1
|
Wang Y, Xing M, Duan L, Fatihi A, Ji M, Wang D, Li L, Song G, Yuan T, Gong J. Ultrasonic and thermal effect on the preparation and properties of starch-chlorogenic acid complexes. Int J Biol Macromol 2025; 309:142953. [PMID: 40210049 DOI: 10.1016/j.ijbiomac.2025.142953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/21/2025] [Accepted: 04/06/2025] [Indexed: 04/12/2025]
Abstract
In this study, complexes of chlorogenic acid (CA) with starch from different sources were prepared by thermal treatment (70 °C, 20 min) and ultrasound (450 W, 20 kHz, 25 °C, 20 min). Both ultrasound and thermal treatment are effective methods for preparing starch-CA complexes, but the two treatments have different effects on different starches. Characterization of the complexes prepared using the two methods showed that thermal treatment and ultrasound reduced the crystallinity of starch to some extent, with thermal treatment having a greater effect. Thermal treatment also reduced the amount of double-helix structures in starch. In contrast, ultrasound was relatively mild and had less effect on starch granular structure. However, these two methods promoted the binding of CA, thereby increasing the crystallinity of starch and forming a more ordered and compact structure, which, to some extent hindered the enzymatic degradation of starch. Moreover, the RDS of starch-CA complexes were reduced to different degrees, with the most significant changes in U (PS-CA) and T (CS-CA), which were reduced by 5.96 % and 4.55 %, respectively.
Collapse
Affiliation(s)
- Yushi Wang
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Mengjiao Xing
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Lijia Duan
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Aya Fatihi
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Miao Ji
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Danli Wang
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China.
| | - Ling Li
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Gongshuai Song
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Tinglan Yuan
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Jinyan Gong
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China.
| |
Collapse
|
2
|
Duijsens D, Verkempinck SHE, Grauwet T. Impact of the stepwise implementation of INFOGEST semi-dynamic conditions on in vitro starch and protein digestion: A case study on lentil cotyledon cells. Food Res Int 2024; 197:115214. [PMID: 39593300 DOI: 10.1016/j.foodres.2024.115214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024]
Abstract
The impact of food design parameters on digestion is mostly studied using static in vitro digestion models. In this work, the complexity of the static model was gradually increased, by implementing several dynamic gastric reactor conditions, i.e., gradual (i) acidification, (ii) pepsin addition, and (iii) emptying, as well as (iv) saliva in the oral phase. As a relevant case study, starch and protein digestion was studied in lentil cotyledon cells under these conditions. Implementation of these dynamic parameters affected gastric proteolysis, linked to the pH-dependence of pepsin, and amylolysis, linked to the pH-dependence of salivary amylase activity. Though gastrointestinal hydrolysis kinetics were affected by the applied simulation conditions, similar levels of starch and protein digestion were generally reached at the end of the simulated digestion. Salivary amylase was not completely inactivated at the low gastric pH conditions, resulting in significantly higher levels of small intestinal starch digestion upon saliva inclusion. Gastric emptying significantly affected macronutrient hydrolysis kinetics. In that regard, an approach separately considering gastric samples taken upon different gastric emptying times should be preferred over the pooling of gastric samples before simulating small intestinal digestion.
Collapse
Affiliation(s)
- D Duijsens
- Laboratory of Food Technology, Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - S H E Verkempinck
- Laboratory of Food Technology, Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - T Grauwet
- Laboratory of Food Technology, Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| |
Collapse
|
3
|
Ban SY, Yun DY, Yum SJ, Jeong HG, Park JT. Development of Saccharomyces cerevisiae accumulating excessive amount of glycogen and its effects on gut microbiota in a mouse model. Int J Biol Macromol 2024; 283:137589. [PMID: 39557260 DOI: 10.1016/j.ijbiomac.2024.137589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024]
Abstract
Saccharomyces cerevisiae accumulates glycogen, a hyperbranched glucose polymer with multiple bio-functionalities. In this study, mutants of S. cerevisiae that accumulate excessive amounts of glycogen were developed through UV mutagenesis. From over 30,000 mutants, the mutant strain CEY1, which exhibited the highest glycogen production, was selected using iodine vapor screening. The glycogen structures of wild type (WT) and CEY1 were analyzed and found to be relatively similar in molecular weight, hydrodynamic diameter, and side-chain distribution. The glycogen from CEY1 contained long branches (DP >12) 23.6 % greater than those in Escherichia coli TBP38. In addition, WT and CEY1 glycogen showed 32 %-34 % digestibility, which is significantly lower than E. coli glycogen. The glycogen content in dried CEY1 cells was increased to 21.7 % during laboratory-scale fed-batch fermentation. Glycogen with a homogeneous structure was accumulated to 17.5 % (w/w dried cell), and the total glucan content was increased by 33.2 % during large-scale fed-batch fermentation. In a mouse model, a diet containing 30 % CEY1 increased the production of butyrate and populations of beneficial bacteria, including Bacteroides and Parabacteroides. Therefore, glycogen from CEY1 exhibits a distinct structure from other polysaccharides, with notably slow and low digestibility, thereby indicating its potential application as a dietary supplement.
Collapse
Affiliation(s)
- So Young Ban
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea; CARBOEXPERT Inc., Daejeon 34134, Republic of Korea
| | - Da-Young Yun
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Su-Jin Yum
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hee-Gon Jeong
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Jong-Tae Park
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea; CARBOEXPERT Inc., Daejeon 34134, Republic of Korea.
| |
Collapse
|
4
|
Ni J, Liu B, Pu S, Yang Z, Zhou Y, Wu D, Zhang N. Effects of endogenous anthocyanins on appearance, bioactivity, and starch digestibility in black rice mutants. Lebensm Wiss Technol 2024; 213:117087. [DOI: 10.1016/j.lwt.2024.117087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Xing M, Xie F, Wang G, Yuan C, Huang S, Zhou T, Song Z, Ai L. The inhibitory effects of free and bound phenolics from Phyllanthus emblica Linn. on α-amylase: a comparison study. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9719-9728. [PMID: 39132987 DOI: 10.1002/jsfa.13796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Phyllanthus emblica Linn. (PE) is rich in polyphenols, which can be categorized into free and bound phenolics (PEFP and PEBP). This study evaluated the inhibitory effect of PEFB and PEBP on α-amylase for the first time. The mechanism of the inhibition effect of PEFP and PEBP on α-amylase was investigated by enzyme inhibition kinetics, multispectral analysis, thermodynamics, and molecular docking. RESULTS Free and bound phenolics inhibited α-amylase activity effectively in a mixed type of inhibition. Fluorescence quenching and thermodynamic analyses showed that the binding of PEFP and PEBP to α-amylase occurred through a static quenching process (Kq = 6.94 × 10¹² and 5.74 × 10¹² L mol-1 s-1), which was accompanied by a redshift (λem from 343 to 347 nm), leading to a change in the microenvironment. This process was found to be a spontaneous exothermic reaction (ΔG < 0). Circular dichroism (CD) analysis confirms that the secondary structure of α-amylase was altered, in particular a decrease in α-helixes and an increase in random coils. Molecular docking studies showed that PEFP and PEBP interacted with α-amylase through hydrogen bonding and hydrophobic interactions. CONCLUSION The present study provides valuable insights into the mechanism of action of PEFP and PEBP on α-amylase, which will provide a theoretical basis for their possible use as novel natural α-amylase inhibitors. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mingxia Xing
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Fan Xie
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Guangqiang Wang
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Chunmei Yuan
- Yunnan Provincial Key Laboratory of Applied Technology for Special Forest Fruits, Yunnan Maoduoli Group Food Co., Ltd., Yuxi, China
| | - Siyan Huang
- Yunnan Provincial Key Laboratory of Applied Technology for Special Forest Fruits, Yunnan Maoduoli Group Food Co., Ltd., Yuxi, China
| | - Tingrun Zhou
- Yunnan Provincial Key Laboratory of Applied Technology for Special Forest Fruits, Yunnan Maoduoli Group Food Co., Ltd., Yuxi, China
| | - Zibo Song
- Yunnan Provincial Key Laboratory of Applied Technology for Special Forest Fruits, Yunnan Maoduoli Group Food Co., Ltd., Yuxi, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
6
|
Duijsens D, Staes E, Segers M, Michels D, Pälchen K, Hendrickx ME, Verkempinck SHE, Grauwet T. Single versus multiple metabolite quantification of in vitro starch digestion: A comparison for the case of pulse cotyledon cells. Food Chem 2024; 454:139762. [PMID: 38805919 DOI: 10.1016/j.foodchem.2024.139762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 05/30/2024]
Abstract
Different quantification methods for in vitro amylolysis were compared for individual chickpea and lentil cotyledon cells (ICC) as a relevant case study. For the first time, much-applied spectrophotometric methods relying on the quantification of certain functional groups (i.e., DNS, GOPOD) were compared to chromatographic quantification of starch metabolites (HPLC-ELSD). The estimated rate constant and linked initial rates of amylolysis were highly correlated for DNS, GOPOD, and HPLC-ELSD. However, absolute amylolysis levels depended on the applied method and sample-specific metabolite formation patterns. Multiresponse modelling was employed to further investigate HPLC-ELSD metabolite formation patterns. This delivered insight into the relative importance of different amylolysis reactions during in vitro digestion of pulse ICC, proving that maltotriose and maltose formation determined the overall amylolysis rate in this case. Multiresponse reaction rate constants of maltotriose and maltose formation were highly correlated to single response amylolysis rate constants (and initial rates) obtained for all three quantification methods.
Collapse
Affiliation(s)
- D Duijsens
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - E Staes
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - M Segers
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - D Michels
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - K Pälchen
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium
| | - M E Hendrickx
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - S H E Verkempinck
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - T Grauwet
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| |
Collapse
|
7
|
Mather T, Siva N, Jauregui M, Poudel P, de Lima Brossi MJ, Lambert JD, Di Gioia F, Connolly EL, Anderson CT. Nutritional Composition of Post-Catastrophic Foods. Curr Protoc 2024; 4:e1110. [PMID: 39093058 DOI: 10.1002/cpz1.1110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
In addition to current challenges in food production arising from climate change, soil salinization, drought, flooding, and human-caused disruption, abrupt sunlight reduction scenarios (ASRS), e.g., a nuclear winter, supervolcano eruption, or large asteroid or comet strike, are catastrophes that would severely disrupt the global food supply and decimate normal agricultural practices. In such global catastrophes, teragrams of particulate matter, such as aerosols of soot, dust, and sulfates, would be injected into the stratosphere and block sunlight for multiple years. The reduction of incident sunlight would cause a decrease in temperature and precipitation and major shifts to climate patterns leading to devastating reductions in agricultural production of traditional food crops. To survive a catastrophic ASRS or endure current and future disasters and famines, humans might need to rely on post-catastrophic foods, or those that could be foraged, grown, or produced under the new climate conditions to supplement reduced availability of traditional foods. These foods have sometimes been referred to as emergency, alternate, or resilient foods in the literature. While there is a growing body of work that summarizes potential post-catastrophic foods and their nutritional profiles based on existing data in the literature, this article documents a list of protocols to experimentally determine fundamental nutritional properties of post-catastrophic foods that can be used to assess the relative contributions of those foods to a balanced human diet that meets established nutritional requirements while avoiding toxic levels of nutrients. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Total digestible glucans Basic Protocol 2: Apparent protein digestibility Basic Protocol 3: Vitamins B1, B3, B9, C, and D2 by HPLC Basic Protocol 4: Total antioxidant activity (DPPH-scavenging activity) Basic Protocol 5: Total phenolic compounds (Folin-Ciocalteu reagent method) Basic Protocol 6: Mineral content by ICP-OES.
Collapse
Affiliation(s)
- Tara Mather
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania
| | - Niroshan Siva
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania
| | - Marjorie Jauregui
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania
| | - Pradip Poudel
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania
| | | | - Joshua D Lambert
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania
| | - Francesco Di Gioia
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania
| | - Erin L Connolly
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania
| | - Charles T Anderson
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
8
|
Qin S, Li R, McClements DJ, Chen Y, Duan Z, Chen M, Dai Y, Liao L, Zhou W, Li J. Macronutrient digestion and polyphenol bioaccessibility in oat milk tea products: an in vitro gastrointestinal tract study. Food Funct 2024; 15:7478-7490. [PMID: 38915263 DOI: 10.1039/d4fo01439a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
People are increasingly preparing milk tea using plant-based milks rather than cow's milk, e.g., vegans, those with lactose intolerance, and those with flavor preferences. However, adding plant-based milks to tea may impact the digestion, release, and bioaccessibility of nutrients and nutraceuticals in both the tea and milk. In this study, oat milk tea model systems (OMTMSs) containing different fat and tea polyphenol concentrations were used to explore the impact of tea on macronutrient digestion in oat milk, as well as the impact of oat milk matrix on the polyphenol bioaccessibility in the tea. An in vitro gastrointestinal model that mimics the mouth, stomach, and small intestine was used. Tea polyphenols (>0.25%) significantly reduced the glucose and free fatty acids released from oat milk after intestinal digestion. Tea polyphenols (>0.10%) also inhibited protein digestion in oat milk during gastric digestion but not during intestinal digestion. The bioaccessibility of the polyphenols in the tea depended on the fat content of oat milk, being higher for medium-fat (3.0%) and high-fat (5.8%) oat milk than low-fat (1.5%) oat milk. Liquid chromatography-tandem mass spectrometry (UPLC-ESI-MS/MS) analysis showed that lipids improved the tea polyphenol bioaccessibility by influencing the release of flavonoids and phenolic acids from the food matrices. These results provide important information about the impact of tea on the gastrointestinal fate of oat milk, and vice versa, which may be important for enhancing the healthiness of plant-based beverages.
Collapse
Affiliation(s)
- Sirui Qin
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Ruyi Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | | | - Ying Chen
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
| | - Zhihao Duan
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
| | - Mianhong Chen
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
| | - Yaping Dai
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
| | - Liangkun Liao
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
| | - Wei Zhou
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
| | - Jihua Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
| |
Collapse
|
9
|
Jo M, Qi J, Du Z, Li Y, Shi YC. Changes in the structure and enzyme binding of starches during in vitro enzymatic hydrolysis using mammalian mucosal enzyme mixtures. Carbohydr Polym 2024; 335:122070. [PMID: 38616092 DOI: 10.1016/j.carbpol.2024.122070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/16/2024]
Abstract
Starches are hydrolyzed into monosaccharides by mucosal α-glucosidases in the human small intestine. However, there are few studies assessing the direct digestion of starch by these enzymes. The objective of this study was to investigate the changes in the structure and enzyme binding of starches during in vitro hydrolysis by mammalian mucosal enzymes. Waxy maize (WMS), normal maize (NMS), high-amylose maize (HAMS), waxy potato (WPS), and normal potato (NPS) starches were examined. The order of the digestion rate was different compared with other studies using a mixture of pancreatic α-amylase and amyloglucosidase. NPS was digested more than other starches. WPS was more digestible than WMS. Hydrolyzed starch from NPS, NMS, WPS, WMS, and HAMS after 24 h was 66.4, 64.2, 61.7, 58.7, and 46.2 %, respectively. Notably, a significant change in the morphology, reduced crystallinity, and a decrease in the melting enthalpy of the three starches (NPS, NMS, and WPS) after 24 h of hydrolysis were confirmed by microscopy, X-ray diffraction, and differential scanning calorimetry, respectively. The bound enzyme fraction of NPS, NMS, and WPS increased as hydrolysis progressed. In contrast, HAMS was most resistant to hydrolysis by mucosal α-glucosidases in terms of digestibility, changes in morphology, crystallinity, and thermal properties.
Collapse
Affiliation(s)
- Myeongsu Jo
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA; Center for Food and Bioconvergence, Seoul National University, Gwanakgu, Seoul 08826, Republic of Korea
| | - Jing Qi
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Zhenjiao Du
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Yong-Cheng Shi
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
10
|
Kouzounis D, Nguyen KA, Klostermann CE, Soares N, Kabel MA, Schols HA. The action of endo-xylanase and endo-glucanase on cereal cell wall polysaccharides and its implications for starch digestion kinetics in an in vitro poultry model. Carbohydr Polym 2024; 331:121861. [PMID: 38388057 DOI: 10.1016/j.carbpol.2024.121861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/21/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024]
Abstract
Endo-xylanase and endo-glucanase are supplemented to poultry diets in order to improve nutrient digestion and non-starch polysaccharide (NSP) fermentation. Here, the action of these enzymes on alcohol insoluble solids (AIS) from wheat and maize grains as well as its implications for starch digestion in milled grains were evaluated in vitro, under conditions mimicking the poultry digestive tract. For wheat AIS, GH11 endo-xylanase depolymerized soluble arabinoxylan (AX) during the gizzard phase, and proceeded to release insoluble AX under small intestine conditions. At the end of the in vitro digestion (480 min), the endo-xylanase, combined with a GH7 endo-β-1,4-glucanase, released 30.5 % of total AX and 18.1 % of total glucan in the form of arabinoxylo- and gluco-oligosaccharides, as detected by HPAEC-PAD and MALDI-TOF-MS. For maize AIS, the combined enzyme action released 2.2 % and 7.0 % of total AX and glucan, respectively. Analogous in vitro digestion experiments of whole grains demonstrated that the enzymatic release of oligomers coincided with altered grain microstructure, as examined by SEM. In the present study, cell wall hydrolysis did not affect in vitro starch digestion kinetics for cereal grains. This study contributes to understanding the action of feed enzymes on cereal NSP under conditions mimicking the poultry digestive tract.
Collapse
Affiliation(s)
- Dimitrios Kouzounis
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Khoa A Nguyen
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Cynthia E Klostermann
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands; Biobased Chemistry and Technology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | | | - Mirjam A Kabel
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Henk A Schols
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| |
Collapse
|
11
|
Duijsens D, Verkempinck SHE, Somers E, Hendrickx MEG, Grauwet T. From static to semi-dynamic in vitro digestion conditions relevant for the older population: starch and protein digestion of cooked lentils. Food Funct 2024; 15:591-607. [PMID: 38098462 DOI: 10.1039/d3fo04241c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
In the context of adequately feeding the rising older population, lentils have an important potential as sources of (plant-based) protein as well as slowly digestible bio-encapsulated starch and fibre. This study evaluated in vitro digestion of protein and starch in lentils under conditions representing the gastrointestinal tract of older adults. Both static and semi-dynamic simulations were applied to analyze the effect of specific gastrointestinal conditions (healthy versus older adult) on macronutrient digestion patterns. Gastric proteolysis was strongly dependent on applied gastric pH (gradient), leading to a lower extent of protein hydrolysis for simulations relevant for older adults. Fewer and smaller (lower degree of polymerization, DP) bioaccessible peptides were formed during gastric proteolysis under older adult compared to healthy adult conditions. These differences, developed during the in vitro gastric phase, were compensated during small intestinal digestion, yielding similar final proteolysis levels regardless of the applied simulation conditions. In contrast, in the presence of saliva, amylolysis was generally accelerated under older adult conditions. Moreover, the current work highlighted the importance of considering saliva (or salivary amylase) incorporation in simulations where the applied gastric pH (gradient) allows salivary amylase activity. Under both healthy and older adult conditions, in vitro starch hydrolysis bio-encapsulated in cotyledon cells of cooked lentils was attenuated, compared to a white bread reference.
Collapse
Affiliation(s)
- Dorine Duijsens
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Leuven Food Science and Nutrition Research Centre (LFoRCe), Laboratory of Food Technology, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - Sarah H E Verkempinck
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Leuven Food Science and Nutrition Research Centre (LFoRCe), Laboratory of Food Technology, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - Emma Somers
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Leuven Food Science and Nutrition Research Centre (LFoRCe), Laboratory of Food Technology, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - Marc E G Hendrickx
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Leuven Food Science and Nutrition Research Centre (LFoRCe), Laboratory of Food Technology, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - Tara Grauwet
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Leuven Food Science and Nutrition Research Centre (LFoRCe), Laboratory of Food Technology, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| |
Collapse
|
12
|
Klostermann CE, Endika MF, Kouzounis D, Buwalda PL, de Vos P, Zoetendal EG, Bitter JH, Schols HA. Presence of digestible starch impacts in vitro fermentation of resistant starch. Food Funct 2024; 15:223-235. [PMID: 38054370 PMCID: PMC10760408 DOI: 10.1039/d3fo01763j] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023]
Abstract
Starch is an important energy source for humans. Starch escaping digestion in the small intestine will transit to the colon to be fermented by gut microbes. Many gut microbes express α-amylases that can degrade soluble starch, but only a few are able to degrade intrinsic resistant starch (RS), which is insoluble and highly resistant to digestion (≥80% RS). We studied the in vitro fermentability of eight retrograded starches (RS-3 preparations) differing in rapidly digestible starch content (≥70%, 35-50%, ≤15%) by a pooled adult faecal inoculum and found that fermentability depends on the digestible starch fraction. Digestible starch was readily fermented yielding acetate and lactate, whereas resistant starch was fermented much slower generating acetate and butyrate. Primarily Bifidobacterium increased in relative abundance upon digestible starch fermentation, whereas resistant starch fermentation also increased relative abundance of Ruminococcus and Lachnospiraceae. The presence of small fractions of total digestible starch (±25%) within RS-3 preparations influenced the fermentation rate and microbiota composition, after which the resistant starch fraction was hardly fermented. By short-chain fatty acid quantification, we observed that six individual faecal inocula obtained from infants and adults were able to ferment digestible starch, whereas only one adult faecal inoculum was fermenting intrinsic RS-3. This suggests that, in contrast to digestible starch, intrinsic RS-3 is only fermentable when specific microbes are present. Our data illustrates that awareness is required for the presence of digestible starch during in vitro fermentation of resistant starch, since such digestible fraction might influence and overrule the evalution of the prebiotic potential of resistant starches.
Collapse
Affiliation(s)
- Cynthia E Klostermann
- Biobased Chemistry and Technology, Wageningen University & Research, Wageningen, The Netherlands
| | - Martha F Endika
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Dimitrios Kouzounis
- Laboratory of Food Chemistry, Wageningen University & Research, The Netherlands.
| | - Piet L Buwalda
- Biobased Chemistry and Technology, Wageningen University & Research, Wageningen, The Netherlands
- Coöperatie Koninklijke AVEBE, Veendam, The Netherlands
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Centre Groningen, The Netherlands
| | - Erwin G Zoetendal
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Johannes H Bitter
- Biobased Chemistry and Technology, Wageningen University & Research, Wageningen, The Netherlands
| | - Henk A Schols
- Laboratory of Food Chemistry, Wageningen University & Research, The Netherlands.
| |
Collapse
|
13
|
Yang K, Tang Y, Xue H, Ji X, Cao F, Li S, Xu L. Enrichment of linoleic acid from yellow horn seed oil through low temperature crystallization followed by urea complexation method and hypoglycemic activities. Food Sci Biotechnol 2024; 33:145-157. [PMID: 38186612 PMCID: PMC10767175 DOI: 10.1007/s10068-023-01327-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/14/2023] [Accepted: 04/26/2023] [Indexed: 01/09/2024] Open
Abstract
Yellow horn (Xanthoceras sorbifolia Bunge) contained abundant linoleic acid (LA), accounting for about 44% of its lipid. Here, LA was enriched by low temperature crystallization followed by urea complexation, and the optimal enrichment conditions were optimized with response surface methods (3:1 ratio of EtOH/FFA, crystallization at - 25 °C for 24.5 h; 2:1 ratio of urea/FFA1, 6.6:1 ratio of EtOH/urea, crystallization at - 10 °C for 22.4 h). Under these conditions, the final LA content and recovery were 97.10% and 62.09%, respectively. In vitro hypoglycemic studies suggested that the LA extract with stronger inhibition on α-glucosidase and lower one on α-amylase than acarbose exhibited a positive control for carbohydrate digestion with lower adverse effects. The enzyme kinetics and Lineweaver-Burk plots analyses revealed a reversible competitive inhibition on α-amylase and α-glucosidase. The findings of this research provided insights for the development of the LA extract as the functional component of health food. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01327-9.
Collapse
Affiliation(s)
- Kang Yang
- College of Science, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Ying Tang
- Advanced Analysis and Testing Center, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Huayu Xue
- College of Science, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
- School of Environmental Engineering, Nanjing Polytechnic Institute, Nanjing, 210048 People’s Republic of China
| | - Xiaoyue Ji
- Advanced Analysis and Testing Center, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Fuliang Cao
- College of Forestry, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Shouke Li
- Shandong Woqi Rural Revitalization Industry Development Co., Ltd, Weifang, 261101 People’s Republic of China
| | - Li Xu
- College of Science, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
- Institute of Material Physics & Chemistry, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| |
Collapse
|
14
|
Diéguez TS, Nájera MO, Galván M, Nieto JA. Impact of a retrograded starch ingredient obtained from Negro Jamapa beans (Phaseolus vulgaris L. Negro Jamapa) on glucose metabolism and oxidative stress in induced diabetic lab rats model. Int J Biol Macromol 2023; 253:127447. [PMID: 37844824 DOI: 10.1016/j.ijbiomac.2023.127447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
A retrograded starch ingredient obtained from Negro Jampa beans (Phaseolus vulgaris L. Negro Jamapa), applying a debranching process (18 U/g for 12 h) and retrogradation (2 °C for 3 days), was evaluated as a potential functional ingredient to improve glucose homeostasis in a diabetic animal model. The obtained ingredient was reduced in rapid digestible starch amount compared to its related isolated native starch (34.1 % and 53.6 %, respectively) and resistant (33.4 % and 22.3 %, respectively). Therefore, a reduced total digestibility was determined for the obtained ingredient compared to native starch (51.5 % and 79 %, respectively). As consequence, diabetic animals fed with functional ingredient replacement (30 %) showed a lower and attenuated postprandial glucose levels, reducing the hyperglycaemic condition, compared with the non-treated animals (r2 = 0.9775; p ≤ 0.05), reducing the glucose serum levels 73 % compared (17.21 vs 23.6 mmol/L, respectively). Also, significant improvement on weight gain (49.75 ± 34.1 g) compared to non-treated (18.14 ± 45.52 g), as well as lower insulin resistance index and improved oxidative stress status was determined for the treated group. These results highlight the potential of retrograded starch obtained from Negro Jamapa beans as a functional ingredient focus on the improvement of the glucose homeostasis and diabetic condition.
Collapse
Affiliation(s)
- Teodoro Suárez Diéguez
- Academic Area of Nutrition, Institute of Health Sciences, Autonomous University of the State of Hidalgo, Abasolo 600, Colonia Centro, Pachuca de Soto CP 42000, Hidalgo, Mexico.
| | - Mariza Olvera Nájera
- Department of Biochemistry, National School of Biological Sciences, National Polytechnic Institute, México City, Av. Luis Enrique Erro S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Alcaldía Gustavo A. Madero, C.P. 07738 Mexico City, Mexico
| | - Marcos Galván
- Academic Area of Nutrition, Institute of Health Sciences, Autonomous University of the State of Hidalgo, Abasolo 600, Colonia Centro, Pachuca de Soto CP 42000, Hidalgo, Mexico
| | - Juan Antonio Nieto
- Bioactivity and Nutritional Immunology Group (BIOINUT), Faculty of Health Science, Universidad Internacional de Valencia (VIU), Calle Pintor Sorolla 21, E46002, Valencia, Spain
| |
Collapse
|
15
|
Corbee RJ, Mes JJ, de Jong GAH, van den Dool RTM, Neumer F, Theis S, Bosch G. Brush border enzyme hydrolysis and glycaemic effects of isomaltulose compared to other saccharides in dogs. J Anim Physiol Anim Nutr (Berl) 2023; 107:1456-1464. [PMID: 37448186 DOI: 10.1111/jpn.13860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 05/27/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023]
Abstract
Digestible carbohydrates differ in glycaemic response, therewith having the potential to influence metabolic conditions such as insulin resistance and diabetes mellitus. Isomaltulose has been proven to lower the glycaemic response in humans, which to date has not been studied in dogs. Therefore, the aim of the present study was to characterise the digestibility, as well as the physiological effects of isomaltulose in dogs, in comparison to other saccharides. To this end, three studies were performed. Study 1 was an in vitro study, evaluating the small intestinal hydrolysis of isomaltulose compared to other relevant carbohydrate sources. Three of these saccharides, having close and low-moderate degrees of hydrolysis by brush border enzymes, were also evaluated in vivo for their glycaemic effects by measuring plasma levels of glucose, insulin and glucagon-like peptide 1 (GLP-1) 0-180 min after administration of a single dosage after an overnight fast (i.e., isomaltulose, sucrose and maltodextrin in a 3 × 3 Latin-square design, in 9 dogs, Study 2). To understand if digestive enzymes, underlying glycaemic responses for isomaltulose and sucrose can be upregulated, we exposed dogs to these saccharides for 2 weeks and repeated the measurements after an overnight fast in 18 dogs (Study 3). Isomaltulose was hydrolysed by intestinal enzyme preparation from all three dogs, but the degrading activity was low (e.g., 3.95 ± 1.03 times lower vs. sucrose), indicating a slower rate of hydrolysis. Isomaltulose had a low glycaemic response, in line with in vitro data. In vitro hydrolysis of sucrose was comparable or even higher than maltodextrin in contrast to the more pronounced glycaemic response to maltodextrin observed in vivo. The numerically higher blood glucose response to sucrose after continuous consumption, might indicate an adaptive response. In conclusion, the current work provides valuable insights into the digestion physiology of various saccharides in dogs. Further investigations on related benefits are thus warranted.
Collapse
Affiliation(s)
- Ronald J Corbee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Jurriaan J Mes
- Wageningen Food and Biobased Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Govardus A H de Jong
- Wageningen Food and Biobased Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Ronald T M van den Dool
- Wageningen Food and Biobased Research, Wageningen University and Research, Wageningen, the Netherlands
| | | | | | - Guido Bosch
- Animal Nutrition Group, Wageningen University and Research, Wageningen, the Netherlands
| |
Collapse
|
16
|
Zhang L, Kong H, Li Z, Ban X, Gu Z, Hong Y, Cheng L, Li C. Physicochemical characterizations, α-amylase inhibitory activities and inhibitory mechanisms of five bacterial exopolysaccharides. Int J Biol Macromol 2023; 249:126047. [PMID: 37517764 DOI: 10.1016/j.ijbiomac.2023.126047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/10/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Inhibiting pancreatic α-amylase activity can decrease the release rate of glucose, thereby delaying postprandial blood glucose. This study aimed to investigate the physicochemical properties and porcine pancreatic α-amylase (PPA) inhibitory activities of five bacterial exopolysaccharides (EPSs). We also aimed to analyze the differences of their inhibitory activities, exploring the inhibition mechanism between EPSs and PPA. Five EPSs had a low molecular weight (55-66 kDa), which were mainly composed of mannose and glucose with total content exceeding 86 %. The IC50 values of five EPSs (0.162-0.431 mg/mL) were significantly lower than that of acarbose (0.763 mg/mL), indicating that the inhibitory effects of five EPSs on PPA were stronger than acarbose, especially the EPS from Bacillus subtilis STB22 (BS-EPS). Moreover, BS-EPS was a mixed-type inhibitor, whereas other EPSs were noncompetitive inhibitors of PPA. Five EPSs quenched the fluorophore of PPA by the mixed quenching or apparent static quenching. Interestingly, BS-EPS showed stronger binding affinity to PPA than other EPSs. It can be speculated that EPSs with low molecular weight, high carboxylic acid content, and α-glycosidic bond exhibited high PPA inhibitory activity. These results suggest that BS-EPS can effectively inhibit PPA activity and has potential applications in reducing postprandial hyperglycemia.
Collapse
Affiliation(s)
- Lan Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haocun Kong
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Ban
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Yan Hong
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Li Cheng
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
17
|
Saleem F, Shamim F, Özil M, Baltaş N, Salar U, Ashraf S, Ul-Haq Z, Taha M, Solangi M, Khan KM. Multicomponent diastereoselective synthesis of tetrahydropyridines as α-amylase and α-glucosidase enzymes inhibitors. Future Med Chem 2023; 15:1343-1368. [PMID: 37650736 DOI: 10.4155/fmc-2023-0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Background: Researchers seeking new drug candidates to treat diabetes mellitus have been exploring bioactive molecules found in nature, particularly tetrahydropyridines (THPs). Methods: A library of THPs (1-31) were synthesized via a one-pot multicomponent reaction and investigated for their inhibition potential against α-glucosidase and α-amylase enzymes. Results: A nitrophenyl-substituted compound 5 with IC50 values of 0.15 ± 0.01 and 1.10 ± 0.04 μM, and a Km value of 1.30 mg/ml was identified as the most significant α-glucosidase and α-amylase inhibitor, respectively. Kinetic studies revealed the competitive mode of inhibition, and docking studies revealed that compound 5 binds to the enzyme by establishing hydrophobic and hydrophilic interactions and a salt bridge interaction with His279. Conclusion: These molecules may be a potential drug candidate for diabetes in the future.
Collapse
Affiliation(s)
- Faiza Saleem
- HEJ Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Fariha Shamim
- HEJ Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Musa Özil
- Department of Chemistry, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| | - Nimet Baltaş
- Department of Chemistry, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| | - Uzma Salar
- Dr Panjwani Center for Molecular Medicine & Drug Research, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Sajda Ashraf
- Dr Panjwani Center for Molecular Medicine & Drug Research, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Zaheer Ul-Haq
- Dr Panjwani Center for Molecular Medicine & Drug Research, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, PO Box 31441, Dammam, Saudi Arabia
| | - Mehwish Solangi
- HEJ Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Khalid Mohammed Khan
- HEJ Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
18
|
Gao Y, Hua R, Peng K, Yin Y, Zeng C, Guo Y, Wang Y, Li L, Li X, Qiu Y, Wang Z. High-starchy carbohydrate diet aggravates NAFLD by increasing fatty acids influx mediated by NOX2. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Tincu (Iurciuc) CE, Bouhadiba B, Atanase LI, Stan CS, Popa M, Ochiuz L. An Accessible Method to Improve the Stability and Reusability of Porcine Pancreatic α-Amylase via Immobilization in Gellan-Based Hydrogel Particles Obtained by Ionic Cross-Linking with Mg 2+ Ions. Molecules 2023; 28:4695. [PMID: 37375250 PMCID: PMC10302431 DOI: 10.3390/molecules28124695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Amylase is an enzyme used to hydrolyze starch in order to obtain different products that are mainly used in the food industry. The results reported in this article refer to the immobilization of α-amylase in gellan hydrogel particles ionically cross-linked with Mg2+ ions. The obtained hydrogel particles were characterized physicochemically and morphologically. Their enzymatic activity was tested using starch as a substrate in several hydrolytic cycles. The results showed that the properties of the particles are influenced by the degree of cross-linking and the amount of immobilized α-amylase enzyme. The temperature and pH at which the immobilized enzyme activity is maximum were T = 60 °C and pH = 5.6. The enzymatic activity and affinity of the enzyme to the substrate depend on the particle type, and this decreases for particles with a higher cross-linking degree owing to the slow diffusion of the enzyme molecules inside the polymer's network. By immobilization, α-amylase is protected from environmental factors, and the obtained particles can be quickly recovered from the hydrolysis medium, thus being able to be reused in repeated hydrolytic cycles (at least 11 cycles) without a substantial decrease in enzymatic activity. Moreover, α-amylase immobilized in gellan particles can be reactivated via treatment with a more acidic medium.
Collapse
Affiliation(s)
- Camelia Elena Tincu (Iurciuc)
- Department of Natural and Synthetic Polymers, “Cristofor Simionescu” Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 73, Prof. Dr. Docent Dimitrie Mangeron Street, 700050 Iași, Romania; (C.E.T.)
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16, University Street, 700115 Iaşi, Romania
| | - Brahim Bouhadiba
- Laboratory of Engineering of Industrial Safety and Sustainable Development LISIDD, Institute of Maintenance and Industrial Safety, University of Oran 2, Mohammed Benahmed, Oran 31000, Algeria
| | - Leonard Ionut Atanase
- Faculty of Dental Medicine, “Apollonia” University of Iasi, 11, Pacurari Street, 700511 Iași, Romania
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Corneliu Sergiu Stan
- Department of Natural and Synthetic Polymers, “Cristofor Simionescu” Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 73, Prof. Dr. Docent Dimitrie Mangeron Street, 700050 Iași, Romania; (C.E.T.)
| | - Marcel Popa
- Department of Natural and Synthetic Polymers, “Cristofor Simionescu” Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 73, Prof. Dr. Docent Dimitrie Mangeron Street, 700050 Iași, Romania; (C.E.T.)
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Lăcrămioara Ochiuz
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16, University Street, 700115 Iaşi, Romania
| |
Collapse
|
20
|
Li J, Zhang J, Yu W, Gao H, Szeto IMY, Feng H, Liu X, Wang Y, Sun L. Soluble dietary fibres decrease α-glucosidase inhibition of epigallocatechin gallate through affecting polyphenol-enzyme binding interactions. Food Chem 2023; 409:135327. [PMID: 36586254 DOI: 10.1016/j.foodchem.2022.135327] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/05/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022]
Abstract
The effects of soluble dietary fibres (SDFs) on α-glucosidase inhibition of EGCG were studied. Three arabinoxylans and polygalacturonic acid (PGA) significantly decreased inhibitory activity of EGCG against α-glucosidase, while two β-glucans hardly affected the inhibition. Although arabinoxylans and PGA weakened the competitive inhibition character of EGCG, they maintained the fluorescence quenching effect of EGCG. Then, arabinoxylans and PGA significantly decreased the particle size and turbidity of EGCG-enzyme complex. These results suggest that there formed SDFs-EGCG-enzyme ternary complexes. The stronger decreasing-effects of arabinoxylans and PGA on α-glucosidase inhibition of EGCG than β-glucans resulted from the stronger non-covalent interactions of arabinoxylans and PGA with EGCG. This is considered to arise from the short-branches of arabinoxylans that provided more opportunity for capturing EGCG, and from the strong polarity of PGA carboxyl that promoted hydrogen bondings with EGCG. Conclusively, SDFs should be considered as an impact factor when evaluating α-glucosidase inhibition of dietary polyphenols.
Collapse
Affiliation(s)
- Jing Li
- College of Food Science and Engineering, Northwest A & F University, China
| | - Jifan Zhang
- College of Food Science and Engineering, Northwest A & F University, China
| | - Wanyi Yu
- College of Food Science and Engineering, Northwest A & F University, China
| | - Hang Gao
- College of Food Science and Engineering, Northwest A & F University, China
| | | | - Haotian Feng
- Inner Mongolia Dairy Technology Research Institute Co., Ltd, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A & F University, China
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A & F University, China
| | - Lijun Sun
- College of Food Science and Engineering, Northwest A & F University, China.
| |
Collapse
|
21
|
Duijsens D, Alfie Castillo AI, Verkempinck SHE, Pälchen K, Hendrickx ME, Grauwet T. In vitro macronutrient digestibility and mineral bioaccessibility of lentil-based pasta: The influence of cellular intactness. Food Chem 2023; 423:136303. [PMID: 37182489 DOI: 10.1016/j.foodchem.2023.136303] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/16/2023]
Abstract
Recently, pulse ingredients with (partial) cellular intactness are put forward as promising innovative food ingredients with slowed macronutrient digestibility. This study compared cooking quality and nutrient (starch, protein, and mineral) digestibility/bioaccessibility of lentil-based pasta prepared from 100% raw-milled flour, and by substituting 30% of the formulation by isolated cotyledon cell powder or whole precooked powder. Formulation had little effect on cooking properties. Both amylolysis and proteolysis were significantly slowed by incorporating cellular ingredients: towards the end of simulated digestion, amylolysis was lowered by 16-25%, while differences in proteolysis became small. Cellular ingredient incorporation slightly decreased Zn and Mg but did not affect Ca and Fe bioaccessibility, overall yielding a low mineral bioaccessibility comparable to cooked whole pulses. To conclude, lentil-based pasta substituted with cellular ingredients showed improved nutritional properties (i.e., high in digestible protein and slowed amylolysis), with perspectives for the development of different innovative foods with targeted nutritional properties.
Collapse
Affiliation(s)
- D Duijsens
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - A I Alfie Castillo
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium
| | - S H E Verkempinck
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium
| | - K Pälchen
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium
| | - M E Hendrickx
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium
| | - T Grauwet
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| |
Collapse
|
22
|
Tian Y, Wang Y, Zhong Y, Møller MS, Westh P, Svensson B, Blennow A. Interfacial Catalysis during Amylolytic Degradation of Starch Granules: Current Understanding and Kinetic Approaches. Molecules 2023; 28:molecules28093799. [PMID: 37175208 PMCID: PMC10180094 DOI: 10.3390/molecules28093799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Enzymatic hydrolysis of starch granules forms the fundamental basis of how nature degrades starch in plant cells, how starch is utilized as an energy resource in foods, and develops efficient, low-cost saccharification of starch, such as bioethanol and sweeteners. However, most investigations on starch hydrolysis have focused on its rates of degradation, either in its gelatinized or soluble state. These systems are inherently more well-defined, and kinetic parameters can be readily derived for different hydrolytic enzymes and starch molecular structures. Conversely, hydrolysis is notably slower for solid substrates, such as starch granules, and the kinetics are more complex. The main problems include that the surface of the substrate is multifaceted, its chemical and physical properties are ill-defined, and it also continuously changes as the hydrolysis proceeds. Hence, methods need to be developed for analyzing such heterogeneous catalytic systems. Most data on starch granule degradation are obtained on a long-term enzyme-action basis from which initial rates cannot be derived. In this review, we discuss these various aspects and future possibilities for developing experimental procedures to describe and understand interfacial enzyme hydrolysis of native starch granules more accurately.
Collapse
Affiliation(s)
- Yu Tian
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Yu Wang
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Yuyue Zhong
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Marie Sofie Møller
- Applied Molecular Enzyme Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Peter Westh
- Interfacial Enzymology, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| |
Collapse
|
23
|
Ab'lah N, Yusuf CYL, Rojsitthisak P, Wong TW. Reinvention of starch for oral drug delivery system design. Int J Biol Macromol 2023; 241:124506. [PMID: 37085071 DOI: 10.1016/j.ijbiomac.2023.124506] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/01/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
Starch is a polysaccharide with varying amylose-to-amylopectin ratios as a function of its biological sources. It is characterized by low shear stress resistance, poor aqueous/organic solubility and gastrointestinal digestibility which limit its ease of processing and functionality display as an oral drug delivery vehicle. Modulation of starch composition through genetic engineering primarily alters amylose-to-amylopectin ratio. Greater molecular properties changes require chemical and enzymatic modifications of starch. Acetylation reduces water solubility and enzymatic digestibility of starch. Carboxymethylation turns starch acid-insoluble and aggregative at low pHs. The summative effects are sustaining drug release in the upper gut. Acid-insoluble carboxymethylated starch can be aminated to provide an ionic character essential for hydrogel formation which further reduces its drug release. Ionic starch can coacervate with oppositely charged starch, non-starch polyelectrolyte or drug into insoluble, controlled-release complexes. Enzymatically debranched and resistant starch has a small molecular size which confers chain aggregation into a helical hydrogel network that traps the drug molecules, protecting them from biodegradation. The modified starch has been used to modulate the intestinal/colon-specific or controlled systemic delivery of oral small molecule drugs and macromolecular therapeutics. This review highlights synthesis aspects of starch and starch derivatives, and their outcomes and challenges of applications in oral drug delivery.
Collapse
Affiliation(s)
- NorulNazilah Ab'lah
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam 42300, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam 42300, Selangor, Malaysia; Centre of Foundation Studies, Universiti Teknologi MARA Selangor, Dengkil 43800, Dengkil, Malaysia
| | - Chong Yu Lok Yusuf
- Faculty of Plantation and Agrotechnology, Universiti Teknologi MARA, Jasin, 77300, Merlimau, Melaka, Malaysia
| | - Pornchai Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, 10330 Bangkok, Thailand; Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 10330 Bangkok, Thailand
| | - Tin Wui Wong
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam 42300, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam 42300, Selangor, Malaysia; Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
24
|
Chávez-Delgado EL, Jacobo-Velázquez DA. Essential Oils: Recent Advances on Their Dual Role as Food Preservatives and Nutraceuticals against the Metabolic Syndrome. Foods 2023; 12:1079. [PMID: 36900596 PMCID: PMC10000519 DOI: 10.3390/foods12051079] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Essential oils (EO) are compounds synthesized by plants as secondary products and are a complex mixture of volatile molecules. Studies have demonstrated their pharmacological activity in the prevention and treatment of metabolic syndrome (MetS). Moreover, they have been used as antimicrobial and antioxidant food additives. The first part of this review discusses the role of EO as nutraceuticals to prevent metabolic syndrome-related disorders (i.e., obesity, diabetes, and neurodegenerative diseases), showing results from in vitro and in vivo studies. Likewise, the second part describes the bioavailability and mechanisms of action of EO in preventing chronic diseases. The third part presents the application of EO as food additives, pointing out their antimicrobial and antioxidant activity in food formulations. Finally, the last part explains the stability and methods for encapsulating EO. In conclusion, EO dual role as nutraceuticals and food additives makes them excellent candidates to formulate dietary supplements and functional foods. However, further investigation is needed to understand EO interaction mechanisms with human metabolic pathways and to develop novel technological approaches to enhance EO stability in food systems to scale up these processes and, in this way, to overcome current health problems.
Collapse
Affiliation(s)
- Emily L. Chávez-Delgado
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Ave. General Ramon Corona 2514, Zapopan 45138, Jalisco, Mexico
| | - Daniel A. Jacobo-Velázquez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Ave. General Ramon Corona 2514, Zapopan 45138, Jalisco, Mexico
- Tecnologico de Monterrey, The Institute for Obesity Research, Ave. General Ramon Corona 2514, Zapopan 45201, Jalisco, Mexico
| |
Collapse
|
25
|
Liu QH, Zhang YD, Ma ZW, Qian ZM, Jiang ZH, Zhang W, Wang L. Fractional extraction and structural characterization of glycogen particles from the whole cultivated caterpillar fungus Ophiocordyceps sinensis. Int J Biol Macromol 2023; 229:507-514. [PMID: 36603712 DOI: 10.1016/j.ijbiomac.2022.12.319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
Ophiocordyceps sinensis (syn. Cordyceps sinensis) is a valuable medicinal fungus in traditional Chinese medicine, and one or more polysaccharides are the key constituents with important medical effects. Glycogen as a functional polysaccharide is widely identified in eukaryotes including fungi. However, there is no definitive report of glycogen presence in O. sinensis. In this study, we carefully fractionated polysaccharides from cultivated caterpillar fungus O. sinensis, which were then characterized via methods for glycogen analysis. According to the results, 1.03 ± 0.43 % of polysaccharides were quantified via amyloglucosidase digestion in the whole cultivated caterpillar fungus, which had a typical spherical shape under transmission electron microscope with an average peak radius of 37.63 ± 0.57 nm via size exclusion chromatography and an average chain length of 12.47 ± 0.94 degree of polymerization via fluorophore-assisted capillary electrophoresis. Taken together, this study confirmed that the polysaccharides extracted form O. sinensis were mostly glycogen.
Collapse
Affiliation(s)
- Qing-Hua Liu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macao, Macau
| | - Yu-Dong Zhang
- Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Zhang-Wen Ma
- Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Zheng-Ming Qian
- Dongguan East Sunshine Cordyceps Sinensis Research and Development Company, Dongguan, Guangdong Province, China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macao, Macau
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macao, Macau.
| | - Liang Wang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
26
|
How Cooking Time Affects In Vitro Starch and Protein Digestibility of Whole Cooked Lentil Seeds versus Isolated Cotyledon Cells. Foods 2023; 12:foods12030525. [PMID: 36766054 PMCID: PMC9914867 DOI: 10.3390/foods12030525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Lentils are sustainable sources of bioencapsulated macronutrients, meaning physical barriers hinder the permeation of digestive enzymes into cotyledon cells, slowing down macronutrient digestion. While lentils are typically consumed as cooked seeds, insights into the effect of cooking time on microstructural and related digestive properties are lacking. Therefore, the effect of cooking time (15, 30, or 60 min) on in vitro amylolysis and proteolysis kinetics of lentil seeds (CL) and an important microstructural fraction, i.e., cotyledon cells isolated thereof (ICC), were studied. For ICC, cooking time had no significant effect on amylolysis kinetics, while small but significant differences in proteolysis were observed (p < 0.05). In contrast, cooking time importantly affected the microstructure obtained upon the mechanical disintegration of whole lentils, resulting in significantly different digestion kinetics. Upon long cooking times (60 min), digestion kinetics approached those of ICC since mechanical disintegration yielded a high fraction of individual cotyledon cells (67 g/100 g dry matter). However, cooked lentils with a short cooking time (15 min) showed significantly slower amylolysis with a lower final extent (~30%), due to the presence of more cell clusters upon disintegration. In conclusion, cooking time can be used to obtain distinct microstructures and digestive functionalities with perspectives for household and industrial preparation.
Collapse
|
27
|
Characterization of Arrowhead-Derived Type 3 Resistant Starch Prepared by Ultrasound-Assisted α-Amylase Degradation. J FOOD QUALITY 2023. [DOI: 10.1155/2023/2301485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The effect of ultrasonic-assisted α-amylase hydrolysis on the structure and physicochemical properties of arrowhead-derived type 3 resistant starch (RS3) was studied. After ultrasound treatment, the yield of resistant starch reached 17.21%, significantly (
) increased by 65.64%. Compared with RS3 prepared by traditional enzymolysis (RS3-E), the crystal form and chemical bond of RS3 prepared by ultrasonic-assisted enzymolysis (RS3-UAE) did not change, but its gelatinization temperature, relative crystallinity, enthalpy, and 1047/1022 values were improved to varying degrees. RS3-UAE exhibited a higher solubility, transparency, water absorption capacity, and higher swelling power at 70°C. The analysis results of iodine absorption, differential scanning calorimetry, X-ray diffraction, Fourier transform-infrared spectroscopy, and scanning electron microscopy demonstrated that RS3-UAE exhibited a more regular shape, smoother surface, higher crystallinity, stable double helix structure, and more ordered and denser structure. Therefore, ultrasound-assisted enzymatic technology is an effective way to prepare RS3, and it can improve the functional and structural properties of the prepared RS3 to a certain extent.
Collapse
|
28
|
Huang Y, Condict L, Richardson SJ, Brennan CS, Kasapis S. Exploring the inhibitory mechanism of p-coumaric acid on α-amylase via multi-spectroscopic analysis, enzymatic inhibition assay and molecular docking. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
29
|
Barbieri SF, França de Lima LT, Baum JCS, Mischiatti KL, Bueno de Godoy RC, Silveira JLM. Polysaccharides from pinhão seeds of Araucaria angustifolia: Extraction, isolation and structural characterization. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
Zhang J, Li S, Liu X, Sun L. Inconsistency between polyphenol-enzyme binding interactions and enzyme inhibition: Galloyl moiety decreases amyloglucosidase inhibition of catechins. Food Res Int 2023; 163:112155. [PMID: 36596106 DOI: 10.1016/j.foodres.2022.112155] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/31/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Inhibiting carbohydrate-hydrolyzing enzymes has been considered as an effective approach for controlling starch digestion and postprandial blood glucose level. α-Amylase and amyloglucosidase (AMG) are commonly applied in analysis of starch digestion behaviour. Catechins have been shown with the inhibiting effects on α-amylase. However, the inhibitory activity of catechins against AMG needs to be further studied. Therefore, AMG inhibition of 8 catechins and the mechanisms were studied in this work through substrate depletion, inhibition kinetics, molecular docking, fluorescence quenching, differential scanning calorimetry, and isothermal titration calorimetry. The inhibitory activity of catechins with galloyl moiety (CGMs) was found to be lower than the corresponding catechins without the moiety (Cs). All catechins were anti-competitive inhibitors, indicating that they tended to bind with AMG-starch complex in the digestion system, rather than with AMG directly. Interestingly, CGMs had higher quenching effects on AMG fluorescence than Cs, due to the additional π-stacking between aromatic rings of GM and AMG fluorophores. Also, CGMs had a higher binding affinity to AMG, due to the tendency of GM to AMG active site, although the affinity was much weaker than that of starch to AMG. Besides, catechins did not affect AMG thermostability. Therefore, there was an inconsistency between catechins-AMG binding interactions and the enzyme inhibition because the predominant sites for catechins binding were the non-active sites on AMG-starch complex, rather than the enzyme active ones. Conclusively, inhibition mode should also be considered when evaluating the inhibitory activity of a polyphenol based on the polyphenol-enzyme binding affinity.
Collapse
Affiliation(s)
- Jifan Zhang
- College of Food Science and Engineering, Northwest A & F University, China
| | - Shuangshuang Li
- College of Food Science and Engineering, Northwest A & F University, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A & F University, China
| | - Lijun Sun
- College of Food Science and Engineering, Northwest A & F University, China.
| |
Collapse
|
31
|
Effects of Far-Infrared Radiation Drying on Starch Digestibility and the Content of Bioactive Compounds in Differently Pigmented Rice Varieties. Foods 2022; 11:foods11244079. [PMID: 36553821 PMCID: PMC9777795 DOI: 10.3390/foods11244079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Far infrared radiation (FIR) was applied to six rice varieties with different coloring of the pericarp (purple, red or non-pigment). Changes were determined in amylose content, in gelatinization parameters, in the content of bioactive compounds, in antioxidant activity and in the in vitro digestibility of pigmented rice as affected by FIR. The highest contents of amylose, total phenolic (TPC), total flavonoid (TFC) and total anthocyanins (TAC) were found in the purple and red varieties. Overall, FIR increased TPC, TFC and TAC, including antioxidant capacity. Quercetin and apigenin contents were increased while rutin and myricetin decreased significantly (p < 0.05) in all FIR-dried samples. Dephinidin, cyanidin-3-glucosides and pelargonidin increased after FIR treatment. Mostly, FIR-treated samples were found to have greater gelatinization enthalpy, compared with unheated rice samples. FIR-dried rice showed lower starch digestibility (25−40%) than unheated rice. This research suggested that the specific genotype of rice had the greatest influence on amylose content in pigmented rice, while FIR drying had no further effect. Our results suggest that FIR could enhance the content of the bioactive compounds capable of inhibiting α-amylase, thereby lowering starch digestibility. Hence, FIR may be considered as an appropriate drying method for pigmented rice regarding health benefits.
Collapse
|
32
|
Ong YQ, Harith S, Shahril MR, Shahidan N, Hapidin H. Organoleptic, hypoglycaemic, and in vitro starch digestion effects of formulated Melon Manis Terengganu peel powder. INTERNATIONAL FOOD RESEARCH JOURNAL 2022. [DOI: 10.47836/ifrj.29.6.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Melon Manis Terengganu (MMT) is comprised of 28 - 30% peel which is a by-product of food processing. The peel is a source of dietary fibre which has a potential role in glycaemic response. The present work thus aimed to develop formulated MMT peel powder, and examine its organoleptic properties, in vitro hypoglycaemic effect, and starch digestibility. The MMT peel powder was formulated as Formulations 0, 1, 2, and 3 with different sweetener ratios (0, 40, 50, and 60%), and subjected to sensory evaluations. Tukey’s post-hoc test was used to evaluate significant differences between mean values following one-way analysis of variance (ANOVA). Meanwhile, the Friedman test followed by Wilcoxon signed ranks test were performed for sensory evaluation analysis. Results demonstrated that the most acceptable formulation for consumption assessed using sensory evaluation was Formulation 3; its total, digestible, and resistant starch content were the lowest among all the formulations. The same went to the hydrolysis index and estimated glycaemic index. However, Formulation 3 was the least effective in reducing glycaemic response due to the weakest in vitro hypoglycaemic activity. On the other hand, the mentioned attributes previously were observed in Formulation 0 in an opposite manner. In summary, these findings suggested that formulated MMT peel powder had the potential to be used in blood glucose control.
Collapse
|
33
|
Xiang Y, Chen X, Sun H, Zhan Q, Zhong L, Hu Q, Zhao L. The critical roles of α-amylase and amyloglucosidase in improving the quality of black waxy corn beverages: Special attentions to the color and flavor. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
34
|
Effect of enzymatic hydrolysis on digestibility and morpho-structural properties of hydrothermally pre-treated red rice starch. Int J Biol Macromol 2022; 222:65-76. [PMID: 36108753 DOI: 10.1016/j.ijbiomac.2022.09.089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/23/2022]
Abstract
The objective of this work was to evaluate the effects of enzymatic hydrolysis on digestibility and morphological and structural properties of hydrothermally pre-treated (HPT) red rice starch. The pre-treatments were performed in autoclave and cooking for the modification of rice grains and native starch. In vitro starch digestibility was performed consecutively and semi-simultaneously using α-amylase and amyloglucosidase. A first-order mathematical model was used to adjust the hydrolysis kinetic data, which made it possible to calculate the surface area, hydrolysis index, and glycemic index of the starch. Scanning electron microscopy images (SEM), Fourier transform infrared (FTIR) spectra and X-ray diffraction (XRD) were also performed to investigate the characteristics of the post-hydrolysis starch samples. The autoclaved starch HSS-A3, which was subjected to 121 °C/1.08 bar for 10 min, showed the highest in vitro digestibility values (80.08 %). Both starch samples showed increase of particle size and enzymatic digestibility after HPT. FTIR spectra of the starch samples showed that there was no appearance of new functional groups. However, XRD evidenced that HPT changed the intensity of the peaks and the type of crystallinity was changed for autoclaved starch (A3) from type A to Vh, with crystallinity ranging from 21.71 % to 26.42 %. The semi-simultaneous approach showed more advantages due to the highest in vitro digestibility as well as reducing the processing time and use of reagents.
Collapse
|
35
|
Kim DK, Lee BH. New glucogenesis inhibition model based on complete α-glucosidases from rat intestinal tissues validated with various types of natural and pharmaceutical inhibitors. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4419-4424. [PMID: 35077587 DOI: 10.1002/jsfa.11795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 12/24/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Inhibition of intestinal α-glucosidases from rat intestinal acetone powder (RIAP) has been widely used in research focused on regulating glucogenesis to be applied as a strategy to control obesity and type II diabetes. However, the crude extract has different compositions of α-glucosidases than a complete RIAP suspension due to enzymes anchored on the intestinal tissues after the extraction. Here, the inhibitory effects of different pharmaceutical and food-grade inhibitors on the enzymes in the RIAP suspension were investigated. RESULTS Instead of crude extracts from RIAP, the RIAP suspension without the extraction process was applied to optimize the α-glucosidase inhibitory model by pharmaceutical/natural inhibitors. The results clearly showed that the half-maximal inhibitory concentration ratios of four individual α-glucosidases by various inhibitors were different between the RIAP suspension and the crude extract. In particular, isomaltase from the RIAP suspension required more inhibitors than the crude extraction did, as this enzyme is still anchored to the remaining intestinal tissue from the extraction process. CONCLUSION The crude extract from RIAP contains only a portion of the enzymes, which poses limitations for determining the precise inhibitory properties by various types of enzyme inhibitors. On the contrary, an in vitro assay with RIAP suspension that has all the α-glucosidases is a more suitable method for determining digestibility of glycemic carbohydrates. This new approach can be applied to the development of natural/synthetic α-glucosidase inhibitors to attenuate the postprandial glycemic response more accurately. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Do Kyoung Kim
- Department of Food Science & Biotechnology, Gachon University, Seongnam, Republic of Korea
| | - Byung-Hoo Lee
- Department of Food Science & Biotechnology, Gachon University, Seongnam, Republic of Korea
| |
Collapse
|
36
|
Zhang J, Li C, Wang G, Cao J, Yang X, Liu X, Sun L. α-Amylase inhibition of a certain dietary polyphenol is predominantly affected by the concentration of α-1, 4-glucosidic bonds in starchy and artificial substrates. Food Res Int 2022; 157:111210. [DOI: 10.1016/j.foodres.2022.111210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/24/2022] [Accepted: 03/31/2022] [Indexed: 11/04/2022]
|
37
|
Wang L, Wei Z, Xue C. The presence of propylene glycol alginate increased the stability and intestine-targeted delivery potential of carboxymethyl starch-stabilized emulsions. Food Res Int 2022; 157:111387. [PMID: 35761643 DOI: 10.1016/j.foodres.2022.111387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/06/2022] [Accepted: 05/17/2022] [Indexed: 12/31/2022]
Abstract
Propylene glycol alginate (PGA) was added to improve the stability and delivery performance of carboxymethyl starch (CMS)-stabilized emulsion. In the first instance, the CMS/PGA complexes were characterized, which proved that the formation of CMS/PGA complexes mainly depended on hydrogen bonding, and the CMS/PGA complexes showed porous networks. The CMS/PGA complexes were more hydrophobic than CMS, and the interaction of CMS with PGA enhanced the thermal stability of CMS. Next, the effects of CMS/PGA complexes on the properties of emulsions were investigated, and the intestine-targeted delivery potential of emulsions was evaluated through the in vitro release study as well. The droplet size of CMS/PGA complex-stabilized emulsions gradually decreased and the encapsulation efficiency (EE) improved with increasing the PGA content in CMS/PGA complexes. The addition of PGA also greatly improved the physical stability of emulsions, including anti-flocculation and anti-coalescence stabilities. All emulsions exhibited non-Newtonian pseudoplastic properties. Furthermore, the emulsions stabilized by CMS/PGA complexes showed reduced curcumin (Cur) release in the simulated gastric fluid (SGF), whereas exhibited sustained release in the α-amylase-containing simulated intestinal fluid (SIF). These results demonstrated that the emulsion stabilized by CMS/PGA complex was able to control and modulate the release of Cur in the gastrointestinal tract, and was therefore a promising intestine-targeted delivery system for Cur.
Collapse
Affiliation(s)
- Luhui Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China.
| |
Collapse
|
38
|
Zhu S, Li J, Li W, Li S, Yang X, Liu X, Sun L. Enzymic catalyzing affinity to substrate affects inhibitor-enzyme binding interactions: Inhibition behaviors of EGCG against starch digestion by individual and co-existing α-amylase and amyloglucosidase. Food Chem 2022; 388:133047. [PMID: 35483290 DOI: 10.1016/j.foodchem.2022.133047] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 03/11/2022] [Accepted: 04/20/2022] [Indexed: 02/09/2023]
Abstract
The inhibition of (-)-epigallocatechin-gallate (EGCG) against starch digestion by α-amylase (AA), amyloglucosidase (AMG) and co-existing enzymes (AA/AMG) were comparatively studied. EGCG inhibited AA only at slowly-digestible-starch (SDS) phase. This resulted from high catalytic efficiency of AA for rapidly-digestible-starch (RDS), counteracting the inhibition at this phase. EGCG inhibited AMG and AA/AMG during whole process. At RDS phase, the catalytic velocity of AMG was always higher than AA/AMG because of an antagonistic effect of two enzymes. However, at SDS phase with EGCG, the catalytic velocity of AA/AMG was higher than AMG. This is because binding of EGCG with both enzymes caused more unbound AMG that generated more glucose in co-existing AA/AMG than AMG. Although EGCG-AA binding affinity was higher than EGCG-AMG, competitive inhibition of EGCG against AA was weaker than AMG, indicating relatively higher binding/catalyzing affinity of AA to starch significantly weakened EGCG-AA binding due to competitive relationship between starch and EGCG.
Collapse
Affiliation(s)
- Shengnan Zhu
- College of Food Science and Engineering, Northwest A & F University, China
| | - Jing Li
- College of Food Science and Engineering, Northwest A & F University, China
| | - Wenyue Li
- College of Food Science and Engineering, Northwest A & F University, China
| | - Shuangshuang Li
- College of Food Science and Engineering, Northwest A & F University, China
| | - Xi Yang
- College of Food Science and Engineering, Northwest A & F University, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A & F University, China
| | - Lijun Sun
- College of Food Science and Engineering, Northwest A & F University, China.
| |
Collapse
|
39
|
Li S, Wu W, Li J, Zhu S, Yang X, Sun L. α-Amylase Changed the Catalytic Behaviors of Amyloglucosidase Regarding Starch Digestion Both in the Absence and Presence of Tannic Acid. Front Nutr 2022; 9:817039. [PMID: 35495955 PMCID: PMC9043763 DOI: 10.3389/fnut.2022.817039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
The courses of starch digestion with individual α-amylase (AA), amyloglucosidase (AMG), and AA/AMG bi-enzyme system were performed and analyzed by first-order-reaction equations in the absence and presence of tannic acid (TA). An antagonistic effect between AA and AMG occurred at the digestion phase of readily-digestible starch due to the higher catalytic efficiency of AMG for starchy-substrates with more complex structures. This effect caused a faster rate of glucose production with AMG than with AA/AMG bi-enzyme system at this phase both in the absence and presence of TA. TA had a higher binding affinity to AA than to AMG as accessed by several methods, such as inhibition kinetics, fluorescence quenching, isothermal titration calorimetry (ITC), and molecular docking. Besides, differential scanning calorimetry (DSC) indicated that the change in the thermal and structural stabilities of enzymes in the presence of TA was related to the enzyme residues involved in binding with TA, rather than the inhibitory effects of TA. The binding characters of TA to both enzymes resulted in more “free” AMG without TA binding in AA/AMG bi-enzyme system than that in individual AMG. This binding property caused more and faster rate of glucose production at the digestion phase of slowly digestible starch (SDS) in the bi-enzyme system.
Collapse
|
40
|
Caffeoyl substitution decreased the binding and inhibitory activity of quinic acid against α-amylase: The reason why chlorogenic acid is a relatively weak enzyme inhibitor. Food Chem 2022; 371:131278. [PMID: 34808763 DOI: 10.1016/j.foodchem.2021.131278] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 12/26/2022]
Abstract
α-Amylase inhibition of chlorogenic acid (CHA) and its component moieties including quinic acid (QA) and caffeic acid (CA) were characterized by IC50, inhibition kinetics, fluorescence quenching, isothermal titration calorimetry, differential scanning calorimetry and molecular docking. QA was found with the highest inhibitory activity in a competitive-mode, and caffeoyl substitution significantly decreased its inhibition but maintained inhibition type. Interestingly, QA hardly quenched α-amylase fluorescence, while CA quenched that significantly without inhibitory activity. This resulted from lack of aromatic ring in QA that can form π-conjugation with α-amylase fluorescent residues. Besides, the binding constant of QA with α-amylase was higher than CHA. Additionally, QA and CA decreased but CHA remained α-amylase thermal stability, indicating that change in α-amylase spatial structure was related with enzyme residue sites involved in interactions with inhibitors, instead of with inhibition effect. Conclusively, caffeoyl substitution decreased α-amylase inhibition of QA through reducing its binding affinity to the enzyme.
Collapse
|
41
|
Dang BT, Bui XT, Tran DPH, Hao Ngo H, Nghiem LD, Hoang TKD, Nguyen PT, Nguyen HH, Vo TKQ, Lin C, Yi Andrew Lin K, Varjani S. Current application of algae derivatives for bioplastic production: A review. BIORESOURCE TECHNOLOGY 2022; 347:126698. [PMID: 35026424 DOI: 10.1016/j.biortech.2022.126698] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/31/2021] [Accepted: 01/06/2022] [Indexed: 05/18/2023]
Abstract
Improper use of conventional plastics poses challenges for sustainable energy and environmental protection. Algal derivatives have been considered as a potential renewable biomass source for bioplastic production. Algae derivatives include a multitude of valuable substances, especially starch from microalgae, short-chain length polyhydroxyalkanoates (PHAs) from cyanobacteria, polysaccharides from marine and freshwater macroalgae. The algae derivatives have the potential to be used as key ingredients for bioplastic production, such as starch and PHAs or only as an additive such as sulfated polysaccharides. The presence of distinctive functional groups in algae, such as carboxyl, hydroxyl, and sulfate, can be manipulated or tailored to provide desirable bioplastic quality, especially for food, pharmaceutical, and medical packaging. Standardizing strains, growing conditions, harvesting and extracting algae in an environmentally friendly manner would be a promising strategy for pollution control and bioplastic production.
Collapse
Affiliation(s)
- Bao-Trong Dang
- HUTECH University, 475A, Dien Bien Phu, Ward 25, Binh Thanh District, Ho Chi Minh City, Vietnam
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Viet Nam National University Ho Chi Minh (VNUHCM), Thu Duc city, Ho Chi Minh City 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet street, district 10, Ho Chi Minh City 700000, Viet Nam.
| | - Duyen P H Tran
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Viet Nam National University Ho Chi Minh (VNUHCM), Thu Duc city, Ho Chi Minh City 700000, Viet Nam
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Long D Nghiem
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Thi-Khanh-Dieu Hoang
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Viet Nam National University Ho Chi Minh (VNUHCM), Thu Duc city, Ho Chi Minh City 700000, Viet Nam
| | - Phuong-Thao Nguyen
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Viet Nam National University Ho Chi Minh (VNUHCM), Thu Duc city, Ho Chi Minh City 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet street, district 10, Ho Chi Minh City 700000, Viet Nam
| | - Hai H Nguyen
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Thi-Kim-Quyen Vo
- Faculty of Environment - Natural Resources and Climate Change, Ho Chi Minh City University of Food Industry (HUFI), 140 Le Trong Tan street, Tay Thanh ward, Tan Phu district, Ho Chi Minh city 700000, Vietnam
| | - Chitsan Lin
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Kun Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India
| |
Collapse
|
42
|
Li W, Song Y, Sun W, Yang X, Liu X, Sun L. Both Acidic pH Value and Binding Interactions of Tartaric Acid With α-Glucosidase Cause the Enzyme Inhibition: The Mechanism in α-Glucosidase Inhibition of Four Caffeic and Tartaric Acid Derivates. Front Nutr 2021; 8:766756. [PMID: 34692755 PMCID: PMC8529059 DOI: 10.3389/fnut.2021.766756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/10/2021] [Indexed: 01/02/2023] Open
Abstract
The inhibition mechanism of four caffeic and tartaric acid derivates, including caffeic acid (CA), tartaric acid (TA), caftaric acid (CFA) and chicoric acid (CHA) against α-glucosidase was characterized by substrate depletion, fluorescence quenching, isothermal titration calorimetry (ITC) and molecular docking. TA and CA were found with the highest and no inhibition effect respectively, and caffeoyl substitution at 2 and/or 3-OH of TA significantly decreased its inhibition. The enzyme inhibition effects of organic acids were not in an inhibitor concentration-dependent mode, and there was a rush increase in inhibition at a respective acidic pH value, especially for CFA and CHA, suggesting the important role of acidic pH in the enzyme inhibition for both compounds. Besides, CA, CFA and CHA were shown with strong quenching effects on α-glucosidase fluorescence because of π-conjugations between aromatic ring of caffeoyl moiety and that of enzyme fluorescent residues. However, no fluorescence quenching effect was observed for TA due to lack of aromatic ring. Additionally, a direct binding interaction behavior was observed for TA with α-glucosidase according to the fitted independent binding model in ITC, but not for CFA and CHA. Therefore, both acidic pH and binding interactions of TA with α-glucosidase resulted in the enzyme inhibition.
Collapse
Affiliation(s)
- Wenyue Li
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Yi Song
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Wanshu Sun
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Xi Yang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Lijun Sun
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| |
Collapse
|
43
|
Korompokis K, Verbeke K, Delcour JA. Structural factors governing starch digestion and glycemic responses and how they can be modified by enzymatic approaches: A review and a guide. Compr Rev Food Sci Food Saf 2021; 20:5965-5991. [PMID: 34601805 DOI: 10.1111/1541-4337.12847] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022]
Abstract
Starch is the most abundant glycemic carbohydrate in the human diet. Consumption of starch-rich food products that elicit high glycemic responses has been linked to the occurrence of noncommunicable diseases such as cardiovascular disease and diabetes mellitus type II. Understanding the structural features that govern starch digestibility is a prerequisite for developing strategies to mitigate any negative health implications it may have. Here, we review the aspects of the fine molecular structure that in native, gelatinized, and gelled/retrograded starch directly impact its digestibility and thus human health. We next provide an informed guidance for lowering its digestibility by using specific enzymes tailoring its molecular and three-dimensional supramolecular structure. We finally discuss in vivo studies of the glycemic responses to enzymatically modified starches and relevant food applications. Overall, structure-digestibility relationships provide opportunities for targeted modification of starch during food production and improving the nutritional profile of starchy foods.
Collapse
Affiliation(s)
- Konstantinos Korompokis
- Laboratory of Food Chemistry and Biochemistry, KU Leuven, Leuven, Belgium.,Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Kristin Verbeke
- Translational Research Center in Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium.,Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Jan A Delcour
- Laboratory of Food Chemistry and Biochemistry, KU Leuven, Leuven, Belgium.,Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| |
Collapse
|
44
|
Hooper SD, Bassett A, Sadohara R, Cichy KA. Elucidation of the low resistant starch phenotype in Phaseolus vulgaris exhibited in the yellow bean Cebo Cela. J Food Sci 2021; 86:3975-3986. [PMID: 34392534 DOI: 10.1111/1750-3841.15883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/31/2021] [Accepted: 07/20/2021] [Indexed: 11/30/2022]
Abstract
Dry beans(Phaseolus vulgaris) are rich in complex carbohydrates including resistant starch (RS). RS, the starch fraction that escapes digestion, typically ranges from 35% in raw beans to 4% in cooked beans. A low RS bean genotype, Cebo Cela, was identified with 96% less RS (1.5% RS) than normal raw beans. The goal of this research was to elucidate the factors responsible for this low RS phenotype. The low RS phenotype was evaluated in whole bean flour and starch in Cebo Cela (yellow), Canario (yellow), Alpena (navy) and Samurai (otebo). α-Amylase activation was found to be a major contributor of the low RS content phenotype of the whole bean flour for Cebo Cela (-21.9% inhibition). Total starch (43.6%-40.2%), amylose (31.0%-31.5%), molecular weight and chain length distributions of amylose and amylopectin did not contribute to the low RS phenotype. Yellow bean starches were digested nearly 1.5 times (95%-94%) faster than starch granules from otebo and navy beans (65%-73%) due to lower proportions of amylopectin chains. PRACTICAL APPLICATION: This study is of value to the food industry because the yellow bean, Cebo Cela, is easily hydrolyzed by α-amylase and also has α-amylase promotion properties. Therefore, Cebo Cela can be used as an alternate starch source for ethanol fermentation and for the production of maltodextrins and fructose/glucose syrups which are used as food thickeners and sweeteners.
Collapse
Affiliation(s)
- Sharon D Hooper
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Amber Bassett
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Rie Sadohara
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Karen A Cichy
- USDA-ARS, Sugarbeet and Bean Research Unit, East Lansing, Michigan, USA
| |
Collapse
|
45
|
Fu M, Shen W, Gao W, Namujia L, Yang X, Cao J, Sun L. Essential moieties of myricetins, quercetins and catechins for binding and inhibitory activity against α-Glucosidase. Bioorg Chem 2021; 115:105235. [PMID: 34388484 DOI: 10.1016/j.bioorg.2021.105235] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/17/2021] [Accepted: 07/29/2021] [Indexed: 12/17/2022]
Abstract
α-Glucosidase inhibition of 11 flavonoids, including myricetins, quercetins and catechins were studied through initial reaction velocity, IC50 value, inhibition kinetics, fluorescence quenching and molecular docking. It was found that C4 = O, C2 = C3, 3-OH and 5'-OH were essential moieties for α-glucosidase inhibition of myricetin that was shown with the highest inhibitory activity. The trans-conformational catechins was shown with stronger inhibition effects than the cis-conformational ones. Further, gallocatechin was an uncompetitive inhibitor, while myricetin, myricetrin, quercetin and catechin were competitive ones. 3-OH and 5'-OH promoted myricetin to bind with the enzyme active site through hydrogen bondings. The presence of C4 = O and C2 = C3 increased electron delocalization in ring A-C for myricetin and quercetin, and this enhanced stability of π-conjugations with aromatic residues of amino acids. However, 5'-OH decreased the quenching effects because it limited π-conjugations of ring B with key fluorescent residues. Notably, for same flavonoid sort, the constants that indicate binding affinity of flavonoids to α-glucosidase, including reciprocal of competitive inhibition constant, fluorescence quenching constant and binding energy followed same order as the inhibitory activity, indicating that α-glucosidase inhibition of the flavonoids resulted from binding interactions between them, and that the methods above can be combined reasonably to characterize flavonoid-enzyme binding interactions.
Collapse
Affiliation(s)
- Minghai Fu
- School of Mongolian Medicine, Inner Mongolia University of Nationalities, Tongliao, Inner Mongolia 028000, China
| | - Wenxiang Shen
- Zhejiang Institution of Talent Development, Hangzhou, Zhejiang 310028, China; Zhejiang Sinohope Energy Co., Ltd., China
| | - Wenzhe Gao
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi Province 712100, China
| | - Laxi Namujia
- School of Mongolian Medicine, Inner Mongolia University of Nationalities, Tongliao, Inner Mongolia 028000, China
| | - Xi Yang
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi Province 712100, China.
| | - Junwei Cao
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi Province 712100, China
| | - Lijun Sun
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
46
|
Pälchen K, Michels D, Duijsens D, Gwala S, Pallares Pallares A, Hendrickx M, Van Loey A, Grauwet T. In vitro protein and starch digestion kinetics of individual chickpea cells: from static to more complex in vitro digestion approaches. Food Funct 2021; 12:7787-7804. [PMID: 34231615 DOI: 10.1039/d1fo01123e] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Attention has been given to more (semi-)dynamic in vitro digestion approaches ascertaining the consequences of dynamic in vivo aspects on in vitro digestion kinetics. As these often come with time and economical constraints, evaluating the consequence of stepwise increasing the complexity of static in vitro approaches using easy-to-handle digestion set-ups has been the center of our interest. Starting from the INFOGEST static in vitro protocol, we studied the influence of static gastric pH versus gradual gastric pH change (pH 6.3 to pH 2.5 in 2 h) on macronutrient digestion in individual cotyledon cells derived from chickpeas. Little effect on small intestinal proteolysis was observed comparing the applied digestion conditions. Contrary, the implementation of a gradual gastric pH change, with and without the addition of salivary α-amylase, altered starch digestion kinetics rates, and extents by 25%. The evaluation of starch and protein digestion, being co-embedded in cotyledon cells, did not only confirm but account for the interdependent digestion behavior. The insights generated in this study demonstrate the possibility of using a hypothesis-based approach to introduce dynamic factors to in vitro models while sticking to simple and cost-efficient set-ups.
Collapse
Affiliation(s)
- Katharina Pälchen
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Leuven Food Science and Nutrition Research Centre (LFoRCe), Laboratory of Food Technology, Kasteelpark Arenberg 22, PB 2457, 3001, Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Formation, structure and properties of the starch-polyphenol inclusion complex: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
48
|
Stone AK, Parolia S, House JD, Wang N, Nickerson MT. Effect of roasting pulse seeds at different tempering moisture on the flour functional properties and nutritional quality. Food Res Int 2021; 147:110489. [PMID: 34399485 DOI: 10.1016/j.foodres.2021.110489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 05/03/2021] [Accepted: 05/23/2021] [Indexed: 10/21/2022]
Abstract
Knowledge on the functional and nutritional properties of wet roasted pulses can increase the utilization of processed pulses as ingredients in food products. This study investigated the effects of tempering different pulse [chickpea (CP), green lentil (GL), navy bean (NB) and yellow pea (YP)] seeds to 20 or 30% moisture prior to roasting (160℃ for 30 min) on the functional properties and nutritional quality of their resulting flours. The surface charge of each pulse remained the same (p > 0.05) after wet roasting and there were no significant (p > 0.05) differences between the different raw pulse flours. The oil holding capacity (OHC) of GL (~2 g/g) was not improved by wet roasting (p > 0.05) whereas the other pulses generally had better OHC for one or both of the tempering moistures used prior to roasting. Foaming properties of all pulses decreased after heat treatment with the exception of both foaming capacity (107%) and stability (~71%) for GL tempered to 20% moisture prior to roasting (p > 0.05). Raw GL had inferior foaming properties compared to the other raw pulse flours (p < 0.001). Emulsion properties of the wet roasted pulses were similar to those of the control (raw flour) for each pulse. Solubility decreased with roasting regardless of the tempering moisture (p < 0.05) whereas in general the in vitro protein digestibility increased. Small improvements (2.4-6.9% increase) in the in vitro protein digestibility-corrected amino acid score were found for GL and NB tempered to 20% moisture before roasting and roasted YP at either moisture content (p < 0.05). Wet roasting increased (p < 0.05) the rapidly digestible starch content, more so with a tempering moisture of 30%. Overall the results from this study will allow for the utilization of wet roasted pulses as ingredients based on their functional properties and protein quality.
Collapse
Affiliation(s)
- Andrea K Stone
- Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Dr, Saskatoon, SK S7N 5A8, Canada
| | - Saakshi Parolia
- Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Dr, Saskatoon, SK S7N 5A8, Canada
| | - James D House
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ning Wang
- Canadian Grain Commission, Grain Research Laboratory, Winnipeg, MB R3C 3G8, Canada
| | - Michael T Nickerson
- Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Dr, Saskatoon, SK S7N 5A8, Canada.
| |
Collapse
|
49
|
Wang Y, Li S, Bai F, Cao J, Sun L. The Physical Adsorption of Gelatinized Starch with Tannic Acid Decreases the Inhibitory Activity of the Polyphenol against α-Amylase. Foods 2021; 10:foods10061233. [PMID: 34071531 PMCID: PMC8226663 DOI: 10.3390/foods10061233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 02/01/2023] Open
Abstract
The effects of mixing orders of tannic acid (TA), starch, and α-amylase on the enzyme inhibition of TA were studied, including mixing TA with α-amylase before starch addition (order 1), mixing TA with pre-gelatinized starch before α-amylase addition (order 2) and co-gelatinizing TA with starch before α-amylase addition (order 3). It was found that the enzyme inhibition was always highest for order 1 because TA could bind with the enzyme active site thoroughly before digestion occurred. Both order 2 and 3 reduced α-amylase inhibition through decreasing binding of TA with the enzyme, which resulted from the non-covalent physical adsorption of TA with gelatinized starch. Interestingly, at low TA concentration, α-amylase inhibition for order 2 was higher than order 3, while at high TA concentration, the inhibition was shown with the opposite trend, which arose from the difference in the adsorption property between the pre-gelatinized and co-gelatinized starch at the corresponding TA concentrations. Moreover, both the crystalline structures and apparent morphology of starch were not significantly altered by TA addition for order 2 and 3. Conclusively, although a polyphenol has an acceptable inhibitory activity in vitro, the actual effect may not reach the expected one when taking processing procedures into account.
Collapse
Affiliation(s)
| | | | | | | | - Lijun Sun
- Correspondence: ; Tel.: +86-136-0929-2796
| |
Collapse
|
50
|
Fermentation of Jamaican Cherries Juice Using Lactobacillus plantarum Elevates Antioxidant Potential and Inhibitory Activity against Type II Diabetes-Related Enzymes. Molecules 2021; 26:molecules26102868. [PMID: 34066102 PMCID: PMC8151855 DOI: 10.3390/molecules26102868] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/03/2022] Open
Abstract
Jamaican cherry (Muntinga calabura Linn.) is tropical tree that is known to produce edible fruit with high nutritional and antioxidant properties. However, its use as functional food is still limited. Previous studies suggest that fermentation with probiotic bacteria could enhance the functional properties of non-dairy products, such as juices. In this study, we analyze the metabolite composition and activity of Jamaican cherry juice following fermentation with Lactobacillus plantarum FNCC 0027 in various substrate compositions. The metabolite profile after fermentation was analyzed using UPLC-HRMS-MS and several bioactive compounds were detected in the substrate following fermentation, including gallic acid, dihydrokaempferol, and 5,7-dihydroxyflavone. We also found that total phenolic content, antioxidant activities, and inhibition of diabetic-related enzymes were enhanced after fermentation using L. plantarum. The significance of its elevation depends on the substrate composition. Overall, our findings suggest that fermentation with L. plantarum FNCC 0027 can improve the functional activities of Jamaican cherry juice.
Collapse
|