARs parameters, excluding the kidneys). Publication bias was observed for Conformity Index. CONCLUSION Our analysis supports the evidence of dosimetric advantages of PBT over photon RT, especially in the dose sparing of normal growing tissues. Confirmations from wider well-designed studies are required.
Collapse
Affiliation(s)
- Roberta Carbonara
- Interdisciplinary Department of Medicine, Section of Radiology and Radiation Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Alessia Di Rito
- Radiation Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | - Angela Monti
- Interdisciplinary Department of Medicine, Section of Radiology and Radiation Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Rubini
- Interdisciplinary Department of Medicine, Section of Nuclear Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Angela Sardaro
- Interdisciplinary Department of Medicine, Section of Radiology and Radiation Oncology, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
22
|
État des lieux de la protonthérapie en France en 2019. Cancer Radiother 2019; 23:617-624. [DOI: 10.1016/j.canrad.2019.07.129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 07/04/2019] [Indexed: 01/03/2023]
|
23
|
Stensvold E, Myklebust TÅ, Cappelen J, Due-Tønnessen BJ, Due-Tønnessen P, Kepka A, Johannesen TB, Krossnes B, Lundar T, Maric S, Miletic H, Moholdt V, Myrmel KS, Nordberg T, Rydland J, Stokland T, Solem K, Solheim O, Torsvik I, Wikran GC, Zeller B, Wesenberg F, Bechensteen AG, Brandal P. Children treated for medulloblastoma and supratentorial primitive neuroectodermal tumor in Norway from 1974 through 2013: Unexplainable regional differences in survival. Pediatr Blood Cancer 2019; 66:e27910. [PMID: 31264356 DOI: 10.1002/pbc.27910] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND A previous study based on Norwegian Cancer Registry data suggested regional differences in overall survival (OS) after treatment for medulloblastoma (MB) and supratentorial primitive neuroectodermal tumor (CNS-PNET) in Norway. The purpose of the present study was to confirm in an extended cohort whether there were regional differences in outcome or not, and if so try to identify possible explanations. MATERIAL AND METHODS Data from patients aged 0-20 years diagnosed with and treated for MB/CNS-PNET at all four university hospitals in Norway from 1974 to 2013 were collected and compared. RESULTS Of 266 identified patients, 251 fulfilled inclusion criteria. MB was diagnosed in 200 and CNS-PNET in 51 patients. Five-year OS and event-free survival (EFS) were 59% and 52%, respectively. There was a significant difference in five-year OS and EFS between MB and CNS-PNET patients; 62% versus 47% (P = 0.007) and 57% versus 35% (P < 0.001). In multivariable analysis, two factors were found to significantly contribute to improved five-year OS and EFS, whereas one factor contributed to improved five-year OS only. Gross total resection (GTR) versus non-GTR (hazard ratio [HR] 0.53, P = 0.003; HR 0.46, P < 0.001) and cerebrospinal irradiation (CSI) versus non-CSI (HR 0.24, P < 0.001; HR 0.28, P < 0.001) for both, and treatment outside Oslo University Hospital for OS only (HR 0.64, P = 0.048). CONCLUSION Survival was comparable with data from other population-based studies, and the importance of GTR and CSI was confirmed. The cause for regional survival differences could not be identified.
Collapse
Affiliation(s)
- Einar Stensvold
- The Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Pediatric Research, Oslo University Hospital, Oslo, Norway.,Department of Paediatric Medicine, Oslo University Hospital, Oslo, Norway
| | - Tor Åge Myklebust
- Department of Registration, Cancer Registry of Norway, Oslo, Norway.,Department of Research and Innovation, Møre and Romsdal Hospital Trust, Ålesund, Norway
| | - Johan Cappelen
- Department of Neurosurgery, St Olavs Hospital, Trondheim, Norway
| | | | - Paulina Due-Tønnessen
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | | | | | - Bård Krossnes
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Tryggve Lundar
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| | - Snezana Maric
- Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Hrvoje Miletic
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Viggo Moholdt
- Department of Radiology and Nuclear Medicine, St Olavs Hospital, Trondheim, Norway
| | | | - Terje Nordberg
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Jana Rydland
- Department of Radiology and Nuclear Medicine, St Olavs Hospital, Trondheim, Norway
| | - Tore Stokland
- Department of Pediatrics, University Hospital of North Norway, Tromsø, Norway
| | - Kristin Solem
- Department of Pediatrics, St Olavs Hospital, Trondheim, Norway
| | - Ole Solheim
- Department of Neurosurgery, St Olavs Hospital, Trondheim, Norway
| | - Ingrid Torsvik
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Gry C Wikran
- Department of Radiology and Nuclear Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Bernward Zeller
- Department of Paediatric Medicine, Oslo University Hospital, Oslo, Norway.,Norwegian National Advisory Unit on Solid Tumours in children (KSSB), Oslo University Hospital, Oslo, Norway
| | - Finn Wesenberg
- Department of Paediatric Medicine, Oslo University Hospital, Oslo, Norway.,Norwegian National Advisory Unit on Solid Tumours in children (KSSB), Oslo University Hospital, Oslo, Norway
| | | | - Petter Brandal
- Department of Oncology, Oslo University Hospital, Oslo, Norway.,Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
24
|
Golubitskaya EA, Troitskaya OS, Yelak EV, Gugin PP, Richter VA, Schweigert IV, Zakrevsky DE, Koval OA. Cold Physical Plasma Decreases the Viability of Lung Adenocarcinoma Cells. Acta Naturae 2019; 11:16-19. [PMID: 31720012 PMCID: PMC6826155 DOI: 10.32607/20758251-2019-11-3-16-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/13/2019] [Indexed: 12/11/2022] Open
Abstract
The high mortality rate that accompanies cancer spurs the search for new methods that can be used to treat malignant neoplasms. In addition to chemotherapy, electrophysical techniques for tumor treatment appear rather promising. The results of in vitro exposure of A549 human lung adenocarcinoma cells to cold atmospheric plasma (CAP) are hereby presented. A gas-discharge device that generates a sequence of streamers propagating along a stream of inert gas in the ambient air was used. In the zone where the plasma jet came into contact with the target object, there were high-intensity electric fields and high plasma concentrations, while the gas temperature changed by less than a degree. In this study, we compared the cytotoxic effect of CAP in helium and argon. Direct irradiation of cells by CAP with U = 4.2 kV for 30-120 s was shown to reduce cell viability by 25%. Variation of the amplitude of the AC voltage in the plasma device in argon within a range of 3.8-5.6 kV did not significantly alter the cell death rate. Further optimization of the modes of CAP generation in gas-discharge devices with various geometries for the trea.
Collapse
Affiliation(s)
- E. A. Golubitskaya
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova Str. 1, Novosibirsk, 630090, Russia
| | - O. S. Troitskaya
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, Novosibirsk, 630090, Russia
| | - E. V. Yelak
- Novosibirsk State Technical University, K. Marx Ave. 20, Novosibirsk, 630073, Russia
| | - P. P. Gugin
- Rzhanov Institute of Semiconductor Physic, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 13, Novosibirsk, 630090, Russia
| | - V. A. Richter
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, Novosibirsk, 630090, Russia
| | - I. V. Schweigert
- Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch of the Russian Academy of Sciences, Institutskaya Str. 4/1, Novosibirsk, 630090, Russia
| | - D. E. Zakrevsky
- Novosibirsk State Technical University, K. Marx Ave. 20, Novosibirsk, 630073, Russia
- Rzhanov Institute of Semiconductor Physic, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 13, Novosibirsk, 630090, Russia
| | - O. A. Koval
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova Str. 1, Novosibirsk, 630090, Russia
| |
Collapse
|
25
|
Janssens GO, Timmermann B, Laprie A, Mandeville H, Padovani L, Chargari C, Journy N, Kameric L, Kienesberger A, Brunhofer M, Kozhaeva O, Gasparotto C, Kearns P, Boterberg T, Lievens Y, Vassal G. Recommendations for the organisation of care in paediatric radiation oncology across Europe: a SIOPE-ESTRO-PROS-CCI-Europe collaborative project in the framework of the JARC. Eur J Cancer 2019; 114:47-54. [PMID: 31059973 DOI: 10.1016/j.ejca.2019.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/04/2019] [Indexed: 12/17/2022]
Abstract
Disparities in survival and long-term side-effects from paediatric cancer are observed across European Society for Paediatric Oncology (SIOPE)-affiliated countries. The Joint Action on Rare Cancers (JARC) is a project supported by the European Union and member states aiming to formulate recommendations on rare cancers, including paediatric malignancies, to reduce inequalities and to improve health outcomes. Most paediatric cancers are treated by a combination of systemic agents, surgery and/or radiotherapy. Radiotherapy for children is becoming increasingly complex because of the growing availability of new modalities and techniques and the evolution in molecular biology. These added challenges have the potential to enhance disparities in survival and side-effects between countries, but also among centres in the same country. To tackle radiotherapy-related inequalities, representatives of SIOPE, European SocieTy for Radiotherapy and Oncology, Paediatric Radiation Oncology Society and Childhood Cancer International-Europe defined 'standard' and 'optional' levels to deliver Good Clinical Practice-compliant treatment in paediatric radiation oncology with a focus on patient-related care, education and training. In addition, more than 250 paediatric radiotherapy centres across the SIOPE-affiliated countries have been mapped. For a better understanding of resources in paediatric radiotherapy, JARC representatives are working on an online survey for paediatric radiation oncologists of each centre in SIOPE-affiliated countries. The outcome of this survey will give an insight into the strengths and weaknesses of paediatric radiotherapy across SIOPE-affiliated countries and can be relevant for European Reference Networks in terms of collaboration pathways and referrals in paediatric radiotherapy.
Collapse
Affiliation(s)
- Geert O Janssens
- Department of Radiation Oncology, University Medical Centre Utrecht, the Netherlands; Princess Maxima Centre for Paediatric Oncology, Utrecht, the Netherlands.
| | - Beate Timmermann
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen (WPE), West German Cancer Centre (WTZ), German Cancer Consortium (DKTK), Germany
| | - Anne Laprie
- Department of Radiation Oncology, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France; Toulouse NeuroImaging Center, ToNIC, INSERM Université Toulouse III Paul Sabatier, Toulouse, France
| | - Henry Mandeville
- Department of Radiotherapy, The Royal Marsden Hospital, Sutton, United Kingdom
| | - Laetitia Padovani
- Department of Radiation Oncology, CRCM, UMR 1068 Inserm 7258 CNRS, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Cyrus Chargari
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| | - Neige Journy
- INSERM Unit 1018, Centre for Research in Epidemiology and Population Health (CESP), Cancer and Radiations Group, Gustave Roussy, Villejuif, France
| | - Lejla Kameric
- Childhood Cancer International - Europe, Vienna, Austria
| | | | | | - Olga Kozhaeva
- European Society for Paediatric Oncology (SIOP Europe), Brussels, Belgium
| | - Chiara Gasparotto
- European Society for Radiotherapy & Oncology (ESTRO), Brussels, Belgium
| | - Pamela Kearns
- European Society for Paediatric Oncology (SIOP Europe), Brussels, Belgium; European Society for Radiotherapy & Oncology (ESTRO), Brussels, Belgium; Institute of Cancer and Genomic Sciences, NIHR Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, United Kingdom
| | - Tom Boterberg
- Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
| | - Yolande Lievens
- European Society for Radiotherapy & Oncology (ESTRO), Brussels, Belgium; Institute of Cancer and Genomic Sciences, NIHR Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, United Kingdom; Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
| | - Gilles Vassal
- European Society for Paediatric Oncology (SIOP Europe), Brussels, Belgium; Department of Clinical Research, Gustave Roussy, Paris-Sud University, Paris, France
| |
Collapse
|
26
|
Wang Y, Zhou K, Li T, Xu Y, Xie C, Sun Y, Rodriguez J, Zhang S, Song J, Wang X, Blomgren K, Zhu C. Selective Neural Deletion of the Atg7 Gene Reduces Irradiation-Induced Cerebellar White Matter Injury in the Juvenile Mouse Brain by Ameliorating Oligodendrocyte Progenitor Cell Loss. Front Cell Neurosci 2019; 13:241. [PMID: 31213984 PMCID: PMC6554477 DOI: 10.3389/fncel.2019.00241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 05/14/2019] [Indexed: 11/28/2022] Open
Abstract
Radiotherapy is an effective tool for treating brain tumors, but irradiation-induced toxicity to the normal brain tissue remains a major problem. Here, we investigated if selective neural autophagy related gene 7 (Atg7) deletion has a persistent effect on irradiation-induced juvenile mouse brain injury. Ten-day-old Atg7 knockout under a nestin promoter (KO) mice and wild-type (WT) littermates were subjected to a single dose of 6 Gy whole-brain irradiation. Cerebellar volume, cell proliferation, microglia activation, inflammation, and myelination were evaluated in the cerebellum at 5 days after irradiation. We found that neural Atg7 deficiency partially prevented myelin disruption compared to the WT mice after irradiation, as indicated by myelin basic protein staining. Irradiation induced oligodendrocyte progenitor cell (OPC) loss in the white matter of the cerebellum, and Atg7 deficiency partly prevented this. The mRNA expression of oligodendrocyte and myelination-related genes (Olig2, Cldn11, CNP, and MBP) was higher in the cerebellum in Atg7 KO mice compared with WT littermates. The total cerebellar volume was significantly reduced after irradiation in both Atg7 KO and WT mice. Atg7-deficient cerebellums were in a regenerative state before irradiation, as judged by the increased OPC-related and neurogenesis-related transcripts and the increased numbers of microglia; however, except for the OPC parameters these were the same in both genotypes after irradiation. Finally, there was no significant change in the number of astrocytes in the cerebellum after irradiation. These results suggest that selective neural Atg7 deficiency reduces irradiation-induced cerebellar white matter injury in the juvenile mouse brain, secondary to prevention of OPC loss.
Collapse
Affiliation(s)
- Yafeng Wang
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Pediatrics, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Kai Zhou
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Tao Li
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Pediatrics, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Cuicui Xie
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Yanyan Sun
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Juan Rodriguez
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Shan Zhang
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Juan Song
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.,Perinatal Center, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.,Perinatal Center, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Klas Blomgren
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.,Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
27
|
Laprie A, Bernier V, Carrie C. Letter to the Editor of Radiotherapy and Oncology regarding the paper entitled “Prospective Data Registration and Clinical Trials for Particle Therapy” by Langendijk et al. Radiother Oncol 2019; 130:193. [DOI: 10.1016/j.radonc.2018.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/01/2018] [Indexed: 11/29/2022]
|
28
|
Late vertebral side effects in long-term survivors of irradiated childhood brain tumor. PLoS One 2018; 13:e0209193. [PMID: 30562369 PMCID: PMC6298650 DOI: 10.1371/journal.pone.0209193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/01/2018] [Indexed: 12/11/2022] Open
Abstract
Purpose Long-term side effects of the treatments are common in survivors of irradiated pediatric brain tumors. Ionizing radiation in combination with surgery and chemotherapy during childhood may reduce vertebral height and bone mineral density (BMD), and cause growth failure. The aim of this study was to evaluate the late consequences of tumor treatments on vertebrae in survivors of childhood brain tumors. Methods 72 adult survivors (mean age 27.8 years, standard deviation 6.7) of irradiated childhood brain tumor were studied by spinal magnetic resonance imaging (MRI) for vertebral abnormalities from the national cohort of Finland. Patients were treated in five university hospitals in Finland between the years 1970 and 2008. Subject height and weight were measured and body mass index (BMI) was calculated. The morphology and height/depth ratio of the vertebrae in the middle of the kyphotic thoracic curvature (Th8) and lumbar lordosis (L3) were examined. Vertebrae were analyzed by Genant’s semiquantative (SQ) method and spinal deformity index (SDI) was calculated. BMD was measured by using dual X-ray absorptiometry. Results 4.2% (3/72) of the patients had undiagnosed asymptomatic vertebral fracture and 5.6% (4/72) of patients had radiation-induced decreased vertebral body height. Male patients had flatter vertebrae compared with females. Patient age at the time of irradiation, BMI and irradiation area correlated to vertebral morphology differentially in males and females. BMD had no association with the vertebral shape. Patients who had received craniospinal irradiation were shorter than the general population. Conclusion Childhood brain tumor survivors had a high number of vertebral abnormalities in young adulthood. Irradiation was associated with abnormal vertebral morphology and compromised final height. Male gender may predispose vertebrae to the side effects of irradiation.
Collapse
|
29
|
Apport du guidage par l’image pour le repositionnement au cours de la radiothérapie des tumeurs encéphaliques. Cancer Radiother 2018; 22:593-601. [DOI: 10.1016/j.canrad.2018.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 06/29/2018] [Indexed: 11/20/2022]
|
30
|
Ajithkumar T, Horan G, Padovani L, Thorp N, Timmermann B, Alapetite C, Gandola L, Ramos M, Van Beek K, Christiaens M, Lassen-Ramshad Y, Magelssen H, Nilsson K, Saran F, Rombi B, Kortmann R, Janssens GO. SIOPE - Brain tumor group consensus guideline on craniospinal target volume delineation for high-precision radiotherapy. Radiother Oncol 2018; 128:192-197. [PMID: 29729847 DOI: 10.1016/j.radonc.2018.04.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 04/14/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To develop a consensus guideline for craniospinal target volume (TV) delineation in children and young adults participating in SIOPE studies in the era of high-precision radiotherapy. METHODS AND MATERIALS During four consensus meetings (Cambridge, Essen, Liverpool, and Marseille), conventional field-based TV has been translated into image-guided high-precision craniospinal TV by a group of expert paediatric radiation oncologists and enhanced by MRI images of liquor distribution. RESULTS The CTVcranial should include the whole brain, cribriform plate, most inferior part of the temporal lobes, and the pituitary fossa. If the full length of both optic nerves is not included, the dose received by different volumes of optic nerve should be recorded to correlate with future patterns of relapse (no consensus). The CTVcranial should be modified to include the dural cuffs of cranial nerves as they pass through the skull base foramina. Attempts to spare the cochlea by excluding CSF within the internal auditory canal should be avoided. The CTVspinal should include the entire subarachnoid space, including nerve roots laterally. The lower limit of the spinal CTV is at the lower limit of the thecal sac, best visible on MRI scan. There is no need to include sacral root canals in the spinal CTV. CONCLUSION This consensus guideline has the potential to improve consistency of craniospinal TV delineation in an era of high-precision radiotherapy. This proposal will be incorporated in the RTQA guidelines of future SIOPE-BTG trials using CSI.
Collapse
Affiliation(s)
| | - Gail Horan
- Department of Oncology, Cambridge University Hospitals, United Kingdom
| | - Laetitia Padovani
- Department of Radiation Oncology, Assistance Publique Hôpitaux de Marseille, France
| | - Nicky Thorp
- Department of Oncology, Clatterbridge Cancer Centre, Liverpool, United Kingdom
| | | | - Claire Alapetite
- Radiation Oncology department and Proton Centre, Institute Curie, Paris and Orsay, France
| | - Lorenza Gandola
- Department of Radiation Oncology, Fondazione IRCCS-Istituto Nazionale dei Tumori, Milan, Italy
| | - Monica Ramos
- Hospital Universitari de la Vall d'Hebron, Barcelona, Spain
| | | | | | | | - Henriette Magelssen
- Department of Oncology, Oslo University Hospital (The Norwegian Radium Hospital), Norway
| | - Kristina Nilsson
- Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology, Clinical Oncology, Uppsala University Hospital, Sweden
| | - Frank Saran
- Department of Oncology, Royal Marsden Hospital, Sutton, United Kingdom
| | - Barbara Rombi
- Proton Therapy Center, Santa Chiara Hospital, Trento, Italy
| | - Rolf Kortmann
- Department of Radiation Oncology, University of Leipzig, Germany
| | - Geert O Janssens
- Department of Radiation Oncology, University Medical Center Utrecht, and Princess Maxima Center for Pediatric Oncology, The Netherlands
| | | |
Collapse
|
31
|
Parikh KA, Venable GT, Orr BA, Choudhri AF, Boop FA, Gajjar AJ, Klimo P. Pineoblastoma-The Experience at St. Jude Children's Research Hospital. Neurosurgery 2018; 81:120-128. [PMID: 28327927 DOI: 10.1093/neuros/nyx005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 01/20/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Pineoblastomas are rare, supratentorial, primitive neuroectodermal tumors. OBJECTIVE To document outcomes with multimodal therapy and evaluate the impact that the degree of surgical resection has on outcome. METHODS A departmental brain tumor database was queried to identify all patients with pathologically proven pineoblastoma who were treated from January 1997 to June 2015 at St. Jude Children's Research Hospital. For each patient, we recorded demographic, pathological, radiological, surgical, and clinical follow-up data. The effect of degree of surgical resection on survival outcomes was analyzed. RESULTS Forty-one patients (21 male, 20 female) treated for pineoblastoma were identified. The median age at diagnosis was 5.5 years (range 0.4-28.1) and the median follow-up was 34.5 months. Nineteen patients experienced tumor relapse with a median progression-free survival of 11.3 months, and 18 ultimately succumbed to their disease. Patients who died or experienced treatment failure were younger (median, 2.69 vs 6.5 years, P = .026) and more likely to have metastatic disease at diagnosis (12 [63.2%] vs 5 [22.7%], P = .012). When analyzing only patients 5 years of age or older with focal disease at presentation, those who had a gross total resection or near-total resection-compared with subtotal resection or biopsy-had greater overall survival (75.18 vs 48.57 months), with no patients dying as a result of their cancer. CONCLUSION Poor prognostic variables for children with pineoblastoma include young age, metastatic disease at presentation, and tumor relapse. For patients older than 5 years with focal disease, maximal tumor resection should be the goal.
Collapse
Affiliation(s)
- Kara A Parikh
- School of Medicine, Louisiana State University Health Science Center, New Orleans, Louisiana.,Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Garrett T Venable
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee.,Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Brent A Orr
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Asim F Choudhri
- Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, Tennessee.,Le Bonheur Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, Tennessee.,Department of Radiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Frederick A Boop
- Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, Tennessee.,Le Bonheur Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, Tennessee.,Semmes Murphey Clinic, Memphis, Tennessee
| | - Amar J Gajjar
- Department of Oncology, Division of NeuroOncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Paul Klimo
- Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, Tennessee.,Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee.,Le Bonheur Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, Tennessee.,Semmes Murphey Clinic, Memphis, Tennessee
| |
Collapse
|
32
|
Kopecky AS, Khan AJ, Pan W, Drachtman R, Parikh RR. Outcomes and patterns of care in a nationwide cohort of pediatric medulloblastoma: Factors affecting proton therapy utilization. Adv Radiat Oncol 2017; 2:588-596. [PMID: 29204526 PMCID: PMC5707421 DOI: 10.1016/j.adro.2017.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/11/2017] [Accepted: 07/17/2017] [Indexed: 12/14/2022] Open
Abstract
PURPOSE We examined national outcomes and patterns of care for pediatric patients with medulloblastoma (MB) in a large observational cohort. METHODS AND MATERIALS Using the National Cancer Database, we evaluated the clinical features and survival outcomes of patients diagnosed with MB. The association between intervention, covariables, and outcome was assessed in a multivariable Cox analysis and through logistic regression analysis. Survival was estimated using the Kaplan-Meier method. RESULTS Among the 4032 patients in the National Cancer Database with pediatric brain tumors, 1300 patients met the inclusion criteria of histologic diagnosis, receipt of chemotherapy and radiation, and age ≤18 years. The median age and follow-up were 8.4 years and 4.5 years, respectively. Five-year survival was 79.0%. In the univariate analysis, inferior outcome (overall survival) was associated with rural residence (hazard ratio [HR], 2.78; 95% confidence interval [CI],1.47-5.29; P < .01) and histology (large cell; HR, 1.78; 95% CI,1.08-2.94; P < .05). In multivariable analysis, both remained significant predictors of survival (large cell: HR, 1.68; P < .05; rural residence: HR, 2.74; P < .01). In 2013, the utilization rate of proton therapy (23% of patients) in the United States surpassed intensity modulate radiation therapy (16%), more frequently for patients with higher income (P < .05) or more favorable insurance status (P < .05). CONCLUSIONS As one of the largest data sets on pediatric MB, the observed variations in treatment intervention and survival outcomes may represent a target for further research.
Collapse
Affiliation(s)
| | - Atif J. Khan
- Rutgers Cancer Institute of New Jersey, Department of Radiation Oncology, New Brunswick, New Jersey
| | - Wilbur Pan
- Rutgers Cancer Institute of New Jersey, Section of Pediatric Oncology, New Brunswick, New Jersey
| | - Richard Drachtman
- Rutgers Cancer Institute of New Jersey, Section of Pediatric Oncology, New Brunswick, New Jersey
| | - Rahul R. Parikh
- Rutgers Cancer Institute of New Jersey, Department of Radiation Oncology, New Brunswick, New Jersey
| |
Collapse
|
33
|
Mizumoto M, Oshiro Y, Yamamoto T, Kohzuki H, Sakurai H. Proton Beam Therapy for Pediatric Brain Tumor. Neurol Med Chir (Tokyo) 2017; 57:343-355. [PMID: 28603224 PMCID: PMC5566707 DOI: 10.2176/nmc.ra.2017-0003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Cancer is a major cause of childhood death, with central nervous system (CNS) neoplasms being the second most common pediatric malignancy, following hematological cancer. Treatment of pediatric CNS malignancies requires multimodal treatment using a combination of surgery, chemotherapy, and radiotherapy, and advances in these treatments have given favorable results and longer survival. However, treatment-related toxicities have also occurred, particularly for radiotherapy, after which secondary cancer, reduced function of irradiated organs, and retarded growth are significant problems. Proton beam therapy (PBT) is a particle radiotherapy with excellent dose localization that permits treatment of liver and lung cancer by administration of a high dose to the tumor while minimizing damage to surrounding normal tissues. Thus, PBT has the potential advantages for pediatric cancer. In this context, we review the current knowledge on PBT for treatment of pediatric CNS malignancies.
Collapse
Affiliation(s)
| | - Yoshiko Oshiro
- Department of Radiation Oncology, University of Tsukuba.,Department of Radiation Oncology, Tsukuba Medical Center Hospital
| | | | | | | |
Collapse
|
34
|
Yamasaki F, Takayasu T, Nosaka R, Nishibuchi I, Kawaguchi H, Kolakshyapati M, Onishi S, Saito T, Sugiyama K, Kobayashi M, Kurisu K. Development of cystic malacia after high-dose cranial irradiation of pediatric CNS tumors in long-term follow-up. Childs Nerv Syst 2017; 33:957-964. [PMID: 28378288 DOI: 10.1007/s00381-017-3400-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/27/2017] [Indexed: 11/28/2022]
Abstract
PURPOSE The purpose of this study is to investigate the incidence of cystic malacia in long-term survivors of pediatric brain tumors treated with high-dose cranial irradiation. MATERIALS AND METHODS Between 1997 and 2015, we treated 41 pediatric patients (26 males, 15 females; age ranging from 3.3 to 15.7 years, median 9-year-old) of pediatric brain tumors [17 medulloblastomas, 7 primitive neuroectodermal tumors (PNET), 3 pineoblastomas, 6 non-germinomatous germ cell tumors (NGGCT), 8 gliomas (including 4 ependymomas, 1 anaplastic astrocytoma, 1 oligodendroglioma, 1 pilocytic astrocytoma, 1 astroblastoma)] with high-dose craniospinal irradiation. Follow-up ranged from 14.0 to 189.2 months (median 86.0 months, mean 81.5 months), the irradiation dose to the whole neural axis ranged from 18 to 41.4 Gy, and the total local dose from 43.2 to 60.4 Gy. All patients underwent follow-up magnetic resonance imaging (MRI) studies at least once a year. Diagnosis of cystic malacia was based solely on MRI findings. Of the 41 patients, 31 were censored during their follow-up due to recurrence of the primary disease (n = 5), detection of secondary leukemia after development of cystic malacia (n = 1), or the absence of cystic malacia on the last follow-up MRI study (n = 25). We also evaluated the development of post-irradiation cavernous angioma and white matter changes. RESULTS Following irradiation treatment, 11 patients developed 19 cystic malacia during a median course of 30.8 months (range 14.9 to 59.3 months). The site of predilection for cystic malacia was white matter around trigone of lateral ventricles with an incidence of 47.4% (9 of 19 lesions, 7 in 11 patients). Patients with supratentorial tumors developed cystic malacia statistically earlier than the patients with infratentorial tumors (P = 0.0178, log-rank test). Among the same patient group, incidence of post-irradiation cavernous angioma increased progressively, while the incidence of post-irradiation cystic malacia did not increase after 5 years. White matter degeneration developed earlier than cystic malacia or cavernous angioma, and these three clinical entities developed mutually exclusive of each other. CONCLUSION We attribute the higher incidence of post-irradiation cystic malacia, in our long-term follow-up study, to the cranial irradiation for pediatric brain tumors, particularly supratentorial brain tumors, and recommend a regular, long-term follow-up of brain tumor patients treated with cranial irradiation.
Collapse
Affiliation(s)
- Fumiyuki Yamasaki
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Takeshi Takayasu
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Ryo Nosaka
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Ikuno Nishibuchi
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.,Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Hiroshi Kawaguchi
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Manish Kolakshyapati
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Shumpei Onishi
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Taiichi Saito
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kazuhiko Sugiyama
- Department of Clinical Oncology & Neuro-oncology Program, Hiroshima University Hospital, Hiroshima, 734-8551, Japan
| | - Masao Kobayashi
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Kaoru Kurisu
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
35
|
Chakroun RW, Zhang P, Lin R, Schiapparelli P, Quinones-Hinojosa A, Cui H. Nanotherapeutic systems for local treatment of brain tumors. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 10. [PMID: 28544801 DOI: 10.1002/wnan.1479] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 04/14/2017] [Accepted: 04/18/2017] [Indexed: 12/31/2022]
Abstract
Malignant brain tumor, including the most common type glioblastoma, are histologically heterogeneous and invasive tumors known as the most devastating neoplasms with high morbidity and mortality. Despite multimodal treatment including surgery, radiotherapy, chemotherapy, and immunotherapy, the disease inevitably recurs and is fatal. This lack of curative options has motivated researchers to explore new treatment strategies and to develop new drug delivery systems (DDSs); however, the unique anatomical, physiological, and pathological features of brain tumors greatly limit the effectiveness of conventional chemotherapy. In this context, we review the recent progress in the development of nanoparticle-based DDSs aiming to address the key challenges in transporting sufficient amount of therapeutic agents into the brain tumor areas while minimizing the potential side effects. We first provide an overview of the standard treatments currently used in the clinic for the management of brain cancers, discussing the effectiveness and limitations of each therapy. We then provide an in-depth review of nanotherapeutic systems that are intended to bypass the blood-brain barrier, overcome multidrug resistance, infiltrate larger tumorous tissue areas, and/or release therapeutic agents in a controlled manner. WIREs Nanomed Nanobiotechnol 2018, 10:e1479. doi: 10.1002/wnan.1479 This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Rami Walid Chakroun
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Pengcheng Zhang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ran Lin
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | | | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
36
|
Wang Y, Zhou K, Li T, Xu Y, Xie C, Sun Y, Zhang Y, Rodriguez J, Blomgren K, Zhu C. Inhibition of autophagy prevents irradiation-induced neural stem and progenitor cell death in the juvenile mouse brain. Cell Death Dis 2017; 8:e2694. [PMID: 28333139 PMCID: PMC5386526 DOI: 10.1038/cddis.2017.120] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 02/06/2017] [Accepted: 02/23/2017] [Indexed: 01/24/2023]
Abstract
Radiotherapy is an effective tool in the treatment of malignant brain tumors. However, damage to brain stem and progenitor cells constitutes a major problem and is associated with long-term side effects. Autophagy has been shown to be involved in cell death, and the purpose of this study was to evaluate the effect of autophagy inhibition on neural stem and progenitor cell death in the juvenile brain. Ten-day-old selective Atg7 knockout (KO) mice and wild-type (WT) littermates were subjected to a single 6Gy dose of whole-brain irradiation. Cell death and proliferation as well as microglia activation and inflammation were evaluated in the dentate gyrus of the hippocampus and in the cerebellum at 6 h after irradiation. We found that cell death was reduced in Atg7 KO compared with WT mice at 6 h after irradiation. The number of activated microglia increased significantly in both the dentate gyrus and the cerebellum of WT mice after irradiation, but the increase was lower in the Atg7 KO mice. The levels of proinflammatory cytokines and chemokines decreased, especially in the cerebellum, in the Atg7 KO group. These results suggest that autophagy might be a potential target for preventing radiotherapy-induced neural stem and progenitor cell death and its associated long-term side effects.
Collapse
Affiliation(s)
- Yafeng Wang
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Pediatrics, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Kai Zhou
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Karolinska Institutet, Department of Women's and Children's Health, Karolinska University Hospital Q2:07, Stockholm, Sweden
| | - Tao Li
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Pediatrics, Zhengzhou Children's Hospital, Zhengzhou, China.,Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yiran Xu
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Cuicui Xie
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Yanyan Sun
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yaodong Zhang
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Pediatrics, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Juan Rodriguez
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Klas Blomgren
- Karolinska Institutet, Department of Women's and Children's Health, Karolinska University Hospital Q2:07, Stockholm, Sweden.,Department of Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Changlian Zhu
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
37
|
Tensaouti F, Ducassou A, Chaltiel L, Bolle S, Muracciole X, Coche-Dequeant B, Alapetite C, Bernier V, Claude L, Supiot S, Huchet A, Kerr C, le Prisé E, Laprie A. Patterns of failure after radiotherapy for pediatric patients with intracranial ependymoma. Radiother Oncol 2017; 122:362-367. [DOI: 10.1016/j.radonc.2016.12.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 11/22/2016] [Accepted: 12/25/2016] [Indexed: 12/20/2022]
|
38
|
In vitro and in vivo assessment of direct effects of simulated solar and galactic cosmic radiation on human hematopoietic stem/progenitor cells. Leukemia 2016; 31:1398-1407. [PMID: 27881872 DOI: 10.1038/leu.2016.344] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 10/10/2016] [Accepted: 10/21/2016] [Indexed: 12/13/2022]
Abstract
Future deep space missions to Mars and near-Earth asteroids will expose astronauts to chronic solar energetic particles (SEP) and galactic cosmic ray (GCR) radiation, and likely one or more solar particle events (SPEs). Given the inherent radiosensitivity of hematopoietic cells and short latency period of leukemias, space radiation-induced hematopoietic damage poses a particular threat to astronauts on extended missions. We show that exposing human hematopoietic stem/progenitor cells (HSC) to extended mission-relevant doses of accelerated high-energy protons and iron ions leads to the following: (1) introduces mutations that are frequently located within genes involved in hematopoiesis and are distinct from those induced by γ-radiation; (2) markedly reduces in vitro colony formation; (3) markedly alters engraftment and lineage commitment in vivo; and (4) leads to the development, in vivo, of what appears to be T-ALL. Sequential exposure to protons and iron ions (as typically occurs in deep space) proved far more deleterious to HSC genome integrity and function than either particle species alone. Our results represent a critical step for more accurately estimating risks to the human hematopoietic system from space radiation, identifying and better defining molecular mechanisms by which space radiation impairs hematopoiesis and induces leukemogenesis, as well as for developing appropriately targeted countermeasures.
Collapse
|
39
|
Doyen J, Bondiau PY, Benezery K, Thariat J, Vidal M, Gérard A, Hérault J, Carrie C, Hannoun-Lévi JM. [Indications and results for protontherapy in cancer treatments]. Cancer Radiother 2016; 20:513-8. [PMID: 27614508 DOI: 10.1016/j.canrad.2016.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 06/10/2016] [Indexed: 12/16/2022]
Abstract
Purpose was to summarize results for proton therapy in cancer treatment. A systematic review has been done by selecting studies on the website www.pubmed.com (Medline) and using the following keywords: proton therapy, radiation therapy, cancer, chordoma, chondrosarcoma, uveal melanoma, retinoblastoma, meningioma, glioma, neurinoma, pituitary adenoma, medulloblastoma, ependymoma, craniopharyngioma and nasal cavity. There are several retrospective studies reporting results for proton therapy in cancer treatments in the following indications: ocular tumors, nasal tumors, skull-based tumors, pediatric tumors. There is no prospective study except one phase II trial in medulloblastoma. The use of proton therapy for these indications is due to dosimetric advantages offering better tumor coverage and organ at risk sparing in comparison with photon therapy. Clinical results are historically at least as efficient as photon therapy with a better toxicity profile in pediatric tumors (cognitive and endocrine functions, radiation-induced cancer) and a better tumoral control in tumors of the nasal cavity. Clinical advantages of proton therapy counterbalance its cost especially in pediatric tumors. Proton therapy could be used in other types of cancer. Proton therapy showed good outcome in ocular, nasal tumors, pediatric, skull-based and paraspinal tumors. Because of some dosimetric advantages, proton therapy could be proposed for other indications in cancer treatments.
Collapse
Affiliation(s)
- J Doyen
- Centre Antoine-Lacassagne, radiation oncology, 33, avenue de Valombrose, 06189 Nice, France.
| | - P-Y Bondiau
- Centre Antoine-Lacassagne, radiation oncology, 33, avenue de Valombrose, 06189 Nice, France
| | - K Benezery
- Centre Antoine-Lacassagne, radiation oncology, 33, avenue de Valombrose, 06189 Nice, France
| | - J Thariat
- Centre Antoine-Lacassagne, radiation oncology, 33, avenue de Valombrose, 06189 Nice, France
| | - M Vidal
- Centre Antoine-Lacassagne, radiation oncology, 33, avenue de Valombrose, 06189 Nice, France
| | - A Gérard
- Centre Antoine-Lacassagne, radiation oncology, 33, avenue de Valombrose, 06189 Nice, France
| | - J Hérault
- Centre Antoine-Lacassagne, radiation oncology, 33, avenue de Valombrose, 06189 Nice, France
| | - C Carrie
- Centre Léon-Bérard, radiation oncology, 28, rue Laennec, 69008 Lyon, France
| | - J-M Hannoun-Lévi
- Centre Antoine-Lacassagne, radiation oncology, 33, avenue de Valombrose, 06189 Nice, France
| |
Collapse
|
40
|
|
41
|
Abstract
Proton therapy is an optimized radiotherapy technique. Today, the technical improvement provides reliable machines. The therapeutic indications are clearer even though therapeutic trials should confirm the current guidelines. A better knowledge in radiobiology could be useful if it is integrated in the treatment planning system. A new organization of care will definitively stabilize the number of patients for which treatment will be relevant. This organization will prepare the future expansion of this technique.
Collapse
Affiliation(s)
- G Noël
- Département de radiothérapie, centre Paul-Strauss, 3, rue de la Porte-de-l'Hôpital, 67065 Strasbourg, France.
| | - D Antoni
- Département de radiothérapie, centre Paul-Strauss, 3, rue de la Porte-de-l'Hôpital, 67065 Strasbourg, France
| |
Collapse
|
42
|
Wyrobek AJ, Britten RA. Individual variations in dose response for spatial memory learning among outbred wistar rats exposed from 5 to 20 cGy of (56) Fe particles. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:331-340. [PMID: 27237589 DOI: 10.1002/em.22018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/13/2016] [Indexed: 06/05/2023]
Abstract
Exposures of brain tissue to ionizing radiation can lead to persistent deficits in cognitive functions and behaviors. However, little is known about the quantitative relationships between exposure dose and neurological risks, especially for lower doses and among genetically diverse individuals. We investigated the dose relationship for spatial memory learning among genetically outbred male Wistar rats exposed to graded doses of (56) Fe particles (sham, 5, 10, 15, and 20 cGy; 1 GeV/n). Spatial memory learning was assessed on a Barnes maze using REL3 ratios measured at three months after exposure. Irradiated animals showed dose-dependent declines in spatial memory learning that were fit by a linear regression (P for slope <0.0002). The irradiated animals showed significantly impaired learning at 10 cGy exposures, no detectable learning between 10 and 15 cGy, and worsened performances between 15 and 20 cGy. The proportions of poor learners and the magnitude of their impairment were fit by linear regressions with doubling doses of ∼10 cGy. In contrast, there were no detectable deficits in learning among the good learners in this dose range. Our findings suggest that genetically diverse individuals can vary substantially in their spatial memory learning, and that exposures at low doses appear to preferentially impact poor learners. This hypothesis invites future investigations of the genetic and physiological mechanisms of inter-individual variations in brain function related to spatial memory learning after low-dose HZE radiation exposures and to determine whether it also applies to physical trauma to brain tissue and exposures to chemical neurotoxicants. Environ. Mol. Mutagen. 57:331-340, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Andrew J Wyrobek
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California
| | - Richard A Britten
- Department of Radiation Oncology, and the Leroy T. Canoles Jr. Cancer Center, Eastern Virginia Medical School, Norfolk, Virginia
| |
Collapse
|