1
|
Bhargavi PK, Banerjee R, Md R, Maheswarappa NB, Verma AK, Govindaiah PM, Lalthanmawii J. Sustainable gelatin extraction from poultry skin-head-feet blend: An ultrasound-assisted approach. Poult Sci 2025; 104:104975. [PMID: 40073686 PMCID: PMC11946505 DOI: 10.1016/j.psj.2025.104975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/24/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025] Open
Abstract
The study investigated gelatin extraction from chicken skin-head-feet (SHF) blend using conventional and ultrasound-assisted methods with food-grade acetic and citric acids. Ultrasound pretreatment was introduced as an intervention in the extraction process, eliminating the need for alkali hydrolysis and significantly reducing the processing time. The gelatin yield, gel clarity, textural parameters, and functional properties were noticeably improved with ultrasound pretreatment. Higher (p< 0.05) solubility was observed in ultrasound-treated gelatin relative to traditionally extracted gelatin at different pH levels. Fourier Transform Infrared (FTIR) spectra revealed characteristic bands corresponding to Amide A, B, I, II, and III. Ultrasonication enhanced α-helical structure by reorganizing protein conformations and stabilizing α-helix regions. The rheological properties, gel strength, and viscosity significantly (p< 0.05) increased with ultrasound-assisted extraction. The SDS-PAGE profile of gelatin was compared with the commercial pork skin gelatin and found to possess two distinct α-chains (α1 and α2) and β chain. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry revealed the presence of collagen α1 and α2 chains as major components. This sustainable approach transformed poultry waste into a valuable resource, fostering the recovery of gelatin with improved functional attributes.
Collapse
Affiliation(s)
- Priya K Bhargavi
- Meat Proteomics Lab, ICAR-National Meat Research Institute, Chengicherla, Hyderabad, Telangana 500092, India; Department of Livestock Products Technology, COVAS, Udgir, Maharashtra, 413517, India
| | - Rituparna Banerjee
- Meat Proteomics Lab, ICAR-National Meat Research Institute, Chengicherla, Hyderabad, Telangana 500092, India.
| | - Raziuddin Md
- Department of Livestock Products Technology, COVAS, Udgir, Maharashtra, 413517, India
| | - Naveena B Maheswarappa
- Meat Proteomics Lab, ICAR-National Meat Research Institute, Chengicherla, Hyderabad, Telangana 500092, India
| | - Arun K Verma
- GPT Lab, ICAR-CIRG, Makhdoom, Farah, Uttar Pradesh 281122, India
| | - Prasad M Govindaiah
- Meat Proteomics Lab, ICAR-National Meat Research Institute, Chengicherla, Hyderabad, Telangana 500092, India
| | - Judy Lalthanmawii
- Meat Proteomics Lab, ICAR-National Meat Research Institute, Chengicherla, Hyderabad, Telangana 500092, India
| |
Collapse
|
2
|
Khan S, Rehman A, Badshah SF, Shazly GA, Metouekel A, Dabiellil F. Fabrication and in vitro evaluation of pH/thermo dual responsive hydrogels as controlled ibuprofen sodium in situ depot. Des Monomers Polym 2024; 28:1-15. [PMID: 39777299 PMCID: PMC11703540 DOI: 10.1080/15685551.2024.2442118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Ibuprofen sodium (IBP) is a commonly used NSAID for multiple pain conditions. However, despite its extensive use, it is associated with multiple GIT adverse effects after oral administration. In the present study, we have fabricated thermoresponsive gel depot using Poly (N-vinylcaprolactam) and sodium alginate as polymers. The designed formulations are intended to be used as IBP depot after being administered subcutaneously. The sol-gel phase transition temperature and gelation time of gel samples were optimized by tube inversion, rheological exploration and optical transmittances. Temperature sweep experiments confirmed that optimized gel samples have sol-gel transition between 32°C and 37°C. Swelling and in vitro drug release displayed that optimized gels have maximum swelling and IBP release at pH 7.4 and at 35°C confirming their pH/thermo sensitivity. The degradation profile of hydrogels displayed controlled degradation for 6 days that with increasing contents. MTT assay showed L929 cells displayed more than 90% cell viability against blank and IBP-loaded PNVCL/NaAlg hydrogels at optimized concentrations. Fourier transform infrared spectroscopy confirmed the polymer blend hydrogels structure formation. Thermogravimetric analysis confirmed the presence of thermoresponsive moieties and thermal stability of polymer blend hydrogel sample. While scanning electron microscopy showed that hydrogel has channels in structure that might facilitate the diffusion of solvent. Results concluded that PNVCL/NaAlg hydrogels can be utilized as IBP sustained depot following subcutaneous application invivo and GIT adverse effects could be avoided associated with its oral administration.
Collapse
Affiliation(s)
- Samiullah Khan
- College of Pharmacy, Margalla Institute of Health Sciences, Islamabad, Pakistan
| | - Abdur Rehman
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Syed Faisal Badshah
- Department of Pharmacy, Faculty of Medical and Health Sciences, University of Poonch Rawalakot, Azad Jammu and Kasmir, Pakistan
| | - Gamal A. Shazly
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Amira Metouekel
- University of Technology of Compiègne, Compiègne Cedex, France
| | | |
Collapse
|
3
|
Fu K, Wang H, Pan T, Cai Z, Yang Z, Liu D, Wang W. Gel-forming polysaccharides of traditional gel-like foods: Sources, structure, gelling mechanism, and advanced applications. Food Res Int 2024; 198:115329. [PMID: 39643365 DOI: 10.1016/j.foodres.2024.115329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/24/2024] [Accepted: 11/07/2024] [Indexed: 12/09/2024]
Abstract
Gels are intermediates between solid and liquid with elastic and flowable characteristics whose three-dimensional networks can restrict water, air, and oil. They have extensive applications in modern times in biomedical engineering, electronics, environmental engineering, etc. However, gels have also been made as foods from ancient times for over a thousand years, such as pudding, tofu, and cheese. Among them, protein-based gel-like foods have continuously garnered significant attention and research. In contrast, some polysaccharide-based gel-like foods in southeast Asia, such as "liangfen", "green tofu", "ice jelly", "tamarind jelly", "konjac tofu", and "black grass jelly", have not been noticed until recent years regarding their compositions and gelling mechanisms. This review commences on six traditional gel-like foods mentioned above, which refer to six different types of plants and four kinds of gel-forming polysaccharides, including pectin, tamarind seed xyloglucan, konjac glucomannan, and Mesona chinensis polysaccharide. Recent progress and developments of these gel-forming polysaccharides on different gelling mechanisms are summarized. Due to differences in corresponding gel properties, these polysaccharides are applied in various fields, such as delivery systems, tissue engineering, wound dressings, and adsorbent materials. Future trends of these gels would potentially focus on manipulating the mechanical properties by modifying the flexibility of polysaccharide molecules and designing composite gels, as well as producing stimuli-responsive hydrogels and other desirable aspects to catch up with the properties of synthetic counterparts.
Collapse
Affiliation(s)
- Kai Fu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Hao Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Tiange Pan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Zhixiang Cai
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | | | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Wenjun Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China.
| |
Collapse
|
4
|
Rosales TKO, da Silva FFA, Bernardes ES, Paulo Fabi J. Plant-derived polyphenolic compounds: nanodelivery through polysaccharide-based systems to improve the biological properties. Crit Rev Food Sci Nutr 2024; 64:11894-11918. [PMID: 37585699 DOI: 10.1080/10408398.2023.2245038] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Plant-derived polyphenols are naturally occurring compounds widely distributed in plants. They have received greater attention in the food and pharmaceutical industries due to their potential health benefits, reducing the risk of some chronic diseases due to their antioxidant, anti-inflammatory, anticancer, cardioprotective, and neuro-action properties. Polyphenolic compounds orally administered can be used as adjuvants in several treatments but with restricted uses due to chemical instability. The review discusses the different structural compositions of polyphenols and their influence on chemical stability. Despite the potential and wide applications, there is a need to improve the delivery of polyphenolics to target the human intestine without massive chemical modifications. Oral administration of polyphenols is unfeasible due to instability, low bioaccessibility, and limited bioavailability. Nano-delivery systems based on polysaccharides (starch, pectin, chitosan, and cellulose) have been identified as a viable option for oral ingestion, potentiate biological effects, and direct-controlled delivery in specific tissues. The time and dose can be individualized for specific diseases, such as intestinal cancer. This review will address the mechanisms by which polysaccharides-based nanostructured systems can protect against degradation and enhance intestinal permeation, oral bioavailability, and the potential application of polysaccharides as nanocarriers for the controlled and targeted delivery of polyphenolic compounds.
Collapse
Affiliation(s)
- Thiécla Katiane Osvaldt Rosales
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Instituto de Pesquisa Energéticas e Nucleares - IPEN, São Paulo, SP, Brazil
| | | | | | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, SP, Brazil
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
5
|
Guo Z, Han J, Li Z, Sun Y, Chen R, Rehman SU, Xia H, Zhang J, Ma K, Wang J. Borate bioactive glass enhances 3D bioprinting precision and biocompatibility on a sodium alginate platform via Ca 2+ controlled self-solidification. Int J Biol Macromol 2024; 277:134338. [PMID: 39089539 DOI: 10.1016/j.ijbiomac.2024.134338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 07/10/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Sodium alginate (SA) has gained widespread acclaim as a carrier medium for three-dimensional (3D) bioprinting of cells and a diverse array of bioactive substances, attributed to its remarkable biocompatibility and affordability. The conventional approach for fabricating alginate-based tissue engineering constructs entails a post-treatment phase employing a calcium ion solution. However, this method proves ineffectual in addressing the predicament of low precision during the 3D printing procedure and is unable to prevent issues such as non-uniform alginate gelation and substantial distortions. In this study, we introduced borate bioactive glass (BBG) into the SA matrix, capitalizing on the calcium ions released from the degradation of BBG to incite the cross-linking reaction within SA, resulting in the formation of BBG-SA hydrogels. Building upon this fundamental concept, it unveiled that BBG-SA hydrogels greatly enhance the precision of SA in extrusion-based 3D printing and significantly reduce volumetric contraction shrinkage post-printing, while also displaying certain adhesive properties and electrical conductivity. Furthermore, in vitro cellular experiments have unequivocally established the excellent biocompatibility of BBG-SA hydrogel and its capacity to actively stimulate osteogenic differentiation. Consequently, BBG-SA hydrogel emerges as a promising platform for 3D bioprinting, laying the foundation for the development of flexible, biocompatible electronic devices.
Collapse
Affiliation(s)
- Zeyong Guo
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, PR China; University of Science and Technology of China, Hefei 230036, Anhui, PR China
| | - Jian Han
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, PR China; University of Science and Technology of China, Hefei 230036, Anhui, PR China
| | - Zehua Li
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, PR China; University of Science and Technology of China, Hefei 230036, Anhui, PR China
| | - Yuxuan Sun
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, Anhui, PR China
| | - Ruiguo Chen
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, PR China
| | - Sajid Ur Rehman
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, PR China
| | - Haining Xia
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, PR China; University of Science and Technology of China, Hefei 230036, Anhui, PR China
| | - Jing Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, PR China; University of Science and Technology of China, Hefei 230036, Anhui, PR China
| | - Kun Ma
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, PR China.
| | - Junfeng Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, PR China; University of Science and Technology of China, Hefei 230036, Anhui, PR China; Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, PR China.
| |
Collapse
|
6
|
Mîrț AL, Ficai D, Oprea OC, Vasilievici G, Ficai A. Current and Future Perspectives of Bioactive Glasses as Injectable Material. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1196. [PMID: 39057873 PMCID: PMC11280465 DOI: 10.3390/nano14141196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
This review covers recent compositions of bioactive glass, with a specific emphasis on both inorganic and organic materials commonly utilized as matrices for injectable materials. The major objective is to highlight the predominant bioactive glass formulations and their clinical applications in the biomedical field. Previous studies have highlighted the growing interest among researchers in bioactive glasses, acknowledging their potential to yield promising outcomes in this field. As a result of this increased interest, investigations into bioactive glass have prompted the creation of composite materials and, notably, the development of injectable composites as a minimally invasive method for administering the material within the human body. Injectable materials have emerged as a promising avenue to mitigate various challenges. They offer several advantages, including minimizing invasive surgical procedures, reducing patient discomfort, lowering the risk of postoperative infection and decreasing treatment expenses. Additionally, injectable materials facilitate uniform distribution, allowing for the filling of defects of any shape.
Collapse
Affiliation(s)
- Andreea-Luiza Mîrț
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Gh. Polizu 1–7, 011061 Bucharest, Romania;
- National Center for Scientific Research for Food Safety, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (D.F.); (O.-C.O.)
- National Center for Micro and Nanomaterials, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania;
| | - Denisa Ficai
- National Center for Scientific Research for Food Safety, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (D.F.); (O.-C.O.)
- National Center for Micro and Nanomaterials, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Gh. Polizu 1–7, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Ovidiu-Cristian Oprea
- National Center for Scientific Research for Food Safety, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (D.F.); (O.-C.O.)
- National Center for Micro and Nanomaterials, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Gh. Polizu 1–7, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Gabriel Vasilievici
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania;
| | - Anton Ficai
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Gh. Polizu 1–7, 011061 Bucharest, Romania;
- National Center for Scientific Research for Food Safety, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (D.F.); (O.-C.O.)
- National Center for Micro and Nanomaterials, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| |
Collapse
|
7
|
Güner Yılmaz Ö, Yılmaz A, Bozoglu S, Karatepe N, Batirel S, Sahin A, Güner FS. Single-Walled (Magnetic) Carbon Nanotubes in a Pectin Matrix in the Design of an Allantoin Delivery System. ACS OMEGA 2024; 9:10069-10079. [PMID: 38463283 PMCID: PMC10918663 DOI: 10.1021/acsomega.3c03619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 03/12/2024]
Abstract
Single-walled carbon nanotubes (SWCNTs) outperform other materials due to their high conductivity, large specific surface area, and chemical resistance. They have numerous biomedical applications, including the magnetization of the SWCNT (mSWCNT). The drug loading and release properties of see-through pectin hydrogels doped with SWCNTs and mSWCNTs were evaluated in this study. The active molecule in the hydrogel structure is allantoin, and calcium chloride serves as a cross-linker. In addition to mixing, absorption, and swelling techniques, drug loading into carbon nanotubes was also been studied. To characterize the films, differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), Fourier transform infrared (FTIR) spectroscopy, surface contact angle measurements, and opacity analysis were carried out. Apart from these, a rheological analysis was also carried out to examine the flow properties of the hydrogels. The study was also expanded to include N-(9-fluorenyl methoxycarbonyl)glycine-coated SWCNTs and mSWCNTs as additives to evaluate the efficiency of the drug-loading approach. Although the CNT additive was used at a 1:1000 weight ratio, it had a significant impact on the hydrogel properties. This effect, which was first observed in the thermal properties, was confirmed in rheological analyses by increasing solution viscosity. Additionally, rheological analysis and drug release profiles show that the type of additive causes a change in the matrix structure. According to TGA findings, even though SWCNTs and mSWCNTs were not coated more than 5%, the coating had a significant effect on drug release control. In addition to all findings, cell viability tests revealed that hydrogels with various additives could be used for visual wound monitoring, hyperthermia treatment, and allantoin release in wound treatment applications.
Collapse
Affiliation(s)
- Ö.
Zeynep Güner Yılmaz
- Department
of Chemical Engineering, Istanbul Technical
University, Maslak, Istanbul 34469, Turkey
| | - Anıl Yılmaz
- Department
of Chemical Engineering, Istanbul Technical
University, Maslak, Istanbul 34469, Turkey
| | - Serdar Bozoglu
- Energy
Institute, Renewable Energy Division, Istanbul
Technical University, Maslak, Istanbul 34469, Turkey
| | - Nilgun Karatepe
- Energy
Institute, Renewable Energy Division, Istanbul
Technical University, Maslak, Istanbul 34469, Turkey
| | - Saime Batirel
- Department
of Biochemistry, Faculty of Medicine, Marmara
University, Istanbul 34854, Turkey
| | - Ali Sahin
- Department
of Biochemistry, Faculty of Medicine, Marmara
University, Istanbul 34854, Turkey
- Genetic
and Metabolic Diseases Research Center (GEMHAM), Marmara University, Istanbul 34854, Turkey
| | - Fatma Seniha Güner
- Department
of Chemical Engineering, Istanbul Technical
University, Maslak, Istanbul 34469, Turkey
- Sabancı
University Nanotechnology Research and Application Center (SUNUM), Sabancı University, Istanbul 34956, Turkey
| |
Collapse
|
8
|
Lin Q, Si Y, Zhou F, Hao W, Zhang P, Jiang P, Cha R. Advances in polysaccharides for probiotic delivery: Properties, methods, and applications. Carbohydr Polym 2024; 323:121414. [PMID: 37940247 DOI: 10.1016/j.carbpol.2023.121414] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/06/2023] [Accepted: 09/16/2023] [Indexed: 11/10/2023]
Abstract
Probiotics are essential to improve the health of the host, whereas maintaining the viability of probiotics in harsh environments remains a challenge. Polysaccharides have non-toxicity, excellent biocompatibility, and outstanding biodegradability, which can protect probiotics by forming a physical barrier and show a promising prospect for probiotic delivery. In this review, we summarize polysaccharides commonly used for probiotic microencapsulation and introduce the microencapsulation technologies, including extrusion, emulsion, spray drying, freeze drying, and electrohydrodynamics. We discuss strategies for better protection of probiotics and introduce the applications of polysaccharides-encapsulated probiotics in functional food, oral formulation, and animal feed. Finally, we propose the challenges of polysaccharides-based delivery systems in industrial production and application. This review will help provide insight into the advances and challenges of polysaccharides in probiotic delivery.
Collapse
Affiliation(s)
- Qianqian Lin
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China; Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, PR China.
| | - Yanxue Si
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Fengshan Zhou
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Wenshuai Hao
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Pai Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Peng Jiang
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, PR China; College of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Ruitao Cha
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, PR China.
| |
Collapse
|
9
|
Wang SY, Tohti M, Zhang JQ, Li J, Li DQ. Acylhydrazone-derived whole pectin-based hydrogel as an injectable drug delivery system. Int J Biol Macromol 2023; 251:126276. [PMID: 37582429 DOI: 10.1016/j.ijbiomac.2023.126276] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 07/19/2023] [Accepted: 08/09/2023] [Indexed: 08/17/2023]
Abstract
Injectable hydrogel-based drug delivery systems have attracted more and more attention due to their sustained-release performance, biocompatibility, and 3D network. The present study showed whole pectin-based hydrogel as an injectable drug delivery system, which was developed from oxidized pectin (OP) and diacylhydrazine adipate-functionalized pectin (Pec-ADH) via acylhydrazone linkage. The as-prepared hydrogels were characterized by 1H NMR, FT-IR, and SEM techniques. The equilibrium swelling ratio of obtained hydrogel (i.e., sample gel 5) was up to 4306.65 % in the distilled water, which was higher than that in PBS with different pH values. Increasing the pH of the swelling media, the swelling ratio of all hydrogels decreased significantly. The results that involved the swelling properties indicated the salt- and pH-responsiveness of the as-prepared hydrogels. The drug release study presented that 5-FU can be persistently released for more than 12 h without sudden release. Moreover, the whole pectin-based hydrogel presented high cytocompatibility toward L929 cell lines, and the drug delivery system showed a high inhibitory effect on MCF-7 cell lines. All these results manifested that the acylhydrazone-derived whole pectin-based hydrogel was an excellent candidate for injectable drug delivery systems.
Collapse
Affiliation(s)
- Shu-Ya Wang
- Xinjiang Key Laboratory of Agricultural Chemistry and Biomaterials, College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, People's Republic of China; School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, People's Republic of China
| | - Maryamgul Tohti
- Xinjiang Key Laboratory of Agricultural Chemistry and Biomaterials, College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, People's Republic of China
| | - Jia-Qi Zhang
- Xinjiang Key Laboratory of Agricultural Chemistry and Biomaterials, College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, People's Republic of China
| | - Jun Li
- Xinjiang Key Laboratory of Agricultural Chemistry and Biomaterials, College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, People's Republic of China
| | - De-Qiang Li
- Xinjiang Key Laboratory of Agricultural Chemistry and Biomaterials, College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, People's Republic of China.
| |
Collapse
|
10
|
Wang J, Zhao C, Zhao S, Lu X, Ma M, Zheng J. Gelling properties of lysine-amidated citrus pectins: The key role of pH in both amidation and gelation. Carbohydr Polym 2023; 317:121087. [PMID: 37364957 DOI: 10.1016/j.carbpol.2023.121087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/08/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
The amidation of pectin by amino acids has been widely applied due to its safety and excellent gelling properties. This study systematically examined the effects of pH on the gelling properties of lysine-amidated pectin during amidation and gelation. Pectin was amidated over the range of pH 4-10, and the amidated pectin obtained at pH 10 showed the highest degree of amidation (DA, 27.0 %) due to the de-esterification, electrostatic attraction, and the stretching state of pectin. Moreover, it also exhibited the best gelling properties due to its greater numbers of calcium-binding regions (carboxyl groups) and hydrogen bond donors (amide groups). During gelation, the gel strength of CP (Lys 10) at pH 3-10 first increased and then decreased, with the highest gel strength at pH 8, which was due to the deprotonation of carboxyl groups, protonation of amino groups, and β-elimination. These results show that pH plays a key role in both amidation and gelation, with distinct mechanisms, and would provide a basis for the preparation of amidated pectins with excellent gelling properties. This will facilitate their application in the food industry.
Collapse
Affiliation(s)
- Jirong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chengying Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shaojie Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Xingmiao Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mengyu Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
11
|
Biswas A, Das B, Pal P, Ghosh A, Chattopadhyay N. Proton‐Conducting Hierarchical Composite Hydrogels Producing First Soft Memcapacitors with Switchable Memory. ADVANCED FUNCTIONAL MATERIALS 2023; 33. [DOI: 10.1002/adfm.202307618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Indexed: 01/06/2025]
Abstract
AbstractPerpetual exigency for environment friendly clean energy and powerful soft electronics has elevated the research on hydrogels in past two decades. Hydrogels are the amplifiers of material properties using manipulation in structure–property relationship via simple, economic yet effective routes. Herein, a set of composite and hybrid hydrogels are developed by hierarchical assembling of clay nanosheets and surfactant micelles those divulge the first example of memcapacitor gels and offer exceptional proton conductivity (1.66–4.34 × 10–2 S cm−1) as a gel material. Further, Congo red, Eosin Y, and Orange G are used to hybridize one of the composites to achieve three hybrid hydrogels. Such hybridization is found to regulate the memristive function selectively from the coupled effect of memcapacitance from the composite. The composite hydrogel highlights its volatile memory with encouraging robustness under environmental conditions, established through various current–voltage (I–V) experiments. The electrochemical behaviors including the high proton conductivity are realized from impedance measurements. Material characterizations, experimental results, and in silico optimized structures rationalize composite/hybrid network formation, capacitive/memristive responses, and enhanced proton conduction in the fabricated composite superstructures. Proposed structural models demonstrate two orthogonally oriented structural encryptions to be accountable for the expressed bifunctionality in the hierarchically designed superstructures.
Collapse
Affiliation(s)
- Arnab Biswas
- Department of Chemistry Jadavpur University Jadavpur Kolkata WB 700 032 India
| | - Bikash Das
- School of Physical Sciences Indian Association for the Cultivation of Science Jadavpur Kolkata WB 700 032 India
| | - Pulak Pal
- School of Physical Sciences Indian Association for the Cultivation of Science Jadavpur Kolkata WB 700 032 India
| | - Aswini Ghosh
- School of Physical Sciences Indian Association for the Cultivation of Science Jadavpur Kolkata WB 700 032 India
| | - Nitin Chattopadhyay
- Department of Chemistry Jadavpur University Jadavpur Kolkata WB 700 032 India
| |
Collapse
|
12
|
Santamaría E, Anjinho de Barros L, González C, Maestro A. Rheological Study of the Formation of Pullulan Hydrogels and Their Use as Carvacrol-Loaded Nanoemulsion Delivery Systems. Gels 2023; 9:644. [PMID: 37623099 PMCID: PMC10453457 DOI: 10.3390/gels9080644] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023] Open
Abstract
Hydrogels have been extensively studied as delivery systems for lipophilic compounds. Pullulan hydrogels were prepared, and their gelation kinetics were studied over time. Pullulan exhibited a relatively slow gelling reaction in basic medium (KOH) using trisodium metaphosphate (STMP) as a cross-linking agent, so capsules cannot be obtained by dripping as easily as in the case of alginate and chitosan. The kinetics of pullulan gelation were studied through rheological analysis over time. An optimal [Pullulan]/[KOH] ratio was found for a fixed [Pullulan]/[STMP] ratio. For this given relationship, gelling time measurements indicated that when the concentration of pullulan increased, the gelation time decreased from 60 min for 6% w/w pullulan to 10 min for 10% w/w. After the gel point, a hardening of the hydrogel was observed over the next 5 h. The formed hydrogels presented high degrees of swelling (up to 1800%). Freeze-dried gels were capable of being rehydrated, obtaining gels with rheological characteristics and visual appearance similar to fresh gels, which makes them ideal to be freeze-dried for storage and rehydrated when needed. The behavior of the hydrogels obtained as active ingredient release systems was studied. In this case, the chosen molecule was carvacrol (the main component of oregano oil). As carvacrol is hydrophobic, it was incorporated into the droplets of an oil-in-water nanoemulsion, and the nanoemulsion was incorporated into the hydrogel. The release of the oil was studied at different pHs. It was observed that as the pH increased (from pH 2 to pH 7), the released amount of carvacrol for the gel with pullulan 10% w/w reached 100%; for the other cases, the cumulative release amount was lower. It was attributed to two opposite phenomena in the porous structure of the hydrogel, where more porosity implied a faster release of carvacrol but also a higher degree of swelling that promoted a higher entry of water flow in the opposite direction. This flow of water prevented the active principle from spreading to the release medium.
Collapse
Affiliation(s)
- Esther Santamaría
- Chemical Engineering and Analytical Chemistry Department, Faculty of Chemistry, Universitat de Barcelona Marti i Franques, 1, 08028 Barcelona, Spain; (L.A.d.B.); (C.G.); (A.M.)
| | | | | | | |
Collapse
|
13
|
Paiboon N, Surassmo S, Rungsardthong Ruktanonchai U, Kappl M, Soottitantawat A. Internal gelation of alginate microparticle prepared by emulsification and microfluidic method: Effect of Ca-EDTA as a calcium source. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
14
|
Lučić M, Potkonjak N, Sredović Ignjatović I, Lević S, Dajić-Stevanović Z, Kolašinac S, Belović M, Torbica A, Zlatanović I, Pavlović V, Onjia A. Influence of Ultrasonic and Chemical Pretreatments on Quality Attributes of Dried Pepper ( Capsicum annuum). Foods 2023; 12:2468. [PMID: 37444206 DOI: 10.3390/foods12132468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
This study investigates the effects of ultrasound, in combination with chemical pretreatments, on the quality attributes (total phenolic and carotenoid content, antioxidant activity (2,2-Diphenyl-1-picrylhydrazyl assay (DPPH)), ferric-reducing ability (FRAP), CIE L* a* b* color, non-enzymatic browning, rehydration ratio, textural and morphological properties) of red pepper subjected to drying (hot air drying or freeze drying). The fractional factorial design was used to assess the impact of factors. The global Derringer desirability function was used to determine the optimal conditions for the best quality attributes of dried pepper. The drying method influenced total phenolic content, a* (redness), and initial rehydration ratio; pretreatment time significantly affected FRAP antiradical activity, a*, chroma and non-browning index, while pH-value had a significant effect on the texture of dried pepper. Non-enzymatic browning was reduced to 72.6%, while the DPPH antioxidant capacity of freeze-dried peppers was enhanced from 4.2% to 71.9%. Ultrasonic pretreatment led to changes in the pepper morphology, while potassium metabisulfite (KMS) was a more effective additive than citric acid.
Collapse
Affiliation(s)
- Milica Lučić
- Innovation Center of the Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Nebojša Potkonjak
- Vinča Institute of Nuclear Sciences-National Institute of Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, Vinča, 11351 Belgrade, Serbia
| | | | - Steva Lević
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | | | - Stefan Kolašinac
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Miona Belović
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Aleksandra Torbica
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Ivan Zlatanović
- Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11120 Belgrade, Serbia
| | - Vladimir Pavlović
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Antonije Onjia
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
| |
Collapse
|
15
|
Feng S, Yi J, Ma Y, Bi J. The role of amide groups in the mechanism of acid-induced pectin gelation: A potential pH-sensitive hydrogel based on hydrogen bond interactions. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
16
|
Teshima R, Osawa S, Kawano Y, Hanawa T, Kikuchi A, Otsuka H. Physicochemical Properties of Egg-Box-Mediated Hydrogels with Transiently Decreased pH Employing Carbonated Water. ACS OMEGA 2023; 8:7800-7807. [PMID: 36872983 PMCID: PMC9979317 DOI: 10.1021/acsomega.2c07552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Anionic polysaccharides, including low-methoxy (LM) pectin, are extensively used in biomaterial applications owing to their safety, biocompatibility, and feasibility in constructing supramolecular assemblies by forming egg-box structures with divalent cations. Mixing an LM pectin solution with CaCO3 spontaneously forms a hydrogel. The gelation behavior can be controlled by adding an acidic compound to change the solubility of CaCO3. CO2 is used as the acidic agent and can be easily removed after gelation, thereby reducing the acidity of the final hydrogel. However, CO2 addition has been controlled under varied thermodynamical conditions; therefore, specific CO2 effects on gelation are not necessarily visualized. To evaluate the CO2 impact on the final hydrogel, which would be extended to control hydrogel properties further, we utilized carbonated water to supply CO2 into the gelation mixture without changing its thermodynamic conditions. The addition of the carbonated water accelerated gelation and significantly increased the mechanical strength, promoting cross-linking. However, the CO2 volatilized into the atmosphere, and the final hydrogel became more alkaline than that without the carbonated water, probably because a considerable amount of the carboxy group was consumed for cross-linking. Moreover, when aerogels were prepared from the hydrogels with carbonated water, they exhibited highly ordered networks of elongated porosity in scanning electron microscopy, proposing an intrinsic structural change by CO2 in the carbonated water. We also controlled the pH and strength of the final hydrogels by changing the CO2 amounts in the carbonated water added, thereby validating the significant effect of CO2 on hydrogel properties and the feasibility of using carbonated water.
Collapse
Affiliation(s)
- Ryota Teshima
- Department
of Chemistry, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | - Shigehito Osawa
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
- Water
Frontier Research Center (WaTUS), Research Institute for Science and
Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | - Yayoi Kawano
- Department
of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Takehisa Hanawa
- Department
of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Akihiko Kikuchi
- Department
of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan
| | - Hidenori Otsuka
- Department
of Chemistry, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
- Water
Frontier Research Center (WaTUS), Research Institute for Science and
Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| |
Collapse
|
17
|
Morello G, De Iaco G, Gigli G, Polini A, Gervaso F. Chitosan and Pectin Hydrogels for Tissue Engineering and In Vitro Modeling. Gels 2023; 9:132. [PMID: 36826302 PMCID: PMC9957157 DOI: 10.3390/gels9020132] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Hydrogels are fascinating biomaterials that can act as a support for cells, i.e., a scaffold, in which they can organize themselves spatially in a similar way to what occurs in vivo. Hydrogel use is therefore essential for the development of 3D systems and allows to recreate the cellular microenvironment in physiological and pathological conditions. This makes them ideal candidates for biological tissue analogues for application in the field of both tissue engineering and 3D in vitro models, as they have the ability to closely mimic the extracellular matrix (ECM) of a specific organ or tissue. Polysaccharide-based hydrogels, because of their remarkable biocompatibility related to their polymeric constituents, have the ability to interact beneficially with the cellular components. Although the growing interest in the use of polysaccharide-based hydrogels in the biomedical field is evidenced by a conspicuous number of reviews on the topic, none of them have focused on the combined use of two important polysaccharides, chitosan and pectin. Therefore, the present review will discuss the biomedical applications of polysaccharide-based hydrogels containing the two aforementioned natural polymers, chitosan and pectin, in the fields of tissue engineering and 3D in vitro modeling.
Collapse
Affiliation(s)
- Giulia Morello
- Dipartimento di Matematica e Fisica E. De Giorgi, University of Salento, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| | - Gianvito De Iaco
- CNR NANOTEC—Institute of Nanotechnology, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| | - Giuseppe Gigli
- Dipartimento di Matematica e Fisica E. De Giorgi, University of Salento, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
- CNR NANOTEC—Institute of Nanotechnology, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| | - Alessandro Polini
- CNR NANOTEC—Institute of Nanotechnology, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| | - Francesca Gervaso
- CNR NANOTEC—Institute of Nanotechnology, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
18
|
Zhang Y, Xu J, Tang C, Li Y. Crystallization Behavior and Physical Properties of Monoglycerides-Based Oleogels as Function of Oleogelator Concentration. Foods 2023; 12:foods12020345. [PMID: 36673437 PMCID: PMC9857595 DOI: 10.3390/foods12020345] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Oleogels have been shown as a promising replacer of hydrogenated vegetable oil. Fatty acid glycerides, including some typical mono- and di-glycerides, were used to form oleogels. The concentration effects of fatty acid glycerides on the crystallization behavior and physical properties of oleogels were investigated by using different analysis techniques. The results showed that all the oleogels formed by saturated fatty acid glycerides (glyceryl monostearate (GMS), glyceryl monolaurate (GML), glycerol monocaprylate (GMC)) exhibited a solid-like behavior and were thermally reversible systems, while a higher amount of unsaturated fatty acid glycerides (monoolein (GMO), diolein (GDO)) were needed to form oleogels. The onset gelation concentration of GMS and GMC was found to be 2 wt% (w/w), while that of GML was 4 wt% by the inverted tube method. The crystallization results illustrated that the GMS and GMC formed small needle-like crystals with the presence of β and β' crystals, while GML formed large flake-like crystals with α crystals in oleogels, and faster cooling rates caused smaller crystals. GMS- and GMC-based oleogels had higher crystallinity, resulting in higher thermal stability and better mechanical properties than GML-based ones at the same monoglyceride (MAG) level. With the increasing MAG content, the oleogels showed a more compact three-dimensional network leading to higher mechanical properties and better thermal stability and resistance to deformations. Hence, MAG-based oleogels, especially GMC ones with medium chain fatty acid, could be a promising replacer for hydrogenation vegetable oils.
Collapse
Affiliation(s)
- Yingzhu Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinqi Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Cuie Tang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Yan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
- Functional Food Engineering & Technology Research Center of Hubei Province, Wuhan 430070, China
- Correspondence: ; Tel./Fax: +86-27-8728-2111
| |
Collapse
|
19
|
Merli M, Sardelli L, Baranzini N, Grimaldi A, Jacchetti E, Raimondi MT, Briatico-Vangosa F, Petrini P, Tunesi M. Pectin-based bioinks for 3D models of neural tissue produced by a pH-controlled kinetics. Front Bioeng Biotechnol 2022; 10:1032542. [PMID: 36619394 PMCID: PMC9815771 DOI: 10.3389/fbioe.2022.1032542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction: In the view of 3D-bioprinting with cell models representative of neural cells, we produced inks to mimic the basic viscoelastic properties of brain tissue. Moving from the concept that rheology provides useful information to predict ink printability, this study improves and expands the potential of the previously published 3D-reactive printing approach by introducing pH as a key parameter to be controlled, together with printing time. Methods: The viscoelastic properties, printability, and microstructure of pectin gels crosslinked with CaCO3 were investigated and their composition was optimized (i.e., by including cell culture medium, HEPES buffer, and collagen). Different cell models representative of the major brain cell populations (i.e., neurons, astrocytes, microglial cells, and oligodendrocytes) were considered. Results and Discussion: The outcomes of this study propose a highly controllable method to optimize the printability of internally crosslinked polysaccharides, without the need for additives or post-printing treatments. By introducing pH as a further parameter to be controlled, it is possible to have multiple (pH-dependent) crosslinking kinetics, without varying hydrogel composition. In addition, the results indicate that not only cells survive and proliferate following 3D-bioprinting, but they can also interact and reorganize hydrogel microstructure. Taken together, the results suggest that pectin-based hydrogels could be successfully applied for neural cell culture.
Collapse
Affiliation(s)
- Marta Merli
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy
| | - Lorenzo Sardelli
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy
| | - Nicolò Baranzini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Emanuela Jacchetti
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy
| | - Manuela Teresa Raimondi
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy
| | - Francesco Briatico-Vangosa
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy
| | - Paola Petrini
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy
| | - Marta Tunesi
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy
| |
Collapse
|
20
|
Tran Vo TM, Kobayashi T, Potiyaraj P. Viscoelastic Analysis of Pectin Hydrogels Regenerated from Citrus Pomelo Waste by Gelling Effects of Calcium Ion Crosslinking at Different pHs. Gels 2022; 8:814. [PMID: 36547338 PMCID: PMC9777872 DOI: 10.3390/gels8120814] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Pectin was extracted from citrus pomelo waste, and the effects of calcium ions (Ca2+) on the gelation and hydrogels properties were investigated over a pH range of 3.2-8 by using viscoelastic analysis. The gelatinization of Ca2+-pectin was examined at concentrations of 0.9, 1.8, 2.4, and 3.6 M of Ca2+ in aqueous pectin solutions of 1%, 2%, 3%, and 4%. The gel transition of Ca2+-pectin solution to hydrogels was determined by measuring the storage modulus (G') and loss modulus (G") under mechanical strain from 0.01 to 100%. In a hydrogel of 3% pectin at Ca2+ = 2.4 M, as pH increased to 7, the G' at 0.01 strain % was 3 × 104 Pa, and 3 × 103 Pa at pH 5, indicating that the crosslinking weakened at acidic pH. Due to the crosslinking between the calcium ions and the ionized carboxylic acid groups of pectin, the resulting hydrogel became stiff. When the mechanical strain % was in the range of 0.01-1%, G' was unchanged and G" was an order of magnitude smaller than G', indicating that the mechanical stress was relieved by the gel. In the range of 1-100%, the gel deformation progressed and both the moduli values were dropped. Collapse from the gel state to the solution state occurred at 1-10 strain %, but the softer hydrogels with G' of 103 Pa had a larger strain % than the stiffer hydrogels with G' of 104 Pa.
Collapse
Affiliation(s)
- Tu Minh Tran Vo
- Department of Energy and Environmental Science, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka 940-2188, Niigata, Japan
- Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Takaomi Kobayashi
- Department of Energy and Environmental Science, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka 940-2188, Niigata, Japan
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka 940-2188, Niigata, Japan
| | - Pranut Potiyaraj
- Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
21
|
Rysenaer VBJ, Ahmadzadeh S, Van Bockstaele F, Ubeyitogullari A. An extrusion-based 3D food printing approach for generating alginate-pectin particles. Curr Res Food Sci 2022; 6:100404. [PMID: 36506111 PMCID: PMC9732126 DOI: 10.1016/j.crfs.2022.11.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
In the present study, alginate-pectin (Al-P) hydrogel particles containing varied total gum concentrations (TGC) at a constant Al:P ratio of 80:20 were formed utilizing an innovative extrusion-based 3D food printing (3DFOODP) approach. The 3DFOODP conditions, namely, TGC (1.8, 2.0, and 2.2 wt%) and nozzle size (0.108, 0.159, and 0.210 mm) were investigated. The 3DFOODP approach was compared with the conventional bead formation method via a peristaltic pump. All Al-P printing inks exhibited a shear-thinning behavior. The increased apparent viscosity, loss and storage moduli were associated with the increase in the TGC. The size of the wet 3D-printed Al-P hydrogel particles ranged between 1.27 and 1.59 mm, which was smaller than that produced using the conventional method (1.44-1.79 mm). Freeze-dried Al-P particles showed a porous structure with reduced crystallinity. No chemical interaction was observed between alginate and pectin. This is the first report on generating Al-P-based beads using a 3DFOODP technique that can create delivery systems with high precision and flexibility.
Collapse
Affiliation(s)
- Valentine Barbara J. Rysenaer
- Department of Food Science, University of Arkansas, Fayetteville, AR, 72704, USA,Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Safoura Ahmadzadeh
- Department of Food Science, University of Arkansas, Fayetteville, AR, 72704, USA
| | - Filip Van Bockstaele
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Ali Ubeyitogullari
- Department of Food Science, University of Arkansas, Fayetteville, AR, 72704, USA,Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, 72701, USA,Corresponding author. N205, 2650 N. Young Ave., Fayetteville, AR, 72704.
| |
Collapse
|
22
|
Hu Z, Cheng J, Xu S, Cheng X, Zhao J, Kenny Low ZW, Chee PL, Lu Z, Zheng L, Kai D. PVA/pectin composite hydrogels inducing osteogenesis for bone regeneration. Mater Today Bio 2022; 16:100431. [PMID: 36186849 PMCID: PMC9519593 DOI: 10.1016/j.mtbio.2022.100431] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/31/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022]
Abstract
Hydrogels composed from biomolecules have gained great interests as biomaterials for tissue engineering. However, their poor mechanical properties limit their application potential. Here, we synthesized a series of tough composite hydrogels from poly (vinyl alcohol) (PVA) and pectin for bone tissue engineering. With a balance of scaffold stiffness and pore size, PVA-Pec-10 hydrogel enhanced adhesion and proliferation of osteoblasts. The hydrogel significantly promoted osteogenesis in vitro by improving the alkaline phosphates (ALP) activity and calcium biomineralization, as well as upregulating the expressions of osteoblastic genes. The composite hydrogel also accelerated the bone healing process in vivo after transplantation into the femoral defect. Additionally, our study demonstrated that pectin and its Ca2+ crosslinking network play a crucial role of inducing osteogenesis through regulating the Ca2+/CaMKII and BMP-SMAD1/5 signaling. The optimized structure composition and multifunctional properties make PVA-Pec hydrogel highly promising to serve as a candidate for bone tissue regeneration. Recoverable PVA-Pec hydrogel is prepared by the freezing-thawing process. PVA-Pec-10 hydrogel display well attachment and osteogenesis capacity. PVA-Pecl-10 hydrogel enhanced osteogenesis by Ca2+/CaMKII and BMP-SMAD1/5 signaling.
Collapse
Affiliation(s)
- Ziwei Hu
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Research Center for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Jianwen Cheng
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Research Center for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Sheng Xu
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Research Center for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China
| | - Xiaojing Cheng
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Research Center for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Life Science Institute, Guangxi Medical University, Nanning, 530021, China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Research Center for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Zhi Wei Kenny Low
- Institute of Materials Research and Engineering (IMRE), A∗STAR, 2 Fusionopolis Way, #08-03 Innovis, 138634, Singapore
| | - Pei Lin Chee
- Institute of Materials Research and Engineering (IMRE), A∗STAR, 2 Fusionopolis Way, #08-03 Innovis, 138634, Singapore
| | - Zhenhui Lu
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Research Center for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Research Center for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Dan Kai
- Institute of Materials Research and Engineering (IMRE), A∗STAR, 2 Fusionopolis Way, #08-03 Innovis, 138634, Singapore.,Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), A∗STAR, 2 Fusionopolis Way, Innovis, #08-03, 138634, Singapore
| |
Collapse
|
23
|
Saroglu O, Karadag A, Cakmak ZHT, Karasu S. The formulation and microstructural, rheological, and textural characterization of salep-xanthan gum-based liposomal gels. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04546-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Shi Q, Zou MY, Wang JH, Song MM, Xiong SQ, Liu Y. Ultrasonic effects on molecular weight degradation, physicochemical and rheological properties of pectin extracted from Premna microphylla Turcz. Int J Biol Macromol 2022; 221:1065-1076. [PMID: 36108745 DOI: 10.1016/j.ijbiomac.2022.09.082] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 11/24/2022]
Abstract
The high molecular weight and poor solubility of pectin extracted from Premna microphylla Turcz (PEP) limits its application. Therefore, in this paper, the degradation effects of PEP under ultrasound irradiation and the influences of ultrasonic on the PEP processing characteristics were investigated. The results indicated that the Mw of PEP decreased significantly with a narrow distribution after ultrasonic treatment. The degradation kinetics of PEP at different ultrasound intensities were sufficiently described by the 2nd-order kinetics eq. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis suggested that ultrasonic treatment destroyed the ordered structure inside the PEP, resulting in a looser microscopic morphology. Compared with the control, the thermal stability of PEP was significantly boosted after ultrasonic treatment. Rheological analysis illustrated that the sonicated PEP presented lower apparent viscosities than the original PEP. While the elasticity and thermal reversibility of the degraded products was enhanced. Ultrasonic treatment prominently weakened its shear thinning fluid behavior and thixotropy, thus improved its processing quality. Therefore, desirable PEP can be prepared by ultrasonic irradiation. The results can provide a reference for the development and application of PEP.
Collapse
Affiliation(s)
- Qiang Shi
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Ming-Yue Zou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Jun-Hui Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| | - Miao-Miao Song
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Shan-Qiang Xiong
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Yong Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
25
|
Khan S, Minhas MU, Singh Thakur RR, Aqeel MT. Microneedles Assisted Controlled and Improved Transdermal Delivery of High Molecular Drugs via Insitu Forming Depot Thermoresponsive Poloxamers Gels in Skin Microchannels. Drug Dev Ind Pharm 2022; 48:265-278. [PMID: 35899871 DOI: 10.1080/03639045.2022.2107662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Skin considered as an attractive route for variety of drug molecules administration. However it proved to be the main physical barrier for drug flux owing to their poor permeability and low bioavailability across stratum corneum layer. In current study novel approach has been used to enhance transdermal delivery via microporation through combination of poloxamers gels and microneedles arrays. The phase transition of poloxamers at various concentrations from sol-gel was evaluated using AR2000 rheometer to confirm microneedles-assisted insitu forming depots. Temperature test confirmed gelation between 32-37 °C. Curcumin was loaded in poloxamer formulations at variable concentrations and its effect showed reduction in critical gelation temperature (CGT) owing to its hydrophobic nature. Microneedles (MNs) arrays (600 µm) prepared from Gantrez S-97, PEG 10000 and Gelatin B using (19 × 19) laser-engineered silicone micromoulds showed high mechanical stability investigated via Texture analyzer. From insitu dissolution profile Gelatin 15% w/w based MNs displayed quicker dissolution rate in comparison to PG10000. VivoSight® OCT scanner and dye tracking confirmed that PG10000 MNs arrays pierced SC layer, infiltrate the epidermis and goes to dermis layer. From invitro permeation, it was concluded that 20% w/w PF127® gel formulations containing (0.1% and 0.3%) curcumin displayed high curcumin permeation for comparatively longer time through microporated skin samples in comparison to non-microporated skin. The curcumin distribution in skin tissues with higher florescence intensity was noted in MNs treated skin samples by confocal microscopy. FTIR confirmed the structure formation of fabricated MNs, while TGA showed dry, brittle and rigid nature of Gelatin MNs.
Collapse
Affiliation(s)
- Samiullah Khan
- Margalla College of Pharmacy, Margalla Institute of Health Sciences, Rawalpindi, Pakistan
| | | | | | - Muhammad Tahir Aqeel
- Margalla College of Pharmacy, Margalla Institute of Health Sciences, Rawalpindi, Pakistan
| |
Collapse
|
26
|
The Effect of Pectin Branching on the Textural and Swelling Properties of Gel Beads Obtained during Continuous External Gelation Process. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The aim of the study was to produce gel beads under continuous conditions. Pectins obtained from black and red currants and commercial apple pectin were used as the material. For the production of gel beads, a self-designed device was used. The designed device allows for the production of gel beads in a continuous process, the properties of which are similar to those obtained in the classic, batch process. Thanks to the device, it is possible to obtain a repeatable product while reducing the workload. The produced gel beads were tested for water absorption and textural properties. The water absorption of the obtained gel capsules is strongly influenced by the pectin chain structure. Pectin beads obtained from currant pectins have a less hard structure and are more sensitive to deformation than those from apple pectin. Shorter and more branched chains of currant pectin than apple pectin form gels with a delicate structure, which strongly absorbs water, and unlike apple pectin gel, it disintegrates. The results show that the use of raw material obtained from different sources allows for obtaining products with various properties, using the same method; moreover, the used device is fully scalable and can be used in large scale.
Collapse
|
27
|
Dron I, Nosovа N, Fihurka N, Bukartyk N, Nadashkevych Z, Varvarenko S, Samaryk V. Investigation of Hydrogel Sheets Based on Highly Esterified Pectin. CHEMISTRY & CHEMICAL TECHNOLOGY 2022. [DOI: 10.23939/chcht16.02.220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The report describes the features of physical and mechanical properties and absorption capacity of hydrogels based on highly esterified pectin. Experimental data showed the correlation between these values. Also, an attempt is made to explain the obtained dependencies via the hydrogel morphology and the mechanism of its formation.
Collapse
|
28
|
Hong JS, Shin W, Nam H, Yun JH, Kim HS, Ahn KH. Sedimentation and Rheological Study of Microalgal Cell (Chlorella sp. HS2) Suspension. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0275-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
29
|
Lin J, Jiao G, Kermanshahi-pour A. Algal Polysaccharides-Based Hydrogels: Extraction, Synthesis, Characterization, and Applications. Mar Drugs 2022; 20:306. [PMID: 35621958 PMCID: PMC9146341 DOI: 10.3390/md20050306] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Hydrogels are three-dimensional crosslinked hydrophilic polymer networks with great potential in drug delivery, tissue engineering, wound dressing, agrochemicals application, food packaging, and cosmetics. However, conventional synthetic polymer hydrogels may be hazardous and have poor biocompatibility and biodegradability. Algal polysaccharides are abundant natural products with biocompatible and biodegradable properties. Polysaccharides and their derivatives also possess unique features such as physicochemical properties, hydrophilicity, mechanical strength, and tunable functionality. As such, algal polysaccharides have been widely exploited as building blocks in the fabrication of polysaccharide-based hydrogels through physical and/or chemical crosslinking. In this review, we discuss the extraction and characterization of polysaccharides derived from algae. This review focuses on recent advances in synthesis and applications of algal polysaccharides-based hydrogels. Additionally, we discuss the techno-economic analyses of chitosan and acrylic acid-based hydrogels, drawing attention to the importance of such analyses for hydrogels. Finally, the future prospects of algal polysaccharides-based hydrogels are outlined.
Collapse
Affiliation(s)
- Jianan Lin
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington St., Halifax, NS B3J 1Z1, Canada;
| | - Guangling Jiao
- AKSO Marine Biotech Inc., Suite 3, 1697 Brunswick St., Halifax, NS B3J 2G3, Canada;
| | - Azadeh Kermanshahi-pour
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington St., Halifax, NS B3J 1Z1, Canada;
| |
Collapse
|
30
|
Swelling, Protein Adsorption, and Biocompatibility In Vitro of Gel Beads Prepared from Pectin of Hogweed Heracleum sosnówskyi Manden in Comparison with Gel Beads from Apple Pectin. Int J Mol Sci 2022; 23:ijms23063388. [PMID: 35328806 PMCID: PMC8954847 DOI: 10.3390/ijms23063388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 02/04/2023] Open
Abstract
The study aims to develop gel beads with improved functional properties and biocompatibility from hogweed (HS) pectin. HS4 and AP4 gel beads were prepared from the HS pectin and apple pectin (AP) using gelling with calcium ions. HS4 and AP4 gel beads swelled in PBS in dependence on pH. The swelling degree of HS4 and AP4 gel beads was 191 and 136%, respectively, in PBS at pH 7.4. The hardness of HS4 and AP4 gel beads reduced 8.2 and 60 times, respectively, compared with the initial value after 24 h incubation. Both pectin gel beads swelled less in Hanks’ solution than in PBS and swelled less in Hanks’ solution containing peritoneal macrophages than in cell-free Hanks’ solution. Serum protein adsorption by HS4 and AP4 gel beads was 118 ± 44 and 196 ± 68 μg/cm2 after 24 h of incubation. Both pectin gel beads demonstrated low rates of hemolysis and complement activation. However, HS4 gel beads inhibited the LPS-stimulated secretion of TNF-α and the expression of TLR4 and NF-κB by macrophages, whereas AP4 gel beads stimulated the inflammatory response of macrophages. HS4 gel beads adsorbed 1.3 times more LPS and adhered to 1.6 times more macrophages than AP4 gel beads. Thus, HS pectin gel has advantages over AP gel concerning swelling behavior, protein adsorption, and biocompatibility.
Collapse
|
31
|
Characterization and Biocompatibility Properties In Vitro of Gel Beads Based on the Pectin and κ-Carrageenan. Mar Drugs 2022; 20:md20020094. [PMID: 35200624 PMCID: PMC8878971 DOI: 10.3390/md20020094] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/23/2022] Open
Abstract
This study aimed to investigate the influence of kappa (κ)-carrageenan on the initial stages of the foreign body response against pectin gel. Pectin-carrageenan (P-Car) gel beads were prepared from the apple pectin and κ-carrageenan using gelling with calcium ions. The inclusion of 0.5% κ-carrageenan (Car0.5) in the 1.5 (P1.5) and 2% pectin (P2) gel formulations decreased the gel strength by 2.5 times. Car0.5 was found to increase the swelling of P2 gel beads in the cell culture medium. P2 gel beads adsorbed 30–42 mg/g of bovine serum albumin (BSA) depending on pH. P2-Car0.2, P2-Car0.5, and P1.5-Car0.5 beads reduced BSA adsorption by 3.1, 5.2, and 4.0 times compared to P2 beads, respectively, at pH 7. The P1.5-Car0.5 beads activated complement and induced the haemolysis less than gel beads of pure pectin. Moreover, P1.5-Car0.5 gel beads allowed less adhesion of mouse peritoneal macrophages, TNF-α production, and NF-κB activation than the pure pectin gel beads. There were no differences in TLR4 and ICAM-1 levels in macrophages treated with P and P-Car gel beads. P2-Car0.5 hydrogel demonstrated lower adhesion to serous membrane than P2 hydrogel. Thus, the data obtained indicate that the inclusion of κ-carrageenan in the apple pectin gel improves its biocompatibility.
Collapse
|
32
|
XU X, ZHANG H, LI L, SUN L, JIA B, YANG H, ZUO F. Preparation of fat substitute based on the high-methoxyl pectin of citrus and application in moon-cake skin. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.92121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Xinyu XU
- Heilongjiang Bayi Agricultural University Food College, China
| | - Huimin ZHANG
- Heilongjiang Bayi Agricultural University Food College, China; Heilongjiang Bayi Agricultural University National Cereals Engineering Technology Research Center, China
| | - Lin LI
- Heilongjiang Bayi Agricultural University Food College, China; Engineering Research Center of Processing and Utilization of Grain By-products, China
| | - Lilan SUN
- Heilongjiang Bayi Agricultural University Food College, China
| | - Bin JIA
- Heilongjiang Bayi Agricultural University Food College, China
| | - Hujun YANG
- Heilongjiang Bayi Agricultural University Food College, China
| | - Feng ZUO
- Heilongjiang Bayi Agricultural University Food College, China; Heilongjiang Bayi Agricultural University National Cereals Engineering Technology Research Center, China
| |
Collapse
|
33
|
Wang H, Han H, Rao P, Ke L, Zhou J, Ding W, Shang X. Preparation and characterization of Goji berry edible gel from its boiling water extract. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Hailin Wang
- Food Nutrition Science Centre School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou China
| | - Huan Han
- Food Nutrition Science Centre School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou China
| | - Pingfan Rao
- Food Nutrition Science Centre School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou China
| | - Lijing Ke
- Food Nutrition Science Centre School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou China
| | - Jianwu Zhou
- Food Nutrition Science Centre School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou China
| | - Wei Ding
- Food Nutrition Science Centre School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou China
| | - Xiaoya Shang
- Beijing Key Laboratory of Bioactive Substance and Functional Foods Beijing Union University Beijing China
| |
Collapse
|
34
|
Pitton M, Fiorati A, Buscemi S, Melone L, Farè S, Contessi Negrini N. 3D Bioprinting of Pectin-Cellulose Nanofibers Multicomponent Bioinks. Front Bioeng Biotechnol 2021; 9:732689. [PMID: 34926414 PMCID: PMC8678092 DOI: 10.3389/fbioe.2021.732689] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Pectin has found extensive interest in biomedical applications, including wound dressing, drug delivery, and cancer targeting. However, the low viscosity of pectin solutions hinders their applications in 3D bioprinting. Here, we developed multicomponent bioinks prepared by combining pectin with TEMPO-oxidized cellulose nanofibers (TOCNFs) to optimize the inks' printability while ensuring stability of the printed hydrogels and simultaneously print viable cell-laden inks. First, we screened several combinations of pectin (1%, 1.5%, 2%, and 2.5% w/v) and TOCNFs (0%, 0.5%, 1%, and 1.5% w/v) by testing their rheological properties and printability. Addition of TOCNFs allowed increasing the inks' viscosity while maintaining shear thinning rheological response, and it allowed us to identify the optimal pectin concentration (2.5% w/v). We then selected the optimal TOCNFs concentration (1% w/v) by evaluating the viability of cells embedded in the ink and eventually optimized the writing speed to be used to print accurate 3D grid structures. Bioinks were prepared by embedding L929 fibroblast cells in the ink printed by optimized printing parameters. The printed scaffolds were stable in a physiological-like environment and characterized by an elastic modulus of E = 1.8 ± 0.2 kPa. Cells loaded in the ink and printed were viable (cell viability >80%) and their metabolic activity increased in time during the in vitro culture, showing the potential use of the developed bioinks for biofabrication and tissue engineering applications.
Collapse
Affiliation(s)
- Matteo Pitton
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.,INSTM, National Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Milan, Italy
| | - Andrea Fiorati
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.,INSTM, National Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Milan, Italy
| | - Silvia Buscemi
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy
| | - Lucio Melone
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.,INSTM, National Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Milan, Italy.,Centro di Ricerca per l'Energia, l'Ambiente e il Territorio (CREAT), Università Telematica eCampus, Novedrate, Italy
| | - Silvia Farè
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.,INSTM, National Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Milan, Italy
| | - Nicola Contessi Negrini
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.,INSTM, National Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Milan, Italy
| |
Collapse
|
35
|
Zeimaran E, Pourshahrestani S, Fathi A, Razak NABA, Kadri NA, Sheikhi A, Baino F. Advances in bioactive glass-containing injectable hydrogel biomaterials for tissue regeneration. Acta Biomater 2021; 136:1-36. [PMID: 34562661 DOI: 10.1016/j.actbio.2021.09.034] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023]
Abstract
Successful tissue regeneration requires a scaffold with tailorable biodegradability, tissue-like mechanical properties, structural similarity to extracellular matrix (ECM), relevant bioactivity, and cytocompatibility. In recent years, injectable hydrogels have spurred increasing attention in translational medicine as a result of their tunable physicochemical properties in response to the surrounding environment. Furthermore, they have the potential to be implanted via minimally invasive procedures while enabling deep penetration, which is considered a feasible alternative to traditional open surgical procedures. However, polymeric hydrogels may lack sufficient stability and bioactivity in physiological environments. Composite hydrogels containing bioactive glass (BG) particulates, synergistically combining the advantages of their constituents, have emerged as multifunctional biomaterials with tailored mechanical properties and biological functionalities. This review paper highlights the recent advances in injectable composite hydrogel systems based on biodegradable polymers and BGs. The influence of BG particle geometry, composition, and concentration on gel formation, rheological and mechanical behavior as well as hydration and biodegradation of injectable hydrogels have been discussed. The applications of these composite hydrogels in tissue engineering are additionally described, with particular attention to bone and skin. Finally, the prospects and current challenges in the development of desirable injectable bioactive hydrogels for tissue regeneration are discussed to outline a roadmap for future research. STATEMENT OF SIGNIFICANCE: Developing a biomaterial that can be readily available for surgery, implantable via minimally invasive procedures, and be able to effectively stimulate tissue regeneration is one of the grand challenges in modern biomedicine. This review summarizes the state-of-the-art of injectable bioactive glass-polymer composite hydrogels to address several challenges in bone and soft tissue repair. The current limitations and the latest evolutions of these composite biomaterials are critically examined, and the roles of design parameters, such as composition, concentration, and size of the bioactive phase, and polymer-glass interactions on the rheological, mechanical, biological, and overall functional performance of hydrogels are detailed. Existing results and new horizons are discussed to provide a state-of-the-art review that may be useful for both experienced and early-stage researchers in the biomaterials community.
Collapse
|
36
|
Tunç MT, Odabaş Hİ. Single-step recovery of pectin and essential oil from lemon waste by ohmic heating assisted extraction/hydrodistillation: A multi-response optimization study. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Giuliano E, Fresta M, Cosco D. Development and characterization of poloxamine 908-hydrogels for potential pharmaceutical applications. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
38
|
Campiglio CE, Carcano A, Draghi L. RGD-pectin microfiber patches for guiding muscle tissue regeneration. J Biomed Mater Res A 2021; 110:515-524. [PMID: 34423891 DOI: 10.1002/jbm.a.37301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/05/2021] [Accepted: 08/12/2021] [Indexed: 02/03/2023]
Abstract
Opportunely arranged microscaled fibers offer an attractive 3D architecture for tissue regeneration as they may enhance and stimulate specific tissue regrowth. Among different scaffolding options, encapsulating cells in degradable hydrogel microfibers appears as particularly attractive strategy. Hydrogel patches, in fact, offer a highly hydrated environment, allow easy incorporation of biologically active molecules, and can easily adapt to implantation site. In addition, microfiber architecture is intrinsically porous and can improve mass transport, vascularization, and cell survival after grafting. Anionic polysaccharides, as pectin or the more popular alginate, represent a particularly promising choice for the fabrication of cell-laden patches, due to their extremely mild gelation in the presence of divalent ions and widely accepted biocompatibility. In this study, to combine the favorable properties of hydrogel and fibrous architecture, a simple coaxial flow wet-spinning system was used to prepare cell-laden, 3D fibrous patches using RGD-modified pectin. Rapid fabrication of coherent self-standing patches, with diameter in the range of 100-200 μm and high cell density, was possible by accurate choice of pectin and calcium ions concentrations. Cells were homogeneously dispersed throughout the microfibers and remained highly viable for up to 2 weeks, when the initial stage of myotubes formation was observed. Modified-pectin microfibers appear as promising scaffold to support muscle tissue regeneration, due to their inherent porosity, the favorable cell-material interaction, and the possibility to guide cell alignment toward a functional tissue.
Collapse
Affiliation(s)
- Chiara Emma Campiglio
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.,INSTM-National Interuniversity Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Milan, Italy
| | - Anna Carcano
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy
| | - Lorenza Draghi
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.,INSTM-National Interuniversity Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Milan, Italy
| |
Collapse
|
39
|
Wójcik-Pastuszka D, Barczyszyn K, Musiał W. The Influence of the Hydrophobic Polymeric Coating on 5-ASA Release from the Bipolymeric Milibeads with Amidated Pectin. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3924. [PMID: 34300842 PMCID: PMC8306472 DOI: 10.3390/ma14143924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/06/2021] [Accepted: 07/11/2021] [Indexed: 12/22/2022]
Abstract
The industrial polymeric carriers for peroral mesalazine application exploit, i.a., cellulose or polyacrylic acid derivatives, polyvinylpyrrolidone, and modified starch. Pectins, as natural polymers, are interesting materials in pharmaceutical applications due to properties such as non-toxicity, biocompatibility, and biodegradability. The aim of the study was the evaluation of the release of the drug from coated pectin beads doped with synthetic polymers as drug carriers to the colon, as well as interactions between ingredients. The drug release was carried out using basket apparatus. The amount of 5-ASA (5-aminosalicylic acid, mesalazine) released to the pH = 7.4 buffer with pectinase was measured at selected time intervals using UV-Vis spectroscopy. The zero-, first-, and second-order kinetics, as well as Higuchi, Korsmeyer-Peppas, and Hixon-Crowell equations, were used to analyze the release pattern. The interactions between beads components were investigated employing FTIR spectrophotometry and DSC study. The dissolution of the drug was divided into two parts. It was found that the release of 5-ASA followed mainly the Higuchi equation. The mass transport in the first stage of the release followed a non-Fickian model and the parameter n was in the range of 0.74 ± 0.2-0.99 ± 0.2. The formulation doped with PA (polyacrylic acid) was the most appropriate and capable of overcoming the variable conditions of the gastrointestinal tract.
Collapse
Affiliation(s)
| | | | - Witold Musiał
- Department of Physical Chemistry and Biophysics, Faculty of Pharmacy, Wroclaw Medical University, ul. Borowska 211A, 55-556 Wroclaw, Poland; (D.W.-P.); (K.B.)
| |
Collapse
|
40
|
Lapomarda A, Cerqueni G, Geven MA, Chiesa I, De Acutis A, De Blasi M, Montemurro F, De Maria C, Mattioli-Belmonte M, Vozzi G. Physicochemical Characterization of Pectin-Gelatin Biomaterial Formulations for 3D Bioprinting. Macromol Biosci 2021; 21:e2100168. [PMID: 34173326 DOI: 10.1002/mabi.202100168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/07/2021] [Indexed: 02/06/2023]
Abstract
Developing biomaterial formulations with specific biochemical characteristics and physical properties suitable for bioprinting of 3D scaffolds is a pivotal challenge in tissue engineering. Therefore, the design of novel bioprintable formulations is a continuously evolving research field. In this work, the authors aim at expanding the library of biomaterial inks by blending two natural biopolymers: pectin and gelatin. Cytocompatible formulations are obtained by combining pectin and gelatin at different ratios and using (3-glycidyloxypropyl)trimethoxysilane (GPTMS) as single crosslinking agent. It is shown that the developed formulations are all suitable for extrusion-based 3D bioprinting. Self-supporting scaffolds with a designed macroporosity and micropores in the bioprinted struts are successfully obtained by combining extrusion-based bioprinting and freeze-drying. The presence of gelatin in these formulations allows for the modulation of porosity, of water uptake and of scaffold stiffness in respect to pure pectin scaffolds. Results demonstrate that these new biomaterial formulations, processed with this specific approach, are promising candidates for the fabrication of tissue-like scaffolds for tissue regeneration.
Collapse
Affiliation(s)
- Anna Lapomarda
- Research Center 'E. Piaggio', University of Pisa, Via Diotisalvi, 1, Pisa, 56122, Italy.,Department of Ingegneria dell'Informazione, University of Pisa, Via Girolamo Caruso, 16, Pisa, 56122, Italy
| | - Giorgia Cerqueni
- Department of Scienze Cliniche e Molecolari, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, 60121, Italy
| | - Mike A Geven
- Laboratory of Polymers and Biomaterials, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Irene Chiesa
- Research Center 'E. Piaggio', University of Pisa, Via Diotisalvi, 1, Pisa, 56122, Italy.,Department of Ingegneria dell'Informazione, University of Pisa, Via Girolamo Caruso, 16, Pisa, 56122, Italy
| | - Aurora De Acutis
- Research Center 'E. Piaggio', University of Pisa, Via Diotisalvi, 1, Pisa, 56122, Italy
| | - Matteo De Blasi
- Department of Ingegneria dell'Informazione, University of Pisa, Via Girolamo Caruso, 16, Pisa, 56122, Italy
| | - Francesca Montemurro
- Research Center 'E. Piaggio', University of Pisa, Via Diotisalvi, 1, Pisa, 56122, Italy
| | - Carmelo De Maria
- Research Center 'E. Piaggio', University of Pisa, Via Diotisalvi, 1, Pisa, 56122, Italy.,Department of Ingegneria dell'Informazione, University of Pisa, Via Girolamo Caruso, 16, Pisa, 56122, Italy
| | - Monica Mattioli-Belmonte
- Department of Scienze Cliniche e Molecolari, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, 60121, Italy
| | - Giovanni Vozzi
- Research Center 'E. Piaggio', University of Pisa, Via Diotisalvi, 1, Pisa, 56122, Italy.,Department of Ingegneria dell'Informazione, University of Pisa, Via Girolamo Caruso, 16, Pisa, 56122, Italy
| |
Collapse
|
41
|
Pedersoli L, Zhang S, Briatico-Vangosa F, Petrini P, Cardinaels R, den Toonder J, Peneda Pacheco D. Engineered modular microphysiological models of the human airway clearance phenomena. Biotechnol Bioeng 2021; 118:3898-3913. [PMID: 34143430 DOI: 10.1002/bit.27866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/25/2021] [Accepted: 06/03/2021] [Indexed: 11/09/2022]
Abstract
Mucociliary clearance is a crucial mechanism that supports the elimination of inhaled particles, bacteria, pollution, and hazardous agents from the human airways, and it also limits the diffusion of aerosolized drugs into the airway epithelium. In spite of its relevance, few in vitro models sufficiently address the cumulative effect of the steric and interactive barrier function of mucus on the one hand, and the dynamic mucus transport imposed by ciliary mucus propulsion on the other hand. Here, ad hoc mucus models of physiological and pathological mucus are combined with magnetic artificial cilia to model mucociliary transport in both physiological and pathological states. The modular concept adopted in this study enables the development of mucociliary clearance models with high versatility since these can be easily modified to reproduce phenomena characteristic of healthy and diseased human airways while allowing to determine the effect of each parameter and/or structure separately on the overall mucociliary transport. These modular airway models can be available off-the-shelf because they are exclusively made of readily available materials, thus ensuring reproducibility across different laboratories.
Collapse
Affiliation(s)
- Lucia Pedersoli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Shuaizhong Zhang
- Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Francesco Briatico-Vangosa
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Paola Petrini
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Ruth Cardinaels
- Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Soft Matter Rheology and Technology, Department of Chemical Engineering, KU Leuven, Heverlee, Belgium
| | - Jaap den Toonder
- Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Daniela Peneda Pacheco
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| |
Collapse
|
42
|
Lapomarda A, Pulidori E, Cerqueni G, Chiesa I, De Blasi M, Geven MA, Montemurro F, Duce C, Mattioli-Belmonte M, Tiné MR, Vozzi G, De Maria C. Pectin as Rheology Modifier of a Gelatin-Based Biomaterial Ink. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3109. [PMID: 34198912 PMCID: PMC8201283 DOI: 10.3390/ma14113109] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 02/05/2023]
Abstract
Gelatin is a natural biopolymer extensively used for tissue engineering applications due to its similarities to the native extracellular matrix. However, the rheological properties of gelatin formulations are not ideal for extrusion-based bioprinting. In this work, we present an approach to improve gelatin bioprinting performances by using pectin as a rheology modifier of gelatin and (3-glycidyloxypropyl)trimethoxysilane (GPTMS) as a gelatin-pectin crosslinking agent. The preparation of gelatin-pectin formulations is initially optimized to obtain homogenous gelatin-pectin gels. Since the use of GPTMS requires a drying step to induce the completion of the crosslinking reaction, microporous gelatin-pectin-GPTMS sponges are produced through freeze-drying, and the intrinsic properties of gelatin-pectin-GPTMS networks (e.g., porosity, pore size, degree of swelling, compressive modulus, and cell adhesion) are investigated. Subsequently, rheological investigations together with bioprinting assessments demonstrate the key role of pectin in increasing the viscosity and the yield stress of low viscous gelatin solutions. Water stable, three-dimensional, and self-supporting gelatin-pectin-GPTMS scaffolds with interconnected micro- and macroporosity are successfully obtained by combining extrusion-based bioprinting and freeze-drying. The proposed biofabrication approach does not require any additional temperature controller to further modulate the rheological properties of gelatin solutions and it could furthermore be extended to improve the bioprintability of other biopolymers.
Collapse
Affiliation(s)
- Anna Lapomarda
- Research Center ‘E. Piaggio’, University of Pisa, via Diotisalvi, 1, 56122 Pisa, Italy; (I.C.); (F.M.); (G.V.); (C.D.M.)
- Department of Ingegneria dell’Informazione, University of Pisa, via Girolamo Caruso, 16, 56122 Pisa, Italy;
| | - Elena Pulidori
- Department of Chemistry and Industrial Chemistry, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy; (E.P.); (C.D.); (M.R.T.)
| | - Giorgia Cerqueni
- Department of Scienze Cliniche e Molecolari, Università Politecnica delle Marche, via Tronto 10/A, 60121 Ancona, Italy; (G.C.); (M.M.-B.)
| | - Irene Chiesa
- Research Center ‘E. Piaggio’, University of Pisa, via Diotisalvi, 1, 56122 Pisa, Italy; (I.C.); (F.M.); (G.V.); (C.D.M.)
- Department of Ingegneria dell’Informazione, University of Pisa, via Girolamo Caruso, 16, 56122 Pisa, Italy;
| | - Matteo De Blasi
- Department of Ingegneria dell’Informazione, University of Pisa, via Girolamo Caruso, 16, 56122 Pisa, Italy;
| | - Mike Alexander Geven
- Laboratory of Polymers and Biomaterials, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy;
| | - Francesca Montemurro
- Research Center ‘E. Piaggio’, University of Pisa, via Diotisalvi, 1, 56122 Pisa, Italy; (I.C.); (F.M.); (G.V.); (C.D.M.)
| | - Celia Duce
- Department of Chemistry and Industrial Chemistry, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy; (E.P.); (C.D.); (M.R.T.)
| | - Monica Mattioli-Belmonte
- Department of Scienze Cliniche e Molecolari, Università Politecnica delle Marche, via Tronto 10/A, 60121 Ancona, Italy; (G.C.); (M.M.-B.)
| | - Maria Rosaria Tiné
- Department of Chemistry and Industrial Chemistry, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy; (E.P.); (C.D.); (M.R.T.)
| | - Giovanni Vozzi
- Research Center ‘E. Piaggio’, University of Pisa, via Diotisalvi, 1, 56122 Pisa, Italy; (I.C.); (F.M.); (G.V.); (C.D.M.)
- Department of Ingegneria dell’Informazione, University of Pisa, via Girolamo Caruso, 16, 56122 Pisa, Italy;
| | - Carmelo De Maria
- Research Center ‘E. Piaggio’, University of Pisa, via Diotisalvi, 1, 56122 Pisa, Italy; (I.C.); (F.M.); (G.V.); (C.D.M.)
- Department of Ingegneria dell’Informazione, University of Pisa, via Girolamo Caruso, 16, 56122 Pisa, Italy;
| |
Collapse
|
43
|
Li M, Li T, Hu X, Ren G, Zhang H, Wang Z, Teng Z, Wu R, Wu J. Structural, rheological properties and antioxidant activities of polysaccharides from mulberry fruits (Murus alba L.) based on different extraction techniques with superfine grinding pretreatment. Int J Biol Macromol 2021; 183:1774-1783. [PMID: 34022314 DOI: 10.1016/j.ijbiomac.2021.05.108] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 11/17/2022]
Abstract
The structural characteristics and biological activity of polysaccharides were influenced by different extraction methods. In this study, polysaccharides from mulberry fruits (Murus alba L., which were pre-treated with superfine grinding process) (MFP) were exacted using hot-water extraction (HWE), enzyme-assisted hot water extraction (EAHE), ultrasonic-assisted hot water extraction (UAHE), and high-speed shear homogenization-assisted hot water extraction (HSEHE). The extraction yield, structure, rheological properties and antioxidant activities of MFPs were investigated. MFP extracted using the HSEHE method have the highest extraction yields than other extraction methods. The smaller particle size of mulberry powder was found to improve the extraction yields. The MFPs were obtained by the combination between different extraction methods and superfine grinding pretreatment (through 100 mesh sieve) (MFP-HWE100, MFP-EAHE100, MFP-UAHE100, MFP-HSEHE100) showed the same levels of monosaccharide compositions and glycosyl linkages, However, these methods can produce MFP with different monosaccharide proportions, branching degree, different molecular weight, particle size and microstructure. MFP-HSEHE100 achieved the lowest molecular weight and particle size, which exhibited better thixotropy and antioxidant activities than other MFPs. This study identified that HSEHE was the most suitable extraction method for MFP.
Collapse
Affiliation(s)
- Mo Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Tong Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Xinyu Hu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Guangyu Ren
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Henan Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Zijian Wang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Zhengrong Teng
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China..
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China..
| |
Collapse
|
44
|
Effects of cryoconcentrate blueberry juice incorporation on gelatin gel: A rheological, textural and bioactive properties study. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110674] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
45
|
Ishwarya S P, R S, Nisha P. Advances and prospects in the food applications of pectin hydrogels. Crit Rev Food Sci Nutr 2021; 62:4393-4417. [PMID: 33511846 DOI: 10.1080/10408398.2021.1875394] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pectin hydrogel is a soft hydrocolloid with multifaceted utilities in the food sector. Substantial knowledge acquired on the gelation mechanisms and structure-function relationship of pectin has led to interesting functions of pectin hydrogel. Food applications of pectin hydrogels can be categorized under four headings: food ingredients/additives, food packaging, bioactive delivery and health management. The cross-linked and tangly three-dimensional structure of pectin gel renders it an ideal choice of wall material for the encapsulation of biomolecules and living cells; as a fat replacer and texturizer. Likewise, pectin hydrogel is an effective satiety inducer due to its ability to swell under the simulated gastric and intestinal conditions without losing its gel structure. Coating or composites of pectin hydrogel with proteins and other polysaccharides augment its functionality as an encapsulant, satiety-inducer and food packaging material. Low-methoxyl pectin gel is an appropriate food ink for 3D printing applications due to its viscoelastic properties, adaptable microstructure and texture properties. This review aims at explaining all the applications of pectin hydrogels, as mentioned above. A comprehensive discussion is presented on the approaches by which pectin hydrogel can be transformed as a resourceful material by controlling its dimensions, state, and rheology. The final sections of this article emphasize the recent research trends in this discipline, such as the development of smart hydrogels, injectable gels, aerogels, xerogels and oleogels from pectin.
Collapse
Affiliation(s)
- Padma Ishwarya S
- Agro Processing and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, India
| | - Sandhya R
- Agro Processing and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, India
| | - P Nisha
- Agro Processing and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST Campus, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
46
|
Patwa R, Zandraa O, Capáková Z, Saha N, Sáha P. Effect of Iron-Oxide Nanoparticles Impregnated Bacterial Cellulose on Overall Properties of Alginate/Casein Hydrogels: Potential Injectable Biomaterial for Wound Healing Applications. Polymers (Basel) 2020; 12:E2690. [PMID: 33202672 PMCID: PMC7696874 DOI: 10.3390/polym12112690] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023] Open
Abstract
In this study we report the preparation of novel multicomponent hydrogels as potential biomaterials for injectable hydrogels comprised of alginate, casein and bacterial cellulose impregnated with iron nanoparticles (BCF). These hydrogels demonstrated amide cross-linking of alginate-casein, ionic cross-linking of alginate and supramolecular interaction due to incorporation of BCF. Incorporation of BCF into the hydrogels based on natural biopolymers was done to reinforce the hydrogels and impart magnetic properties critical for targeted drug delivery. This study aimed to improve overall properties of alginate/casein hydrogels by varying the BCF loading. The physico-chemical properties of gels were characterized via FTIR, XRD, DSC, TGA, VSM and mechanical compression. In addition, swelling, drug release, antibacterial activity and cytotoxicity studies were also conducted on these hydrogels. The results indicated that incorporation of BCF in alginate/casein hydrogels led to mechanically stronger gels with magnetic properties, increased porosity and hence increased swelling. A porous structure, which is essential for migration of cells and biomolecule transportation, was confirmed from microscopic analysis. The porous internal structure promoted cell viability, which was confirmed through MTT assay of fibroblasts. Moreover, a hydrogel can be useful for the delivery of essential drugs or biomolecules in a sustained manner for longer durations. These hydrogels are porous, cell viable and possess mechanical properties that match closely to the native tissue. Collectively, these hybrid alginate-casein hydrogels laden with BCF can be fabricated by a facile approach for potential wound healing applications.
Collapse
Affiliation(s)
- Rahul Patwa
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Tř. T. Bati 5678, 760 01 Zlín, Czech Republic; (O.Z.); (Z.C.); (P.S.)
| | - Oyunchimeg Zandraa
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Tř. T. Bati 5678, 760 01 Zlín, Czech Republic; (O.Z.); (Z.C.); (P.S.)
| | - Zdenka Capáková
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Tř. T. Bati 5678, 760 01 Zlín, Czech Republic; (O.Z.); (Z.C.); (P.S.)
| | - Nabanita Saha
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Tř. T. Bati 5678, 760 01 Zlín, Czech Republic; (O.Z.); (Z.C.); (P.S.)
- Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic
| | - Petr Sáha
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Tř. T. Bati 5678, 760 01 Zlín, Czech Republic; (O.Z.); (Z.C.); (P.S.)
- Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic
| |
Collapse
|
47
|
Khan S, Akhtar N, Minhas MU, Shah H, Khan KU, Thakur RRS. A difunctional Pluronic ®127-based in situ formed injectable thermogels as prolonged and controlled curcumin depot, fabrication, in vitro characterization and in vivo safety evaluation. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 32:281-319. [PMID: 32976729 DOI: 10.1080/09205063.2020.1829324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Curcumin has been reported to be used widely against many types of pathological conditions in clinics. However, due to its limitations such as poor solubility, poor oral absorption and low stability have limited its applications. In the current study, a series of novel chemically cross-linkable depot gel formulations were developed based on thermoresponsive micellar polymer (Pluronic®127) with polyelectrolyte hydrophilic monomer, that is, 2-acrylamido-2-methylpropane sulfonic acid by cold and in situ grafting polymerization method. The formulations were aimed to deliver curcumin at controlled rate from in situ formed depot after administration through subcutaneous route in vivo. The sol-gel phase transitions of formulations were observed by rheological analysis, tube titling and optical transmittance measurements. Maximum swelling of gel formulations was observed at pH 7.4 and below CGT, that is, 25 °C. The in vitro release profile exhibits maximum drug release at pH 7.4 and 25 °C owing to relaxed gel state. In vitro degradation profile of gel formulations showed controlled degradation rate. Cell growth inhibition study confirmed the biocompatibility and safe nature of bare gel formulations against L929 cell lines. In vitro cytotoxic study showed that curcumin loaded in gel formulation has controlled pharmacological activity against HeLa and MCF-7 cancer cells as compared to free drug solution. The IC50 values calculated for pure curcumin solution (30 ± 0.77 µg/ml for HeLa and 27 ± 0.39 µg/ml for MCF-7) were found higher in comparison to curcumin-loaded thermogels against HeLa (19 ± 0.28 µg/ml and 23 ± 0.81 µg/ml) and MCF-7 (22 ± 0.54 µg/ml and 21 ± 0.49 µg/ml). Histopathological and hematological analysis showed the biocompatible nature of hydrogels. Structural confirmation was done by Fourier transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance spectroscopy (1H NMR). Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) confirmed the thermal stability of the gel formulation. The porous structure of gel formulations was assessed by scanning electron microscopic (SEM) analysis. Results concluded that newly developed gel formulations have thermoresponsive behavior with phase transition at body temperature and can be used as in situ controlled drug depot.
Collapse
Affiliation(s)
- Samiullah Khan
- Department of Pharmacy, The University of Lahore, Gujrat Campus, Gujrat, Pakistan
| | - Naveed Akhtar
- Faculty of Pharmacy and Alternative Medicine, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Hassan Shah
- Faculty of Pharmacy and Alternative Medicine, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Kifayat Ullah Khan
- Faculty of Pharmacy and Alternative Medicine, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | |
Collapse
|
48
|
Yan JK, Wang C, Qiu WY, Chen TT, Yang Y, Wang WH, Zhang HN. Ultrasonic treatment at different pH values affects the macromolecular, structural, and rheological characteristics of citrus pectin. Food Chem 2020; 341:128216. [PMID: 33032253 DOI: 10.1016/j.foodchem.2020.128216] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/10/2020] [Accepted: 09/23/2020] [Indexed: 01/06/2023]
Abstract
Ultrasonic degradation has become a promising strategy for producing modified pectin (MP). In this study, the impact of ultrasonic treatment at various pH values (4.0, 7.0, and 10.0) on the macromolecular, structural and rheological characteristics of citrus pectin was investigated. Results demonstrated that ultrasonic irradiation at the higher pH led to larger reductions in the intrinsic viscosity and weight-average molecular weight of pectin. The degradation kinetics of pectin at different pH values under ultrasound well fitted to a second-order reaction kinetics model. Acoustic cavitation, β-elimination, and demethylation led to the breakage of glycosidic linkages of side chains and methoxyl groups of pectin, but did not have noticeable influences on the main chain of pectin. The ultrasonic treatment at a high pH led to an apparent change in the rheological characteristics of pectin. Therefore, ultrasonic treatment at various pH values can be developed as a viable means to prepare desirable MP.
Collapse
Affiliation(s)
- Jing-Kun Yan
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Chun Wang
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wen-Yi Qiu
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ting-Ting Chen
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yan Yang
- National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China; Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Wen-Han Wang
- National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China; Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - He-Nan Zhang
- National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China; Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| |
Collapse
|
49
|
Hu S, Kuwabara R, Beukema M, Ferrari M, de Haan BJ, Walvoort MTC, de Vos P, Smink AM. Low methyl-esterified pectin protects pancreatic β-cells against diabetes-induced oxidative and inflammatory stress via galectin-3. Carbohydr Polym 2020; 249:116863. [PMID: 32933690 DOI: 10.1016/j.carbpol.2020.116863] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/20/2022]
Abstract
Insufficient intake of dietary fibers in Western societies is considered a major contributing factor in the high incidence rates of diabetes. The dietary fiber pectin has been suggested to be beneficial for management of both Diabetes Type 1 and Type 2, but mechanisms and effects of pectin on insulin producing pancreatic β-cells are unknown. Our study aimed to determine the effects of lemon pectins with different degree of methyl-esterification (DM) on β-cells under oxidative (streptozotocin) and inflammatory (cytokine) stress and to elucidate the underlying rescuing mechanisms, including effects on galectin-3. We found that specific pectins had rescuing effects on toxin and cytokine induced stress on β-cells but effects depended on the pectin concentration and DM-value. Protection was more pronounced with low DM5 pectin and was enhanced with higher pectin-concentrations. Our findings show that specific pectins might prevent diabetes by making insulin producing β-cells less susceptible for stress.
Collapse
Affiliation(s)
- Shuxian Hu
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, The Netherlands.
| | - Rei Kuwabara
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, The Netherlands
| | - Martin Beukema
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, The Netherlands
| | - Michela Ferrari
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Bart J de Haan
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, The Netherlands
| | - Marthe T C Walvoort
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, The Netherlands
| | - Alexandra M Smink
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, The Netherlands
| |
Collapse
|
50
|
Kim E, Kim MH, Song JH, Kang C, Park WH. Dual crosslinked alginate hydrogels by riboflavin as photoinitiator. Int J Biol Macromol 2020; 154:989-998. [DOI: 10.1016/j.ijbiomac.2020.03.134] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 11/29/2022]
|