1
|
Alboofetileh M, Jeddi S, Abdollahi M. Sequential recovery of alginate from fucoidan extraction by-products of Nizamuddinia zanardinii seaweed using green extraction methods. ULTRASONICS SONOCHEMISTRY 2025; 117:107343. [PMID: 40228363 PMCID: PMC12017857 DOI: 10.1016/j.ultsonch.2025.107343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/09/2025] [Accepted: 04/02/2025] [Indexed: 04/16/2025]
Abstract
The effects of green technologies-ultrasound, microwave and their combined application-on alginate extraction from fucoidan production by-products of brown seaweed (Nizamuddinia zanardinii) were compared with the conventional alkaline method. The impact of the extraction methods on the Fourier-transform infrared spectroscopy (FT-IR) spectra, molecular weight, antioxidant, rheological, emulsifying and foaming properties of the recovered alginates was also evaluated. The highest (15.36 % w/w) and lowest (11.88 % w/w) alginate yields were obtained using the microwave and conventional methods, respectively. Using ultrasound (2362 kDa) and ultrasound-microwave (2608 kDa) led to a significant reduction (p < 0.05) in the average molecular weight of alginate in comparison to the microwave (3015 kDa) and alkaline methods (3021 kDa). The microwave-extracted alginate showed the highest DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity (19.98 %-35.60 %) and ferric reducing antioxidant power (FRAP) (0.138-177 abs) of the extracted alginates. The rheological properties of the alginates were affected by the extraction method, resulting in the highest viscosity in the microwave- and conventionally-extracted alginate. Also, all the extracted alginates showed moderate emulsifying and foaming properties. Overall, the findings highlight the great potential of green technologies to enhance the recovery and functionality of alginate from fucoidan extraction by-products, advancing the efficient biorefining of brown seaweed.
Collapse
Affiliation(s)
- Mehdi Alboofetileh
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO), Bandar Abbas, Iran.
| | - Samira Jeddi
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO), Bandar Abbas, Iran
| | - Mehdi Abdollahi
- Department of Life Sciences-Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
2
|
Deshmukh RK, Tripathi S, Bisht S, Kumar P, Patil TD, Gaikwad KK. Mucilage-based composites films and coatings for food packaging application: A review. Int J Biol Macromol 2025; 300:140276. [PMID: 39863234 DOI: 10.1016/j.ijbiomac.2025.140276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 01/03/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Developing sustainable and eco-friendly packaging solutions has garnered significant interest in recent years. Mucilage-based coatings and composites offer a promising approach due to their biodegradability, renewable nature, and ability to enhance food quality protection. This review paper discusses the impact of mucilage-based composites and coatings on various packaging applications, focusing on their physical, mechanical, morphological, barrier, and functional properties. These materials' adaptability, flexibility, transparency, and compatibility with various food products make them highly suitable for food packaging. The morphological structure of mucilage-based films contributes to improved adhesion, surface roughness, and homogeneity. Enhanced barriers against moisture, oxygen, and other gases extend the shelf life of packaged food while maintaining its quality. Mucilage from different plant sources exhibits functional properties such as antioxidant and antimicrobial activities, which enhance food preservation. These attributes and mucilage's biocompatibility and biodegradability align with the growing demand for environmentally friendly packaging options. The review also addresses cost-effectiveness, regulatory compliance, consumer acceptance, recycling infrastructure compatibility, supply chain considerations, and the need for ongoing innovation. Future advancements in mucilage-based packaging will depend on optimizing performance, scalability, and sustainability. By understanding the effects on physio-mechanical, morphological, barrier, and functional attributes, mucilage-based composites and coatings hold great potential for advancing sustainable food packaging solutions.
Collapse
Affiliation(s)
- Ram Kumar Deshmukh
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Shefali Tripathi
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Samiksha Bisht
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Pradeep Kumar
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Tejaswini Dhanaji Patil
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Kirtiraj K Gaikwad
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
3
|
Zhang H, Jiang F, Tang C, Liu Y, Zhang J. Prospects and applications of efficient physical field processing technologies for polysaccharide extraction and quality improvement in edible mushrooms: A systematic review. Int J Biol Macromol 2025; 301:140412. [PMID: 39880257 DOI: 10.1016/j.ijbiomac.2025.140412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/29/2024] [Accepted: 01/26/2025] [Indexed: 01/31/2025]
Abstract
Edible mushroom-derived polysaccharides (EMPs) have been widely used in foods, medicine, and cosmetics due to theirs' diverse and versatile biological activities. Currently, many conventional extraction methods for extracting EMPs are struggling to meet the growing demand, and the produced EMPs with poor quality and low bioactivity. Novel physical field (e.g., acoustic, electromagnetic, electrical, and mechanical field) processing technologies not only overcome the shortcomings of conventional extraction methods, but also improve the structural feature, bioactivity, and solution behavior of EMPs. Moreover, physical field-assisted techniques can induce the degradation or modification of EMPs, thereby effectively altering the physicochemical properties and structural features of EMPs to improve their bioactivities or processing properties. Therefore, a comprehensive review of physical field processing technologies such as ultrasound, high pressure, pulsed electric field, and microwave for extracting and modifying EMPs in recent years, is presented. In addition, recent advances in physical field-assisted extraction/degradation techniques for EMPs, as well as their mechanisms of action and synergistic effects, are discussed and summarized. In summary, this review provides a theoretical basis and practical guidance for the physical field processing technology in improving the extraction yield and quality of EMPs, as well as large-scale industrial production.
Collapse
Affiliation(s)
- Henan Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China.
| | - Fuchun Jiang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Chuanhong Tang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Yanfang Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Jingsong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China.
| |
Collapse
|
4
|
Zhai Y, Zhang Z, Li Y, Zhao C, Peng Z, Liu Y, Yang P. Preparation, structural characterization, and bioactivities of polysaccharides from Rhodiola: A review. Int J Biol Macromol 2025; 307:141873. [PMID: 40064262 DOI: 10.1016/j.ijbiomac.2025.141873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/25/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
Rhodiola, the dried rhizome of various plants of the family Crassulaceae and genus Rhodiola, has been used as a traditional Tibetan medicine for thousands of years, with high medicinal and healthcare value. Polysaccharides, the major active components of Rhodiola, have attracted widespread attention due to their abundant biological activities and medicinal value. Rhodiola polysaccharides (RPs) have various biological activities such as germ cell protection, antioxidant, immunomodulatory, anti-fatigue, hypoglycemic, anti-tumor, and hematopoietic functions. The biological activities of RPs are closely related to their structures and different extraction and purification methods produce different polysaccharide structures. This review aims to provide a comprehensive overview of the research progress in the extraction, purification, structural characterization, bioactivity, potential mechanisms, and structural modification of RPs as well as their potential development prospects and future promising research directions, to lay a foundation for the further development of RP pharmaceutical products.
Collapse
Affiliation(s)
- Yang Zhai
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhiyuan Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuanyuan Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Canbin Zhao
- The First Clinical School of Medicine, Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Zuoliang Peng
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| | - Yuguo Liu
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| | - Pei Yang
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
5
|
Saapi SSY, Andrianisa HA, Zorom M, Mounirou LA, Semiyaga S, Tindouré N. Optimization of a vermifiltration process for the treatment of high strength domestic greywater in hot climate area: A Response Surface Methodology approach. WATER RESEARCH 2025; 270:122803. [PMID: 39580940 DOI: 10.1016/j.watres.2024.122803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/26/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024]
Abstract
Discharging untreated or partially treated greywater spreads diseases to humans and depletes dissolved oxygen in water, endangering aquatic life. Current greywater treatment methods often require high capital investment, large floor space, and significant energy, whereas vermifiltration is an ecologically safe, cost-effective technology that efficiently reduces high levels of organic matter in wastewater. The present study focuses on the modeling and optimization of COD removal of a vermifiltration system, using Response Surface Methodology. The vermifilter consists of sawdust, sand, and gravel as filter media, and Eudrilus Eugenia as worm species. Experiences were conducted at room temperatures (26 - 31 °C). Key factors considered as influencing COD removal were hydraulic loading rate (HLR), initial COD, and earthworm density (EWD). All three factors significantly impacted COD removal, with notable cross effects. The model predicted a maximum COD removal of 91.51 % for influent with 1087 mg/L COD, 178 earthworms, and 133 L/m²/day HLR, achieving a residual COD value of 92.29 mg/L, that meet the requirements for the WHO discharge guidelines. However, due to high variability of household greywater quality in the area, the system has been full-scale designed for the value of 2500 mg/L which corresponds according to the model, to 123L/m²/day HLR. The life cycle cost (LCC) of the treated water is therefore 0.083USdollars /m3. Earthworm's growth was satisfactory (17 - 52.5 %) in most filters. Finally, results suggest that the model can be used to design field-scale vermifiltration systems with minimal variation.
Collapse
Affiliation(s)
- Sidesse S Y Saapi
- Laboratoire Eaux, Hydro-Systèmes et Agriculture (LEHSA), Institut International d'Ingénierie de l'Eau et de l'Environnement (2iE), Rue de la Science, P.O. Box 594, Ouagadougou 01, Burkina Faso.
| | - Harinaivo A Andrianisa
- Laboratoire Eaux, Hydro-Systèmes et Agriculture (LEHSA), Institut International d'Ingénierie de l'Eau et de l'Environnement (2iE), Rue de la Science, P.O. Box 594, Ouagadougou 01, Burkina Faso
| | - Malicki Zorom
- Laboratoire Eaux, Hydro-Systèmes et Agriculture (LEHSA), Institut International d'Ingénierie de l'Eau et de l'Environnement (2iE), Rue de la Science, P.O. Box 594, Ouagadougou 01, Burkina Faso
| | - Lawani A Mounirou
- Laboratoire Eaux, Hydro-Systèmes et Agriculture (LEHSA), Institut International d'Ingénierie de l'Eau et de l'Environnement (2iE), Rue de la Science, P.O. Box 594, Ouagadougou 01, Burkina Faso
| | - Swaib Semiyaga
- Department of Civil and Environmental Engineering; College of Engineering, Design, Art and Technology (CEDAT); Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Noel Tindouré
- Laboratoire Eaux, Hydro-Systèmes et Agriculture (LEHSA), Institut International d'Ingénierie de l'Eau et de l'Environnement (2iE), Rue de la Science, P.O. Box 594, Ouagadougou 01, Burkina Faso
| |
Collapse
|
6
|
Tian J, Zhang Z, Shang Y, Yang T, Zhou R. Isolation, structures, bioactivities, and applications of the polysaccharides from Boletus spp.: A review. Int J Biol Macromol 2025; 285:137622. [PMID: 39551313 DOI: 10.1016/j.ijbiomac.2024.137622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/12/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
Boletus spp., the edible mushrooms distributed in Europe, Asia, and North America, have been widely used as food and medicinal ingredients worldwide. Bioactive polysaccharides are highly abundant in Boletus spp., as demonstrated by modern phytochemical studies. The isolation, chemical properties, and bioactivities of polysaccharides from Boletus spp. have long been attracted by academics worldwide. However, there is still a lack of systematic tracking of research progress on Boletus polysaccharides (BPs), which is essential for researchers to understand their potential and gain a deeper insight into their functional mechanisms. In this review, we summarized the recent development of BPs, including the extraction and purification methods, physiochemical and structural features, bioactivities and functional mechanisms, the structure-activity relationship, and the potential applications. This review aims to provide researchers with a comprehensive understanding of the current progress and potential of BPs to assist their further investigations.
Collapse
Affiliation(s)
- Jinfeng Tian
- College of Basic Medicine, Panzhihua University, Panzhihua 617000, PR China
| | - Zhe Zhang
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, PR China
| | - Yuanhong Shang
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, PR China.
| | - Tao Yang
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, PR China
| | - Ruifeng Zhou
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, PR China
| |
Collapse
|
7
|
He Y, Gao W, Zhang Y, Sun M, Kuang H, Sun Y. Progress in the preparation, structure and bio-functionality of Dictyophora indusiata polysaccharides: A review. Int J Biol Macromol 2024; 283:137519. [PMID: 39577539 DOI: 10.1016/j.ijbiomac.2024.137519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/30/2024] [Accepted: 11/09/2024] [Indexed: 11/24/2024]
Abstract
Dictyophora indusiata (D. indusiata) is an elegant fungus known as the "mushroom queen" because of its rich nutritional value and resemblance to dancers wearing clean white dresses. Due to the harsh growth environment, the yield of D. indusiata is relatively low. Polysaccharides are the most abundant component among them and it is valued for its unique physiological function. Multiple extraction and purification methods have been used to separate and purify polysaccharides from D. indusiata. These polysaccharides have demonstrated strong biological activities in vitro and in vivo, including anti-inflammatory, anti-tumour, immunomodulatory, antioxidant and anti-hyperlipidemic effects. In addition, D. indusiata polysaccharides have shown promising potential for development and application in the areas of food, healthcare products, pharmaceuticals, and cosmetics. Recent advances in the extraction, purification, structural characterization, biological activities and application prospects of D. indusiata polysaccharides were summarized. This review may enrich the knowledge about bioactive polysaccharides from D. indusiata and provide a theoretical basis. Due to diverse potential health-promoting properties of D. indusiata polysaccharides, further development for their application in functional foods and pharmaceuticals is expected.
Collapse
Affiliation(s)
- Yujia He
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Wuyou Gao
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Yuping Zhang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Minghao Sun
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China.
| | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China.
| |
Collapse
|
8
|
Fernandes FG, Silva RDS, Oliveira PMDL, Petkowicz CLDO, Borges GDSC. Microwave-assisted extraction of mucilage from juá: Characterization and antioxidant activity. J Food Sci 2024; 89:4430-4439. [PMID: 38858741 DOI: 10.1111/1750-3841.17094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 03/21/2024] [Accepted: 04/10/2024] [Indexed: 06/12/2024]
Abstract
Microwave-assisted extraction of mucilage from juá was investigated using response surface methodology. The optimal conditions for extraction were a power of 300 W, an extraction time of 240 s, a pH of 8.0, and a water/sample ratio of 1/6, which achieved a 26.43% yield. The monosaccharide composition and antioxidant activity of the mucilage from juá fruits from different regions of Caatinga were investigated. The fruits from Agreste Paraibano showed the highest mucilage extraction yield (18.64%) compared to that of fruits from Mata Paraibana (MP) (12.37%), Borborema (BB) (11.47%), and Sertão Paraibano (8.31%) (p < 0.05). Glucose (32.8%-50.8%) and arabinose (19.3%-32.9%) were the main monosaccharides found in juá mucilage. The mucilage from fruits in the MP presented the highest antioxidant activity in the 2,2-diphenyl-1-picrylhydrazyl and oxygen radical absorbance capacity assays. Our results demonstrated the potential for the future exploration and application of juá mucilage in the food industry. PRACTICAL APPLICATION: Juá (Ziziphus joazeiro Mart.) mucilage contains phenolic compounds and antioxidant activity, and its extraction by MAE is efficient, as it contributed to a higher yield.
Collapse
Affiliation(s)
- Flávio Gomes Fernandes
- Postgraduate Program in Food Science and Technology, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Ricácia de Sousa Silva
- Postgraduate Program in Food Science and Technology, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | | | | | | |
Collapse
|
9
|
Sang J, Zhao G, Koidis A, Wei X, Huang W, Guo Z, Wu S, Huang R, Lei H. Isolation, structural, biological activity and application of Gleditsia species seeds galactomannans. Carbohydr Polym 2024; 334:122019. [PMID: 38553218 DOI: 10.1016/j.carbpol.2024.122019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 04/02/2024]
Abstract
Gleditsia fruits have been known as a valuable traditional Chinese herb for tens of centuries. Previous studies showed that the galactomannans are considered as one of the major bioactive components in Gleditsia fruits seeds (GSGs). Here, we systematically review the major studies of GSGs in recent years to promote their better understanding. The extraction methods of GSGs mainly include hot water extraction, microwave-assisted extraction, ultrasonic extraction, acid extraction, and alkali extraction. The analysis revealed that GGSs exhibited in the form of semi-flexible coils, and its molecular weight ranged from 0.018 × 103 to 2.778 × 103 KDa. GSGs are composed of various monosaccharide constituents such as mannose, galactose, glucose, and arabinose. In terms of pharmacological effects, GSGs exhibit excellent activity in antioxidation, hypoglycemic, hypolipidemic, anti-inflammation. Moreover, GSGs have excellent bioavailability, biocompatibility, and biodegradability, which make them used in food additives, food packaging, pharmaceutical field, industry and agriculture. Of cause, the shortcomings of the current research and the potential development and future research are also highlighted. We believe our work provides comprehensive knowledge and underpinnings for further research and development of GSGs.
Collapse
Affiliation(s)
- Jiaqi Sang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Gang Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Anastasios Koidis
- Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DJ, UK
| | - Xiaoqun Wei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Weijuan Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Zonglin Guo
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Shaozong Wu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China.
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
10
|
Yang W, Chen Y, Li K, Jin W, Zhang Y, Liu Y, Ren Z, Li Y, Chen P. Optimization of microwave-expanding pretreatment and microwave-assisted extraction of hemicellulose from bagasse cells with the exploration of the extracting mechanism. Carbohydr Polym 2024; 330:121814. [PMID: 38368097 DOI: 10.1016/j.carbpol.2024.121814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 02/19/2024]
Abstract
Hemicellulose is mainly distributed in the tightly packed S2 layer of the plant cell wall and the middle lamella. This rigid microstructure of wood and interactions among hemicellulose, lignin, and cellulose jointly restrict the separation and transformation of hemicellulose in the wood matrix. To address this issue, a method combined with microwave-expanding pretreatment (MEP) and microwave-assisted extraction (MAE) with a NaOH solution was carried out. We found that the MEP could effectively create new pathways for bagasse cells in mass transferring. More specifically, 195 % of the specific surface area (m2/g) with 193 % of the pores (>50 nm) increased after MEP; the SEM images also confirmed that the microstructure of bagasse was modified. MAE could considerably exfoliate hemicellulose from cellulose fiber and accelerate mass transfer. Additionally, we optimized MEP and MAE by using response surface methodology (RSM). The optimal parameters were 370 K, 3.7 min, 1081 W microwave power, and 9.9 wt% NH4HCO3 consumption for the MEP and 1100 W microwave power, 2.5 wt% NaOH concentration, 34.6 min reaction time for MAE, respectively. Moreover, molecular dynamics (MD) simulation suggests that NaOH could significantly lower the work needed to peel off the xylan chain from cellulose nanofibril.
Collapse
Affiliation(s)
- Wenjin Yang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, 650500, Kunming, China
| | - Yu Chen
- School of Materials Science & Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Kai Li
- Faculty of Chemical Engineering, Kunming University of Science and Technology, 650500, Kunming, China
| | - Wen Jin
- Faculty of Chemical Engineering, Kunming University of Science and Technology, 650500, Kunming, China
| | - Ya Zhang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, 650500, Kunming, China
| | - Yuxin Liu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, 650500, Kunming, China.
| | - Zixing Ren
- Faculty of Chemical Engineering, Kunming University of Science and Technology, 650500, Kunming, China
| | - Yuke Li
- Faculty of Chemical Engineering, Kunming University of Science and Technology, 650500, Kunming, China
| | - Pan Chen
- School of Materials Science & Engineering, Beijing Institute of Technology, 100081, Beijing, China.
| |
Collapse
|
11
|
Chen M, Li D, Meng X, Sun Y, Liu R, Sun T. Review of isolation, purification, structural characteristics and bioactivities of polysaccharides from Portulaca oleracea L. Int J Biol Macromol 2024; 257:128565. [PMID: 38061516 DOI: 10.1016/j.ijbiomac.2023.128565] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/23/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024]
Abstract
Portulaca oleracea L., also known as purslane, affiliates to the Portulacaceae family. It is an herbaceous succulent annual plant distributed worldwide. P. oleracea L. is renowned for its nutritional value and medicinal value, which has been utilized for thousands of years as Traditional Chinese Medicine (TCM). The extract derived from P. oleracea L. has shown efficacy in treating various diseases, including intestinal dysfunction and inflammation. Polysaccharides from P. oleracea L. (POP) are the primary constituents of the crude extract which have been found to have various biological activities, including antioxidant, antitumor, immune-stimulating, and intestinal protective effects. While many publications have highlighted on the structural identification and bioactivity evaluation of POP, the underlying structure-activity relationship of POP still remains unclear. In view of this, this review aims to focus on the extraction, purification, structural features and bioactivities of POP. In addition, the potential structure-activity relationship and the developmental perspective for future research of POP were also explored and discussed. The current review would provide a valuable research foundation and the up-to-date information for the future development and application of POP in the field of the functional foods and medicine.
Collapse
Affiliation(s)
- Mengjie Chen
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China
| | - Dan Li
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China
| | - Xianwei Meng
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China
| | - Yuan Sun
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China.
| | - Rui Liu
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China.
| | - Tiedong Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
12
|
Li L, Xie J, Zhang Z, Xia B, Li Y, Lin Y, Li M, Wu P, Lin L. Recent advances in medicinal and edible homologous plant polysaccharides: Preparation, structure and prevention and treatment of diabetes. Int J Biol Macromol 2024; 258:128873. [PMID: 38141704 DOI: 10.1016/j.ijbiomac.2023.128873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/27/2023] [Accepted: 12/16/2023] [Indexed: 12/25/2023]
Abstract
Medicinal and edible homologs (MEHs) can be used in medicine and food. The National Health Commission announced that a total of 103 kinds of medicinal and edible homologous plants (MEHPs) would be available by were available in 2023. Diabetes mellitus (DM) has become the third most common chronic metabolic disease that seriously threatens human health worldwide. Polysaccharides, the main component isolated from MEHPs, have significant antidiabetic effects with few side effects. Based on a literature search, this paper summarizes the preparation methods, structural characterization, and antidiabetic functions and mechanisms of MEHPs polysaccharides (MEHPPs). Specifically, MEHPPs mainly regulate PI3K/Akt, AMPK, cAMP/PKA, Nrf2/Keap1, NF-κB, MAPK and other signaling pathways to promote insulin secretion and release, improve glycolipid metabolism, inhibit the inflammatory response, decrease oxidative stress and regulate intestinal flora. Among them, 16 kinds of MEHPPs were found to have obvious anti-diabetic effects. This article reviews the prevention and treatment of diabetes and its complications by MEHPPs and provides a basis for the development of safe and effective MEHPP-derived health products and new drugs to prevent and treat diabetes.
Collapse
Affiliation(s)
- Lan Li
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Jingchen Xie
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Zhimin Zhang
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Bohou Xia
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Yamei Li
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Yan Lin
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Minjie Li
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Ping Wu
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China.
| | - Limei Lin
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China.
| |
Collapse
|
13
|
Wang W, Jia R, Hui Y, Zhang F, Zhang L, Liu Y, Song Y, Wang B. Utilization of two plant polysaccharides to improve fresh goat milk cheese: Texture, rheological properties, and microstructure characterization. J Dairy Sci 2023; 106:3900-3917. [PMID: 37080791 DOI: 10.3168/jds.2022-22195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 12/22/2022] [Indexed: 04/22/2023]
Abstract
This study aimed to evaluate the effects of added jujube polysaccharide (JP) and Lycium barbarum polysaccharide (LBP) on the texture, rheological properties, and microstructure of goat milk cheese. Seven groups of fresh goat milk cheese were produced with 4 levels (0, 0.2, 0.6, and 1%, wt/wt) of JP and LBP. The goat milk cheese containing 1% JP showed the highest water-holding capacity, hardness, and the strongest rheological properties by creating a denser and more stable casein network structure. In addition, the yield of goat milk cheese was substantially improved as a result of JP incorporation. Cheeses containing LBP expressed lower fat content, higher moisture, and softer texture compared with the control cheese. Fourier-transform infrared spectroscopy and low-field nuclear magnetic resonance analysis demonstrated that the addition of JP improved the stability of the secondary protein structure in cheese and significantly enhanced the binding capacity of the casein matrix to water molecules due to strengthened intermolecular interactions. The current research demonstrated the potential feasibility of modifying the texture of goat milk cheese by JP or LBP, available for developing tunable goat milk cheese to satisfy consumer preferences and production needs.
Collapse
Affiliation(s)
- Weizhe Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Rong Jia
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yuanyuan Hui
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Fuxin Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Lei Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yufang Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yuxuan Song
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Bini Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
14
|
Gharibzahedi SMT, Ahmadigol A, Khubber S, Altintas Z. Bionanocomposite films with plasticized WPI-jujube polysaccharide/starch nanocrystal blends for packaging fresh-cut carrots. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2023.101042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
15
|
Ma Y, Zhang P, Dai X, Yao X, Zhou S, Ma Q, Liu J, Tian S, Zhu J, Zhang J, Kong X, Bao Y. Extraction, physicochemical properties, and antioxidant activity of natural melanin from Auricularia heimuer fermentation. Front Nutr 2023; 10:1131542. [PMID: 36875843 PMCID: PMC9981798 DOI: 10.3389/fnut.2023.1131542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 01/30/2023] [Indexed: 02/19/2023] Open
Abstract
Introduction Natural melanin from Auricularia heimuer have numerous beneficial biological properties, which were used as a safe and healthy colorant in several industries. Methods In this study, single-factor experiments, Box-Behnken design (BBD), and response surface methodology (RSM) were employed to investigate the effects of alkali-soluble pH, acid precipitation pH, and microwave time on the extraction yield of Auricularia heimuer melanin (AHM) from fermentation. Ultraviolet-visible spectrum (UV-Vis), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscope (SEM), and high-performance liquid chromatography (HPLC) were used to analyze the extracted AHM. The solubility, stability, and antioxidant activities of AHM were also measured. Results The results showed that alkali-soluble pH, acid precipitation pH, and microwave time significantly affected the AHM yield, with the following optimized microwave-assisted extraction conditions: alkali-soluble pH of 12.3, acid precipitation pH of 3.1, and microwave time of 53 min, resulting in an AHM extraction yield of 0.4042%. AHM exhibited a strong absorption at 210 nm, similar to melanin from other sources. FT-IR spectroscopy also revealed that AHM exhibited the three characteristic absorption peaks of natural melanin. The HPLC chromatogram profile of AHM showed a single symmetrical elution peak with a 2.435 min retention time. AHM was highly soluble in alkali solution, insoluble in distilled water and organic solvents, and demonstrated strong DPPH, OH, and ABTS free radical scavenging activities. Discussion This study provides technical support to optimize AHM extraction for use in the medical and food industries.
Collapse
Affiliation(s)
- Yinpeng Ma
- College of Forestry, Northeast Forestry University, Harbin, China.,Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, China
| | - Piqi Zhang
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, China
| | - Xiaodong Dai
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, China
| | - Xiuge Yao
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, China
| | - Shuyang Zhou
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, China
| | - Qingfang Ma
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, China
| | - Jianing Liu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, China
| | - Shuang Tian
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, China
| | - Jianan Zhu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, China
| | - Jiechi Zhang
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, China
| | - Xianghui Kong
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, China
| | - Yihong Bao
- College of Forestry, Northeast Forestry University, Harbin, China
| |
Collapse
|
16
|
Physicochemical properties and prebiotic activities of polysaccharides from Zizyphus jujube based on different extraction techniques. Int J Biol Macromol 2022; 223:663-672. [PMID: 36368360 DOI: 10.1016/j.ijbiomac.2022.11.057] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Zizyphus jujube polysaccharide was extracted with hot water, ultrahigh pressure, deep eutectic solvent (DES) and ultrahigh pressure-assisted DES. Comparative analyses were conducted on the yield, physicochemical properties and prebiotic activity of four polysaccharides (JP-H, JP-U, JP-D and JP-UD). The yield of JP-UD (10.42 %) was 3.3 times that of JP-H (3.12 %), and its sugar content was the highest. JP-UD possessed the lowest Mw, while JP-H possessed the highest. Four JPs were acidic pyranose and mainly composed of galacturonic acid, arabinose and galactose. NMR results demonstrated that they contained not only similar glycosidic linkage but also the specific glycosidic linkage of →4)-α-D-Glcp-(l→ appeared in JP-U and JP-UD, the esterified units of GalA and CONH2 group appeared in JP-D and JP-UD, and the Terminal β-D-Galp and →4)-α-GalpA-(1→ appeared in JP-UD. JPs showed different proliferation effects on four lactobacillus strains, among which JP-UD exhibited the strongest prebiotic activity. Zizyphus jujube polysaccharides have great potential for application in the functional food and medical industry.
Collapse
|
17
|
Shen B, Zhang Z, Shi Q, Du J, Xue Q, Li X. Active compound analysis of Ziziphus jujuba cv. Jinsixiaozao in different developmental stages using metabolomic and transcriptomic approaches. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 189:14-23. [PMID: 36030619 DOI: 10.1016/j.plaphy.2022.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/22/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Jujube (Ziziphus jujuba Mill.) is a popular fruit with health benefits ascribed to its various metabolites. These metabolites determine the flavors and bioactivities of the fruit, as well as their desirability. However, the dynamics of the metabolite composition and the underlying gene expression that modulate the overall flavor and accumulation of active ingredients during fruit development remain largely unknown. Therefore, we conducted an integrated metabolomic and transcriptomic investigation covering various developmental stages in the jujube cultivar Z. jujuba cv. Jinsixiaozao, which is famous for its nutritional and bioactive properties. A total of 407 metabolites were detected by non-targeted metabolomics. Metabolite accumulation during different jujube developmental stages was examined. Most nucleotides and amino acids and their derivatives accumulated during development, with cAMP increasing notably during ripening. Triterpenes gradually accumulated and were maintained at high concentrations during ripening. Many flavonoids were maintained at relatively high levels in early development, but then rapidly decreased later. Transcriptomic and metabolomic analyses revealed that chalcone synthase (CHS), chalcone isomerase (CHI), flavonol synthase (FLS), and dihydroflavonol 4-reductase (DFR) were mainly responsible for regulating the accumulation of flavonoids. Therefore, the extensive downregulation of these genes was probably responsible for the decreases in flavonoid content during fruit ripening. This study provide an overview of changes of active components in 'Jinsixiaozao' during development and ripening. These findings enhance our understanding of flavor formation and will facilitate jujube breeding for improving both nutrition and function.
Collapse
Affiliation(s)
- Bingqi Shen
- College of Forestry, Northwest A&F University, Yangling, 712100, China; Research Center for Jujube Engineering and Technology National Forestry and Grassland Administration, Yangling, 712100, China; Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhong Zhang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518116, Guangdong, China
| | - Qianqian Shi
- College of Forestry, Northwest A&F University, Yangling, 712100, China; Research Center for Jujube Engineering and Technology National Forestry and Grassland Administration, Yangling, 712100, China; Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiangtao Du
- College of Forestry, Northwest A&F University, Yangling, 712100, China; Research Center for Jujube Engineering and Technology National Forestry and Grassland Administration, Yangling, 712100, China; Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qingtun Xue
- Forestry WorkStation of Weinan City, Weinan, 714000, Shaanxi, China
| | - Xingang Li
- College of Forestry, Northwest A&F University, Yangling, 712100, China; Research Center for Jujube Engineering and Technology National Forestry and Grassland Administration, Yangling, 712100, China; Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
18
|
Gharibzahedi SMT, Ahmadigol A, Khubber S, Altintas Z. Whey protein isolate/jujube polysaccharide-based edible nanocomposite films reinforced with starch nanocrystals for the shelf-life extension of banana: Optimization and characterization. Int J Biol Macromol 2022; 222:1063-1077. [PMID: 36181883 DOI: 10.1016/j.ijbiomac.2022.09.232] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022]
Abstract
The formulation of new bionanocomposite (BNC) films using whey protein isolates (WPI, 3.3-11.7 %)-jujube polysaccharide (JPS, 1.59-18.41 %)/starch nanocrystals (SNCs, 0.32-3.68 %) blends was optimized. The ultrasound-assisted acid hydrolysis produced ~63.1 nm SNCs from native starch with -24.3 mV ζ-potential. The extracted JPS purification led to a single symmetrical peak for galactoarabinan-rich fraction (1.35 × 105 Da). The optimal levels of barrier (oxygen (11.85 cm3 m-2 d-1 atm-1) and water vapor (3.22 × 10-10 g m-1 s-1 Pa-1) permeability rate), optical (opacity index (2.7 AU μm-1), total color difference (18.69), and whiteness index (77.40)), and thermal (glass transition temperature (-8.29 °C) and melting point (110.38 °C)) properties were obtained at 5.0 % WPI, 15.0 % JPS, and 3.0 % SNCs. The film-forming solution of optimal BNCs had a significant antibacterial effect against Staphylococcus aureus and Escherichia coli. The improved crystallinity of BNCs at an optimal SNC level was confirmed by the XRD. The AFM and SEM images confirmed a continuous and uniform network for the optimal BNCs without any pores or cracks accompanied by low surface roughness. The FTIR spectroscopy proved covalent interaction and hydrogen bonding among chemical functional groups of WPI and JPS reinforced with SNCs. The optimal BNC could preserve banana fruits with favorable physicochemical and microbial quality during storage.
Collapse
Affiliation(s)
- Seyed Mohammad Taghi Gharibzahedi
- Institute of Chemistry, Technical University of Berlin, Straße des 17 Juni 124, 10623 Berlin, Germany; Institute of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany.
| | - Adel Ahmadigol
- College of Food Science and Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Sucheta Khubber
- School of Biotechnology & Bioinformatics, D.Y. Patil University, CBD Belapur, Navi Mumbai, India
| | - Zeynep Altintas
- Institute of Chemistry, Technical University of Berlin, Straße des 17 Juni 124, 10623 Berlin, Germany; Institute of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany.
| |
Collapse
|
19
|
Kakoei H, Mortazavian AM, Mofid V, Gharibzahedi SMT, Hosseini H. Single and combined hydrodistillation techniques of microwave and ultrasound for extracting bio-functional hydrosols from Iranian Eryngium caucasicum Trautv. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02474-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Microalgae-derived polysaccharides: Potential building blocks for biomedical applications. World J Microbiol Biotechnol 2022; 38:150. [PMID: 35776270 DOI: 10.1007/s11274-022-03342-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022]
Abstract
In recent years, the increasing concern about human health well-being has strongly boosted the search for natural alternatives that can be used in different fields, especially in biomedicine. This has put microalgae-based products in evidence since they contain many bioactive compounds, of which polysaccharides are attractive due to the diverse physicochemical properties and new or improved biological roles they play. Polysaccharides from microalgae, specially exopolysaccharides, are critically important for market purposes because they can be used as anti-inflammatory, immunomodulatory, anti-glycemic, antitumor, antioxidant, anticoagulant, antilipidemic, antiviral, antibacterial, and antifungal agents. Therefore, to obtain higher productivity and competitiveness of these naturally available compounds, the cultivation parameters and the extraction/purification processes must be better optimized in order to bring perspectives for the exploitation of products in commercial and clinical practice. In this sense, the objective of the present review is to elucidate the potential biomedical applications of microalgae-derived polysaccharides. A closer look is taken at the main polysaccharides produced by microalgae, methods of extraction, purification and structural determination, biological activities and their applications, and current status.
Collapse
|
21
|
Ruan J, Han Y, Kennedy JF, Jiang H, Cao H, Zhang Y, Wang T. A review on polysaccharides from jujube and their pharmacological activities. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
22
|
Senthilkumar C, Kannan PR, Balashanmugam P, Raghunandhakumar S, Sathiamurthi P, Sivakumar S, A A, Mary SA, Madhan B. Collagen - Annona polysaccharide scaffolds with tetrahydrocurcumin loaded microspheres for antimicrobial wound dressing. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
23
|
Ning L, Yao Z, Zhu B. Ulva (Enteromorpha) Polysaccharides and Oligosaccharides: A Potential Functional Food Source from Green-Tide-Forming Macroalgae. Mar Drugs 2022; 20:md20030202. [PMID: 35323501 PMCID: PMC8949424 DOI: 10.3390/md20030202] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 12/11/2022] Open
Abstract
The high-valued utilization of Ulva (previously known as Enteromorpha) bioresources has drawn increasing attention due to the periodic blooms of world-wide green tide. The polysaccharide is the main functional component of Ulva and exhibits various physiological activities. The Ulva oligosaccharide as the degradation product of polysaccharide not only possesses some obvious activities, but also possesses excellent solubility and bioavailability. Both Ulva polysaccharides and oligosaccharides hold promising potential in the food industry as new functional foods or food additives. Studies on Ulva polysaccharides and oligosaccharides are increasing and have been the focus of the marine bioresources field. However, the comprehensive review of this topic is still rare and do not cover the recent advances of the structure, isolation, preparation, activity and applications of Ulva polysaccharides and oligosaccharides. This review systematically summarizes and discusses the recent advances of chemical composition, extraction, purification, structure, and activity of Ulva polysaccharides as well as oligosaccharides. In addition, the potential applications as new functional food and food additives have also been considered, and these will definitely expand the applications of Ulva oligosaccharides in the food and medical fields.
Collapse
Affiliation(s)
- Limin Ning
- School of Medicine and Holistic Integrated Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China;
- Laboratory of Marine Bioresource, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China;
| | - Zhong Yao
- Laboratory of Marine Bioresource, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China;
| | - Benwei Zhu
- Laboratory of Marine Bioresource, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China;
- Correspondence: ; Tel.: +86-25-58139419
| |
Collapse
|
24
|
Structural characterization and antioxidant activity of a novel high-molecular-weight polysaccharide from Ziziphus Jujuba cv. Muzao. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01288-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Lin B, Huang G. Extraction, isolation, purification, derivatization, bioactivity, structure-activity relationship and application of polysaccharides from white jellyfungus. Biotechnol Bioeng 2022; 119:1359-1379. [PMID: 35170761 DOI: 10.1002/bit.28064] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 01/31/2022] [Accepted: 02/09/2022] [Indexed: 11/07/2022]
Abstract
White jellyfungus is one of the most popular nutritional supplements. The polysaccharide (WJP) is an important active component of white jellyfungus, it not only has a variety of biological activities but also is non-toxic to humans. So, many scholars have carried out different researches on WJP. However, the lack of a detailed summary of WJP limits the scale of industrial development of WJP. Herein, the research progress of WJP in extraction, isolation, structure, derivatization and structure-activity relationship was reviewed. Different extraction methods were compared, the activity and application of WJP were summarized, and the structure-activity relationship of WJP was emphasized in order to provide effective theoretical support for improving the utilization of WJP and promoting the application of related industries. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bobo Lin
- Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing, 401331, China
| | - Gangliang Huang
- Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing, 401331, China
| |
Collapse
|
26
|
Kong I, Degraeve P, Pui LP. Polysaccharide-Based Edible Films Incorporated with Essential Oil Nanoemulsions: Physico-Chemical, Mechanical Properties and Its Application in Food Preservation-A Review. Foods 2022; 11:555. [PMID: 35206032 PMCID: PMC8871330 DOI: 10.3390/foods11040555] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
Edible films with essential oils (EOs) are becoming increasingly popular as an alternative to synthetic packaging due to their environmentally friendly properties and ability as carriers of active compounds. However, the required amounts of EOs to impart effective antimicrobial properties generally exceed the organoleptic acceptance levels. However, by nanoemulsifying EOs, it is possible to increase their antimicrobial activity while reducing the amount required. This review provides an overview of the physico-chemical and mechanical properties of polysaccharide-based edible films incorporated with EOs nanoemulsions and of their application to the preservation of different food types. By incorporating EOs nanoemulsions into the packaging matrix, these edible films can help to extend the shelf-life of food products while also improving the quality and safety of the food product during storage. It can be concluded that these edible films have the potential to be used in the food industry as a green, sustainable, and biodegradable method for perishable foods preservation.
Collapse
Affiliation(s)
- Ianne Kong
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, Jalan Menara Gading, UCSI Heights, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Pascal Degraeve
- BioDyMIA Research Unit, Univ Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, 155 rue Henri de Boissieu, F-01 000 Bourg en Bresse, France;
| | - Liew Phing Pui
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, Jalan Menara Gading, UCSI Heights, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
27
|
Current emerging trends in antitumor activities of polysaccharides extracted by microwave- and ultrasound-assisted methods. Int J Biol Macromol 2022; 202:494-507. [PMID: 35045346 DOI: 10.1016/j.ijbiomac.2022.01.088] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/01/2022] [Accepted: 01/12/2022] [Indexed: 01/13/2023]
Abstract
This overview highlighted the in vitro and in vivo antitumor effects of polysaccharides extracted by ultrasound- and microwave-assisted solvent extraction methods. The polysaccharide fragments with stronger antiproliferation, antitumoral, and anticarcinoma effects can be identified through purification, fractionation, and bio-analytical assessments. Most of the extracted glucan-based polysaccharides in a dose-dependent manner inhibited the growth of human cancer cell types with cell death-associated morphological changes. Glucans, glucogalactans, and pectins without any cytotoxicity on normal cells showed the antitumor potential by the apoptosis induction and the inhibition of their tumorigenesis, metastasis, and transformation. There is a significantly high association among antiproliferative activities, structural features (e.g., molecular weight, monosaccharide compositions, and contents of sulfate, selenium, and uronic acid), and other bio-functionalities (e.g., antiradical and antioxidant) of isolated polysaccharides. The evaluation of structure-activity relationships of antitumor polysaccharides is an intriguing step forward to develop highly potent anticancer pharmaceuticals and foods without any side effects.
Collapse
|
28
|
WANG N, YU Q, WANG D, REN H, XU C, NING C, LI N, FAN H, AI Z. Synergistic antiaging effects of jujube polysaccharide and flavonoid in D-Galactose-Induced aging mice. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.46222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Na WANG
- Henan Agricultural University, China; Key Laboratory of Nutrition and Healthy Food of Zhengzhou, China; Ministry of Agriculture, China
| | - Qiuying YU
- Key Laboratory of Nutrition and Healthy Food of Zhengzhou, China; Henan Agricultural University, China
| | - Dongliang WANG
- Zhengzhou Chunzhilan Commercial & Trading Co. Ltd, China
| | - Hongtao REN
- Key Laboratory of Nutrition and Healthy Food of Zhengzhou, China; Ministry of Agriculture, China; Henan Agricultural University, China
| | - Chao XU
- Key Laboratory of Nutrition and Healthy Food of Zhengzhou, China; Ministry of Agriculture, China; Henan Agricultural University, China
| | - Cancan NING
- Key Laboratory of Nutrition and Healthy Food of Zhengzhou, China; Henan Agricultural University, China
| | - Na LI
- Ministry of Agriculture, China; Henan Agricultural University, China
| | - Huiping FAN
- Key Laboratory of Nutrition and Healthy Food of Zhengzhou, China; Henan Agricultural University, China
| | - Zhilu AI
- Key Laboratory of Nutrition and Healthy Food of Zhengzhou, China; Henan Agricultural University, China
| |
Collapse
|
29
|
Khoshdouni Farahani Z, Mousavi M, Seyedain Ardebili SM, Bakhoda H. Modification of sodium alginate by octenyl succinic anhydride to fabricate beads for encapsulating jujube extract. Curr Res Food Sci 2022; 5:157-166. [PMID: 35072103 PMCID: PMC8761605 DOI: 10.1016/j.crfs.2021.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 10/25/2022] Open
|
30
|
Innovative synbiotic fat-free yogurts enriched with bioactive extracts of the red macroalgae Laurencia caspica: formulation optimization, probiotic viability, and critical quality characteristics. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01061-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Li J, Huang G. Extraction, purification, separation, structure, derivatization and activities of polysaccharide from Chinese date. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.08.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Feng RF, Wang N, Kou JJ, An XW, Meng FH, Zheng XJ, Wang WW, Wang LL, Wang ZH, Liu MJ, Ao CW, Zhao ZH. Sulfated Modification, Characterization and Potential Bioactivities of Polysaccharide From Ziziphus jujuba cv. Jinsixiaozao. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211033673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In this study, jujube polysaccharide (JP) was extracted from Ziziphus jujuba cv. Jinsixiaozao and sulfated JP (SJP) was prepared. The optimum preparation conditions were as follows: reaction temperature 75°C, reaction time 1 h, ratio of chlorosulfonic acid-to-pyridine ( VCSA/ VPyr) 1. The degree of substitution of SJP was 0.664 ± 0.014. JP and SJP were typical heteropolysaccharides, which were composed of rhamnose, arabinose, xylose, mannose, glucose, and galactose, but the molar ratio of monosaccharides was different. Fourier transform infrared spectra showed that JP was sulfated successfully. Compared with JP, the molecular weight of SJP increased to 3.17 × 105 Da, its water solubility increased significantly, and its viscosity decreased significantly. When the microstructure of SJP was examined, it was found that the surface of the polysaccharides became loose and porous after sulfation. SJP had a higher hydroxyl radical scavenging activity than the unsulfated polysaccharide. Moreover, sulfation enhanced the antibacterial activity of the polysaccharides against Escherichia coli and Bacillus subtilis. Therefore, sulfation is an effective way to improve the biological activity of the polysaccharide, and SJP can be used as a potential antioxidant and antimicrobial agent in the field of food and medicine.
Collapse
Affiliation(s)
- Run-Fang Feng
- Chinese Jujube Research Center, Hebei Agricultural University, Baoding, Hebei, China
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, China
| | - Na Wang
- Chinese Jujube Research Center, Hebei Agricultural University, Baoding, Hebei, China
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Jing-Jing Kou
- Chinese Jujube Research Center, Hebei Agricultural University, Baoding, Hebei, China
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiao-Wen An
- Chinese Jujube Research Center, Hebei Agricultural University, Baoding, Hebei, China
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, China
| | - Feng-Hua Meng
- Chinese Jujube Research Center, Hebei Agricultural University, Baoding, Hebei, China
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiao-Jing Zheng
- Chinese Jujube Research Center, Hebei Agricultural University, Baoding, Hebei, China
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Wei-Wei Wang
- Chinese Jujube Research Center, Hebei Agricultural University, Baoding, Hebei, China
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Li-Li Wang
- Chinese Jujube Research Center, Hebei Agricultural University, Baoding, Hebei, China
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Ze-He Wang
- State Key Laboratory of Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei, China
| | - Meng-Jun Liu
- Chinese Jujube Research Center, Hebei Agricultural University, Baoding, Hebei, China
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Chang-Wei Ao
- Chinese Jujube Research Center, Hebei Agricultural University, Baoding, Hebei, China
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, China
| | - Zhi-Hui Zhao
- Chinese Jujube Research Center, Hebei Agricultural University, Baoding, Hebei, China
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
33
|
|
34
|
Mirzadeh M, Keshavarz Lelekami A, Khedmat L. Plant/algal polysaccharides extracted by microwave: A review on hypoglycemic, hypolipidemic, prebiotic, and immune-stimulatory effect. Carbohydr Polym 2021; 266:118134. [PMID: 34044950 DOI: 10.1016/j.carbpol.2021.118134] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/04/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022]
Abstract
Microwave-assisted extraction (MAE) is an emerging technology to obtain polysaccharides with an extensive spectrum of biological characteristics. In this study, the hypoglycemic, hypolipidemic, prebiotic, and immunomodulatory (e.g., antiinflammatory, anticoagulant, and phagocytic) effects of algal- and plant-derived polysaccharides rich in glucose, galactose, and mannose using MAE were comprehensively discussed. The in vitro and in vivo results showed that these bioactive macromolecules with the low digestibility rate could effectively alleviate the fatty acid-induced lipotoxicity, acute hemolysis, and dyslipidemia status. The optimally extracted glucomannan- and glucogalactan-containing polysaccharides revealed significant antidiabetic effects through inhibiting α-amylase and α-glucosidase, improving dynamic insulin sensitivity and secretion, and promoting pancreatic β-cell proliferation. These bioactive macromolecules as prebiotics not only improve the digestibility in gastrointestinal tract but also reduce the survival rate of pathogens and tumor cells by activating macrophages and producing pro-inflammatory biomarkers and cytokines. They can effectively prevent gastrointestinal disorders and microbial infections without any toxicity.
Collapse
Affiliation(s)
- Monirsadat Mirzadeh
- Metabolic Disease Research Center, Research Institute for Prevention of Non-communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ali Keshavarz Lelekami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Leila Khedmat
- Health Management Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
Abdul Hakim Shaah M, Hossain MS, Salem Allafi FA, Alsaedi A, Ismail N, Ab Kadir MO, Ahmad MI. A review on non-edible oil as a potential feedstock for biodiesel: physicochemical properties and production technologies. RSC Adv 2021; 11:25018-25037. [PMID: 35481051 PMCID: PMC9037048 DOI: 10.1039/d1ra04311k] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/13/2021] [Indexed: 01/05/2023] Open
Abstract
There is increasing concern regarding alleviating world energy demand by determining an alternative to petroleum-derived fuels due to the rapid depletion of fossil fuels, rapid population growth, and urbanization. Biodiesel can be utilized as an alternative fuel to petroleum-derived diesel for the combustion engine. At present, edible crops are the primary source of biodiesel production. However, the excessive utilization of these edible crops for large-scale biodiesel production might cause food supply depletion and economic imbalance. Moreover, the utilization of edible oil as a biodiesel feedstock increases biodiesel production costs due to the high price of edible oils. A possible solution to overcome the existing limitations of biodiesel production is to utilize non-edible crops oil as a feedstock. The present study was conducted to determine the possibility and challenges of utilizing non-edible oil as a potential feedstock for biodiesel production. Several aspects related to non-edible oil as a biodiesel feedstock such as overview of biodiesel feedstocks, non-edible oil resources, non-edible oil extraction technology, its physicochemical and fatty acid properties, biodiesel production technologies, advantages and limitation of using non-edible oil as a feedstock for biodiesel production have been reviewed in various recent publications. The finding of the present study reveals that there is a huge opportunity to utilize non-edible oil as a feedstock for biodiesel production.
Collapse
Affiliation(s)
- Marwan Abdul Hakim Shaah
- School of Industrial Technology, Universiti Sains Malaysia 11800 USM Penang Malaysia +6046533678 +6046532216 +6046532214
| | - Md Sohrab Hossain
- School of Industrial Technology, Universiti Sains Malaysia 11800 USM Penang Malaysia +6046533678 +6046532216 +6046532214
| | - Faisal Aboelksim Salem Allafi
- School of Industrial Technology, Universiti Sains Malaysia 11800 USM Penang Malaysia +6046533678 +6046532216 +6046532214
| | - Alyaa Alsaedi
- School of Industrial Technology, Universiti Sains Malaysia 11800 USM Penang Malaysia +6046533678 +6046532216 +6046532214
| | - Norli Ismail
- School of Industrial Technology, Universiti Sains Malaysia 11800 USM Penang Malaysia +6046533678 +6046532216 +6046532214
| | - Mohd Omar Ab Kadir
- Pultex Sdn Bhd Jalan Kampung Jawa, Bayan Baru 11950 Bayan Lepas Penang Malaysia
| | - Mardiana Idayu Ahmad
- School of Industrial Technology, Universiti Sains Malaysia 11800 USM Penang Malaysia +6046533678 +6046532216 +6046532214
| |
Collapse
|
36
|
Preparation Optimization, Characterization, and Antioxidant and Prebiotic Activities of Carboxymethylated Polysaccharides from Jujube. J FOOD QUALITY 2021. [DOI: 10.1155/2021/3268149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, jujube polysaccharides (JP) were extracted from Jinsixiaozao, and carboxymethylated jujube polysaccharides (CMJP) were prepared. The optimum carboxymethylation conditions optimized by Response Surface Methodology (RSM) were as follows: the reaction temperature was 60°C, the concentration of sodium hydroxide (NaOH) solution was 2.8 mol/L, and the content of chloroacetic acid was 2.12% with a degree of substitution (DS) of 0.2275 ± 0.0108. Physicochemical characterizations and in vitro antioxidant and prebiotic activities of JP and CMJP were evaluated. Compared with unmodified JP, water solubility and viscosity were improved in CMJP. Chemical analysis revealed that CMJP was composed of Rha: Ara: Xyl: Glc: Gal = 0.18 : 9.09 : 0.45 : 0.36 : 0.98 with a molecular weight of 3.04 × 105 Da. The signals of carboxymethyl were observed at 1600, 1420, and 1328 cm−1 in FT-IR. In addition, CMJP showed obviously strong hydroxyl radical scavenging ability compared with JP and also exhibited stronger abilities than JP on the proliferation growth of Lactobacillus acidophilus, Lactobacillus plantarum, and Lactobacillus rhamnosus strains. These results indicated that CMJP could be explored as a promising resource for the development of functional foods.
Collapse
|
37
|
Golbargi F, Gharibzahedi SMT, Zoghi A, Mohammadi M, Hashemifesharaki R. Microwave-assisted extraction of arabinan-rich pectic polysaccharides from melon peels: Optimization, purification, bioactivity, and techno-functionality. Carbohydr Polym 2021; 256:117522. [DOI: 10.1016/j.carbpol.2020.117522] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/08/2020] [Accepted: 12/12/2020] [Indexed: 11/24/2022]
|
38
|
Waghmare R, R P, Moses JA, Anandharamakrishnan C. Mucilages: sources, extraction methods, and characteristics for their use as encapsulation agents. Crit Rev Food Sci Nutr 2021; 62:4186-4207. [PMID: 33480265 DOI: 10.1080/10408398.2021.1873730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The increasing interest in the use of natural ingredients has driven keen research and commercial interest in the use of mucilages for a range of applications. Typically, mucilages are polysaccharide hydrocolloids with distinct physicochemical and structural diversity, possessing characteristic functional and health benefits. Apart from their role as binding, thickening, stabilizing, and humidifying agents, they are valued for their antimicrobial, antihypertensive, antioxidant, antiasthmatic, hypoglycemic, and hypolipidemic activities. The focus of this review is to present the range of mucilages that have been explored as encapsulating agents. Encapsulation of food ingredients, nutraceutical, and pharmaceutical ingredients is an attractive technique to enhance the stability of targeted compounds, apart from providing benefits on delivery characteristics. The most widely adopted conventional and emerging extraction and purification methods are explained and supplemented with information on the key criteria involved in characterizing the physicochemical and functional properties of mucilages. The unique traits and benefits of using mucilages as encapsulation agents are detailed with the different methods used by researchers to encapsulate different food and bioactive compounds.
Collapse
Affiliation(s)
- Roji Waghmare
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
| | - Preethi R
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
| | - J A Moses
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
| | - C Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
| |
Collapse
|
39
|
Wang B, Wang X, Bei J, Xu L, Zhang X, Xu Z. Development and Validation of an Analytical Method for the Quantification of Arabinose, Galactose, Glucose, Sucrose, Fructose, and Maltose in Fruits, Vegetables, and Their Products. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-01964-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
The anti-lipidemic role of soluble dietary fiber extract from okara after fermentation and dynamic high-pressure microfluidization treatment to Kunming mice. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2020; 57:4247-4256. [PMID: 33071346 DOI: 10.1007/s13197-020-04463-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/17/2020] [Accepted: 04/23/2020] [Indexed: 12/17/2022]
Abstract
The present study was conducted to evaluate the anti-hyperlipidemia ability of the dietary fiber extracted from okara in mice fed a high cholesterol diet. The dietary fiber was extracted from okara by combining fermentation with dynamic high-pressure microfluidization. An animal model was established to test the hypothesis that soluble dietary fiber, insoluble dietary fiber and total dietary fiber inhibit the fatty liver could be related to the total lipids and cholesterol including total cholesterol, triglyceride, low-density lipoprotein cholesterol and high-density lipoprotein cholesterol in the serum. Compared with mice fed with simvastatin, mice fed dietary fiber can significantly reduce their serum total cholesterol, low-density lipoprotein cholesterol, triglyceride, and atherogenic index whereas no significant effect on high-density lipoprotein cholesterol was observed. Dietary fiber lowered a high level of liver total cholesterol and triglyceride. The dietary fiber extracted from okara might play an important role in the prevention of hyperlipidemia in high cholesterol mice and could be used as a natural supplement to a high cholesterol diet of functional food, due to the suppression of liver lipid synthesis.
Collapse
|
41
|
Niknam R, Ghanbarzadeh B, Ayaseh A, Rezagholi F. Barhang (
Plantago major
L.) seed gum: Ultrasound‐assisted extraction optimization, characterization, and biological activities. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14750] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Rasoul Niknam
- Faculty of Agriculture, Department of Food Science and Technology University of Tabriz Tabriz Iran
| | - Babak Ghanbarzadeh
- Faculty of Agriculture, Department of Food Science and Technology University of Tabriz Tabriz Iran
- Faculty of Engineering, Department of Food Engineering Near East University Nicosia Turkey
| | - Ali Ayaseh
- Faculty of Agriculture, Department of Food Science and Technology University of Tabriz Tabriz Iran
| | - Fatemeh Rezagholi
- Faculty of Engineering, Department of Food Engineering Near East University Nicosia Turkey
| |
Collapse
|
42
|
Response Surface Methodology Optimization of Microwave-Assisted Polysaccharide Extraction from Algerian Jujube (Zizyphus lotus L.) Pulp and Peel. J Pharm Innov 2020. [DOI: 10.1007/s12247-020-09475-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Microwave-assisted extraction of polysaccharides from the marshmallow roots: Optimization, purification, structure, and bioactivity. Carbohydr Polym 2020; 240:116301. [DOI: 10.1016/j.carbpol.2020.116301] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/31/2020] [Accepted: 04/13/2020] [Indexed: 12/20/2022]
|
44
|
Souza G, Siqueira dos Santos S, Bergamasco R, Antigo J, Madrona GS. Antioxidant activity, extraction and application of psyllium mucilage in chocolate drink. ACTA ACUST UNITED AC 2020. [DOI: 10.1108/nfs-07-2019-0211] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose
The purpose of this study is to extract psyllium mucilage and evaluate its antioxidant compounds (in the best extraction condition) and its application in a chocolate drink.
Design/methodology/approach
First, the extraction by ultrasonic bath was evaluated, followed by water bath extraction, and as there was no difference between the methods, a water bath experimental design was carried out to evaluate the best extraction conditions for psyllium mucilage, having response variables, yield and emulsion stability. A chocolate drink with psyllium mucilage was produced and evaluated in the best extraction condition to compare with xanthan gum.
Findings
The best extraction conditions for psyllium mucilage were 60°C for 2 h and 1:80 ratio (seed:water). It can be verified that psyllium is rich in antioxidant compounds (0.71 mg GAE/g and 6.67 Mmol ET/g by 2,2′-azinobis (3-ethylbenzthiazoline sulfonic acid-6), and 9.65 Mmol ET/g for ferric reducing antioxidant power), which can greatly contribute to its application in food products. The use of mucilage in chocolate drink is feasible, as among its several attributes there was no significant difference between samples, highlighting texture attributes in which mucilage samples did not differ from the control containing xanthan gum (being the grades approximated 6.84).
Originality/value
Psyllium presented several antioxidant compounds that are very desirable in food products. In the chocolate drink, psyllium mucilage showed potential use as a thickener, so it is important for further studies to improve the product’s development, but it is currently feasible to be produced in an industrial scale.
Collapse
|
45
|
Mirzadeh M, Arianejad MR, Khedmat L. Antioxidant, antiradical, and antimicrobial activities of polysaccharides obtained by microwave-assisted extraction method: A review. Carbohydr Polym 2020; 229:115421. [DOI: 10.1016/j.carbpol.2019.115421] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/22/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022]
|
46
|
Hovenia dulcis polysaccharides: Influence of multi-frequency ultrasonic extraction on structure, functional properties, and biological activities. Int J Biol Macromol 2020; 148:1010-1020. [PMID: 31923506 DOI: 10.1016/j.ijbiomac.2020.01.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/29/2019] [Accepted: 01/02/2020] [Indexed: 11/22/2022]
Abstract
The directional effect of single-frequency ultrasonic was the cause of the low extraction yield of polysaccharide macromolecule. Thus, a possible solution was to use multi-frequency ultrasonic technology to improve the yield of polysaccharide. Single-frequency (SF), dual-frequency (DF), and three-frequency (TF) ultrasonic extraction were applied to extract polysaccharides of Hovenia dulcis (HDPs). A maximal polysaccharide extraction yield (9.02 ± 0.29%) was gat using the dual-frequency ultrasonic with optimized DF conditions comprising 58.00 °C, 33.00 min, 28&40 kHz. The three HDPs were compared for their physicochemical, rheological, and functional properties, and their antioxidant activities. DF-HDPs contain higher uronic acid than SF-HDPs and TF-HDPs. Rheological tests indicated that the HDPs had excellent colloid properties and a promising potential to serve as a thickener, gelatinizer, and stabilizing agent in the food industry. Moreover, the DF-HDPs exhibited a notable oil holding capacity (3.92 ± 0.04 g oil/g), foaming capacity (35.26 ± 0.47%), and emulsion capacity (43.96 ± 0.67%). Compared to the SF- and TF-HDPs, the DF-HDPs had superior antioxidant activities. In conclusion, a better extraction method (dual-frequency ultrasonic extraction) was achieved.
Collapse
|
47
|
Ultrasound-microwave assisted extraction of pectin from fig (Ficus carica L.) skin: Optimization, characterization and bioactivity. Carbohydr Polym 2019; 222:114992. [DOI: 10.1016/j.carbpol.2019.114992] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/14/2022]
|
48
|
New insight into bamboo shoot (Chimonobambusa quadrangularis) polysaccharides: Impact of extraction processes on its prebiotic activity. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.04.046] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
49
|
Pectin extraction from common fig skin by different methods: The physicochemical, rheological, functional, and structural evaluations. Int J Biol Macromol 2019; 136:275-283. [DOI: 10.1016/j.ijbiomac.2019.06.040] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/29/2019] [Accepted: 06/07/2019] [Indexed: 12/16/2022]
|
50
|
Lin Y, Zeng H, Wang K, Lin H, Li P, Huang Y, Zhou S, Zhang W, Chen C, Fan H. Microwave-assisted aqueous two-phase extraction of diverse polysaccharides from Lentinus edodes: Process optimization, structure characterization and antioxidant activity. Int J Biol Macromol 2019; 136:305-315. [DOI: 10.1016/j.ijbiomac.2019.06.064] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/29/2019] [Accepted: 06/10/2019] [Indexed: 12/30/2022]
|