1
|
Polez RT, Kimiaei E, Madani Z, Österberg M, Baniasadi H. Tragacanth gum hydrogels with cellulose nanocrystals: A study on optimizing properties and printability. Int J Biol Macromol 2024; 280:136182. [PMID: 39357735 DOI: 10.1016/j.ijbiomac.2024.136182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/06/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
This study investigates a novel all-polysaccharide hydrogel composed of tragacanth gum (TG) and cellulose nanocrystals (CNCs), eliminating the need for toxic crosslinkers. Designed for potential tissue engineering applications, these hydrogels were fabricated using 3D printing and freeze-drying techniques to create scaffolds with interconnected macropores, facilitating nutrient transport. SEM images revealed that the hydrogels contained macropores with a diameter of 100-115 μm. Notably, increasing the CNC content within the TG matrix (30-50 %) resulted in a decrease in porosity from 83 % to 76 %, attributed to enhanced polymer-nanocrystal interactions that produced denser networks. Despite the reduced porosity, the hydrogels demonstrated high swelling ratios (890-1090 %) due to the high water binding capacity of the hydrogel. Mechanical testing showed that higher CNC concentrations significantly improved compressive strength (27.7-49.5 kPa) and toughness (362-707 kJ/m3), highlighting the enhanced mechanical properties of the hydrogels. Thermal analysis confirmed stability up to 400 °C and verified ionic crosslinking with CaCl₂. Additionally, hemolysis tests indicated minimal hemolytic activity, affirming the biocompatibility of the TG/CNC hydrogels. These findings highlight the potential of these hydrogels as advanced materials for 3D-printed scaffolds and injectable hydrogels, offering customizable porosity, superior mechanical strength, thermal stability, and biocompatibility.
Collapse
Affiliation(s)
- Roberta Teixeira Polez
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland.
| | - Erfan Kimiaei
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland
| | - Zahra Madani
- Department of Chemistry and Materials Science, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Monika Österberg
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland
| | - Hossein Baniasadi
- Polymer Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland.
| |
Collapse
|
2
|
Hajfathalian M, Mossburg KJ, Radaic A, Woo KE, Jonnalagadda P, Kapila Y, Bollyky PL, Cormode DP. A review of recent advances in the use of complex metal nanostructures for biomedical applications from diagnosis to treatment. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1959. [PMID: 38711134 PMCID: PMC11114100 DOI: 10.1002/wnan.1959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 05/08/2024]
Abstract
Complex metal nanostructures represent an exceptional category of materials characterized by distinct morphologies and physicochemical properties. Nanostructures with shape anisotropies, such as nanorods, nanostars, nanocages, and nanoprisms, are particularly appealing due to their tunable surface plasmon resonances, controllable surface chemistries, and effective targeting capabilities. These complex nanostructures can absorb light in the near-infrared, enabling noteworthy applications in nanomedicine, molecular imaging, and biology. The engineering of targeting abilities through surface modifications involving ligands, antibodies, peptides, and other agents potentiates their effects. Recent years have witnessed the development of innovative structures with diverse compositions, expanding their applications in biomedicine. These applications encompass targeted imaging, surface-enhanced Raman spectroscopy, near-infrared II imaging, catalytic therapy, photothermal therapy, and cancer treatment. This review seeks to provide the nanomedicine community with a thorough and informative overview of the evolving landscape of complex metal nanoparticle research, with a specific emphasis on their roles in imaging, cancer therapy, infectious diseases, and biofilm treatment. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Diagnostic Tools > Diagnostic Nanodevices.
Collapse
Affiliation(s)
- Maryam Hajfathalian
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA 94305
| | - Katherine J. Mossburg
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
| | - Allan Radaic
- School of Dentistry, University of California Los Angeles
| | - Katherine E. Woo
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA 94305
| | - Pallavi Jonnalagadda
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yvonne Kapila
- School of Dentistry, University of California Los Angeles
| | - Paul L. Bollyky
- Division of Infectious Diseases, Department of Medicine, Stanford University
| | - David P. Cormode
- Department of Radiology, Department of Bioengineering, University of Pennsylvania
| |
Collapse
|
3
|
Yousefzadeh Z, Montazer M, Mianehro A. Plasmonic photocatalytic nanocomposite of in-situ synthesized MnO 2 nanoparticles on cellulosic fabric with structural color. Carbohydr Polym 2024; 326:121622. [PMID: 38142078 DOI: 10.1016/j.carbpol.2023.121622] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/08/2023] [Accepted: 11/18/2023] [Indexed: 12/25/2023]
Abstract
The textile industry produces 20 % of the industrial water pollution containing toxic substances mostly dyes. Reducing material consumption and developing more efficient and scalable textile waste-water treatment methods such as photocatalytic degradation is essential. In this work, manganese dioxide nanoparticles (MnO2 NPs) were synthesized on the cotton fabric via a facile in-situ process. The preparation process was optimized for the highest photocatalytic activity under sunlight and color change originating from the plasmonic structural color of the nanoparticles. This promotes the photocatalytic activity by delocalization of the hot electrons while demonstrating the best washing and light fastness by using the least chemicals, and energy in a short time. In this way, the fabric was colored without any dye and possessed robust photocatalytic activity. Further, no dye-containing waste-water is made, and also accomplished to degrade dyes in a few hours under sunlight which is substantial for sustainable development. The treated fabrics indicated favorable mechanical properties, enhanced thermal stability, and perfect biocompatibility.
Collapse
Affiliation(s)
- Zahra Yousefzadeh
- Textile Department, Amirkabir University of Technology, Center of Excellence in Textile, Tehran, Iran
| | - Majid Montazer
- Textile Department, Amirkabir University of Technology, Center of Excellence in Textile, Tehran, Iran; Functional Fibrous Structures & Environmental Enhancement (FFSEE), Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran.
| | - Ali Mianehro
- Textile Department, Amirkabir University of Technology, Center of Excellence in Textile, Tehran, Iran
| |
Collapse
|
4
|
Rai RS, P GJ, Bajpai V, Khan MI, Elboughdiri N, Shanableh A, Luque R. An eco-friendly approach on green synthesis, bio-engineering applications, and future outlook of ZnO nanomaterial: A critical review. ENVIRONMENTAL RESEARCH 2023; 221:114807. [PMID: 36455633 DOI: 10.1016/j.envres.2022.114807] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Synthesizing ZnO nanostructures ranging from 1 nm to 4 nm confines the electron cloud and exhibits a quantum effect generally called as quantum confinement effect attracting many researchers in the field of electronics and optics. ZnO nanostructures are used in medical applications to formulate antioxidant, antibacterial, antifungal, anti-inflammatory, wound healing, and anti-diabetic medications. This work is a comprehensive study of green synthesis of ZnO nanomaterials using different biological sources and highlights different processes able to produce nanostructures including nanowires, nanorods, nanotubes and other nano shapes of ZnO nanostructures. Different properties of ZnO nanostructures and their targeted bioengineering applications are also described. The strategies and challenges of the eco-friendly approach to enhance the application span of ZnO nanomaterials are also summarized, with future prospects for greener design of ZnO nanomaterials are also suggested.
Collapse
Affiliation(s)
- Ravi Shankar Rai
- Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India.
| | - Girish J P
- Department of Mechanical Engineering with Specialization in Design and Manufacturing, Indian Institute of Information Technology Design and Manufacturing, Kurnool, A.P, India.
| | - Vivek Bajpai
- Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| | - Muhammad Imran Khan
- Research Institute of Sciences and Engineering (RISE), University of Sharjah, Sharjah, 27272, United Arab Emirates.
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, Ha'il, 81441, Saudi Arabia; Chemical Engineering Process Department, National School of Engineers Gabes, University of Gabes, Gabes, 6029, Tunisia.
| | - Abdallah Shanableh
- Research Institute of Sciences and Engineering (RISE), University of Sharjah, Sharjah, 27272, United Arab Emirates.
| | - Rafael Luque
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya Str., 117198, Moscow, Russian Federation; Universidad ECOTEC, Km 13.5 Samborondón, Samborondón, EC092302, Ecuador
| |
Collapse
|
5
|
Arefkhani M, Babaei A, Masoudi M, Kafashan A. A step forward to overcome the cytotoxicity of graphene oxide through decoration with tragacanth gum polysaccharide. Int J Biol Macromol 2023; 226:1411-1425. [PMID: 36442552 DOI: 10.1016/j.ijbiomac.2022.11.254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Hybridization of nanomaterials (NMs) with natural polymers is one of the best techniques to promote their exciting properties. In this way, the main objective of this work was to investigate the efficiency of decoration of the graphene oxide (GO) nano-sheets with tragacanth gum (TG) polysaccharide. To aim this, different approaches were used (with and without ultrasonic treatment) and various tests (XRD, FTIR, Raman, UV-Vis, DLS, Zeta potential, contact angle, AFM, FE-SEM, TEM, and MTT assay) were conducted. Test results indicated that the nano-hybrids were successfully synthesized. Furthermore, our findings represented that, the TG hybridized GO (TG-GO) appreciably enhanced the biocompatibility of GO. Moreover, it was demonstrated that the ultrasonic treatment of TG solution put a remarkable impact on the microstructure, wettability, and also surface charge characteristic of fabricated nano-hybrids and consequently improved the biocompatibility against L929-fibroblast cells.
Collapse
Affiliation(s)
- Mahdi Arefkhani
- Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran
| | - Amir Babaei
- Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran.
| | - Maha Masoudi
- Department of Laboratory Sciences, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Azade Kafashan
- Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran
| |
Collapse
|
6
|
Boamah PO, Afoakwah NA, Onumah J, Osei ED, Mahunu GK. Physicochemical Properties, Biological Properties and Applications of Gum Tragacanth-A Review. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2023. [DOI: 10.1016/j.carpta.2023.100288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
7
|
Tryfon P, Kamou NN, Ntalli N, Mourdikoudis S, Karamanoli K, Karfaridis D, Menkissoglu-Spiroudi U, Dendrinou-Samara C. Coated Cu-doped ZnO and Cu nanoparticles as control agents against plant pathogenic fungi and nematodes. NANOIMPACT 2022; 28:100430. [PMID: 36206943 DOI: 10.1016/j.impact.2022.100430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
In the current study, coated copper nanoparticles with polyethylene glycol 8000 (Cu@PEG NPs) and copper-doped zinc oxide nanoparticles with diethylene glycol (Cu-doped ZnO@DEG NPs) have been synthesized via solvothermal and microwave-assisted process, physicochemical characterized, and studied as nano-fungicides and nano-nematicides. Spheroidal Cu-doped ZnO@DEG NPs and urchin-like Cu@PEG NPs have been isolated with average crystallite sizes of 12 and 21 nm, respectively. The Cu doping (11.3 wt%) in ZnO lattice (88.7 wt%) was investigated by Rietveld refinement analysis and confirmed by X-ray Diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS). The Cu-doped ZnO@DEG and Cu@PEG NPs revealed a growth inhibition of fungi Botrytis cinerea (B. cinerea) and Sclerotinia sclerotiorum (S. sclerotiorum) and nematode paralysis of Meloidogyne javanica in a dose-dependent manner. Cu-doped ZnO@DEG NPs were more effective against M. javanica (EC50 = 2.60 μg/mL) than the Cu@PEG NPs (EC50 = 25 μg/mL). In contrast, the antifungal activity was approximately similar for both NPs, with EC50 values at 310 and 327 μg/mL against B. cinerea, respectively, and 260 and 278 μg/mL against S. sclerotiorum, respectively. Lettuce (Lactuca sativa) plants were inoculated with S. sclerotiorum or M. javanica and sprayed with either Cu-doped ZnO@DEG NPs or Cu@PEG NPs. The antifungal effect was evaluated based on a disease index (DI), and nematicidal activity was assessed based on the total number of galls and nematode females per root gram. NPs successfully inhibited the growth of both pathogens without causing phytotoxicity on lettuce. The DI were significantly decreased as compared to the positive control (DI = 5.2), estimated equal to 1.7, 2.9 and 2.5 for Cu@PEG NPs, Cu-doped ZnO@DEG NPs and the chemical control (KOCIDE 2000), respectively. The reduction in galling and population of M. javanica ranged from 39.32% to 32.29%, statistically like chemical control. The treatment of lettuce plants with Cu-doped ZnO@DEG NPs increased the leaf net photosynthetic value at 4.60 and 6.66 μmol CO2-2 s-1 in plants inoculated with S. sclerotiorum and M. javanica, respectively, as compared to the control (3.00 μmol CO2-2 s-1). The antioxidant capacity of NPs treated lettuce plants was evaluated as 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity in leaf extracts. Plants inoculated with S. sclerotiorum and sprayed with Cu-doped ZnO@DEG and Cu@PEG NPs, exhibited a 34.22% and 32.70% increase in antioxidant capacity, respectively, higher than the control. Similarly, an increase in antioxidant capacity was measured (39.49 and 37.36%) in lettuce inoculated with M. javanica and treated with Cu-doped ZnO@DEG and Cu@PEG NPs, respectively. Moreover, an increase of phenolic compounds in lettuce leaf tissue treated with NPs was measured as compared to the control. Overall, foliar applied Cu and Cu-doped ZnO NPs could be a promising tool to control phytopathogenic fungi and nematodes contributing to sustainability of agri-food sector.
Collapse
Affiliation(s)
- Panagiota Tryfon
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Nathalie N Kamou
- Pesticide Science Laboratory, School of Agriculture, Faculty of Agriculture Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Nikoletta Ntalli
- Analytical Chemistry and Pesticides Laboratory, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - Stefanos Mourdikoudis
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, United Kingdom; Biophysics Group, Department of Physics and Astronomy, University College London (UCL), London, United Kingdom
| | - Katerina Karamanoli
- Laboratory of Agricultural Chemistry, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Dimitrios Karfaridis
- Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Urania Menkissoglu-Spiroudi
- Pesticide Science Laboratory, School of Agriculture, Faculty of Agriculture Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Catherine Dendrinou-Samara
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
8
|
Polez RT, Morits M, Jonkergouw C, Phiri J, Valle-Delgado JJ, Linder MB, Maloney T, Rojas OJ, Österberg M. Biological activity of multicomponent bio-hydrogels loaded with tragacanth gum. Int J Biol Macromol 2022; 215:691-704. [PMID: 35777518 DOI: 10.1016/j.ijbiomac.2022.06.153] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/14/2022] [Accepted: 06/23/2022] [Indexed: 11/05/2022]
Abstract
Producing hydrogels capable of mimicking the biomechanics of soft tissue remains a challenge. We explore the potential of plant-based hydrogels as polysaccharide tragacanth gum and antioxidant lignin nanoparticles in bioactive multicomponent hydrogels for tissue engineering. These natural components are combined with TEMPO-oxidized cellulose nanofibrils, a material with known shear thinning behavior. Hydrogels presented tragacanth gum (TG) concentration-dependent rheological properties suitable for extrusion 3D printing. TG enhanced the swelling capacity up to 645 % and the degradation rate up to 1.3 %/day for hydrogels containing 75 % of TG. Young's moduli of the hydrogels varied from 5.0 to 11.6 kPa and were comparable to soft tissues like skin and muscle. In vitro cell viability assays revealed that the scaffolds were non-toxic and promoted proliferation of hepatocellular carcinoma HepG2 cells. Therefore, the plant-based hydrogels designed in this work have a significant potential for tissue engineering.
Collapse
Affiliation(s)
- Roberta Teixeira Polez
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Maria Morits
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Christopher Jonkergouw
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Josphat Phiri
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Juan José Valle-Delgado
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Markus B Linder
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Thaddeus Maloney
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland; Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Monika Österberg
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland.
| |
Collapse
|
9
|
Eissa MA, Hashim YZHY, Mohd Nasir MH, Nor YA, Salleh HM, Isa MLM, Abd-Azziz SSS, Abd Warif NM, Ramadan E, Badawi NM. Fabrication and characterization of Agarwood extract-loaded nanocapsules and evaluation of their toxicity and anti-inflammatory activity on RAW 264.7 cells and in zebrafish embryos. Drug Deliv 2021; 28:2618-2633. [PMID: 34894947 PMCID: PMC8676596 DOI: 10.1080/10717544.2021.2012307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aquilaria malaccensis has been traditionally used to treat several medical disorders including inflammation. However, the traditional claims of this plant as an anti-inflammatory agent has not been substantially evaluated using modern scientific techniques. The main objective of this study was to evaluate the anti-inflammatory effect of Aquilaria malacensis leaf extract (ALEX-M) and potentiate its activity through nano-encapsulation. The extract-loaded nanocapsules were fabricated using water-in-oil-in-water (w/o/w) emulsion method and characterized via multiple techniques including DLS, TEM, FTIR, and TGA. The toxicity and the anti-inflammatory activity of ALEX-M and the extract-loaded nanocapsules (ALEX-M-PNCs) were evaluated in-vitro on RAW 264.7 macrophages and in-vivo on zebrafish embryos. The nanocapsules demonstrated spherical shape with mean particle diameter of 167.13 ± 1.24 nm, narrow size distribution (PDI = 0.29 ± 0.01), and high encapsulation efficiency (87.36 ± 1.81%). ALEX-M demonstrated high viability at high concentrations in RAW 264.7 cells and zebrafish embryos, however, ALEX-M-PNCs showed relatively higher cytotoxicity. Both free and nanoencapsulated extract expressed anti-inflammatory effects through significant reduction of the pro-inflammatory mediator nitric oxide (NO) production in LPS/IFNγ-stimulated RAW 264.7 macrophages and zebrafish embryos in a concentration-dependent manner. The findings highlight that ALEX-M can be recognized as a potential anti-inflammatory agent, and its anti-inflammatory activity can be potentiated by nano-encapsulation. Further studies are warranted toward investigation of the mechanistic and immunomodulatory roles of ALEX-M.
Collapse
Affiliation(s)
- Manar A Eissa
- International Institute for Halal Research and Training (INHART), International Islamic University Malaysia (IIUM), Kuala Lumpur, Malaysia.,Center for Drug Research and Development (CDRD), The British University in Egypt (BUE), Cairo, Egypt
| | - Yumi Z H-Y Hashim
- International Institute for Halal Research and Training (INHART), International Islamic University Malaysia (IIUM), Kuala Lumpur, Malaysia
| | - Mohd Hamzah Mohd Nasir
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia (IIUM), Kuantan, Pahang, Malaysia.,Central Research and Animal Facility (CREAM), Kulliyyah of Science, International Islamic University Malaysia (IIUM), Kuantan, Pahang, Malaysia
| | - Yusilawati Ahmad Nor
- Department of Biotechnology Engineering, Kulliyyah of Engineering, International Islamic University Malaysia (IIUM), Kuala Lumpur, Malaysia
| | - Hamzah Mohd Salleh
- International Institute for Halal Research and Training (INHART), International Islamic University Malaysia (IIUM), Kuala Lumpur, Malaysia
| | - Muhammad Lokman Md Isa
- Kulliyah of Nursing, International Islamic University Malaysia (IIUM), Jalan Sultan Ahmad Shah, Kuantan, Pahang, Malaysia
| | - Saripah S S Abd-Azziz
- Faculty of Science and Mathematics, Sultan Idris Education University, Perak, Tanjung Malim, Malaysia
| | - Nor Malia Abd Warif
- Biomedical Sciences Program, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Eman Ramadan
- Center for Drug Research and Development (CDRD), The British University in Egypt (BUE), Cairo, Egypt.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| | - Noha M Badawi
- Center for Drug Research and Development (CDRD), The British University in Egypt (BUE), Cairo, Egypt.,Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| |
Collapse
|
10
|
Dohendou M, Pakzad K, Nezafat Z, Nasrollahzadeh M, Dekamin MG. Progresses in chitin, chitosan, starch, cellulose, pectin, alginate, gelatin and gum based (nano)catalysts for the Heck coupling reactions: A review. Int J Biol Macromol 2021; 192:771-819. [PMID: 34634337 DOI: 10.1016/j.ijbiomac.2021.09.162] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/11/2021] [Accepted: 09/18/2021] [Indexed: 12/15/2022]
Abstract
Heck cross-coupling reaction (HCR) is one of the few transition metal catalyzed CC bond-forming reactions, which has been considered as the most effective, direct, and atom economical synthetic method using various catalytic systems. Heck reaction is widely employed in numerous syntheses including preparation of pharmaceutical and biologically active compounds, agrochemicals, natural products, fine chemicals, etc. Commonly, Pd-based catalysts have been used in HCR. In recent decades, the application of biopolymers as natural and effective supports has received attention due to their being cost effective, abundance, and non-toxicity. In fact, recent studies demonstrated that biopolymer-based catalysts had high sorption capacities, chelating activities, versatility, and stability, which make them potentially applicable as green materials (supports) in HCR. These catalytic systems present high stability and recyclability after several cycles of reaction. This review aims at providing an overview of the current progresses made towards the application of various polysaccharide and gelatin-supported metal catalysts in HCR in recent years. Natural polymers such as starch, gum, pectin, chitin, chitosan, cellulose, alginate and gelatin have been used as natural supports for metal-based catalysts in HCR. Diverse aspects of the reactions, different methods of preparation and application of polysaccharide and gelatin-based catalysts and their reusability have been reviewed.
Collapse
Affiliation(s)
- Mohammad Dohendou
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Khatereh Pakzad
- Department of Chemistry, Faculty of Science, University of Qom, PO Box 37185-359, Qom, Iran
| | - Zahra Nezafat
- Department of Chemistry, Faculty of Science, University of Qom, PO Box 37185-359, Qom, Iran
| | - Mahmoud Nasrollahzadeh
- Department of Chemistry, Faculty of Science, University of Qom, PO Box 37185-359, Qom, Iran.
| | - Mohammad G Dekamin
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
11
|
Guo F, Shi C, Sun W, Liu Y, Shi W, Lin X. Pomelo biochar as an electron acceptor to modify graphitic carbon nitride for boosting visible-light-driven photocatalytic degradation of tetracycline. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.06.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Mohamed Isa ED, Shameli K, Ch'ng HJ, Che Jusoh NW, Hazan R. Photocatalytic degradation of selected pharmaceuticals using green fabricated zinc oxide nanoparticles. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.05.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Gum Tragacanth (GT): A Versatile Biocompatible Material beyond Borders. Molecules 2021; 26:molecules26061510. [PMID: 33802011 PMCID: PMC8000171 DOI: 10.3390/molecules26061510] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 01/18/2023] Open
Abstract
The use of naturally occurring materials in biomedicine has been increasingly attracting the researchers’ interest and, in this regard, gum tragacanth (GT) is recently showing great promise as a therapeutic substance in tissue engineering and regenerative medicine. As a polysaccharide, GT can be easily extracted from the stems and branches of various species of Astragalus. This anionic polymer is known to be a biodegradable, non-allergenic, non-toxic, and non-carcinogenic material. The stability against microbial, heat and acid degradation has made GT an attractive material not only in industrial settings (e.g., food packaging) but also in biomedical approaches (e.g., drug delivery). Over time, GT has been shown to be a useful reagent in the formation and stabilization of metal nanoparticles in the context of green chemistry. With the advent of tissue engineering, GT has also been utilized for the fabrication of three-dimensional (3D) scaffolds applied for both hard and soft tissue healing strategies. However, more research is needed for defining GT applicability in the future of biomedical engineering. On this object, the present review aims to provide a state-of-the-art overview of GT in biomedicine and tries to open new horizons in the field based on its inherent characteristics.
Collapse
|
14
|
Mallakpour S, Okhovat M. Hydroxyapatite mineralization of chitosan-tragacanth blend/ZnO/Ag nanocomposite films with enhanced antibacterial activity. Int J Biol Macromol 2021; 175:330-340. [PMID: 33556403 DOI: 10.1016/j.ijbiomac.2021.01.210] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/16/2021] [Accepted: 01/29/2021] [Indexed: 12/25/2022]
Abstract
Biocompatible nanocomposites (NCs) with antibacterial activity containing organic matrix and inorganic nanoparticles (NPs) are vital for providing a suitable substrate for hydroxyapatite (HA) formation. Therefore, we fabricated a series of biocompatible NCs of chitosan (CS) and tragacanth gum (TG) and different percentages of ZnO NPs and ZnO@Ag NPs as fillers into the CS-TG blend. The characteristics of the NCs were distinguished with the field-emission scanning electron microscope (FE-SEM), X-Ray diffraction, Fourier transform infrared, and transmission electron microscopy (TEM). The CS-TG/ZnO@Ag(1:0.500) NC 8 wt% showed a rough surface according to FE-SEM. Moreover, the TEM image of CS-TG/ZnO NC 8 wt% depicted a uniform dispersion of NPs into the matrix. The biocompatibility of these NCs was evaluated by the formation of HA on their surfaces. The outcomes depicted the deposition of HA on the surface of all NCs. Also, CS-TG/ZnO@Ag(1:0.500) NC 8 wt% exhibited the most HA deposition on its surface. The antibacterial activity of these NCs toward Staphylococcus aureus and Escherichia coli bacteria was evaluated. The CS-TG/ZnO@Ag(1:0.500) NC 8 wt% exhibited a higher inhibition zone diameter in comparison to the ZnO@Ag (1:0.500) NPs for the S. aureus bacteria. Generally, antibacterial activity of the NCs containing ZnO@Ag NPs are more than NCs containing ZnO NPs.
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran.
| | - Milad Okhovat
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| |
Collapse
|
15
|
Amani A, Montazer M, Mahmoudirad M. Low starch/corn silk/ZnO as environmentally friendly nanocomposites assembling on PET fabrics. Int J Biol Macromol 2020; 170:780-792. [PMID: 33385458 DOI: 10.1016/j.ijbiomac.2020.12.168] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023]
Abstract
Starch is a benign bio-polymeric material with a diversity of desirable functionalities namely biocompatibility and hydrophilicity features. Besides, corn silk with cellulose-protein structure can be used as an available and clean compound for medical applications. Hence, the advantages of both mentioned biocompatible compounds with potentiality to form hydrogel are considered via their combination. Up to now, there is no report on dealing with starch beside corn silk on polyester fabric in the literatures. Herein, low starch/corn silk dual hydrogel was incorporated into nano ZnO functionalized polyester fabric via a one-step simple method. Imparting flame retardant feature with no dripping, antibacterial/antifungal and self-cleaning activities with the enhanced mechanical characteristics are the advantages of the stated approach in this paper. Presence of dual hydrogel on nano ZnO treated polyester fabric helps to significantly improve the cell viability to 129% because of hydrogel feature. Finally, this paper renders a feasible and clean approach for textile functionalization with respect to the both human health issues and environmental observations.
Collapse
Affiliation(s)
- Atefeh Amani
- Textile Department, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Majid Montazer
- Textile Engineering Department, Functional Fibrous Structures & Environmental Enhancement (FFSEE), Amirkabir Nanotechnology Research Institute (ANTRI), Amirkabir University of Technology, Tehran, Iran.
| | - Mahnaz Mahmoudirad
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Nejatian M, Abbasi S, Azarikia F. Gum Tragacanth: Structure, characteristics and applications in foods. Int J Biol Macromol 2020; 160:846-860. [DOI: 10.1016/j.ijbiomac.2020.05.214] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022]
|
17
|
Jalali S, Montazer M, Mahmoudi Rad M. Biologically active PET/polysaccharide-based nanofibers post-treated with selenium/Tragacanth Gum nanobiocomposites. Carbohydr Polym 2020; 251:117125. [PMID: 33142657 DOI: 10.1016/j.carbpol.2020.117125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 01/18/2023]
Abstract
Polysaccharide-based nanofibers from Tragacanth Gum (TG) and polyethylene terephthalate (PET) were post-treated with selenium nanoparticles (Se NPs) and also stabilized with TG (SeNPs/TG). DLS, FE-SEM, EDX, TEM, and XRD were employed to verify the synthesis of Se NPs. The relatively narrow size distribution of SeNPs/TG showed through TEM and DLS investigations comparing with Se NPs. The Se NPs formation with and without TG was studied with FTIR confirmed the final stabilized solution due to the bonded hydroxyl groups of TG with Se NPs. Also, a relatively higher antioxidant reported on SeNPs/TG at 0.5-5 mg/mL using DPPH scavenging ability. The Se NPs and SeNPs/TG solutions specified remarkable inhibition against Staphylococcus aureus and Candida albicans; however, no significant antibacterial activities observed on the treated nanofibers. Finally, the uniform migration of fibroblast cells in wound healing of the treated nanofibers with SeNPs/TG proved the value of the products in medical applications.
Collapse
Affiliation(s)
- Sara Jalali
- Textile Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Majid Montazer
- Textile Engineering Department, Functional Fibrous Structures & Environmental Enhancement (FFSEE), Amirkabir Nanotechnology Research Institute (ANTRI), Amirkabir University of Technology, Tehran, Iran.
| | - Mahnaz Mahmoudi Rad
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Wang Z, Que B, Gan J, Guo H, Chen Q, Zheng L, Marraiki N, Elgorban AM, Zhang Y. Zinc oxide nanoparticles synthesized from Fraxinus rhynchophylla extract by green route method attenuates the chemical and heat induced neurogenic and inflammatory pain models in mice. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 202:111668. [PMID: 31734435 DOI: 10.1016/j.jphotobiol.2019.111668] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/16/2019] [Accepted: 10/22/2019] [Indexed: 12/15/2022]
Abstract
Fraxinus rhynchophylla belongs to the family of Oleaceae and also called as Chinese ash wood possesses various pharmacological properties such as neuroprotective, antimicrobial, anti-inflammatory, etc. Therefore we synthesized ZnO nanoparticles using Fraxinus rhynchophylla wood extract as reducing and capping agent. The synthesized nanoparticles were characterized with the aid of UV-Spec, DLS, FT-IR and TEM analysis. Green synthesized ZnO nanoparticles were then assessed for anti-nociceptive property by using various nociception models such as thermal stress-induced, acetic acid, glutamate, capsaicin, and formalin-induced nociception. The sedative effect of synthesized ZnO nanoparticles was evaluated with an open field test. UV-Spectroscopic analysis confirms the formation of ZnO nanoparticles and the characterization studies DLS, FT-IR, and TEM analysis prove it has ideal nanoparticle can be used as a nano-drug. Results of both thermal stress-induced methods hot plate and tail immersion nociception test verified the synthesized ZnO nanoparticles are a potent antinociceptive drug. ZnO nanoparticles effectively reduced the abdominal writhes in acetic acid-induced nociception and it also significantly decreased the nociception activity in another glutamate, capsaicin, and formalin-induced nociception models. Open field experiment proved that synthesized ZnO nanoparticles are less sedative compared to the standard antinociceptive drug morphine. Overall our findings authentically confirm ZnO nanoparticles synthesized from Fraxinus rhynchophylla wood extract is a novel drug that persuasively reduces nociception in different nociceptive induced mice models and can be the best alternative for allopathic drugs which renders severe side effects.
Collapse
Affiliation(s)
- Zhi Wang
- Department of Anesthesiology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi Province 030000, PR China
| | - Bin Que
- Department of anesthesiology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang Province 310007, China
| | - Jianhui Gan
- Department of Anesthesiology, the Affiliated Tangshan People Hospital of North China University of Science and Technology, Tangshan, Heibei Province 063000, China
| | - Hao Guo
- Department of Anesthesiology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi Province 030000, PR China
| | - Qiang Chen
- Department of Anesthesiology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi Province 030000, PR China
| | - Lina Zheng
- Department of Anesthesiology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi Province 030000, PR China
| | - Najat Marraiki
- Department of Botany and Microbiology, College of Science, King Saud University, P.O.Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O.Box 2455, Riyadh 11451, Saudi Arabia; Centre of Excellence in Biotechnology Research, King Saud University, P.O Box 2455, Riyadh 11451, Saudi Arabia
| | - Yi Zhang
- Department of Anesthesiology, Tongji Hospital Affiliated Tongji Medical College, Huazhong Science and Technology University, Wuhan, Hubei Province 430030, China.
| |
Collapse
|
19
|
A review on latest innovations in natural gums based hydrogels: Preparations & applications. Int J Biol Macromol 2019; 136:870-890. [DOI: 10.1016/j.ijbiomac.2019.06.113] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 06/13/2019] [Accepted: 06/16/2019] [Indexed: 02/03/2023]
|
20
|
Azarniya A, Tamjid E, Eslahi N, Simchi A. Modification of bacterial cellulose/keratin nanofibrous mats by a tragacanth gum-conjugated hydrogel for wound healing. Int J Biol Macromol 2019; 134:280-289. [DOI: 10.1016/j.ijbiomac.2019.05.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/21/2019] [Accepted: 05/04/2019] [Indexed: 12/22/2022]
|
21
|
Nazarzadeh Zare E, Makvandi P, Tay FR. Recent progress in the industrial and biomedical applications of tragacanth gum: A review. Carbohydr Polym 2019; 212:450-467. [PMID: 30832879 DOI: 10.1016/j.carbpol.2019.02.076] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 02/08/2023]
Abstract
Natural polymers have distinct advantages over synthetic polymers because of their abundance, biocompatibility, and biodegradability. Tragacanth gum, an anionic polysaccharide, is a natural polymer which is derived from renewable sources. As a biomaterial, tragacanth gum has been used in industrial settings such as food packaging and water treatment, as well as in the biomedical field as drug carriers and for wound healing purposes. The present review provides an overview on the state-of-the-art in the field of tragacanth gum applications. The structure, properties, cytotoxicity, and degradability as well as the recent advances in industrial and biomedical applications of tragacanth gum are reviewed to offer a backdrop for future research.
Collapse
Affiliation(s)
| | - Pooyan Makvandi
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (CNR), Naples, Italy; Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Franklin R Tay
- Department of Endodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
22
|
Amani A, Montazer M, Mahmoudirad M. Synthesis of applicable hydrogel corn silk/ZnO nanocomposites on polyester fabric with antimicrobial properties and low cytotoxicity. Int J Biol Macromol 2019; 123:1079-1090. [DOI: 10.1016/j.ijbiomac.2018.11.093] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 10/08/2018] [Accepted: 11/09/2018] [Indexed: 12/17/2022]
|
23
|
Ghayempour S, Montazer M. A novel controlled release system based on Tragacanth nanofibers loaded Peppermint oil. Carbohydr Polym 2019; 205:589-595. [DOI: 10.1016/j.carbpol.2018.10.078] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 09/02/2018] [Accepted: 10/24/2018] [Indexed: 11/15/2022]
|
24
|
Jayaramudu T, Varaprasad K, Pyarasani RD, Reddy KK, Kumar KD, Akbari-Fakhrabadi A, Mangalaraja RV, Amalraj J. Chitosan capped copper oxide/copper nanoparticles encapsulated microbial resistant nanocomposite films. Int J Biol Macromol 2019; 128:499-508. [PMID: 30699337 DOI: 10.1016/j.ijbiomac.2019.01.145] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 12/20/2022]
Abstract
Chitosan (CH) capped inorganic nanomaterials have been considered as significant antibacterial materials in the clinical field. This work shows the synthesis of two new different antibacterial composite films as a result of the incorporation of CH capped copper oxide (CHCuO) and copper (CHCu) nanoparticles (NPs). Here, CHCuO and CHCu NPs were achieved by a facile chemical reduction of Cu2+ ions using sodium hydroxide and ascorbic acid. TEM analysis revealed the morphology as rod-type nanoflakes for CHCuO and a spherical shape for CHCu NPs with ~7 ± 2 nm size. Antimicrobial activity of the developed materials was studied by the inhibition zone method, against both gram-negative and gram-positive bacteria. The antimicrobial activity revealed that the CHCuO NPs and CHCuO-CH film showed a higher inhibition zone than the other nanomaterials. The results suggested that the synthesized materials can be used in wound dressing applications.
Collapse
Affiliation(s)
- Tippabattini Jayaramudu
- Laboratory of Materials Science, Instituto de Quimica de Recursos Naturales, Universidad de Talca, 747 Talca, Chile.
| | - Kokkarachedu Varaprasad
- Centre de Investigacion de Polimeros Avanzados, CIPA, avenida Collao 1202, Edificio de Laoratorios, Concepcion, Chile
| | - Radha D Pyarasani
- Vicerrectoria de Investigacion y Postgrado, Universidad Catolica del Maule, 3460000 Talca, Chile
| | - K Koteshwara Reddy
- Laboratory of Materials Science, Instituto de Quimica de Recursos Naturales, Universidad de Talca, 747 Talca, Chile
| | - Kanderi Dileep Kumar
- Dept. of Microbiology, Sri Krishnadevaraya University, Ananthapuramu 515003, Andhra Pradesh, India
| | - A Akbari-Fakhrabadi
- Advanced Materials Laboratory, Department of Mechanical Engineering, University of Chile, Beauchef, 851 Santiago, Chile
| | - R V Mangalaraja
- Advanced Ceramics and Nanotechnology Laboratory, Department of Materials Engineering, Faculty of Engineering, University of Concepcion, Concepcion 407-0409, Chile
| | - John Amalraj
- Laboratory of Materials Science, Instituto de Quimica de Recursos Naturales, Universidad de Talca, 747 Talca, Chile.
| |
Collapse
|
25
|
Sayyar Z, Jafarizadeh Malmiri H. Photocatalytic and antibacterial activities study of prepared self-cleaning nanostructure surfaces using synthesized and coated ZnO nanoparticles with Curcumin nanodispersion. ACTA ACUST UNITED AC 2018. [DOI: 10.1515/zkri-2018-2096] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Abstract
Zinc oxide nanoparticles had been synthesized and encapsulated using Curcumin nanoemulsions, Zn(Cur)O NPs, under subcritical water conditions. The effects of temperature (120, 140 and 160 °C) and pH values of the reaction solution (4, 7 and 10) on the particle size, grain size, cristallinity, specific surface area, band gap, Urbach energy, morphology, photocatalytic activity and antibacterial properties of the prepared Zn(Cur)O NPs were evaluated using XRD, FT-IR, SEM, EDX and UV-Vis spectroscopy analysis. The obtained results indicate that the prepared spherical and rod shapes Zn(Cur)O NPs had a crystallite size distribution of 10–100 nm. Furthermore, the results reveal that most uniform Zn(Cur)O NPs with highest photocatalytic activity, quantum yield (0.161 mol·m−2 s−1), specific surface area (242 m2/g), minimum band gap (2.62 eV) and Urbach energy (0.125 meV) were formed at 160 °C and natural pH. The highest antibacterial activities against both Gram positive and negative bacteria strains, were achieved using the synthesized Zn(Cur)O at 160 °C and basic pH(10).
Collapse
Affiliation(s)
- Zahra Sayyar
- Faculty of Chemical Engineering , Sahand University of Technology , Tabriz , Iran
| | - Hoda Jafarizadeh Malmiri
- Faculty of Chemical Engineering , Sahand University of Technology , Tabriz , Iran , Tel.: +98-41-33459099, Fax: +98-41-33444355, E-mail:
| |
Collapse
|
26
|
Padil VVT, Wacławek S, Černík M, Varma RS. Tree gum-based renewable materials: Sustainable applications in nanotechnology, biomedical and environmental fields. Biotechnol Adv 2018; 36:1984-2016. [PMID: 30165173 PMCID: PMC6209323 DOI: 10.1016/j.biotechadv.2018.08.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/22/2018] [Accepted: 08/24/2018] [Indexed: 12/22/2022]
Abstract
The prospective uses of tree gum polysaccharides and their nanostructures in various aspects of food, water, energy, biotechnology, environment and medicine industries, have garnered a great deal of attention recently. In addition to extensive applications of tree gums in food, there are substantial non-food applications of these commercial gums, which have gained widespread attention due to their availability, structural diversity and remarkable properties as 'green' bio-based renewable materials. Tree gums are obtainable as natural polysaccharides from various tree genera possessing exceptional properties, including their renewable, biocompatible, biodegradable, and non-toxic nature and their ability to undergo easy chemical modifications. This review focuses on non-food applications of several important commercially available gums (arabic, karaya, tragacanth, ghatti and kondagogu) for the greener synthesis and stabilization of metal/metal oxide NPs, production of electrospun fibers, environmental bioremediation, bio-catalysis, biosensors, coordination complexes of metal-hydrogels, and for antimicrobial and biomedical applications. Furthermore, polysaccharides acquired from botanical, seaweed, animal, and microbial origins are briefly compared with the characteristics of tree gum exudates.
Collapse
Affiliation(s)
- Vinod V T Padil
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, Liberec 1 461 17, Czech Republic.
| | - Stanisław Wacławek
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, Liberec 1 461 17, Czech Republic
| | - Miroslav Černík
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, Liberec 1 461 17, Czech Republic.
| | - Rajender S Varma
- Water Resource Recovery Branch, Water Systems Division, National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, MS 483, Cincinnati, Ohio 45268, USA; Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
27
|
Rahimdokht M, Pajootan E, Ranjbar-Mohammadi M. Titania/gum tragacanth nanohydrogel for methylene blue dye removal from textile wastewater using response surface methodology. POLYM INT 2018. [DOI: 10.1002/pi.5706] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mehdi Rahimdokht
- Department of Textile Engineering; Amirkabir University of Technology; Tehran Iran
| | - Elmira Pajootan
- Department of Textile Engineering; Amirkabir University of Technology; Tehran Iran
- Department of Chemical Engineering; McGill University; Montreal Canada
| | | |
Collapse
|
28
|
A modified microemulsion method for fabrication of hydrogel Tragacanth nanofibers. Int J Biol Macromol 2018; 115:317-323. [DOI: 10.1016/j.ijbiomac.2018.04.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/18/2018] [Accepted: 04/08/2018] [Indexed: 11/17/2022]
|
29
|
Mobin M, Rizvi M, Olasunkanmi LO, Ebenso EE. Biopolymer from Tragacanth Gum as a Green Corrosion Inhibitor for Carbon Steel in 1 M HCl Solution. ACS OMEGA 2017; 2:3997-4008. [PMID: 31457703 PMCID: PMC6641194 DOI: 10.1021/acsomega.7b00436] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/14/2017] [Indexed: 05/26/2023]
Abstract
A biopolymer from tragacanth gum, arabinogalactan (AG), was investigated for its adsorption and corrosion inhibition traits for carbon steel corrosion in 1 M HCl. Gravimetric method, potentiodynamic polarization measurements, electrochemical impedance spectroscopy, UV-visible spectroscopy, scanning electron microscopy, and atomic force microscopy were used to judge the adsorptive nature of AG in the acid solution. The inhibition efficiency improved with an increase in AG concentration and temperature of the acid solution. Thermodynamic and activation parameters (ΔG ads, E a, ΔH, and ΔS) were also calculated and discussed. The adsorption of AG favored Langmuir adsorption isotherm. The results of corrosion tests confirmed that AG could serve as an efficient green corrosion inhibitor for the carbon steel in 1 M HCl, yielding high efficiency and a low risk of environmental pollution. Theoretical quantum chemical and Monte Carlo simulation studies corroborated the experimental results.
Collapse
Affiliation(s)
- Mohammad Mobin
- Corrosion
Research Laboratory, Department of Applied Chemistry, Faculty of Engineering
& Technology, Aligarh Muslim University, Aligarh 202002, India
| | - Marziya Rizvi
- Corrosion
Research Laboratory, Department of Applied Chemistry, Faculty of Engineering
& Technology, Aligarh Muslim University, Aligarh 202002, India
| | - Lukman O. Olasunkanmi
- Material
Science Innovation and Modelling (MaSIM) Research Focus Area, Department
of Chemistry, Faculty of Agriculture, Science and Technology, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa
| | - Eno E. Ebenso
- Material
Science Innovation and Modelling (MaSIM) Research Focus Area, Department
of Chemistry, Faculty of Agriculture, Science and Technology, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa
| |
Collapse
|
30
|
Ghayempour S, Montazer M. Tragacanth nanocapsules containing Chamomile extract prepared through sono-assisted W/O/W microemulsion and UV cured on cotton fabric. Carbohydr Polym 2017; 170:234-240. [PMID: 28521992 DOI: 10.1016/j.carbpol.2017.04.088] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/19/2017] [Accepted: 04/26/2017] [Indexed: 11/26/2022]
Abstract
Encapsulation is the best method to protect the plant extracts against volatility and instability in the presence of air, light, moisture and high temperatures. Nevertheless, application of encapsulated plant extracts on the textiles requires a low-temperature and high rate processing to avoid from breaking or destroying of capsules. The present paper represents application of nanocapsules prepared by ultrasound irradiation assisted W/O/W microemulsion method on the cotton fabric through UV curing method. The surface and structure of nanocapsules and treated cotton fabric using FESEM and FT-IR indicated the spherical nanocapsules with size of 60-80nm stabilized on the fabric surface in a film layer feature. Also, the treated cotton fabric showed a good release behavior of 96h, a high stability against washing and rubbing tests and a relative good antimicrobial activity with 91, 89 and 94% reduction against S. aureus, E. coli and C. albicans, respectively.
Collapse
Affiliation(s)
- Soraya Ghayempour
- Textile Engineering Department, Functional Fibrous Structures & Environmental Enhancement (FFSEE), Amirkabir University of Technology, Tehran, Iran
| | - Majid Montazer
- Textile Engineering Department, Functional Fibrous Structures & Environmental Enhancement (FFSEE), Amirkabir University of Technology, Tehran, Iran.
| |
Collapse
|
31
|
Ghayempour S, Montazer M. Ultrasound irradiation based in-situ synthesis of star-like Tragacanth gum/zinc oxide nanoparticles on cotton fabric. ULTRASONICS SONOCHEMISTRY 2017; 34:458-465. [PMID: 27773269 DOI: 10.1016/j.ultsonch.2016.06.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/15/2016] [Accepted: 06/16/2016] [Indexed: 06/06/2023]
Abstract
Application of natural biopolymers for green and safe synthesis of zinc oxide nanoparticles on the textiles is a novel and interesting approach. The present study offers the use of natural biopolymer, Tragacanth gum, as the reducing, stabilizing and binding agent for in-situ synthesis of zinc oxide nanoparticles on the cotton fabric. Ultrasonic irradiation leads to clean and easy synthesis of zinc oxide nanoparticles in short-time at low-temperature. FESEM/EDX, XRD, FT-IR spectroscopy, DSC, photocatalytic activities and antimicrobial assay are used to characterize Tragacanth gum/zinc oxide nanoparticles coated cotton fabric. The analysis confirmed synthesis of star-like zinc oxide nanoparticles with hexagonal wurtzite structure on the cotton fabric with the average particle size of 62nm. The finished cotton fabric showed a good photocatalytic activity on degradation of methylene blue and 100% antimicrobial properties with inhibition zone of 3.3±0.1, 3.1±0.1 and 3.0±0.1mm against Staphylococcus aureus, Escherichia coli and Candida albicans.
Collapse
Affiliation(s)
- Soraya Ghayempour
- Textile Engineering Department, Functional Fibrous Structures & Environmental Enhancement (FFSEE), Amirkabir Nanotechnology Research Institute (ANTRI), Amirkabir University of Technology, Tehran, Iran
| | - Majid Montazer
- Textile Engineering Department, Functional Fibrous Structures & Environmental Enhancement (FFSEE), Amirkabir Nanotechnology Research Institute (ANTRI), Amirkabir University of Technology, Tehran, Iran.
| |
Collapse
|
32
|
Encapsulation of Aloe Vera extract into natural Tragacanth Gum as a novel green wound healing product. Int J Biol Macromol 2016; 93:344-349. [DOI: 10.1016/j.ijbiomac.2016.08.076] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 08/23/2016] [Accepted: 08/26/2016] [Indexed: 11/22/2022]
|
33
|
Singh B, Varshney L, Francis S, Rajneesh. Designing tragacanth gum based sterile hydrogel by radiation method for use in drug delivery and wound dressing applications. Int J Biol Macromol 2016; 88:586-602. [DOI: 10.1016/j.ijbiomac.2016.03.051] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 02/08/2023]
|
34
|
Montazer M, Keshvari A, Kahali P. Tragacanth gum/nano silver hydrogel on cotton fabric: In-situ synthesis and antibacterial properties. Carbohydr Polym 2016; 154:257-66. [PMID: 27577917 DOI: 10.1016/j.carbpol.2016.06.084] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/07/2016] [Accepted: 06/20/2016] [Indexed: 11/19/2022]
Abstract
This paper is mainly focused on introducing cotton fabric with hydrogel and antimicrobial properties using Tragacanth gum as a natural polymer with hydrogel properties, silver nitrate as silver precursor, citric acid as a cross-linking agent and sodium hypophosphite as catalyst. The water absorption behavior of the treated fabrics was investigated with moisture regain, water retention, drying time of wetted fabric at room condition and vertical wicking tests. Antibacterial properties of the samples were evaluated against Escherichia coli and Staphylococcous aureus. The SEM pictures confirmed formation of nano silver and hydrogel layer on the fabric surface and XRD performed the crystal and particle size of the nano silver. The chemical structure of the fabric samples was identified with FTIR spectra. The central composite design (CCD) was used for statistical modelling, evaluated effective parameters and created optimum conditions. The treated cotton fabrics showed good water absorption properties along with reasonable antibacterial effectiveness.
Collapse
Affiliation(s)
- M Montazer
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran.
| | - A Keshvari
- Department of Textile Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - P Kahali
- Department of Textile Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
35
|
Ghayempour S, Montazer M, Mahmoudi Rad M. Simultaneous encapsulation and stabilization of Aloe vera extract on cotton fabric for wound dressing application. RSC Adv 2016. [DOI: 10.1039/c6ra22485g] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Utilization of some herbal products in wound dressing for rapid healing with no side effects is a highly interesting task.
Collapse
Affiliation(s)
- S. Ghayempour
- Textile Engineering Department
- Functional Fibrous Structures & Environmental Enhancement (FFSEE)
- Amirkabir University of Technology
- Tehran
- Iran
| | - M. Montazer
- Textile Engineering Department
- Functional Fibrous Structures & Environmental Enhancement (FFSEE)
- Amirkabir University of Technology
- Tehran
- Iran
| | - M. Mahmoudi Rad
- Skin Research Centre
- Shahid Beheshti University of Medical Sciences
- Tehran
- Iran
| |
Collapse
|