1
|
He H, He Q, Zhang Y, Sun J, Tu Y, Wang H, Qin F, Liu K. Effect of (-)-epigallocatechin gallate palmitate complexation under mild temperature on the structure and nutritional functions of porous rice starch. Food Chem 2025; 471:142763. [PMID: 39788006 DOI: 10.1016/j.foodchem.2025.142763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
The correlation among the hierarchical structure, physicochemical properties, and nutritional functions of porous rice starch after absorbing and complexing with (-)-epigallocatechin gallate palmitate (P-EGCG) under mild temperatures at different reaction times were investigated. The P-EGCG loading rate (19.6 %-28.5 %) of porous starch increased after hydrolysis with a mixture of amyloglucosidase and α-amylase for 3 and 6 h, respectively. A decrease in the melting enthalpy of the amylopectin double helix and an increase in the melting enthalpy of the V-type helices after complexation was observed with longer reaction times. The retention index of P-EGCG after 6 h of incubation was 57.11 % following 21 d of storage. These structural changes significantly transformed portions of the rapidly and slowly digestible starches into resistant starch (41.68 %-47.84 %), accompanied by enhanced thermal stability, antioxidant activity, and enteropathogenic bacteria-inhibiting ability. Therefore, porous rice starch complexed with P-EGCG may provide controlled digestion, antioxidant activity, and potential gut microbiota benefits.
Collapse
Affiliation(s)
- Hai He
- Experimental Education/Administration Center, National Demonstration Center for Experimental Education of Basic Medical Sciences, Key Laboratory of Functional Proteomics of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong Province, China; Heinz Mehlhorn Academician Workstation, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Public Health, Hainan Medical University, Haikou 571199, Hainan Province, China
| | - Qi He
- School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Yugang Zhang
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue, Haizhu Square, Guangzhou 510280, Guangdong Province, China
| | - Jia Sun
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue, Haizhu Square, Guangzhou 510280, Guangdong Province, China
| | - Yingfeng Tu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Hongwei Wang
- School of Food and Biological Engineering, Collaborative Innovation Center of Food Production and Safety, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450002, Henan Province, China
| | - Fang Qin
- School of Nursing, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Kun Liu
- Experimental Education/Administration Center, National Demonstration Center for Experimental Education of Basic Medical Sciences, Key Laboratory of Functional Proteomics of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong Province, China.
| |
Collapse
|
2
|
Wang Y, Wang M, Jiang W, Li S, Liu S, Liu M, Lyu M, Wang S. Characteristics of Porous Starch from Lotus Seeds Using Dextranase: Protection and Sustained Release of Proanthocyanidins. Foods 2025; 14:1050. [PMID: 40232086 PMCID: PMC11942344 DOI: 10.3390/foods14061050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 04/16/2025] Open
Abstract
Porous starch, known for its large specific surface area due to internal pores, exhibits excellent adsorption capabilities. In this study, we successfully produced porous starch from lotus seeds using dextranase and conducted a comprehensive analysis of its surface morphology, crystalline structure, pasting behavior, and adsorption characteristics. The enzymatic treatment resulted in the development of a pore structure on the lotus seed starch (LS) surface without altering its crystalline structure, as confirmed by Fourier transform infrared spectroscopy and X-ray diffraction. The oil and water absorption capacities of the porous starch increased by 14% and 27%, respectively. Differential scanning calorimetry indicated a higher pasting temperature for the porous starch. This starch exhibited remarkable drug-carrying capabilities, absorbing up to 18.23 mg/g of proanthocyanidins and significantly shielding them from UV damage. In vitro release tests in simulated intestinal fluid revealed that the encapsulated proanthocyanidins (PC) achieved nearly complete release. These results underscore the potential of LS as a drug carrier and provide valuable insights for developing innovative intestinal drug delivery systems.
Collapse
Affiliation(s)
- Yuying Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Y.W.); (M.W.); (W.J.); (S.L.); (S.L.); (M.L.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Ming’ao Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Y.W.); (M.W.); (W.J.); (S.L.); (S.L.); (M.L.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Weihong Jiang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Y.W.); (M.W.); (W.J.); (S.L.); (S.L.); (M.L.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Siying Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Y.W.); (M.W.); (W.J.); (S.L.); (S.L.); (M.L.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Siyu Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Y.W.); (M.W.); (W.J.); (S.L.); (S.L.); (M.L.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mingwang Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Y.W.); (M.W.); (W.J.); (S.L.); (S.L.); (M.L.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Y.W.); (M.W.); (W.J.); (S.L.); (S.L.); (M.L.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Y.W.); (M.W.); (W.J.); (S.L.); (S.L.); (M.L.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
3
|
Sidhu RK, Riar CS, Singh S. In vitro starch digestibility and physicochemical properties of chemical and enzymatic modified Indian Teff (Eragrostis Tef) starch for industrial applications. Int J Biol Macromol 2025; 307:141910. [PMID: 40074107 DOI: 10.1016/j.ijbiomac.2025.141910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/23/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025]
Abstract
The long-term stability, mechanical properties, and interactions of modified teff starch with food components remain unclear. The effects of dual or multiple modifications on physicochemical properties and digestibility are also unexplored. This study investigates the modification of Teff starch through oxidation (sodium hypochlorite), cross-linking (citric acid), and enzymatic treatments (α-amylase, amyloglucosidase) to enhance its structural, physicochemical, and thermal properties. Oxidation reduced swelling power and pasting viscosity, while cross-linking improved mechanical resistance with a cross-linking degree of 44.2 %-70.4 %. Enzymatic modification lowered amylose content and enhanced gelation. In vitro digestibility analysis revealed increased slowly digestible starch (SDS) and resistant starch (RS) contents for all modified starches. O2 showed SDS and RS levels of 44.64 % and 31.42 %, respectively, compared to 41.51 % and 21.28 % in NS. C2 demonstrated RS levels of 24.11 %, while AA exhibited an RS of 29.03 %. O1, O2, C1 and C2 reduced starch digestibility by introducing steric hindrance and cross-linking bridges, while AA increased branching density, slowing digestion. Structural analyses (FTIR, DSC, XRD, SEM, and 1H NMR) confirmed functional group stabilization, enhanced thermal stability, partial amorphization, and surface integrity improvements. The X-ray diffractograms showed no notable alterations, confirming that the crystalline region remained unaffected by the reaction. 1H NMR spectra revealed changes in glycosidic linkages, with oxidation reducing branching and cross-linking increasing structural complexity. PCA revealed the distinct properties of modified starches. The study highlights the synergistic effects of oxidation and cross-linking, offering insights into starch modification mechanisms and future industrial applications.
Collapse
Affiliation(s)
- Ramandeep Kaur Sidhu
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Punjab, India
| | - C S Riar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Punjab, India
| | - Sukhcharn Singh
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Punjab, India.
| |
Collapse
|
4
|
Kong C, Zhang Y, Hu Y, Duan C, Yan Z, Zhou S. Stabilization mechanism of white kidney bean based milk through novel perspectives of endogenous starch. Food Chem X 2025; 25:102192. [PMID: 39925760 PMCID: PMC11803868 DOI: 10.1016/j.fochx.2025.102192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 02/11/2025] Open
Abstract
Plant-based milk (PBM) substitutes have attracted worldwide attention, but the development is restricted by poor stability and limited categories. White kidney bean (WKB) is one potential healthy material for PBM production. Here, we aimed to obtain optimal WKB cultivars first, and further investigated stabilization mechanism in aspect of its endogenous starch. Among the investigated cultivars, three cultivars were selected as the most suitable for producing WKB emulsions. Native starch of the stable cultivars exhibited higher pasting temperature, less peak, trough, and final viscosity. With enzymatic hydrolysis, starch of stable cultivars showed higher solubility index while less swelling power, and less short range order. The observations were further proved through microscopy observation and correlation analysis between starch properties and WKB milk stability attributes. These results contribute to understand molecular mechanism for improving WKB milk stability from perspective of endogenous starch, and provide valuable information for raw materials selection with typical starch characteristics.
Collapse
Affiliation(s)
- Chunli Kong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yixuan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yimei Hu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Caiping Duan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Zheng Yan
- College of Bioengineering, Beijing Polytechnic, Beijing 100176, China
| | - Sumei Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|
5
|
Muñoz-Llandes CB, Palma-Rodríguez HM, de Jesús Perea-Flores M, Martínez-Villaluenga C, Castro-Rosas J, Salgado-Delgado R, Guzmán-Ortiz FA. Incorporation of germinated lupin into corn-based extrudates: Focus on starch digestibility, matrix structure and physicochemical properties. Food Chem 2024; 458:140196. [PMID: 38943953 DOI: 10.1016/j.foodchem.2024.140196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024]
Abstract
The research aimed to assess the effects of incorporating germinated Lupinus angustifolius flour into corn extrudates for different periods (3, 5, and 7 days), focusing on starch digestibility, morphological structure, thermal, and pasting properties. Extrudate with germinated lupinus flour for 7 days (EG7) significantly increased the content of slowly digestible starch up to 10.56% (p < 0.05). Crystallinity increased up to 20% in extrudates with germinated flour compared to extrudates with ungerminated flour (EUG), observing changes at the molecular level by FTIR that impact the thermal and pasting properties. X-ray diffraction revealed angles of 2θ = 11.31, 16.60, 19.91, and 33.04 as a result of the germination and extrusion processes. Microstructural analysis indicated starch-protein interactions influencing changes in calorimetry, viscosity, X-ray diffraction, and digestibility. PCA allowed establishing that the addition of germinated flours significantly affected the properties and microstructural characteristics of extruded products, potentially affecting digestibility and nutritional quality.
Collapse
Affiliation(s)
- Ciro Baruchs Muñoz-Llandes
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Rancho Universitario, Tulancingo, de Bravo Hidalgo, Mexico; Área Académica de Química (AAQ), Universidad Autónoma del Estado de Hidalgo, Ciudad del Conocimiento, Mineral de la Reforma, Hidalgo, Mexico
| | - Heidi María Palma-Rodríguez
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Rancho Universitario, Tulancingo, de Bravo Hidalgo, Mexico.
| | - María de Jesús Perea-Flores
- Centro de Nanociencias y Micro y Nanotecnologías, Instituto Politécnico Nacional, Luis Enrique Erro, San Pedro Zacatenco, Ciudad de México, Mexico
| | - Cristina Martínez-Villaluenga
- Department of Technological Processes and Biotechnology, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Jose Antonio Novais 6, 28040, Madrid, Spain
| | - Javier Castro-Rosas
- Área Académica de Química (AAQ), Universidad Autónoma del Estado de Hidalgo, Ciudad del Conocimiento, Mineral de la Reforma, Hidalgo, Mexico
| | - Rene Salgado-Delgado
- Tecnológico Nacional de México, Instituto Tecnológico de Zacatepec, Calzada Tecnológico N° 27, Col. Centro, Zacatepec Morelos, Mexico
| | - Fabiola Araceli Guzmán-Ortiz
- CONAHCYT-Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km 4.5 s/n, Mineral de la Reforma, Hidalgo 42184, Mexico.
| |
Collapse
|
6
|
Gu F, Wen Y, Hu X, Liao H, He C, McClements DJ, Pan W, Niu F. Novel Porous Starch Granules Fabricated Using Controlled Lipase-Amylase Treatments: Application as Delivery Systems and Resistant Starches. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24762-24775. [PMID: 39454081 DOI: 10.1021/acs.jafc.4c07759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Porous starch granules (PSGs) are promising biomaterials for the encapsulation, protection, and delivery of bioactive ingredients. In this study, a lipase treatment was first used to generate pores in native starch granules, and then α-amylase was used to enlarge these pores. Electron and fluorescence microscopy analysis showed that the lipase treatment exposed the starch molecules located below the lipid-rich regions on the starch granule surfaces, which increased the swelling of the granules in aqueous solutions. Moreover, lipase treatment caused the surrounding areas to become more loosely packed, which facilitated subsequent starch hydrolysis and the formation of large internal cavities. Fourier transform infrared spectroscopy, X-ray diffraction, and thermogravimetric analyses provided further insights, these methods showed that the short-range order, long-range order, and thermal stability of the PSGs was enhanced by the sequential lipase-amylase modification. PSGs were highly resistant to amylase digestion and had strong adsorption capacity to hydrophobic and hydrophilic substances. This study shows that a combined lipase-amylase treatment can be used to fabricate PSGs, which may have health benefits due to their low digestibility and ability to encapsulate bioactive agents. These PSGs may therefore be suitable for application in the functional food, supplement, personal care, and pharmaceutical industries.
Collapse
Affiliation(s)
- Feina Gu
- Food Safety Key Lab of Zhejiang Province, Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China
| | - Ya Wen
- Food Safety Key Lab of Zhejiang Province, Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China
| | - Xinyu Hu
- Food Safety Key Lab of Zhejiang Province, Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China
| | - Huabin Liao
- Food Safety Key Lab of Zhejiang Province, Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China
| | - Chunfang He
- Food Safety Key Lab of Zhejiang Province, Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China
| | - David Julian McClements
- Food Safety Key Lab of Zhejiang Province, Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Weichun Pan
- Food Safety Key Lab of Zhejiang Province, Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China
| | - Fuge Niu
- Food Safety Key Lab of Zhejiang Province, Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
7
|
Yao M, Liu J, Liu J, Qi X, Bai E, Yin J, Wu T. Fabrication and characterization of responsible approach for targeted intestinal releasing and enhancing the effectivity of kidney tea saponin upon porous starch /xanthan gum /sodium alginate-based hydrogel bead. Int J Biol Macromol 2024; 279:134974. [PMID: 39181374 DOI: 10.1016/j.ijbiomac.2024.134974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/11/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
To enhance the intestinal targeted release of kidney tea saponins, a simple delivery system was designed through the use of porous starch (PS), sodium alginate (ALG) and xanthan gum (XG). Porous starch was prepared by hydrolysis with a combination of α-amylase and amyloglucosidase and it was characterized by scanning electron microscopy, which revealed the formation of porous structures in the starch granules. The results of one-way optimisation illustrated that this unique delivery system achieved 79.00 ± 1.22 % of the optimal encapsulation rate. The carrier structure was subjected to analysis using Fourier transform infrared spectroscopy and X-ray diffraction. The α-glucosidase inhibition assay showed better inhibition of kidney tea saponin compared to the positive control acarbose. In addition, the effectiveness of this delivery design was confirmed via an in vitro simulated digestion method. It was showed that only a 15.57 ± 1.27 % release rate of kidney tea saponin was observed in the upper gastrointestinal tract, whereas release rates of 17.51 ± 1.29 % and 41.07 ± 0.76 % were observed for xanthan gum/sodium alginate/kidney tea saponin and sodium alginate/kidney tea saponin beads, respectively. It was concluded that the utilization of PS and a xanthan gum/sodium alginate coating represents an efficacious methodology for the development of an intestinal targeted delivery system.
Collapse
Affiliation(s)
- Muzi Yao
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jiahui Liu
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jiaming Liu
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xinmiao Qi
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Erlu Bai
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jinjin Yin
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
8
|
Chen S, Qiu Z, Yang Y, Wu J, Jiao W, Chen Y, Jin C. Revisiting the Evolution of Multi-Scale Structures of Starches with Different Crystalline Structures During Enzymatic Digestion. Foods 2024; 13:3291. [PMID: 39456353 PMCID: PMC11507109 DOI: 10.3390/foods13203291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/12/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Porous starch has been created through hydrolysis by amyloglucosidase and α-amylase. However, little information is known about the precise evolution of multi-scale structures of starch during digestion. In this study, rice starch and potato starch, containing different crystalline structures, were hydrolyzed by amyloglucosidase and α-amylase for 20 and 60 min, respectively, and their resulting structural changes were examined. The digestion process caused significant degradation of the molecular structures of rice and potato starches. In addition, the alterations in the ordered structures varied between the two starches. Rice starch exhibited porous structures, thicker crystalline lamellae as determined by small-angle X-ray scattering, and enhanced thermostability after digestion using differential scanning calorimetry. For rice starch, the extent of crystalline structures was analyzed with an X-ray diffractometer; it was found to first increase after 20 min of digestion and then decrease after 60 min of digestion. In contrast, potato starch did not display porous structures but exhibited thicker crystalline lamellae and a reduction in ordered structures after digestion. These findings suggest that it is possible to intentionally modulate the multi-scale structures of starch by controlling the digestion time, thereby providing valuable insights for the manipulation of starch functionalities.
Collapse
Affiliation(s)
- Simin Chen
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, National Medical Products Administration, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China;
| | - Zihui Qiu
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (Z.Q.); (Y.Y.)
| | - Ying Yang
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (Z.Q.); (Y.Y.)
| | - Jianfeng Wu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China;
| | - Wenjuan Jiao
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China;
| | - Ying Chen
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Chengzhi Jin
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, National Medical Products Administration, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China;
| |
Collapse
|
9
|
Wu W, Tian W, Li Y, Zhao Q, Liu N, Huang C, Zhu L, Guo D. Sub-high amylose maize starch: an ideal substrate to generate starch with lower digestibility by fermentation of Qu. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6855-6861. [PMID: 38578681 DOI: 10.1002/jsfa.13514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/22/2024] [Accepted: 04/03/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND The fermentation of Qu (FQ) is a novel method to modify the properties of starch to expand its application and especially to increase the resistant starch (RS) content. Using waxy maize starch (WMS) as a fermentation substrate can increase the RS content significantly but it may be time consuming and not cost effective due to the almost negligible RS content of WMS. To solve this problem, we hypothesized that sub-high amylose starch (s-HAMS), with an amylose content close to 50% could be an ideal substrate for FQ. RESULTS The results showed that FQ did not change the shape and the particle size of starch granules, the gelatinization peak (Tp), or the conclusion temperature (Tc), but the slowly digested starch content declined. Rapidly digested starch content fluctuated during FQ and the amylose content decreased within 36 h and then increased. Within 24h, FQ significanlty increased these values: the RS content, relative crystallinity (RC), the ratio of FTIR absorbances at 1047/1022cm-1, the diffraction peak at 19.8° in X-ray diffraction (XRD), and the gelatinization onset temperature (To) increased significantly, within 24 h of FQ. However, after 24 h of fermentation, the RS content, RC, the ratio of FTIR absorbances at 1047/1022 cm-1, and gelatinization enthalpy (ΔH) decreased significantly. CONCLUSION Sub-high amylose starch is more suitable for FQ to produce low digestibility starch, and the increase in RS may be due to the formation of 'amylose-lipid' complexes (RS5). © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenhao Wu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Xianyang, China
| | - Wenjing Tian
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Xianyang, China
| | - Yiheng Li
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Xianyang, China
| | - Qiqi Zhao
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Xianyang, China
| | - Na Liu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Xianyang, China
| | - Chenggang Huang
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Xianyang, China
| | - Liangjia Zhu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Xianyang, China
| | - Dongwei Guo
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Xianyang, China
| |
Collapse
|
10
|
Zuo Y, Zou F, Yang M, Xu G, Wu J, Wang L, Wang H. Effects of plasma-activated water combined with ultrasonic treatment of corn starch on structural, thermal, physicochemical, functional, and pasting properties. ULTRASONICS SONOCHEMISTRY 2024; 108:106963. [PMID: 38936293 PMCID: PMC11259921 DOI: 10.1016/j.ultsonch.2024.106963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/08/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
In this study, corn starch was used as the raw material, and modified starch was prepared using a method combining plasma-activated water and ultrasound treatment (PUL). This method was compared with treatments using plasma-activated water (PAW) and ultrasound (UL) alone. The structure, thermal, physicochemical, pasting, and functional properties of the native and treated starches were evaluated. The results indicated that PAW and UL treatments did not alter the shape of the starch granules but caused some surface damage. The PUL treatment increased the starch gelatinization temperature and enthalpy (from 11.22 J/g to 13.13 J/g), as well as its relative crystallinity (increased by 0.51 %), gel hardness (increased by 16.19 %) compared to untreated starch, without inducing a crystalline transition. The PUL treatment resulted in a whitening of the samples. The dual treatment enhanced the thermal stability of the starch paste, which can be attributed to the synergistic effect between PAW and ultrasound (PAW can modify the starch structure at a molecular level, while ultrasound can further disrupt the granule weak crystalline structures, leading to improved thermal properties). Furthermore, FTIR results suggested significant changes in the functional groups related to the water-binding capacity of starch, and the order of the double-helical structure was disrupted. The findings of this study suggest that PUL treatment is a promising new green modification technique for improving the starch structure and enhancing starch properties. However, further research is needed to tailor the approach based on the specific properties of the raw material.
Collapse
Affiliation(s)
- Yongxuan Zuo
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Fanglei Zou
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Miao Yang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Guangfei Xu
- College of Engineering and Technology, Northeast Forestry University, Harbin 150040, China
| | - Junhua Wu
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Liangju Wang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Hongying Wang
- College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
11
|
Liu R, Geng Z, Li T, Zhang M, Zhang C, Ma T, Xu Z, Xu S, Liu H, Zhang X, Wang L. Effects of different extrusion temperatures on the physicochemical properties, edible quality and digestive attributes of multigrain reconstituted rice. Food Funct 2024; 15:6000-6014. [PMID: 38743003 DOI: 10.1039/d4fo00044g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Multigrain reconstituted rice, as a nutritious and convenient staple, holds considerable promise for the food industry. Furthermore, highland barley, corn, and other coarse cereals are distinguished by their low glycemic index (GI), rendering them effective in mitigating postprandial blood glucose levels, thereby underscoring their beneficial physiological impact. This study investigated the impact of extrusion temperature on the physicochemical properties, edible quality, and digestibility of multigrain reconstituted rice. The morphology revealed that starch particles that are not fully gelatinized in multigrain reconstituted rice are observed at an extrusion temperature range of 60 °C-90 °C. As the extrusion temperature increased, the degree of gelatinization (DG) increased, while the contents of water, protein, total starch, and amylopectin decreased substantially. Concurrently, the relative crystallinity, orderliness of starch, and heat absorption enthalpy (ΔH) decreased significantly, and water absorption (WAI) and water solubility (WSI) increased markedly. Regarding edible quality, sensory evaluation displayed an initial increase followed by a decrease. In terms of digestibility, the estimated glycemic index (eGI) increased from 61.10 to 70.81, and the GI increased from 60.41 to 75.33. In addition, the DG was significantly correlated with both eGI (r = 0.886**) and GI (r = 0.947**). The results indicated that the ideal extrusion temperature for multigrain reconstituted rice was 90 °C. The findings underscored the pivotal role of optimal extrusion temperatures in the production of multigrain reconstituted rice, which features low GI and high nutritional quality.
Collapse
Affiliation(s)
- Ruohai Liu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Zhanhui Geng
- Systems Engineering Institute, Academy of Military Sciences, Beijing 100141, China
| | - Ting Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Ming Zhang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Congnan Zhang
- Jiangsu Nongken Agricultural Development Co., Ltd, Hengshan Road 136, Nanjing 210019, China
| | - Tianjiao Ma
- Systems Engineering Institute, Academy of Military Sciences, Beijing 100141, China
| | - Zhicun Xu
- Jiangsu Nongken Agricultural Development Co., Ltd, Hengshan Road 136, Nanjing 210019, China
| | - Shunqian Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - He Liu
- Systems Engineering Institute, Academy of Military Sciences, Beijing 100141, China
| | - Xinxia Zhang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Li Wang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| |
Collapse
|
12
|
Zhao Y, Qiao S, Zhu X, Guo J, Peng G, Zhu X, Gu R, Meng Z, Wu Z, Gan H, Guifang D, Jin Y, Liu S, Sun Y. Effect of different drying methods on the structure and properties of porous starch. Heliyon 2024; 10:e31143. [PMID: 38813237 PMCID: PMC11133660 DOI: 10.1016/j.heliyon.2024.e31143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/31/2024] Open
Abstract
In order to investigate the effects of different drying methods on the properties of porous starch. The present study used four drying methods, namely hot air drying (HD), spray drying (SPD), vacuum freeze drying (FD) and supercritical carbon dioxide drying (SCD) to prepare maize and kudzu porous starch. Findings indicated that the physicochemical properties (e.g., morphology, crystallinity, enthalpy value, porosity, surface area and water absorption capacity as well as dye absorption capacity, particle size) of porous starch were significantly affected by the drying method. Compared with other samples, SCD-treated porous starch exhibited the highest surface areas of the starch (2.943 and 3.139 m2/g corresponding to kudzu and maize, respectively), amylose content (22.02 % and 16.85 % corresponding to kudzu and maize, respectively), MB and NR absorption capacity (90.63 %, 100.26 % and 90.63 %, 100.26 %, corresponding to kudzu ad maize, respectively), and thermal stability, whereas HD-treated porous starch showed the highest water-absorption capacity (123.8 % and 131.31 % corresponding to kudzu and maize, respectively). The dye absorption of the maize and kudzu porous starch was positively correlated with surface area, according to Pearson's correlation analysis. Therefore, in this study, our aim was to explore the effects of different drying methods on the Structure and properties of porous starch, and provide reference for selecting the best drying method for its application in different fields.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Anhui Medical University, Hefei, 230000, China
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Simo Qiao
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xiaohui Zhu
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Jinnan Guo
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Guanqun Peng
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Xiaoxia Zhu
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Ruolan Gu
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Zhiyun Meng
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Zhuona Wu
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Hui Gan
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Dou Guifang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yiguang Jin
- Anhui Medical University, Hefei, 230000, China
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Shuchen Liu
- Anhui Medical University, Hefei, 230000, China
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yunbo Sun
- Anhui Medical University, Hefei, 230000, China
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| |
Collapse
|
13
|
Kavya M, Krishnan R, Suvachan A, Sathyan S, Tozuka Y, Kadota K, Nisha P. The art and science of porous starch: understanding the preparation method and structure-function relationship. Crit Rev Food Sci Nutr 2024:1-18. [PMID: 38768041 DOI: 10.1080/10408398.2024.2352548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Porous starch (PS), a modified form of starch with unique properties, is attracting substantial attention for its diverse advantages and applications. Its intricate porous structure, crystalline and amorphous characteristics, and hydrophilic-hydrophobic properties stem from pore formation via physical, chemical, enzymatic, and combined synergistic methods. Porous starch offers benefits like improved gelatinization temperature, water absorption, increased surface area, tunable crystallinity, and enhanced functional properties, making it appealing for diverse food industry applications. To optimize its properties, determining the parameters governing porous structure formation is crucial. Factors such as processing conditions, starch source, and modification methods substantially impact porosity and the overall characteristics of the material. Understanding and controlling these parameters allows customization for specific applications, from pharmaceutical drug delivery systems to enhancing texture and moisture retention in food products. To date, studies shedding light on how porosity formation can be fine-tuned for specific applications are fewer. This review critically assesses the existing reports on porous starch, focusing on how preparation methods affect porosity formation, thereby influencing the product's crystallinity/hydrophilic-hydrophobic nature and overall applicability.
Collapse
Affiliation(s)
- Mohan Kavya
- Agro Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Trivandrum, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Reshma Krishnan
- Agro Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Trivandrum, India
| | - Abhijith Suvachan
- Agro Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Trivandrum, India
| | - Sannya Sathyan
- Agro Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Trivandrum, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Yuichi Tozuka
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - Kazunori Kadota
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - P Nisha
- Agro Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Trivandrum, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
14
|
Wang H, Liu J, Zhang Y, Li S, Liu X, Zhang Y, Zhao X, Shen H, Xie F, Xu K, Zhang H. Insights into the hierarchical structure and physicochemical properties of starch isolated from fermented dough. Int J Biol Macromol 2024; 267:131315. [PMID: 38569985 DOI: 10.1016/j.ijbiomac.2024.131315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/18/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
Understanding the hierarchical structure and physicochemical properties of starch isolated from fermented dough with different times (0-120 min) is valuable for improving the quality of fermented dough-based products. The results indicate that fermentation disrupted the starch granule surface and decreased the average particle size from 19.72 μm to 18.45 μm. Short-term fermentation (< 60 min) disrupted the crystalline, lamellar, short-range ordered molecular and helical structures of starch, while long-term fermentation (60-120 min) elevated the ordered degree of these structures. For example, relative crystallinity and double helix contents increased from 23.7 % to 26.8 % and 34.4 % to 37.2 %, respectively. During short-term fermentation, the structural amorphization facilitated interactions between starch molecular chains and water molecules, which increased the peak viscosity from 275.4 to 320.6 mPa·s and the swelling power from 7.99 to 8.52 g/g. In contrast, starches extracted from long-term fermented dough displayed the opposite results. Interestingly, the hardness and springiness of starch gels gradually decreased as fermentation time increased. These findings extend our understanding of the starch structure-property relationship during varied fermentation stages, potentially benefiting the production of better-fermented foods.
Collapse
Affiliation(s)
- Hongwei Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Jiajia Liu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Yusong Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Shuaihao Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China
| | - Xingli Liu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Yanyan Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Xuewei Zhao
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Huishan Shen
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Fengwei Xie
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, United Kingdom
| | - Ke Xu
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Hua Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China.
| |
Collapse
|
15
|
Wang L, Ma F, Li Z, Zhang Y. Immobilizing amyloglucosidase on inorganic hybrid nanoflowers to prepare time-temperature integrators for chilled pork quality monitoring. Food Chem 2024; 437:137876. [PMID: 37931448 DOI: 10.1016/j.foodchem.2023.137876] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023]
Abstract
Time-temperature integrators (TTIs) based on amyloglucosidase@Cu3(PO4)2 nanoflowers (AMG@NFs) were developed to monitor the freshness of chilled pork. AMG@NFs were synthesized through biomineralization, resulting in enhanced activity and stability of amyloglucosidase. The TTI prototypes were constructed by hydrolyzing maltodextrin with AMG@NFs. The hue of the TTIs varied from burgundy to colorless, and the discoloration kinetics were investigated. The deterioration process of chilled pork was explored, and the activation energy (Ea) was calculated as 67.32 ± 5.13 kJ/mol. To optimize costs and match TTIs with food, 6#TTI was selected to predict the quality of chilled pork. The dynamic temperature test revealed that the cumulative effective temperatures of chilled pork and 6#TTI were 289.34 K and 290.05 K, respectively, which indicated that 6#TTI was highly reliable and suitable for monitoring the actual chilled pork system. This study offers a new approach for real-time and accurate visual monitoring of chilled pork quality.
Collapse
Affiliation(s)
- Lin Wang
- Henan University of Animal Husbandry and Economy, No. 6 Longzihu North Road, Zhengzhou, Henan 450046, China.
| | - Falai Ma
- Zhengzhou Golden Leaf Industrial Co., Ltd., No. 73 Longhai East Road, Zhengzhou, Henan 450002, China
| | - Zihan Li
- Henan University of Animal Husbandry and Economy, No. 6 Longzihu North Road, Zhengzhou, Henan 450046, China
| | - Yan Zhang
- Henan University of Animal Husbandry and Economy, No. 6 Longzihu North Road, Zhengzhou, Henan 450046, China.
| |
Collapse
|
16
|
Zhu J, Han L, Wang M, Yang J, Fang Y, Zheng Q, Zhang X, Cao J, Hu B. Formation, influencing factors, and applications of internal channels in starch: A review. Food Chem X 2024; 21:101196. [PMID: 38370305 PMCID: PMC10869744 DOI: 10.1016/j.fochx.2024.101196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/28/2024] [Accepted: 02/03/2024] [Indexed: 02/20/2024] Open
Abstract
Starch, a natural polymer, has a complex internal structure. Some starches, such as corn and wheat starches, have well-developed surface pores and internal channels. These channel structures are considered crucial in connecting surface stomata and internal cavities and have adequate space for loading guest molecules. After processing or modification, the starch-containing channel structures can be used for food and drug encapsulation and delivery. This article reviews the formation and determination of starch internal channels, and the influence of different factors (such as starch species and processing conditions) on the channel structure. It also discusses relevant starch preparation methods (physical, chemical, enzymatic, and synergistic), and the encapsulation effect of starch containing internal channels on different substances. In addition, the role of internal channels in regulating the starch digestion rate and other aspects is also discussed here. This review highlights the significant multifunctional applications of starch with a channel structure.
Collapse
Affiliation(s)
- Junzhe Zhu
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116600, China
| | - Lingyu Han
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116600, China
| | - Meini Wang
- School of Life Science, College of Liberal Arts and Sciences, University of Westminster, United Kingdom
| | - Jixin Yang
- Faculty of Arts, Science and Technology, Wrexham Glyndwr University, Wrexham, United Kingdom
| | - Yapeng Fang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiuyue Zheng
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116600, China
| | - Xiaobo Zhang
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116600, China
| | - Jijuan Cao
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116600, China
| | - Bing Hu
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116600, China
| |
Collapse
|
17
|
Fu Z, Zhang Z, Chu M, Kan N, Xiao Y, Peng H. A starch-binding domain of α-amylase (AmyPG) disrupts the structure of raw starch. Int J Biol Macromol 2024; 257:128673. [PMID: 38070806 DOI: 10.1016/j.ijbiomac.2023.128673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/21/2023] [Accepted: 12/06/2023] [Indexed: 01/26/2024]
Abstract
Most raw starch-digesting enzymes possess at least one non-catalytic starch-binding domain (SBD), which enhances enzymatic hydrolysis of insoluble starch granules. Previous studies of SBD-starch interaction mainly focus on binding affinity for substrates, while the mechanism involved disruption of starch granules remains partially understood. Raw starch-digesting α-amylases AmyPG and AmyP were from Photobacterium gaetbulicola and an uncultured marine bacterium, respectively. Here, comparative studies on the two α-amylases and their SBDs (SBDPG and SBDAmyP) with high sequence identity were carried out. The degradation capacity of AmyPG towards raw starch was approximately 2-fold higher than that of AmyP, which was due to the stronger disruptive ability of SBDPG rather than the binding ability. Two non-binding amino acids (K626, T618) of SBDPG that specifically support the disruptive ability were first identified using affinity gel electrophoresis, amylose‑iodine absorbance spectra, and differential scanning calorimetry. The mutants SBDPG-K626A and SBDPG-T618A exhibited stronger disruptive ability, while the corresponding mutants of AmyPG enhanced the final hydrolysis degree of raw starch. The results confirmed that the disruptive ability of SBD can independently affect raw starch hydrolysis. This advancement in the functional characterization of SBDs contributes to a better understanding of enzyme-starch granule interactions, pushing forward designs of raw starch-digesting enzymes.
Collapse
Affiliation(s)
- Zijian Fu
- Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei 230601, Anhui, PR China
| | - Zhenbiao Zhang
- Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei 230601, Anhui, PR China
| | - Mingyue Chu
- Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei 230601, Anhui, PR China
| | - Naimeng Kan
- Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei 230601, Anhui, PR China
| | - Yazhong Xiao
- Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei 230601, Anhui, PR China
| | - Hui Peng
- Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei 230601, Anhui, PR China.
| |
Collapse
|
18
|
Garofalo MA, Villon P, Cornejo F, Rosell CM. Exploring the effects of enzymatic and thermal treatments on banana starch characteristics. Int J Biol Macromol 2024; 254:127748. [PMID: 38287591 DOI: 10.1016/j.ijbiomac.2023.127748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 01/31/2024]
Abstract
Banana starch has a highly resistant starch (RS) and slow-digested starch (SDS) content, making it attractive as a functional ingredient. Unfortunately, banana starch requires modification processes due to the loss of RS and SDS during gelatinization because of its thermolabile characteristics. This study explores the effect of banana starch modification by enzymatic, heat moisture treatment (HMT) and dual modification (HMT+ enzymatic) on its nutritional (RS, SDS) and functional properties (hydration, structural, gelation, rheological). HMT and dual modifications decrease RS (from 44.62 g/100 g to 16.62 and 26.66 g/100 g, respectively) and increase SDS (from 21.72 g/100 g to 33.91 and 26.95 g/100 g, respectively) in raw starch but induce structural changes that enhance RS (from 3.10 g/100 g to 3.94 and 4.4 g/100 g, respectively) and SDS (from 2.58 g/100 g to 9.58 and 11.48 g/100 g) thermo-resistance in gelled starch. Also, changes in the functional properties of starches were evidenced, such as weaker gels (hardness < 41 g), lower water absorption (<12.35 g/g), high starch solubility (>1.77 g/100 g) and increased gelatinization temperature. Improved gelatinization temperature and RS thermostability resulted from modifications that could expand banana starch applications as a beverage and compote thickener agent.
Collapse
Affiliation(s)
- Ma Angeles Garofalo
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Pedro Villon
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Fabiola Cornejo
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador.
| | - Cristina M Rosell
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada; Institute of Agrochemistry and Food Technology (IATA-CSIC), Avenida Agustín Escardino, 7, Paterna 46980, Valencia, Spain
| |
Collapse
|
19
|
Li X, Xiang Z, Dang W, Lin Z, Wang H, Wang H, Ye D, Yao R. High-yield and scalable cellulose nanomesh preparation via dilute acid vapor and enzymatic hydrolysis-mediated nanofabrication. Carbohydr Polym 2024; 323:121370. [PMID: 37940267 DOI: 10.1016/j.carbpol.2023.121370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 11/10/2023]
Abstract
Nanocellulose has received considerable attention in diverse research fields owing to its unique nanostructure-mediated physicochemical properties. However, classical acid hydrolysis usually destroys the microstructural integrity of cellulose, leading to the violent dissociation of cellulose into low-dimensional nanofibers and limiting the formation of intact structures with high specific surface areas. Herein, we have optimized the methodology of dilute acid vapor hydrolysis combined with the enzymatic hydrolysis (DAVE) method and investigated the pore formation mechanism of cellulose nanomesh (CNM). Benefiting from the selective nano-engraving effect of hydrochloric acid vapor on the amorphous region of cellulose followed by widening of the three-dimensional nanopores using enzymatic hydrolysis, confirmed by topographic, spectroscopic, and crystallographic tests, the as-prepared CNM, significantly different from the existing nanocellulose, exhibited improved specific surface area (98.37 m2/g), high yield (88.5 %), high crystallinity (73.4 %), and excellent thermal stability (375.4 °C). The proposed DAVE approach may open a new avenue for nanocellulose manufacturing.
Collapse
Affiliation(s)
- Xiaowen Li
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China
| | - Zhongrun Xiang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China
| | - Wanting Dang
- Department of Pharmaceutical Science and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China
| | - Zewan Lin
- College of Light Textile Engineering and Art, Anhui Agricultural University, Hefei, Anhui 230036, China; Biomass Molecular Engineering Centre, Hefei, Anhui 230036, China
| | - Huai Wang
- Department of Pharmaceutical Science and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China
| | - Huiqing Wang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China.
| | - Dongdong Ye
- College of Light Textile Engineering and Art, Anhui Agricultural University, Hefei, Anhui 230036, China; Biomass Molecular Engineering Centre, Hefei, Anhui 230036, China.
| | - Risheng Yao
- Department of Pharmaceutical Science and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China.
| |
Collapse
|
20
|
Jha S, Sarkhel S, Saha S, Sahoo B, Kumari A, Chatterjee K, Mazumder PM, Sarkhel G, Mohan A, Roy A. Expanded porous-starch matrix as an alternative to porous starch granule: Present status, challenges, and future prospects. Food Res Int 2024; 175:113771. [PMID: 38129003 DOI: 10.1016/j.foodres.2023.113771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/10/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Exposing the hydrated-soft-starch matrix of intact grain or reconstituted flour dough to a high-temperature-short-time (HTST) leads to rapid vapor generation that facilitates high-pressure build-up in its elastic matrix linked to large deformation and expansion. The expanded starch matrix at high temperatures dries up quickly by flash vaporization of water, which causes loss of its structural flexibility and imparts a porous and rigid structure of the expanded porous starch matrix (EPSM). EPSM, with abundant pores in its construction, offers adsorptive effectiveness, solubility, swelling ability, mechanical strength, and thermal stability. It can be a sustainable and easy-to-construct alternative to porous starch (PS) in food and pharmaceutical applications. This review is a comparative study of PS and EPSM on their preparation methods, structure, and physicochemical properties, finding compatibility and addressing challenges in recommending EPSM as an alternative to PS in adsorbing, dispersing, stabilizing, and delivering active ingredients in a controlled and efficient way.
Collapse
Affiliation(s)
- Shipra Jha
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Shubhajit Sarkhel
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Sreyajit Saha
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Bijendra Sahoo
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Ankanksha Kumari
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Kaberi Chatterjee
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Papiya Mitra Mazumder
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Gautam Sarkhel
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Anand Mohan
- Department of Food Science & Technology, University of Georgia, Athens, GA 30602, USA
| | - Anupam Roy
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology - Mesra, Ranchi 835215, India.
| |
Collapse
|
21
|
Shao M, Li S, Huang S, Junejo SA, Jiang Y, Zhang B, Huang Q. Oil structuring from porous starch to powdered oil: Role of multi-scale structure in the oil adsorption and distribution. Int J Biol Macromol 2023; 253:126968. [PMID: 37730003 DOI: 10.1016/j.ijbiomac.2023.126968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/23/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
Oil structuring from porous starch is a potential alternative for the industrial production of powdered oil, but their relationship between starch multi-scale structure and oil adsorption characteristics was not clear. This study compared the role of multi-scale structure of porous starch (PS) prepared by normal and waxy maize starch in the oil adsorption. Waxy maize porous starch exhibited higher oil adsorption capacity (32.43 %-98.71 %) and more oil distributed on the surface of granules than normal maize porous starch, resulting from the more pores, larger specific surface area (1.01-1.53 m2/g), and pore size (8.45-9.32 nm). The enzymolysis time of native starch dominated oil distribution, leading to different granule adhesion and aggregation state. Pearson correlation analysis further showed oil adsorption capacity was negatively correlated with particle size, but positively correlated with enzymolysis rate and specific surface area of PS. The formation of powdered oil was mainly through the physical adsorption, including surface adsorption and pore adsorption. These findings could provide a promising route for the preparation of powdered oil with controlled multi-scale structure of PS.
Collapse
Affiliation(s)
- Miao Shao
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Songnan Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Sixin Huang
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shahid Ahmed Junejo
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yi Jiang
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Bin Zhang
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qiang Huang
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
22
|
Boualis H, Wu X, Wang B, Li Q, Liu M, Zhang L, Lyu M, Wang S. Dextranase Production Using Marine Microbacterium sp. XD05 and Its Application. Mar Drugs 2023; 21:528. [PMID: 37888463 PMCID: PMC10607964 DOI: 10.3390/md21100528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023] Open
Abstract
Dextranase, also known as glucanase, is a hydrolase enzyme that cleaves α-1,6 glycosidic bonds. In this study, a dextranase-producing strain was isolated from water samples of the Qingdao Sea and identified as Microbacterium sp. This strain was further evaluated for growth conditions, enzyme-producing conditions, enzymatic properties, and hydrolysates. Yeast extract and sodium chloride were found to be the most suitable carbon and nitrogen sources for strain growth, while sucrose and ammonium sodium were found to be suitable carbon and nitrogen sources for fermentation. The optimal pH was 7.5, with a culture temperature of 40 °C and a culture time of 48 h. Dextranase produced by strain XD05 showed good thermal stability at 40 °C by retaining more than 70% relative enzyme activity. The pH stability of the enzyme was better under a weak alkaline condition (pH 6.0-8.0). The addition of NH4+ increased dextranase activity, while Co2+ and Mn2+ had slight inhibitory effects on dextranase activity. In addition, high-performance liquid chromatography showed that dextran is mainly hydrolyzed to maltoheptanose, maltohexanose, maltopentose, and maltootriose. Moreover, it can form corn porous starch. Dextranase can be used in various fields, such as food, medicine, chemical industry, cosmetics, and agriculture.
Collapse
Affiliation(s)
- Hind Boualis
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (H.B.); (X.W.); (B.W.); (Q.L.); (M.L.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xudong Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (H.B.); (X.W.); (B.W.); (Q.L.); (M.L.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Boyan Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (H.B.); (X.W.); (B.W.); (Q.L.); (M.L.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Qiang Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (H.B.); (X.W.); (B.W.); (Q.L.); (M.L.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mingwang Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (H.B.); (X.W.); (B.W.); (Q.L.); (M.L.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Lei Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (H.B.); (X.W.); (B.W.); (Q.L.); (M.L.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (H.B.); (X.W.); (B.W.); (Q.L.); (M.L.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (H.B.); (X.W.); (B.W.); (Q.L.); (M.L.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
23
|
Fashi A, Delavar AF, Zamani A, Noshiranzadeh N, Mohammadi M. Solid state cationization reaction of microporous starch with betaine hydrochloride under repeated heating/cooling cycles: Design of a green approach for corn starch modification. Int J Biol Macromol 2023; 248:125968. [PMID: 37494994 DOI: 10.1016/j.ijbiomac.2023.125968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/15/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023]
Abstract
In this research, the cationization process of microporous starch with betaine hydrochloride (BHC) in the presence of H3PO4 (as a catalyst) under heating/cooling cycles was reported for the first time. Granular microporous starch was initially prepared from normal corn starch (NS) through amyloglucosidase treatment. Then, solid state cationization reaction of microporous starch (MS) with betaine hydrochloride (BHC) was performed under repeated dry-heat modification. The cationic microporous starch showed higher substitution degree (0.031) and reaction efficiency (89.1 %) in comparison with cationic starch based on NS (0.021, 60.3 %), which this can be attributed to the increased probability of effective collision between BHC molecules and starch granules after enzymatic treatment. The analysis of cationic starches by FTIR and 13C NMR confirmed the presence of cationic functional groups on starch chains. Further examinations on the modified starches by single and dual treatments were accomplished with respect to morphology, particle size distribution, X-ray powder diffraction (XRD), colour parameters, zeta potential, amylose content, viscosity, solubility, and swelling power. The greenness of the suggested dual treatment (score: 82) in this work was evaluated and compared to a conventional method reported in literature (score: 67) on the preparation of cationic starches.
Collapse
Affiliation(s)
- Armin Fashi
- Department of Environmental Science, University of Zanjan, Postal Code 45371-38791 Zanjan, Iran; Research and Development Department, Glucosan Company, Alborz Industrial City, Qazvin, Iran.
| | - Ali Fallah Delavar
- Research and Development Department, Glucosan Company, Alborz Industrial City, Qazvin, Iran
| | - Abbasali Zamani
- Department of Environmental Science, University of Zanjan, Postal Code 45371-38791 Zanjan, Iran.
| | | | - Maryam Mohammadi
- Food and Agricultural Products Research Group, Food Technology and Agricultural Products Research Center, Standard Research Institute, Karaj, Iran
| |
Collapse
|
24
|
Zhang L, Zhong L, Wang P, Zhan L, Yangzong Y, He T, Liu Y, Mao D, Ye X, Cui Z, Huang Y, Li Z. Structural and Functional Properties of Porous Corn Starch Obtained by Treating Raw Starch with AmyM. Foods 2023; 12:3157. [PMID: 37685090 PMCID: PMC10486553 DOI: 10.3390/foods12173157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Porous starch is attracting considerable attention for its high surface area and shielding ability, properties which are useful in many food applications. In this study, native corn starch with 15, 25, and 45% degrees of hydrolysis (DH-15, DH-25, and DH-45) were prepared using a special raw starch-digesting amylase, AmyM, and their structural and functional properties were evaluated. DH-15, DH-25, and DH-45 exhibited porous surface morphologies, diverse pore size distributions and pore areas, and their adsorptive capacities were significantly enhanced by improved molecular interactions. Structural measures showed that the relative crystallinity decreased as the DH increased, while the depolymerization of starch double helix chains promoted interactions involving disordered chains, followed by chain rearrangement and the formation of sub-microcrystalline structures. In addition, DH-15, DH-25, and DH-45 displayed lower hydrolysis rates, and DH-45 showed a decreased C∞ value of 18.9% with higher resistant starch (RS) content and lower glucose release. Our results indicate that AmyM-mediated hydrolysis is an efficient pathway for the preparation of porous starches with different functionalities which can be used for a range of applications.
Collapse
|
25
|
Compart J, Singh A, Fettke J, Apriyanto A. Customizing Starch Properties: A Review of Starch Modifications and Their Applications. Polymers (Basel) 2023; 15:3491. [PMID: 37631548 PMCID: PMC10459083 DOI: 10.3390/polym15163491] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
Starch has been a convenient, economically important polymer with substantial applications in the food and processing industry. However, native starches present restricted applications, which hinder their industrial usage. Therefore, modification of starch is carried out to augment the positive characteristics and eliminate the limitations of the native starches. Modifications of starch can result in generating novel polymers with numerous functional and value-added properties that suit the needs of the industry. Here, we summarize the possible starch modifications in planta and outside the plant system (physical, chemical, and enzymatic) and their corresponding applications. In addition, this review will highlight the implications of each starch property adjustment.
Collapse
Affiliation(s)
| | | | - Joerg Fettke
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, Golm, 14476 Potsdam, Germany; (J.C.); (A.S.); (A.A.)
| | | |
Collapse
|
26
|
He R, Li S, Zhao G, Zhai L, Qin P, Yang L. Starch Modification with Molecular Transformation, Physicochemical Characteristics, and Industrial Usability: A State-of-the-Art Review. Polymers (Basel) 2023; 15:2935. [PMID: 37447580 DOI: 10.3390/polym15132935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Starch is a readily available and abundant source of biological raw materials and is widely used in the food, medical, and textile industries. However, native starch with insufficient functionality limits its utilization in the above applications; therefore, it is modified through various physical, chemical, enzymatic, genetic and multiple modifications. This review summarized the relationship between structural changes and functional properties of starch subjected to different modified methods, including hydrothermal treatment, microwave, pre-gelatinization, ball milling, ultrasonication, radiation, high hydrostatic pressure, supercritical CO2, oxidation, etherification, esterification, acid hydrolysis, enzymatic modification, genetic modification, and their combined modifications. A better understanding of these features has the potential to lead to starch-based products with targeted structures and optimized properties for specific applications.
Collapse
Affiliation(s)
- Ruidi He
- School of Food Engineering, Anhui Science and Technology University, 9 Donghua Road, Fengyang 233100, China
| | - Songnan Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, China
| | - Gongqi Zhao
- School of Food Engineering, Anhui Science and Technology University, 9 Donghua Road, Fengyang 233100, China
| | - Ligong Zhai
- School of Food Engineering, Anhui Science and Technology University, 9 Donghua Road, Fengyang 233100, China
| | - Peng Qin
- School of Food Engineering, Anhui Science and Technology University, 9 Donghua Road, Fengyang 233100, China
| | - Liping Yang
- School of Food Engineering, Anhui Science and Technology University, 9 Donghua Road, Fengyang 233100, China
| |
Collapse
|
27
|
Jorge FF, Edith CC, Eduardo RS, Jairo SM, Héctor CV. Hydrothermal processes and simultaneous enzymatic hydrolysis in the production of modified cassava starches with porous-surfaces. Heliyon 2023; 9:e17742. [PMID: 37539223 PMCID: PMC10395141 DOI: 10.1016/j.heliyon.2023.e17742] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 08/05/2023] Open
Abstract
The amylolytic action of α-amylase and amyloglucosidase has been directly implemented in native cassava starches for the formation of cassava microporous granules with unsatisfactory results, however, its incidence in hydrothermally treated granules has never been evaluated. The effect of hydrothermal processes and simultaneous enzymatic hydrolysis on the physicochemical, morphological and structural properties of native cassava starch was evaluated. Native cassava starch presented a rigid, smooth surface, and was exempt from porosities, whereas hydrothermal processes altered the semicrystalline order and increasing the size and number of pores and increasing the size (4.11 ± 0.09 nm) and volume of pores (0.82 ± 0.00 cm3/g × 10-3). The hydrothermal action followed by enzymatic processes with α-amylase and amyloglucosidase, augmented the processes of internal degradation (endo-erosion) and pore widening (exo-erosion), improving the hydrophilic properties compared to the hydrothermal treatment. Likewise, the hydrothermally process followed by enzymatic hydrolysis for 24 h (HPS + EMS-24) increased the degradation of the amorphous lamellae, consistent with a significant decrease in amylose content. This same dual treatment increased the pore size at 17.68 ± 0.13 nm relative to the native counterpart; therefore, they are considered an effective method in the development of modified cassava starches with porous surfaces.
Collapse
|
28
|
Abedi E, Savadkoohi S, Banasaz S. The effect of thiolation process with l-cysteine on amylolysis efficiency of starch-cysteine conjugate by α-amylase. Food Chem 2023; 410:135261. [PMID: 36610093 DOI: 10.1016/j.foodchem.2022.135261] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/29/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
l-Cysteine (l-Cys) pre-treatment at two concentrations (150 mg/kg; PC1 and 300 mg/kg; PC2) on potato starch was conducted to produce starch-cysteine conjugates. Afterward, the effect of α-amylase on starch digestibility of potato native (PE) and starch-cysteine conjugates (PC1E and PC2E) were examined. Thiolation not only damaged starch according to the formation of pore and blister-like spots on the surface of starch granules, but also provided the functional group to immobilize α-amylase. Starch-cysteine conjugates showed a significantly greater degree of hydrolysis 24.1 % (PC1E) and 36.5 % (PC2E) in comparison with (16.8 %; PE). Destroying the granules integrity were accompanied with decreased crystallinity from 37.7 % to 33.1 % (PC1), 31.1 % (PC2), 27.6 % (PC1E) and 22.4 % (PC2E) with increasing thiol content (%) on surface from 2.3 %; PC1 to 3.4 %; PC2. The ratio of 1047/1022 cm- 1 reduced from 1.112 (native potato starch) to 0.974 (PC1E) and 0.867 (PC2E) after being subjected to α-amylase. Additionally, substantially low pasting viscosities (determined by RVA) along with the thermal properties (determined by DSC) of starch-cysteine conjugates treated with α-amylase could confirm the degradation of molecular structures containing low swelling power.
Collapse
Affiliation(s)
- Elahe Abedi
- Department of Food Science and Technology, Faculty of Agriculture, Fasa University, Fasa, Iran.
| | - Sobhan Savadkoohi
- Department of Food Science and Technology, Hela Spice Australia, Melbourne, Victoria, Australia
| | - Shahin Banasaz
- Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), UR370 Qualit́e des Produits Animaux, F-63122 Saint-Genès-Champanelle, France.
| |
Collapse
|
29
|
Fashi A, Fallah Delavar A, Zamani A, Noshiranzadeh N. Solid state malic acid esterification on fungal α-amylase treated corn starch: Design of a green dual treatment. Food Chem 2023; 410:135439. [PMID: 36641912 DOI: 10.1016/j.foodchem.2023.135439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/25/2022] [Accepted: 01/07/2023] [Indexed: 01/13/2023]
Abstract
For the first time, the current work applied fungal α-amylase treated corn starch in granular form to produce solid state malate-esterified starch (MES). The pores and channels created on the granules after the enzymatic modification could provide more possibilities for malic acid to esterify the starch, resulting in the increase of substitution degree (0.084) and reaction efficiency (86.6%) compared to NS. Based on the obtained results, the dual treatment significantly increased solubility, amylose content, and syneresis, but reduced transparency, viscosity, digestibility rate, and swelling power compared to those of NS. The occurrence of esterification onto starch chains was confirmed by FT-IR at 1720 cm-1. Other techniques including SEM, XRD, and DSC were employed to examine changes in the structure of starch granules after applying each treatment. Also, the greenness of the combined modification (score: 77) was proved by using a new methodology named Eco-Scale.
Collapse
Affiliation(s)
- Armin Fashi
- Environmental Science Research Laboratory, Department of Environmental Science, Faculty of Science, University of Zanjan, Postal Code 45371-38791, Zanjan, Iran; Research and Development Department, Glucosan Company, Alborz Industrial City, Qazvin, Iran.
| | - Ali Fallah Delavar
- Research and Development Department, Glucosan Company, Alborz Industrial City, Qazvin, Iran
| | - Abbasali Zamani
- Environmental Science Research Laboratory, Department of Environmental Science, Faculty of Science, University of Zanjan, Postal Code 45371-38791, Zanjan, Iran.
| | - Nader Noshiranzadeh
- Department of Chemistry, Faculty of Sciences, University of Zanjan, Zanjan, Iran
| |
Collapse
|
30
|
Yaowiwat N, Madmusa N, Yimsuwan K. Potential of Thai aromatic fruit (Artocarpus species) seed as an alternative natural starch for compact powder. Int J Biol Macromol 2023; 242:124940. [PMID: 37210058 DOI: 10.1016/j.ijbiomac.2023.124940] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
This study aims to extract the starch from seeds of the Thai aromatic fruit (Artocarpus species), champedak (Artocarpus integer) and jackfruit (Artocarpus heterophyllus L.) and evaluate its potential use as a raw material to develop compact powder as substitute for talcum in powder formulations. The chemical and physical characteristics as well as the physicochemical properties of the starch were also determined. Moreover, compact powder formulations using the extracted starch as an ingredient were developed and investigated. This study found that champedak (CS) and jackfruit starch (JS) provided a maximum average granule size of 10 μm. The bell or semi-oval shape and smooth surface of the starch granules was perfectly suited to compact powder development under the cosmetic powder pressing machine, which could reduce the opportunity of fracture during the process. CS and JS presented low swelling power and solubility but high water and oil absorption capacities, which could potentially increase the absorbency of the compact powder. Finally, the developed compact powder formulations provided a smooth surface with a homogeneous and intense colour. All formulations presented a highly adhesive property and were resistant to transport and normal handling by users.
Collapse
Affiliation(s)
- Nara Yaowiwat
- School of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand.
| | - Natacha Madmusa
- School of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Kittreevara Yimsuwan
- School of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| |
Collapse
|
31
|
Utilization of Indonesian root and tuber starches for glucose production by cold enzymatic hydrolysis. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-023-01364-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
32
|
Wu A, Fang Z, Qin J, Huang Z, Wu Z. Characterization and adsorption-release property of fermented porous starch as well as its bioactivity protection for guava leaf polyphenols. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
33
|
Davoudi Z, Azizi MH, Barzegar M. Porous corn starch obtained from combined cold plasma and enzymatic hydrolysis: Microstructure and physicochemical properties. Int J Biol Macromol 2022; 223:790-797. [PMID: 36370859 DOI: 10.1016/j.ijbiomac.2022.11.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/10/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
The combined effect of cold plasma treatment and enzymatic hydrolysis was investigated on the physicochemical and microstructural properties of porous corn starch. Scanning electron microscopy (SEM) images depicted that the combined treatment led to the creation of deeper pores on the surface of starch granules. The combined treatment indicated the highest swelling power (19.49 g/g), solubility (10.08 %), specific surface area (2.97 m2/g) and total pore volume (10.47 cm3/g). According to the X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC), the combined treatment, compared with the enzymatic hydrolysis, decreased the starch crystallinity, the order of the double-helix structure, and the starch gelatinization enthalpy. The rapid visco analyzer (RVA) pasting profile revealed that the combined treatment elevated the breakdown and setback viscosities. This study indicated that cold plasma pretreatment, as a green non-thermal technology, facilitated the performance of enzymes, resulting in the production of a porous starch with a higher absorption capacity.
Collapse
Affiliation(s)
- Zahra Davoudi
- Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| | - Mohammad Hossein Azizi
- Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| | - Mohsen Barzegar
- Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
34
|
Piloni RV, Bordón MG, Barrera GN, Martínez ML, Ribotta PD. Porous Microparticles of Corn Starch as Bio-Carriers for Chia Oil. Foods 2022; 11:4022. [PMID: 36553764 PMCID: PMC9778643 DOI: 10.3390/foods11244022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/25/2022] [Accepted: 12/09/2022] [Indexed: 12/16/2022] Open
Abstract
Native corn starch and pretreated corn starch were treated with α-amylase, glucoamylase and mixtures of both to generate starches with high porosity with conserved granular structure. Porous starches were characterized; particle size distribution analysis, nitrogen adsorption-desorption analysis, scanning electron microscopy, water and oil adsorption capacity, differential scanning calorimeter, X-ray diffraction and damaged starch techniques were used. The α-amylase/glucoamylase mixture at the highest dose was the best treatment to generate porous starches with interesting adsorption capacity and granular structure conservation. Selected starches were impregnated with chia oil using a vacuum. Pretreated corn starch modified with the α-amylase/glucoamylase mixture showed no significant differences on impregnation capacity compared with native starch with a similar enzyme treatment. The highest oxidative stability was achieved with pretreated porous starch impregnated with 10 to 25% chia oil, compared with the bulk oil (5.37 to 4.72 and 2.58 h, respectively). Results have demonstrated that vacuum impregnation could be a potential technique for the incorporation of oil in porous structures based on starch and porous starches obtained by enzymatic hydrolysis are a promising material for the incorporation and protection of oils susceptible to oxidation.
Collapse
Affiliation(s)
- Roxana V. Piloni
- Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC-CONICET), Juan Filloy S/N, Córdoba X5000HUA, Argentina
| | - M. Gabriela Bordón
- Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC-CONICET), Juan Filloy S/N, Córdoba X5000HUA, Argentina
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA-FCEFyN), Universidad Nacional de Córdoba (UNC), Av. Vélez Sarsfield 1611, Córdoba X5016GCA, Argentina
| | - Gabriela N. Barrera
- Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC-CONICET), Juan Filloy S/N, Córdoba X5000HUA, Argentina
| | - Marcela L. Martínez
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA-FCEFyN), Universidad Nacional de Córdoba (UNC), Av. Vélez Sarsfield 1611, Córdoba X5016GCA, Argentina
- Departamento de Química Industrial y Aplicada, Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN), Universidad Nacional de Córdoba (UNC), Av. Vélez Sarsfield 1611, Córdoba X5016GCA, Argentina
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Av. Vélez Sarsfield 1611, Córdoba X5016GCA, Argentina
| | - Pablo D. Ribotta
- Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC-CONICET), Juan Filloy S/N, Córdoba X5000HUA, Argentina
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA-FCEFyN), Universidad Nacional de Córdoba (UNC), Av. Vélez Sarsfield 1611, Córdoba X5016GCA, Argentina
- Departamento de Química Industrial y Aplicada, Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN), Universidad Nacional de Córdoba (UNC), Av. Vélez Sarsfield 1611, Córdoba X5016GCA, Argentina
| |
Collapse
|
35
|
Miao WB, Wu ZW, Jiang JH, Li YJ, Qin Z, Liu HM, Cai XS, Wang XD. The physicochemical properties of starches isolated from defatted tigernut meals: Effect of extrusion pretreatment. Carbohydr Polym 2022; 298:120152. [DOI: 10.1016/j.carbpol.2022.120152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/06/2022] [Accepted: 09/21/2022] [Indexed: 11/02/2022]
|
36
|
Characterization and comparative study on structural and physicochemical properties of buckwheat starch from 12 varieties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Cornejo F, Maldonado-Alvarado P, Palacios-Ponce S, Hugo D, Rosell CM. Impact of Cassava Starch Varieties on the Physiochemical Change during Enzymatic Hydrolysis. Molecules 2022; 27:6098. [PMID: 36144827 PMCID: PMC9500954 DOI: 10.3390/molecules27186098] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
The enzymatic modification of starch extends its industrial use to flavor delivery and probiotic encapsulants, among other uses. However, it is not known how starch from different cassava varieties responds to enzymatic hydrolysis. Starches from two Ecuadorian cassava varieties (INIAP 650, an edible starch, and INIAP 651, an industrial starch) were partially modified at three enzymatic hydrolysis degrees (0%, 30%, and 50%), and their physicochemical properties were assessed. The structural analysis revealed that both varieties showed progressive structural damage as hydrolysis increases, probably due to exo-hydrolysis. However, deeper pores were observed in INIAP 651 with the SEM analysis. The crystallinity percentage obtained by XRD analyses remained constant in INIAP 651 and decreased (by 26%) in INIAP 650 (p < 0.05). In addition, the amylose−lipid complex index in INIAP 650 remained constant, while INIAP 651 increased (p < 0.05) at 30% hydrolysis (by 93%). In both varieties, hydrolysis increased (p < 0.05) the water holding capacity (WHC) (by 10−14%) and the water binding capacity (WBC) (by 16%), but 50% hydrolysis of INIAP 650 was needed to significantly affect these properties. No differences were observed in the varieties’ thermal properties. Regarding the rheological properties, the variety did not influence the changes in the storage module (G′) and the loss modulus (G″) with the hydrolysis (p > 0.05). However, the phase angle decreased significantly (p < 0.05) with the hydrolysis, being higher in the INIAP 650 variety than in the INIAP 651 variety. In general, the results indicate that the variety affects the response of the starch granule to enzymatic hydrolysis (noticeable in the principal component analysis, PCA) and opens up the possibility to modulate starch properties.
Collapse
Affiliation(s)
- Fabiola Cornejo
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Guayaquil P.O. Box 09-01-5863, Ecuador
| | - Pedro Maldonado-Alvarado
- Department of Food Science and Biotechnology, Escuela Politécnica Nacional, Quito P.O.·Box 17-01-2759, Ecuador
| | - Sócrates Palacios-Ponce
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Guayaquil P.O. Box 09-01-5863, Ecuador
| | - David Hugo
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Guayaquil P.O. Box 09-01-5863, Ecuador
| | - Cristina M. Rosell
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Instituto de Agroquimica y Tecnologia de Alimentos (IATA-CSIC), 46980 Valencia, Spain
| |
Collapse
|
38
|
Gasparre N, Garzon R, Santamaría M, Rosell CM. Rapid test to record the impact of bakery additives on starch gelatinization: Amylases, hydrocolloids and emulsifiers. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
39
|
Alonso-Miravalles L, Zannini E, Bez J, Arendt EK, O'Mahony JA. Formation and thermal and colloidal stability of oil-in-water emulsions stabilized using quinoa and lentil protein blends. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5077-5085. [PMID: 33745134 DOI: 10.1002/jsfa.11219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/27/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The amino acid composition, and rheological, thermal and colloidal stability of plant protein-based oil-in-water emulsion systems containing 1.90, 3.50 and 7.70 g 100 mL-1 protein, fat and carbohydrate, respectively, using quinoa and lentil protein ratios of 100:0 and 60:40 were investigated. The emulsion containing lentil protein showed lower initial, peak and final viscosity values (22.7, 61.7 and 61.6 mPa s, respectively) than the emulsion formulated with quinoa protein alone (34.3, 102 and 80.0 mPa s, respectively) on heat treatment. RESULTS Particle size analysis showed that both samples had small particle sizes (~1.36 μm) after homogenization; however, the sample with 60:40 quinoa:lentil protein ratio showed greater physical stability, likely related to the superior emulsifying properties of lentil protein. However, upon heat treatment, large aggregates (~100 μm) were formed in both samples, reducing the physical stability of the samples. This physical stability was increased with the addition of 0.20% sodium dodecyl sulfate (SDS), whereas it was negatively affected by the addition of α-amylase. Addition of α-amylase led to lower viscosity for both emulsion samples, with measured values of 41.8 and 46.0 mPa s for the 100:0 and 60:40 samples, respectively. This suggests that the heat-induced increases in particle size were partially due to hydrophobic interactions between the proteins as SDS disrupts hydrophobic bonds between proteins. CONCLUSION These results demonstrated that using a mixture of lentil and quinoa proteins positively affected the physical stability of plant protein-based emulsions, in addition to contributing to a more nutritionally complete amino acid profile - both important considerations in the development of plant-based beverages. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Emanuele Zannini
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Juergen Bez
- Fraunhofer Institute for Process Engineering and Packaging, Freising, Germany
| | - Elke K Arendt
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - James A O'Mahony
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| |
Collapse
|
40
|
Effects of Enzymatic Modification and Cross-Linking with Sodium Phytate on the Structure and Physicochemical Properties of Cyperus esculentus Starch. Foods 2022; 11:foods11172583. [PMID: 36076768 PMCID: PMC9455607 DOI: 10.3390/foods11172583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
In this study, C. esculentus porous starch (PS) and C. esculentus cross-linked porous starch (CPS) were prepared by enzymatic modification and sodium phytate cross-linking, and their physicochemical and structural properties were determined. The results showed that the adsorption and emulsification capacities of PS were 1.3606 g/g and 22.6 mL/g, respectively, which were significantly higher than 0.5419 g/g and 4.2 mL/g of C. esculentus starch (NS). The retrogradation curves of starch paste showed that the stability of PS was inferior to that of NS. In addition, the results of texture analysis showed that the gel strength of PS was also significantly reduced relative to NS. The PS exhibited a rough surface with pores and low molecular order and crystallinity according to scanning electron microscope (SEM), fourier infrared spectroscopy (FTIR), and X ray diffractometer (XRD) analyses. As compared to PS, CPS still presented a high adsorption capacity of 1.2744 g/g and the steadiness of starch paste was significantly better. XPS demonstrated the occurrence of the cross-linking reaction. Our results show that enzyme modification and dual modification by combining enzymatic treatment with sodium phytate cross-linking can impart different structures and functions to starch, creating reference material for the application of modified starch from C. esculentus.
Collapse
|
41
|
Effect of Physical and Enzymatic Modifications on Composition, Properties and In Vitro Starch Digestibility of Sacred Lotus ( Nelumbo nucifera) Seed Flour. Foods 2022; 11:foods11162473. [PMID: 36010474 PMCID: PMC9407196 DOI: 10.3390/foods11162473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/03/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
In this study, native lotus seed flour (N-LSF) was modified by different methods, namely, partial gelatinization (PG), heat−moisture treatment (HMT), or pullulanase treatment (EP). Their composition, functional properties, starch composition, and estimated glycemic index (eGI) were compared. PG contained similar protein, soluble dietary fiber, and insoluble dietary fiber contents to N-LSF, while those of HMT and EP differed from their native form. PG increased rapid digestible starch (RDS) but decreased resistant starch (RS); while HMT and EP increased amylose and RS contents to 34.57−39.23% and 86.99−92.52% total starch, respectively. Such differences led to the different pasting properties of the modified flours rather than PG, which was comparable to the native flour. HMT had limited pasting properties, while EP gave the highest viscosities upon pasting. The eGI of all samples could be classified as low (<50), except that of PG, which was in the medium range (60). It was plausible that lotus seed flour modified either with HMT or EP could be used as carbohydrate source for diabetes patients or health-conscious people.
Collapse
|
42
|
Wu W, Zhang X, Qu J, Xu R, Liu N, Zhu C, Li H, Liu X, Zhong Y, Guo D. The effects of fermentation of Qu on the digestibility and structure of waxy maize starch. FRONTIERS IN PLANT SCIENCE 2022; 13:984795. [PMID: 36051290 PMCID: PMC9424902 DOI: 10.3389/fpls.2022.984795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
The fermentation of Qu (FQ) could efficiently produce enzymatically modified starch at a low cost. However, it is poorly understood that how FQ influences the waxy maize starch (WMS) structure and the digestion behavior. In this study, WMS was fermented by Qu at different time and starches were isolated at each time point, and its physico-chemical properties and structural parameters were determined. Results showed that the resistant starch (RS), amylose content (AC), the average particle size [D(4,3)] the ratio of peaks at 1,022/995 cm-1, and the onset temperature of gelatinization (T o ) were increased significantly after 36 h. Conversely, the crystallinity, the values of peak viscosity (PV), breakdown (BD), gelatinization enthalpy (ΔH), and the phase transition temperature range (ΔT) were declined significantly after 36 h. It is noteworthy that smaller starch granules were appeared at 36 h, with wrinkles on the surface, and the particle size distribution was also changed from one sharp peak to bimodal. We suggested that the formation of smaller rearranged starch granules was the main reason for the pronounced increase of RS during the FQ process.
Collapse
Affiliation(s)
- Wenhao Wu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, China
| | - Xudong Zhang
- Institute of Crop Science, Quality of Plant Products, University of Hohenheim, Stuttgart, Germany
| | - Jianzhou Qu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, China
| | - Renyuan Xu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, China
| | - Na Liu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, China
| | - Chuanhao Zhu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, China
| | - Huanhuan Li
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, China
| | - Xingxun Liu
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Yuyue Zhong
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Dongwei Guo
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, China
| |
Collapse
|
43
|
Enzymatically modified quinoa starch-based Pickering emulsion: Effect of enzymolysis and emulsifying conditions. Int J Biol Macromol 2022; 219:824-834. [PMID: 35963347 DOI: 10.1016/j.ijbiomac.2022.08.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/16/2022] [Accepted: 08/07/2022] [Indexed: 11/20/2022]
Abstract
Both the effects of enzymolysis condition on the microstructures and emulsifying property of enzymatic modified quinoa starch (EMQS) and the effects of emulsion formulation on the EMQS based emulsions were investigated. The emulsifying capacity (EC) and stability (ES) of EMQS were positive correlated with enzyme amount (0-2.4 % w/wstarch). The particle sizes of EMQS decreased and its hydrophobicity increased with increasing enzyme amount (0-2.4 % w/wstarch), which were the main reasons for the increasing emulsifying performance of EMQS. With the increasing starch concentration, the EC of the EMQS increased, the oil droplet size of the emulsion decreased. With the oil/water ratios ranging from 1:9 to 6:4, the emulsification index (EI) and oil droplet size of the emulsion increased. EMQS based emulsion had a relatively good stability in the pH range of 2-10. This study lays the foundation for the application of EMQS as a stable clean-label Pickering emulsifier.
Collapse
|
44
|
Abedi E, Sayadi M, Pourmohammadi K. Effect of freezing-thawing pre-treatment on enzymatic modification of corn and potato starch treated with activated α-amylase: Investigation of functional properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
45
|
Li J, Kong X, Ai Y. Modification of granular waxy, normal and high-amylose maize starches by maltogenic α-amylase to improve functionality. Carbohydr Polym 2022; 290:119503. [DOI: 10.1016/j.carbpol.2022.119503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/19/2022] [Accepted: 04/14/2022] [Indexed: 11/25/2022]
|
46
|
Sathyan S, Nisha P. Optimization and Characterization of Porous Starch from Corn Starch and Application Studies in Emulsion Stabilization. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02843-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Mondal D, Awana M, Aggarwal S, Das D, Thomas B, Singh S, Satyavathi C T, Sundaram RM, Anand A, Singh A, Sachdev A, Praveen S, Krishnan V. Microstructure, matrix interactions, and molecular structure are the key determinants of inherent glycemic potential in pearl millet (Pennisetum glaucum). Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
48
|
Effects of maltogenic α-amylase treatment on the proportion of slowly digestible starch and the structural properties of pea starch. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Padierna-Vanegas D, Acosta-Pavas JC, Granados-García LM, Botero-Castro HA. Modeling Based Identifiability and Parametric Estimation of an Enzymatic Hydrolysis Process of Amylaceous Materials. ACS OMEGA 2022; 7:14544-14555. [PMID: 35557667 PMCID: PMC9088767 DOI: 10.1021/acsomega.1c06193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/21/2022] [Indexed: 06/15/2023]
Abstract
This work presents the modeling of an enzymatic hydrolysis process of amylaceous materials considering the parameter identification problem as a basis for the construction of the model. For this, a modeling methodology is modified in order to apply the identifiability property and improve the proposed model structure. A brief theoretical explanation of the identifiability is described. This concept is based on the observability property of a nonlinear dynamic system. The used methodology is based on the phenomenological based semiphysical model (PBSM). This methodology visualizes that the structure of a dynamic model can only improve with new mass or energy balances suggested by model suppositions. Additionally, a computer algorithm is included in the methodology to validate if the model is structurally locally identifiable or know if the parameters are unidentifiable. Also, an optimization algorithm is used to obtain the numeric values of the identifiable parameters and, hence, guarantee the validity of the result. The methodology focuses on the liquefaction and saccharification stages of an enzymatic hydrolysis process. The results of the model are compared with experimental data. The comparison shows low errors of 7.96% for liquefaction and 7.35% for saccharification. These errors show a significant improvement in comparison with previous models and validate the proposed modeling methodology.
Collapse
Affiliation(s)
- Daniel Padierna-Vanegas
- Departamento
de Energía Eléctrica y Automática, Facultad de
Minas, Universidad Nacional de Colombia, Medellín 050034, Colombia
- KALMAN,
Grupo de investigación en Procesos Dinámicos, Universidad Nacional de Colombia, Medellín 050034, Colombia
| | - Juan Camilo Acosta-Pavas
- Departamento
de Procesos y Energía, Facultad de Minas, Universidad Nacional de Colombia, Medellín 050034, Colombia
- BIOFRUN,
Grupo de investigación Bioprocesos y Flujos Reactivos, Universidad Nacional de Colombia, Medellín 050034, Colombia
| | - Laura María Granados-García
- Departamento
de Energía Eléctrica y Automática, Facultad de
Minas, Universidad Nacional de Colombia, Medellín 050034, Colombia
| | - Héctor Antonio Botero-Castro
- KALMAN,
Grupo de investigación en Procesos Dinámicos, Universidad Nacional de Colombia, Medellín 050034, Colombia
| |
Collapse
|
50
|
Zhong Y, Xu J, Liu X, Ding L, Svensson B, Herburger K, Guo K, Pang C, Blennow A. Recent advances in enzyme biotechnology on modifying gelatinized and granular starch. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|