1
|
Li Y, Li X, Zhu L, Liu T, Huang L. Chitosan-based biomaterials for bone tissue engineering. Int J Biol Macromol 2025; 304:140923. [PMID: 39947561 DOI: 10.1016/j.ijbiomac.2025.140923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/30/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
Common critical size bone defects encountered in clinical practice often result in inadequate bone regeneration,primarily due to the extent of damage surpassing the inherent capacity of the body for self-healing. Bone tissue engineering scaffolds possess the desirable characteristics of biomimetic bone structure, simulated extracellular matrix, optimal mechanical strength, and biological functionality, rendering them the preferred option for the treatment of bone defects. Chitosan demonstrates favorable biocompatibility, plasticity, and a range of biological activities, rendering it a highly appealing material. Chitosan and its derivatives have been found to exert an impact on bone repair through their ability to modulate macrophage polarization, angiogenesis, and the delicate equilibrium of bone remodeling. However, the efficacy of pure chitosan is constrained, necessitating its combination with other bioactive substances to achieve an optimal biomimetic scaffold that is compatible with the specific bone defect site. Chitosan is commonly utilized in the field of bone repair in four different application forms: rigid scaffold, hydrogel, membranes, and microspheres. In order to enhance comprehension of the benefits and constraints associated with chitosan, this review provides a comprehensive overview of the structure and biological properties of chitosan, the molecular mechanisms by which chitosan promotes osteogenic differentiation, the diverse methods of chitosan preparation for various applications, and the impacts of chitosan when loaded with bioactive substances.
Collapse
Affiliation(s)
- Youbin Li
- The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Xudong Li
- The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Liwei Zhu
- The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Tengyue Liu
- The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Lanfeng Huang
- The Second Hospital of Jilin University, Changchun 130041, PR China.
| |
Collapse
|
2
|
Falsafi SR, Topuz F, Rostamabadi H. Dialdehyde carbohydrates - Advanced functional materials for biomedical applications. Carbohydr Polym 2023; 321:121276. [PMID: 37739495 DOI: 10.1016/j.carbpol.2023.121276] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 09/24/2023]
Abstract
Dialdehyde carbohydrates (DCs) have found applications in a wide range of biomedical field due to their great versatility, biocompatibility/biodegradability, biological properties, and controllable chemical/physical characteristics. The presence of dialdehyde groups in carbohydrate structure allows cross-linking of DCs to form versatile architectures serving as interesting matrices for biomedical applications (e.g., drug delivery, tissue engineering, and regenerative medicine). Recently, DCs have noticeably contributed to the development of diverse physical forms of advanced functional biomaterials i.e., bulk architectures (hydrogels, films/coatings, or scaffolds) and nano/-micro formulations. We underline here the current scientific knowledge on DCs, and demonstrate their potential and newly developed biomedical applications. Specifically, an update on the synthesis approach and functional/bioactive attributes is provided, and the selected in vitro/in vivo studies are reviewed comprehensively as examples of the latest progress in the field. Moreover, safety concerns, challenges, and perspectives towards the application of DCs are deliberated.
Collapse
Affiliation(s)
- Seid Reza Falsafi
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fuat Topuz
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Sariyer, 34469 Istanbul, Turkey
| | - Hadis Rostamabadi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran.
| |
Collapse
|
3
|
Falsafi SR, Topuz F, Bajer D, Mohebi Z, Shafieiuon M, Heydari H, Rawal S, Sathiyaseelan A, Wang MH, Khursheed R, Enayati MH, Rostamabadi H. Metal nanoparticles and carbohydrate polymers team up to improve biomedical outcomes. Biomed Pharmacother 2023; 168:115695. [PMID: 37839113 DOI: 10.1016/j.biopha.2023.115695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023] Open
Abstract
The convergence of carbohydrate polymers and metal nanoparticles (MNPs) holds great promise for biomedical applications. Researchers aim to exploit the capability of carbohydrate matrices to modulate the physicochemical properties of MNPs, promote their therapeutic efficiency, improve targeted drug delivery, and enhance their biocompatibility. Therefore, understanding various attributes of both carbohydrates and MNPs is the key to harnessing them for biomedical applications. The many distinct types of carbohydrate-MNP systems confer unique capabilities for drug delivery, wound healing, tissue engineering, cancer treatment, and even food packaging. Here, we introduce distinct physicochemical/biological properties of carbohydrates and MNPs, and discuss their potentials and shortcomings (alone and in combination) for biomedical applications. We then offer an overview on carbohydrate-MNP systems and how they can be utilized to improve biomedical outcomes. Last but not least, future perspectives toward the application of such systems are highlighted.
Collapse
Affiliation(s)
- Seid Reza Falsafi
- Safiabad Agricultural Research and Education and Natural Resources Center, Agricultural Research, Education and Extension Organization (AREEO), Dezful P.O. Box 333, Iran
| | - Fuat Topuz
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Sariyer 34469, Istanbul, Turkey
| | - Dagmara Bajer
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Zahra Mohebi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Maryam Shafieiuon
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Hajar Heydari
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Shruti Rawal
- Department of Pharmaceutical Technology, L.J. Institute of Pharmacy, L J University, Ahmedabad 382210, India; Department of Pharmaceutics, Institute of Pharmacy, Nirma University, S.G. Highway, Chharodi, Ahmedabad, Gujarat 382481, India
| | - Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, South Korea
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, South Korea
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - M H Enayati
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Hadis Rostamabadi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran.
| |
Collapse
|
4
|
Wang Z, Xu Z, Yang X, Li M, Yip RCS, Li Y, Chen H. Current application and modification strategy of marine polysaccharides in tissue regeneration: A review. BIOMATERIALS ADVANCES 2023; 154:213580. [PMID: 37634336 DOI: 10.1016/j.bioadv.2023.213580] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 08/29/2023]
Abstract
Marine polysaccharides (MPs) are exceptional bioactive materials that possess unique biochemical mechanisms and pharmacological stability, making them ideal for various tissue engineering applications. Certain MPs, including agarose, alginate, carrageenan, chitosan, and glucan have been successfully employed as biological scaffolds in animal studies. As carriers of signaling molecules, scaffolds can enhance the adhesion, growth, and differentiation of somatic cells, thereby significantly improving the tissue regeneration process. However, the biological benefits of pure MPs composite scaffold are limited. Therefore, physical, chemical, enzyme modification and other methods are employed to expand its efficacy. Chemically, the structural properties of MPs scaffolds can be altered through modifications to functional groups or molecular weight reduction, thereby enhancing their biological activities. Physically, MPs hydrogels and sponges emulate the natural extracellular matrix, creating a more conducive environment for tissue repair. The porosity and high permeability of MPs membranes and nanomaterials expedite wound healing. This review explores the distinctive properties and applications of select MPs in tissue regeneration, highlighting their structural versatility and biological applicability. Additionally, we provide a brief overview of common modification strategies employed for MP scaffolds. In conclusion, MPs have significant potential and are expected to be a novel regenerative material for tissue engineering.
Collapse
Affiliation(s)
- Zhaokun Wang
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Zhiwen Xu
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Xuan Yang
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Man Li
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Ryan Chak Sang Yip
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Yuanyuan Li
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853, USA.
| | - Hao Chen
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, NO. 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
5
|
Gruppuso M, Turco G, Marsich E, Porrelli D. Antibacterial and bioactive multilayer electrospun wound dressings based on hyaluronic acid and lactose-modified chitosan. BIOMATERIALS ADVANCES 2023; 154:213613. [PMID: 37666062 DOI: 10.1016/j.bioadv.2023.213613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/11/2023] [Accepted: 08/26/2023] [Indexed: 09/06/2023]
Abstract
Antibacterial multilayer electrospun matrices based on hyaluronic acid (HA) and a lactose-modified chitosan (CTL) were synthetized (i) by combining electrospun polycaprolactone (PCL) and polysaccharidic matrices in a bilayer device and (ii) by sequentially coating the PCL mat with CTL and HA. In both cases, the antibacterial activity was provided by loading rifampicin within the PCL support. All matrices disclosed suitable morphology and physicochemical properties to be employed as wound dressings. Indeed, both the bilayer and coated fibers showed an optimal swelling capacity (3426 ± 492 % and 1435 ± 251 % after 7 days, respectively) and water vapor permeability (160 ± 0.78 g/m2h and 170 ± 12 g/m2h at 7 days, respectively). On the other hand, the polysaccharidic dressings were completely wettable in the presence of various types of fluids. Depending on the preparation method, a different release of both polysaccharides and rifampicin was detected, and the immediate polysaccharide dissolution from the bilayer structure impacted the antibiotic release (42 ± 4 % from the bilayer structure against 25 ± 2 % from the coated fibers in 4 h). All the multilayer matrices, regardless of their production strategy and composition, revealed optimal biocompatibility and bioactivity with human dermal fibroblasts, as the released bioactive polysaccharides induced a faster wound closure in the cell monolayer (100 % in 24 h) compared to the controls (78 ± 8 % for untreated cells and 89 ± 5 % for cells treated with PCL alone, after 24 h). The inhibitory and bactericidal effects of the rifampicin loaded matrices were assessed on S. aureus, S. epidermidis, E. coli, and P. aeruginosa. The antibacterial matrices were found to be highly effective except for E. coli, which was more resistant even at higher amounts of rifampicin, with a bacterial concentration of 6.4 ± 0.4 log CFU/mL and 6.8 ± 0.3 log CFU/mL after 4 h in the presence of the rifampicin-loaded bilayer and coated matrices, respectively.
Collapse
Affiliation(s)
- Martina Gruppuso
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34129 Trieste, Italy.
| | - Gianluca Turco
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34129 Trieste, Italy.
| | - Eleonora Marsich
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy.
| | - Davide Porrelli
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34129 Trieste, Italy.
| |
Collapse
|
6
|
Lin SH, Ou SL, Hsu HM, Wu JY. Preparation and Characteristics of Polyethylene Oxide/Curdlan Nanofiber Films by Electrospinning for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103863. [PMID: 37241490 DOI: 10.3390/ma16103863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
In this study, polyethylene oxide (PEO) and curdlan solutions were used to prepare PEO/curdlan nanofiber films by electrospinning using deionized water as the solvent. In the electrospinning process, PEO was used as the base material, and its concentration was fixed at 6.0 wt.%. Moreover, the concentration of curdlan gum varied from 1.0 to 5.0 wt.%. For the electrospinning conditions, various operating voltages (12-24 kV), working distances (12-20 cm) and feeding rates of polymer solution (5-50 μL/min) were also modified. Based on the experimental results, the optimum concentration for the curdlan gum was 2.0 wt.%. Additionally, the most suitable operating voltage, working distance and feeding rate for the electrospinning process were 19 kV, 20 cm and 9 μL/min, respectively, which can help to prepare relatively thinner PEO/curdlan nanofibers with higher mesh porosity and without the formation of beaded nanofibers. Finally, the PEO/curdlan nanofiber instant films containing 5.0 wt.% quercetin inclusion complex were used to perform wetting and disintegration processes. It was found that the instant film can be dissolved significantly on the low-moisture wet wipe. On the other hand, when the instant film touched water, it can be disintegrated very quickly within 5 s, and the quercetin inclusion complex was dissolved in water efficiently. Furthermore, when the instant film encountered the water vapor at 50 °C, it almost completely disintegrated after immersion for 30 min. The results indicate that the electrospun PEO/curdlan nanofiber film is highly feasible for biomedical applications consisting of instant masks and quick-release wound dressings, even in the water vapor environment.
Collapse
Affiliation(s)
- Shu-Hung Lin
- PhD Program of Biotechnology and Industry, College of Biotechnology and Bioresources, Da-Yeh University, Changhua 515, Taiwan
| | - Sin-Liang Ou
- Department of Biomedical Engineering, Da-Yeh University, Changhua 515, Taiwan
| | - Hung-Ming Hsu
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Changhua 515, Taiwan
| | - Jane-Yii Wu
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Changhua 515, Taiwan
- Biotechnology Research and Development Center, Da-Yeh University, Changhua 515, Taiwan
- Innovation Incubation Center, Da-Yeh University, Changhua 515, Taiwan
| |
Collapse
|
7
|
Hegaard F, Thormann E. Influence of Ionic Strength and Specific Ion Effects on Polyelectrolyte Multilayer Films with pH-Responsive Behavior. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5012-5020. [PMID: 37000604 DOI: 10.1021/acs.langmuir.2c03515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Layer-by-layer assembled multilayer films have shown great potential for different applications owing to their responsive behavior. Herein, we systematically investigated the effects of composition, salt concentration, and ion specificity on the pH responsiveness of covalently crosslinked chitosan and alginate dialdehyde multilayer films. The changes in film swelling were measured using ellipsometry from low (0.01 mM) to high (3 M) salt (NaCl or NaSCN) concentrations at pH 3, 6, and 9. The swelling responses to increasing ionic strength matched the swelling responses observed for polyzwitterionic and weak monocomponent polyelectrolyte films and depended on the multilayer composition, pH, and ion specificity. Finally, we used the ellipsometric data to demonstrate that the pH responsiveness of such multilayer films, as measured using a quartz crystal microbalance with dissipation monitoring, strongly depends on the ionic condition under which the responses were measured. We thus show that erroneous conclusions about the pH responsiveness of polyelectrolyte multilayer films can be easily obtained if the ionic environment of the application does not closely resemble the ionic condition under which the pH responsiveness is tested.
Collapse
Affiliation(s)
- Frederik Hegaard
- Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Esben Thormann
- Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
8
|
Duan M, Sun J, Yu S, Zhi Z, Pang J, Wu C. Insights into electrospun pullulan-carboxymethyl chitosan/PEO core-shell nanofibers loaded with nanogels for food antibacterial packaging. Int J Biol Macromol 2023; 233:123433. [PMID: 36709819 DOI: 10.1016/j.ijbiomac.2023.123433] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/19/2022] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
Nisin, a natural substance from Lactococcus lactis, displays a promising antibacterial ability against the gram-positive bacteria. However, it is susceptible to the external environment, i.e. temperature, pH, and food composition. In this study, a dual stabilization method, coaxial electrospinning, was applied to protect nisin in food packaging materials and the effect of nisin concentration on the properties of the nanofibers was investigated. The core-shell nanofibers with pullulan as a core layer and carboxymethyl chitosan (CMCS)/polyethylene oxide (PEO) as shell layer were prepared, and then the prepared CMCS-nisin nanogels (CNNGs) using a self-assembly method were loaded into the core layer of the nanofibers as antibacterial agents. The result revealed that the smooth surface can be observed on the nanofibers by microstructure characterization. The CNNGs-loaded nanofibers exhibited enhanced thermal stability and mechanical strength, as well as excellent antibacterial activity. Importantly, the as-formed nanofibers were applied to preserve bass fish and found that the shelf life of bass fish packed by CNNGSs with nisin at a concentration of 8 mg/mL was effectively extended from 9 days to 15 days. Taken together, the CNNGs can be well stabilized with the core-shell nanofibers, thus exerting significantly improved antimicrobial stability and bioactivity. This special structure exerts a great potential for application as food packaging materials to preserve aquatic products.
Collapse
Affiliation(s)
- Mengxia Duan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jishuai Sun
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Shan Yu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zijian Zhi
- Food Structure and Function (FSF) Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Gent, East Flanders 9000, Belgium.
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China.
| | - Chunhua Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China.
| |
Collapse
|
9
|
Shahbazi K, Akbari I, Baniasadi H. Electrosprayed curcumin‐zein@polycaprolactone‐mucilage capsules for an improved sustained release. POLYM ENG SCI 2023. [DOI: 10.1002/pen.26289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Kimia Shahbazi
- Department of Chemical Engineering, Science and Research Branch Islamic Azad University Tehran Iran
| | - Iman Akbari
- Department of Chemical Engineering, Science and Research Branch Islamic Azad University Tehran Iran
| | - Hossein Baniasadi
- Department of Chemical Engineering, Science and Research Branch Islamic Azad University Tehran Iran
| |
Collapse
|
10
|
Chen S, Tian H, Mao J, Ma F, Zhang M, Chen F, Yang P. Preparation and application of chitosan-based medical electrospun nanofibers. Int J Biol Macromol 2023; 226:410-422. [PMID: 36502949 DOI: 10.1016/j.ijbiomac.2022.12.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/26/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Chitosan is a kind of polysaccharide cationic polymer, which has excellent biocompatibility, biodegradability and biological activity. In recent years, chitosan has been widely used as medical materials because of its non-toxicity, non-immunogenicity and rich sources. This paper reviews chitosan chemistry, the basic principles and influence of electrospinning technology, the blending of chitosan with polyethylene oxide, polyvinyl alcohol, polycaprolactone, polylactic acid, protein, polysaccharide and other polymer materials, the blending of chitosan with oxides, metals, carbon-based and other inorganic substances for electrospinning, the application of chitosan electrospinning nanofibers in medical field and its mechanism in clinical application. In order to provide reference for the in-depth study of electrospinning technology in the field of medical and health.
Collapse
Affiliation(s)
- Shujie Chen
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Haoran Tian
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jinlong Mao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Feng Ma
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Mengtian Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Feixiang Chen
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Pengfei Yang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
11
|
Wang D, Zhao H, Xu C, Lin S, Guo Y. Enhancing neuroprotective effect of aminosalicylic acid-grafted chitosan electrospun fibers for spinal cord injury. Mater Today Bio 2023; 18:100529. [PMID: 36686034 PMCID: PMC9850028 DOI: 10.1016/j.mtbio.2022.100529] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2023] Open
Abstract
The hyperinflammation microenvironment after spinal cord injury (SCI) remains a great challenge for neural regeneration. Methylprednisolone has been used to reduce the inflammatory response after SCI, but it is controversial due to side effects associated with off-specific targeting effects. In this study, we synthesized in situ 5-ASA grafted chitosan electrospun fibers (ASA-EF) with excellent injectable and self-healing properties to reprogram nerve cells via displaying biological distribution, gene expression, and functional changes. With the support of ASA-EF, the downregulation of inflammatory cytokines expression and the upregulation of anti-inflammatory and regenerative gene expression were found in vitro studies. Moreover, ASA-EF administration polarized macrophages toward proregenerative phenotypes in the injured lesion, and significantly reduced cavity area. In addition, ASA-EF administration increased myelination and regenerating axons and improved motor function (score of 5 versus 2 for SCI group). These results illustrate that the neuroprotective effect of this artificial nanoplatform will facilitate the clinical treatment of traumatic-related diseases via forming a recycled microenvironment that supports regeneration and functional recovery. These particles may be applied to trauma and potential other inflammatory diseases.
Collapse
Affiliation(s)
- Dahao Wang
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China,Key Laboratory of Medical Tissue Engineering, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, PR China
| | - Haosen Zhao
- Key Laboratory of Medical Tissue Engineering, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, PR China
| | - Chang Xu
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Sen Lin
- Key Laboratory of Medical Tissue Engineering, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, PR China,Corresponding author.
| | - Yue Guo
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China,Key Laboratory of Medical Tissue Engineering, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, PR China,Corresponding author. Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.
| |
Collapse
|
12
|
Zhao J, Tian H, Shang F, Lv T, Chen D, Feng J. Injectable, Anti-Cancer Drug-Eluted Chitosan Microspheres against Osteosarcoma. J Funct Biomater 2022; 13:jfb13030091. [PMID: 35893459 PMCID: PMC9326769 DOI: 10.3390/jfb13030091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/26/2022] [Accepted: 07/06/2022] [Indexed: 12/07/2022] Open
Abstract
The purpose of this study is to fabricate different anti-cancer drug-eluted chitosan microspheres for combination therapy of osteosarcoma. In this study, electrospray in combination with ground liquid nitrogen was utilized to manufacture the microspheres. The size of obtained chitosan microspheres was uniform, and the average diameter was 532 μm. The model drug release rate and biodegradation rate of chitosan microspheres could be controlled by the glutaraldehyde vapor crosslinking time. Then the 5-fluorouracil (5-FU), paclitaxel (PTX), and Cis-dichlorodiammine-platinum (CDDP) eluted chitosan microspheres were prepared, and two osteosarcoma cell lines, namely, HOS and MG-63, were selected as cell models for in vitro demonstration. We found the 5-FU microspheres, PTX microspheres, and CDDP microspheres could significantly inhibit the growth and migration of both HOS and MG-63 cells. The apoptosis of both cells treated with 5-FU microspheres, PTX microspheres, and CDDP microspheres was significantly increased compared to the counterparts of control and blank groups. The anti-cancer drug-eluted chitosan microspheres show great potential for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Jiebing Zhao
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China; (J.Z.); (H.T.); (T.L.)
| | - Hao Tian
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China; (J.Z.); (H.T.); (T.L.)
| | - Fusheng Shang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; (F.S.); (D.C.)
| | - Tao Lv
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China; (J.Z.); (H.T.); (T.L.)
| | - Dagui Chen
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; (F.S.); (D.C.)
| | - Jianjun Feng
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China; (J.Z.); (H.T.); (T.L.)
- Fudan Zhangjiang Institute, Fudan University, Shanghai 201203, China
- Correspondence: ; Tel.: +86-18918366263
| |
Collapse
|
13
|
Hyaluronic acid/lactose-modified chitosan electrospun wound dressings – Crosslinking and stability criticalities. Carbohydr Polym 2022; 288:119375. [DOI: 10.1016/j.carbpol.2022.119375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 12/19/2022]
|
14
|
Xue C, Wilson LD. Preparation and characterization of salicylic acid grafted chitosan electrospun fibers. Carbohydr Polym 2022; 275:118751. [PMID: 34742447 DOI: 10.1016/j.carbpol.2021.118751] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 09/15/2021] [Accepted: 10/10/2021] [Indexed: 02/05/2023]
Abstract
Chitosan (chi) and its modified forms as electrospun nanofibers have potential applications in advanced water treatment and biomedicine. Polyethylene oxide (PEO) is an additive commonly used to facilitate the formation of chitosan electrospun fibers because PEO (Mw ≥ 400 kDa) affords chain entanglement that stabilize the electrospinning jet, leading to enhanced formation of chi-based electrospun fibers. Herein, we report on the preparation of chitosan grafted with salicylic acid and its utility to afford improved electrospun fibers with low molecular weight (LMw) PEO (Mw » 100 kDa). A comparison of the interactions between original and grafted chitosan with PEO reveals that stable supramolecular assemblies are established between grafted chitosan and PEO, which provides support that such supramolecular interactions favor formation of chitosan electrospun fibers. Moreover, a porous chitosan electrospun nanofiber was prepared through physical treatment that reveals notably higher (ca. 4-fold) dye uptake than the pristine (unmodified) chitosan electrospun nanofibers.
Collapse
Affiliation(s)
- Chen Xue
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada.
| |
Collapse
|
15
|
Zhao T, Zhang J, Gao X, Yuan D, Gu Z, Xu Y. Electrospun Nanofibers for Bone Regeneration: From Biomimetic Composition, Structure to Function. J Mater Chem B 2022; 10:6078-6106. [DOI: 10.1039/d2tb01182d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, a variety of novel materials and processing technologies have been developed to prepare tissue engineering scaffolds for bone defect repair. Among them, nanofibers fabricated via electrospinning technology...
Collapse
|
16
|
Dodero A, Alberti S, Gaggero G, Ferretti M, Botter R, Vicini S, Castellano M. An Up‐to‐Date Review on Alginate Nanoparticles and Nanofibers for Biomedical and Pharmaceutical Applications. ADVANCED MATERIALS INTERFACES 2021; 8. [DOI: 10.1002/admi.202100809] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 01/06/2025]
Abstract
AbstractAlginate is a naturally occurring polysaccharide commonly derived from brown algae cell walls which possesses unique features that make it extremely promising for several biomedical and pharmaceutical purposes. Alginate biomaterials are indeed nowadays gaining increasing interest in drug delivery and tissue engineering applications owing to their intrinsic biocompatibility, non‐toxicity, versatility, low cost, and ease of functionalization. Specifically, alginate‐based nanostructures show enhanced capabilities with respect to alginate bulk materials in the targeted delivery of drugs and chemotherapies, as well as in helping tissue reparation and regeneration. Hence, it is not surprising that the number of scientific reports related to this topic have rapidly grown in the last decade. With these premises, the present review aims to provide a comprehensive state‐of‐the‐art of the most recent advances in the preparation of alginate‐based nanoparticles and electrospun nanofibers for drug delivery, cancer therapy, and tissue engineering purposes. After a short introduction concerning the general properties and uses of alginate and the concept of nanotechnology, the recent literature is then critically presented to highlight the main advantages of alginate‐based nanostructures. Finally, the current limitations and the future perspectives and objectives are discussed in detail.
Collapse
Affiliation(s)
- Andrea Dodero
- Department of Chemistry and Industrial Chemistry Università degli Studi di Genova Via Dodecaneso 31 Genoa 16146 Italy
| | - Stefano Alberti
- Department of Chemistry and Industrial Chemistry Università degli Studi di Genova Via Dodecaneso 31 Genoa 16146 Italy
| | - Giulia Gaggero
- Department of Civil, Chemical and Environmental Engineering Università degli Studi di Genova Via All'Opera Pia 15 Genoa 16145 Italy
| | - Maurizio Ferretti
- Department of Chemistry and Industrial Chemistry Università degli Studi di Genova Via Dodecaneso 31 Genoa 16146 Italy
| | - Rodolfo Botter
- Department of Civil, Chemical and Environmental Engineering Università degli Studi di Genova Via All'Opera Pia 15 Genoa 16145 Italy
| | - Silvia Vicini
- Department of Chemistry and Industrial Chemistry Università degli Studi di Genova Via Dodecaneso 31 Genoa 16146 Italy
| | - Maila Castellano
- Department of Chemistry and Industrial Chemistry Università degli Studi di Genova Via Dodecaneso 31 Genoa 16146 Italy
| |
Collapse
|
17
|
Levofloxacin-halloysite nanohybrid-loaded fibers based on poly (ethylene oxide) and sodium alginate: Fabrication, characterization, and antibacterial property. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102598] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
An Overview of the Design of Chitosan-Based Fiber Composite Materials. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5060160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chitosan composite fibrous materials continue to generate significant interest for wastewater treatment, food packaging, and biomedical applications. This relates to the relatively high surface area and porosity of such fibrous chitosan materials that synergize with their unique physicochemical properties. Various methods are involved in the preparation of chitosan composite fibrous materials, which include the modification of the biopolymer that serve to alter the solubility of chitosan, along with post-treatment of the composite materials to improve the water stability or to achieve tailored functional properties. Two promising methods to produce such composite fibrous materials involve freeze-drying and electrospinning. Future developments of such composite fibrous materials demands an understanding of the various modes of preparation and methods of structural characterization of such materials. This review contributes to an understanding of the structure–property relationships of composite fibrous materials that contain chitosan, along with an overview of recent advancements concerning their preparation.
Collapse
|
19
|
Chen CK, Liao MG, Wu YL, Fang ZY, Chen JA. Preparation of Highly Swelling/Antibacterial Cross-Linked N-Maleoyl-Functional Chitosan/Polyethylene Oxide Nanofiber Meshes for Controlled Antibiotic Release. Mol Pharm 2020; 17:3461-3476. [DOI: 10.1021/acs.molpharmaceut.0c00504] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C
| | - Min-Gan Liao
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C
| | - Yi-Ling Wu
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C
| | - Zi-Yu Fang
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C
| | - Jian-An Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C
| |
Collapse
|
20
|
Ghaffarzadegan R, Khoee S, Rezazadeh S. Fabrication, characterization and optimization of berberine-loaded PLA nanoparticles using coaxial electrospray for sustained drug release. ACTA ACUST UNITED AC 2020; 28:237-252. [PMID: 32307652 DOI: 10.1007/s40199-020-00335-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 03/11/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Berberine (BBR) broadly found in medicinal plants has a major application in pharmacological therapy as an anticancer drug. Clinical applications of this promising natural drug are limited due to its poor water solubility and low bioavailability. OBJECTIVE In this study, for the first time, we synthesized core-shell BBR-loaded PLA nanoparticles (NPBs) by using coaxial electrospray (CES) to solve the poor bioavailability of BBR. METHODS Three-factor (feeding rate, polymeric solution concentration and applied voltage), three-level, Box-Behnken design was used for optimization of the size and particle size distribution of the prepared NPBs. RESULTS Based on the results of response surface methodology, the NPBs with the mean size of 265 nm and particle size distribution of 43 nm were synthesized. A TEM image was used to well illustrate the core-shell structure of the NPBs. Encapsulation efficiency and BBR loading capacity for the optimized NPBs were determined at about 81% and 7.5%, respectively. Release of NPBs was examined at pH 7.4 and 5.8. NPBs had a slower release profile than free BBR in both pH values, and the rate of BBR release was more and faster in acidic pH than in physiological one. Effects of the NPBs on the drug release were confirmed by data fitting with six kinetic models. NPBs showed an increased cytotoxic efficacy against HCT116 cells (IC50 = 56 μM), while NIH3T3 cells, non-neoplastic fibroblast cells, (IC50 > 150 μM) were less affected by NPBs. Flow cytometry demonstrated that the cellular uptake of NPBs were higher than BBR at different concentrations. CONCLUSIONS A new approach was developed in this study to prepare NPBs using the CES process for improving the efficiency and controlled BBR release. It is concluded that nano-scaled NPBs prepared by CES can improve toxicity and chemotherapeutic properties of BBR against cancerous cells. We believe that these NPBs can exhibit further potential in cancer drug delivery systems. Graphical abstract.
Collapse
Affiliation(s)
- Reza Ghaffarzadegan
- School of Chemistry, Alborz Campus, University of Tehran, Tehran, Iran.,Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Sepideh Khoee
- Polymer Laboratory, School of Chemistry, College of Science, University of Tehran, PO Box 14155 6455, Tehran, Iran.
| | - Shamsali Rezazadeh
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| |
Collapse
|
21
|
Huang J, Zajforoushan Moghaddam S, Maroni P, Thormann E. Swelling Behavior, Interaction, and Electrostatic Properties of Chitosan/Alginate Dialdehyde Multilayer Films with Different Outermost Layer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3782-3791. [PMID: 32212609 DOI: 10.1021/acs.langmuir.0c00330] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, self-cross-linked chitosan/alginate dialdehyde multilayer films, capped with either alginate dialdehyde (6 layers) or chitosan (7 layers), were fabricated using the layer-by-layer method. The disruption of the electrostatic equilibrium when exposing the fabricated layers to acidic and alkaline conditions causes swelling within the film and independently in the outermost layer, showing dependence on the ionic strength. Spectroscopic ellipsometry and quartz crystal microbalance with dissipation monitoring were employed to examine the swelling behavior. Atomic force microscopy colloidal probe measurements were conducted to assess the surface forces between the multilayer films at different pH and ionic strengths. Finally, the electrostatic properties of the multilayer films were examined at different pH and ionic strengths using zeta potential measurements. The results suggest that stimuli-responsiveness and overall swelling behavior of the polysaccharide multilayer films significantly depend on the outermost layer, an effect that should expectedly become more pronounced the thinner the film becomes.
Collapse
Affiliation(s)
- Junhao Huang
- Department of Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | | | - Plinio Maroni
- Department of Inorganic and Analytical Chemistry, University of Geneva, Sciences II, 30 Quai Ernest-Ansermet, 1205 Geneva, Switzerland
| | - Esben Thormann
- Department of Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
22
|
Huang J, Moghaddam SZ, Thormann E. Chitosan/Alginate Dialdehyde Multilayer Films with Modulated pH‐Responsiveness and Swelling. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.201900499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Junhao Huang
- Department of Chemistry Technical University of Denmark 2800 Kgs. Lyngby Denmark
| | | | - Esben Thormann
- Department of Chemistry Technical University of Denmark 2800 Kgs. Lyngby Denmark
| |
Collapse
|
23
|
Fabrication of triple layer composite membrane and its application in membrane distillation (MD): Effect of hydrophobic-hydrophilic membrane structure on MD performance. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116087] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Electrospinning of biocompatible alginate-based nanofiber membranes via tailoring chain flexibility. Carbohydr Polym 2020; 230:115665. [DOI: 10.1016/j.carbpol.2019.115665] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/22/2019] [Accepted: 11/22/2019] [Indexed: 12/27/2022]
|
25
|
Taemeh MA, Shiravandi A, Korayem MA, Daemi H. Fabrication challenges and trends in biomedical applications of alginate electrospun nanofibers. Carbohydr Polym 2020; 228:115419. [DOI: 10.1016/j.carbpol.2019.115419] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/29/2019] [Accepted: 09/30/2019] [Indexed: 11/15/2022]
|
26
|
Wang H, Ma Z, Liu J, Shi Q, Yin J. Reduction of thrombotic and inflammatory complications of polystyrene-block-polyisoprene-block-polystyrene (SIS) with one-step electrospinning. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 31:642-657. [PMID: 31860378 DOI: 10.1080/09205063.2019.1707943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Polystyrene-block-polyisoprene-block-polystyrene (SIS) has been used as biomaterials due to its soft and stable properties under physiological conditions. However, the thrombotic and inflammatory complications caused by SIS restrain its application as blood-contacting implant. To overcome this problem, the hydrophilic core-shell structured SIS-based microfiber with antioxidant encapsulation is fabricated with one-step reactive electrospinning. We demonstrate that the phase separation of SIS and acylated Pluronic F127 (F127-DA) components and crosslinking during electrospinning renders the microfiber blood compatible and stable under physiological condition; the encapsulation of 2-O-d-glucopyranosyl-l-ascorbic acid (AA-2G) in microfiber and subsequent release of AA-2G detoxifies the excess reactive oxygen species (ROS). The microfibers are nontoxic to cells and promote the fast growth and proliferation of human umbilical vein endothelial cells (HUVECs) in the presence of ROS; the thrombotic and inflammatory complications are effectively reduced with implant evaluation in vivo. Therefore, our work paves a new way to improve the biocompatibility of SIS, making it a promising candidate for blood contact materials.
Collapse
Affiliation(s)
- Haozheng Wang
- Key Laboratory of Functional Polymer Materials and State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, China
| | - Zhifang Ma
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Jingchuan Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Jinghua Yin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
27
|
Tao F, Cheng Y, Shi X, Zheng H, Du Y, Xiang W, Deng H. Applications of chitin and chitosan nanofibers in bone regenerative engineering. Carbohydr Polym 2019; 230:115658. [PMID: 31887899 DOI: 10.1016/j.carbpol.2019.115658] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/30/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022]
Abstract
Promoting bone regeneration and repairing defects are urgent and critical challenges in orthopedic clinical practice. Research on bone substitute biomaterials is essential for improving the treatment strategies for bone regeneration. Chitin and its derivative, chitosan, are among the most abundant natural biomaterials and widely found in the shells of crustaceans. Chitin and chitosan are non-toxic, antibacterial, biocompatible, degradable, and have attracted significant attention in bone substitute biomaterials. Chitin/chitosan nanofibers and nanostructured scaffolds have large surface area to volume ratios and high porosities. These scaffolds can be fabricated by electrospinning, thermally induced phase separation and self-assembly, and are widely used in biomedical applications such as biological scaffolds, drug delivery, bacterial inhibition, and wound dressing. Recently, some chitin/chitosan-based nanofibrous scaffolds have been found structurally similar to bone's extracellular matrix and can assist in bone regeneration. This review outlines the biomedical applications and biological properties of chitin/chitosan-based nanofibrous scaffolds in bone tissue engineering.
Collapse
Affiliation(s)
- Fenghua Tao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, China; Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China.
| | - Xiaowen Shi
- Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, China.
| | - Huifeng Zheng
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, China.
| | - Yumin Du
- Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, China.
| | - Wei Xiang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, China; Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, China.
| | - Hongbing Deng
- Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
28
|
Campana PT, Marletta A, Piovesan E, Francisco KJM, Neto FVR, Petrini L, Silva TR, Machado D, Basoli F, Oliveira ON, Licoccia S, Traversa E. Pulsatile Discharge from Polymeric Scaffolds: A Novel Method for Modulated Drug Release. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Patricia T. Campana
- School of Arts, Sciences and Humanities, University of São Paulo (USP), Arlindo Bettio Av., 1000, São Paulo, 03828-000, Brazil
| | - Alexandre Marletta
- Institute of Physics, Federal University of Uberlândia (UFU), João Naves de Ávila Av., 2121, Uberlândia 38408-100, Brazil
| | - Erick Piovesan
- Institute of Physics, Federal University of Uberlândia (UFU), João Naves de Ávila Av., 2121, Uberlândia 38408-100, Brazil
| | - Kelliton J. M. Francisco
- School of Arts, Sciences and Humanities, University of São Paulo (USP), Arlindo Bettio Av., 1000, São Paulo, 03828-000, Brazil
| | - Francisco V. R. Neto
- Institute of Physics, Federal University of Uberlândia (UFU), João Naves de Ávila Av., 2121, Uberlândia 38408-100, Brazil
| | - Leandro Petrini
- School of Arts, Sciences and Humanities, University of São Paulo (USP), Arlindo Bettio Av., 1000, São Paulo, 03828-000, Brazil
| | - Thiago R. Silva
- School of Arts, Sciences and Humanities, University of São Paulo (USP), Arlindo Bettio Av., 1000, São Paulo, 03828-000, Brazil
| | - Danilo Machado
- Institute of Physics, Federal University of Uberlândia (UFU), João Naves de Ávila Av., 2121, Uberlândia 38408-100, Brazil
| | - Francesco Basoli
- Department of Engineering, University of Rome “Campus Bio-Medico di Roma”, Alvaro del Portillo St., 21, Rome 00128, Italy
| | - Osvaldo N. Oliveira
- Sao Carlos Institute of Physics, University of São Paulo (USP), CP 369, 13560-970, Sao Carlos, SP, Brazil
| | - Silvia Licoccia
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, Via della Ricerca Scientifica St. Rome 00133, Italy
| | - Enrico Traversa
- School of Materials and Energy, University of Electronic Science and Technology of China, 2006 Xiyuan Road, Chengdu 611731, Sichuan, P. R. China
| |
Collapse
|
29
|
A Spectroscopic Study of Solid-Phase Chitosan/Cyclodextrin-Based Electrospun Fibers. FIBERS 2019. [DOI: 10.3390/fib7050048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, chitosan (chi)/hydroxypropyl-β-cyclodextrin (HPCD) 2:20 and 2:50 Chi:HPCD fibers were assembled via an electrospinning process that contained a mixture of chitosan and HPCD with trifluoroacetic acid (TFA) as a solvent. Complementary thermal analysis (thermal gravimetric analysis (TGA)/differential scanning calorimetry (DSC)) and spectroscopic methods (Raman/IR/NMR) were used to evaluate the structure and composition of the fiber assemblies. This study highlights the multifunctional role of TFA as a solvent, proton donor and electrostatically bound pendant group to chitosan, where the formation of a ternary complex occurs via supramolecular host–guest interactions. This work contributes further insight on the formation and stability of such ternary (chitosan + HPCD + solvent) electrospun fibers and their potential utility as “smart” fiber coatings for advanced applications.
Collapse
|
30
|
Chen J, Duan H, Pan H, Yang X, Pan W. Two types of core/shell fibers based on carboxymethyl chitosan and Sodium carboxymethyl cellulose with self-assembled liposome for buccal delivery of carvedilol across TR146 cell culture and porcine buccal mucosa. Int J Biol Macromol 2019; 128:700-709. [DOI: 10.1016/j.ijbiomac.2019.01.143] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 11/26/2022]
|
31
|
Zhao X, Zhou C, Lvov Y, Liu M. Clay Nanotubes Aligned with Shear Forces for Mesenchymal Stem Cell Patterning. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900357. [PMID: 30957957 DOI: 10.1002/smll.201900357] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/15/2019] [Indexed: 06/09/2023]
Abstract
Aligned halloysite nanotubes on solid substrates are fabricated by a shearing method with brush assistance. These clay nanotubes are aligned by shear force in strip-like patterns accomplished with drying ordering at elevated temperatures. The nanotubes' orientation is governed by "coffee-ring" formation mechanisms depending on the dispersion concentration, nanotube charge, and speed of thermos-evaporation. Polarized light irradiated through the patterns demonstrates birefringence and confirms the orientation. Scanning electron microscopy and atomic force microscopy show that the nanotubes are aligned along the direction of the wetting lines above 4 wt%, while they are not oriented at lower concentrations. Halloysite concentration, drying temperature, and type of brush fibers affect the pattern ordering. The aligned halloysite systems on glass, tissue culture plates, and polymer films, provide a promising platform for biocell guiding. Human foreskin fibroblasts proliferated well on the aligned clay patterns and the cell orientation agrees with the nanotube direction. Human bone mesenchymal stem cells (HBMSCs) are also cultured on the organized halloysite coating. The clay patterns support HBMSC proliferation with alignment, and such nanostructured substrates promote osteogenesis differentiation without growth factors. This facile method for preparing aligned halloysite patterns on solid substrates is very promising for surface modification in biotissue engineering.
Collapse
Affiliation(s)
- Xiujuan Zhao
- Department of Materials Science and Engineering, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Changren Zhou
- Department of Materials Science and Engineering, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Yuri Lvov
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, 71272, USA
- Department of Theoretical Physics and Quantum Technologies, National University of Science and Technology "MISiS", Moscow, 119049, Russia
| | - Mingxian Liu
- Department of Materials Science and Engineering, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, 71272, USA
| |
Collapse
|
32
|
Xue C, Wilson LD. A structural study of self-assembled chitosan-based sponge materials. Carbohydr Polym 2019; 206:685-693. [DOI: 10.1016/j.carbpol.2018.10.111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 12/01/2022]
|
33
|
Huang J, Zajforoushan Moghaddam S, Thormann E. Structural Investigation of a Self-Cross-Linked Chitosan/Alginate Dialdehyde Multilayered Film with in Situ QCM-D and Spectroscopic Ellipsometry. ACS OMEGA 2019; 4:2019-2029. [PMID: 31459453 PMCID: PMC6648685 DOI: 10.1021/acsomega.8b03145] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 01/10/2019] [Indexed: 05/30/2023]
Abstract
A chitosan/alginate dialdehyde multilayered film was fabricated using the layer-by-layer assembly method. Besides electrostatic interaction that promotes alternate adsorption of the oppositely charged polyelectrolytes, the Schiff base reaction between the amine groups on chitosan and the aldehyde groups on alginate dialdehyde provides a covalently cross-linked film, which after reduction by sodium cyanoborohydride is stable under both acidic and alkaline conditions. Moreover, the cross-linked film is responsive to changes in pH and addition of multivalent salts. The structural properties of the multilayered film such as thickness, refractive index, and water content were examined using simultaneous quartz crystal microbalance with dissipation monitoring and spectroscopic ellipsometry.
Collapse
Affiliation(s)
- Junhao Huang
- Department of Chemistry, Technical University of Denmark, Kemitorvet 206, 2800 Kgs. Lyngby, Denmark
| | | | - Esben Thormann
- Department of Chemistry, Technical University of Denmark, Kemitorvet 206, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
34
|
Wang S, Hu F, Li J, Zhang S, Shen M, Huang M, Shi X. Design of electrospun nanofibrous mats for osteogenic differentiation of mesenchymal stem cells. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2018; 14:2505-2520. [PMID: 28554595 DOI: 10.1016/j.nano.2016.12.024] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/20/2016] [Accepted: 12/30/2016] [Indexed: 01/09/2023]
Abstract
The clinical translation potential of mesenchymal stem cells (MSCs) in regenerative medicine has been greatly exploited. With the merits of high surface area to volume ratio, facile control of components, well retained topography, and the capacity to mimic the native extracellular matrix (ECM), nanofibers have received a great deal of attention as bone tissue engineering scaffolds. Electrospinning has been considered as an efficient approach for scale-up fabrication of nanofibrous materials. Electrospun nanofibers are capable of stimulating cell-matrix interaction to form a cell niche, directing cellular behavior, and promoting the MSCs adhesion and proliferation. In this review, we give a comprehensive literature survey on the mechanisms of electrospun nanofibers in supporting the MSCs differentiation. Specifically, the influences of biological and physical osteogenic inductive cues on the MSCs osteogenic differentiation are reviewed. Along with the significant advances in the field, current research challenges and future perspectives are also discussed.
Collapse
Affiliation(s)
- Shige Wang
- College of Science, University of Shanghai for Science & Technology, Shanghai, PR China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, PR China; State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, People's Republic of China
| | - Fei Hu
- College of Science, University of Shanghai for Science & Technology, Shanghai, PR China
| | - Jingchao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, PR China
| | - Shuping Zhang
- College of Science, University of Shanghai for Science & Technology, Shanghai, PR China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, PR China
| | - Mingxian Huang
- College of Science, University of Shanghai for Science & Technology, Shanghai, PR China.
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, PR China; CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, Funchal, Portugal.
| |
Collapse
|
35
|
Collagen/Polyethylene Oxide Nanofibrous Membranes with Improved Hemostasis and Cytocompatibility for Wound Dressing. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8081226] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
As a promising agent for biomedical application, collagen has been used as a nanofiber to architecturally mimic its fibrillar structure in Extracellular Matrix (ECM); however, it has to be modified by techniques, such as crosslinking, to overcome its limitations in structural stability along with potential toxicity. Here, we prepared collagen/polyethylene oxide (PEO) nanofibrous membranes with varying crosslinking degrees and their properties, such as water stability, mechanical properties, blood clotting capacity and cytocompatibility, were studied systematically. By investigating the relationship between crosslinking degree and their properties, nanofibrous membranes with improved morphology retention, blood clotting capacity and cytocompatibility have been achieved. The result of circular dichroism measurement demonstrated that a triple helical fraction around 60.5% was retained. Moreover, the electrospun collagen/PEO at crosslinking degrees above 60.6% could maintain more than 72% of its original weight and its nanofibrous morphology under physiological conditions could be well preserved for up to 7 days. Furthermore, the crosslinked collagen/PEO membrane could provide a more friendly and suitable environment to promote cell proliferation, and about 70% of the clot can be formed in 5 min. With its superior performance in water stability, hemostasis and cytocompatibility, we anticipate that this nanofibrous membrane has great potential for wound dressing.
Collapse
|
36
|
Xu C, Guan S, Wang S, Gong W, Liu T, Ma X, Sun C. Biodegradable and electroconductive poly(3,4-ethylenedioxythiophene)/carboxymethyl chitosan hydrogels for neural tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [PMID: 29519441 DOI: 10.1016/j.msec.2017.11.032] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Electroconductive hydrogels with excellent electromechanical properties have become crucial for biomedical applications. In this study, we developed a conductive composite hydrogel via in-situ chemical polymerization based on carboxymethyl chitosan (CMCS), as a biodegradable base macromolecular network, and poly(3,4-ethylenedioxythiophene) (PEDOT), as a conductive polymer layer. The physicochemical and electrochemical properties of conductive hydrogels (PEDOT/CMCS) with different contents of PEDOT polymer were analyzed. Cell viability and proliferation of neuron-like rat phaeochromocytoma (PC12) cells on these three-dimensional conductive hydrogels were evaluated in vitro. As results, the prepared semi-interpenetrating network hydrogels were shown to consist of up to 1825±135wt% of water with a compressive modulus of 9.59±0.49kPa, a porosity of 93.95±1.03% and an electrical conductivity of (4.68±0.28)×10-3S·cm-1. Cell experiments confirmed that PEDOT/CMCS hydrogels not only had no cytotoxicity, but also supported cell adhesion, viability and proliferation. These results demonstrated that the incorporation of conductive PEDOT component into CMCS hydrogels endowed the hydrogels with enhanced mechanical strength, conductivity and kept the biocompatibility. Thus, the attractive performances of these composite hydrogels would make them suitable for further neural tissue engineering application, such as nerve regeneration scaffold materials.
Collapse
Affiliation(s)
- Chao Xu
- Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Shui Guan
- Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, PR China.
| | - Shuping Wang
- Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Weitao Gong
- State Key Laboratory of Fine Chemicals and School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Tianqing Liu
- Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Xuehu Ma
- Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Changkai Sun
- Department of Biomedical Engineering, Dalian University of Technology, Dalian 116024, PR China
| |
Collapse
|
37
|
Mai Z, Chen J, He T, Hu Y, Dong X, Zhang H, Huang W, Ko F, Zhou W. Electrospray biodegradable microcapsules loaded with curcumin for drug delivery systems with high bioactivity. RSC Adv 2017. [DOI: 10.1039/c6ra25314h] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Biodegradable microcapsules as novel drug delivery systems were successfully fabricated by one-step processing using an electrospray technique.
Collapse
Affiliation(s)
- Zhuoxian Mai
- Institute of Biomaterial
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- China
| | - Jiali Chen
- Department of Anatomy
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering
- Southern Medical University
- Guangzhou 510515
- China
| | - Ting He
- Institute of Biomaterial
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- China
| | - Yang Hu
- Institute of Biomaterial
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- China
| | - Xianming Dong
- Institute of Biomaterial
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- China
| | - Hongwu Zhang
- Department of Anatomy
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering
- Southern Medical University
- Guangzhou 510515
- China
| | - Wenhua Huang
- Department of Anatomy
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering
- Southern Medical University
- Guangzhou 510515
- China
| | - Frank Ko
- Department of Materials Engineering
- The University of British Columbia
- Vancouver
- Canada V6T 1Z4
| | - Wuyi Zhou
- Institute of Biomaterial
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- China
| |
Collapse
|