1
|
Xiong H, Cao M, Yu Y, Duan X, Sun L, Tang L, Fan X. Study on the Effects of Low-Intensity Pulsed Ultrasound and Iron Ions for Proliferation and Differentiation of Osteoblasts. ULTRASOUND IN MEDICINE & BIOLOGY 2024:S0301-5629(24)00265-5. [PMID: 39209558 DOI: 10.1016/j.ultrasmedbio.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE This study involved the proliferation and differentiation of osteoblasts treated with low-intensity pulsed ultrasound (LIPUS) and iron (Fe3+) ions, respectively. The biological effects of LIPUS and Fe3+ ions on the proliferation and differentiation of osteoblasts were also evaluated. METHODS MC3T3-E1 cells were seeded in six-well plates with the medium, which contained different concentrations of Fe3+ (0, 100, 200, 300, 400, 500, 600 and 700 μg L-1, respectively). LIPUS treatment was directed at the bottom of the plate for 20 min at an intensity of 80 mW cm-2 every day. RESULTS Viability results showed that a dose of 400 μg L-1 Fe3+ ions had the best effect at promoting osteogenic proliferation in cell culture. The results of alkaline phosphatase staining and mineralization indicated that the differentiation of osteoblasts was promoted by LIPUS and Fe3+ ions. Fluorescence staining results showed that the number of cell nuclei in the LIPUS, Fe3+ and LIPUS-Fe groups increased by 37.20%, 55.81% and 89.76%, respectively. Migration data indicated that migration and proliferation rates were increased by LIPUS and Fe3+, and the results of protein expression indicated that LIPUS and Fe3+ may increase the expression of Wnt, β-catenin, and Runx2, hence promoting normal bone regeneration and development. CONCLUSION The combination of LIPUS (1.5 MHz, 80 mW cm-2) and Fe3+ accelerates the proliferation and differentiation of osteoblasts significantly compared with single-factor treatment (stimulated by LIPUS and Fe3+ ions, respectively). This study could establish a foundation for LIPUS-responsive biomaterials in the repair and regeneration of bone tissues.
Collapse
Affiliation(s)
- Huanbin Xiong
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, China
| | - Mengshu Cao
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, China
| | - Yanan Yu
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, China
| | - Xueyou Duan
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, China
| | - Lijun Sun
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, China
| | - Liang Tang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, China
| | - Xiushan Fan
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
2
|
Huang C, Luo XY, Chao ZS, Zhang YF, Liu K, Yi WJ, Li LJ, Zhou Z. Epoxidized Soybean Oleic Acid/Oligomeric Poly(lactic acid)-Grafted Nano-Hydroxyapatite and Its Role as a Filler in Poly(L-lactide) for Potential Bone Fixation Application. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2620. [PMID: 38893884 PMCID: PMC11173816 DOI: 10.3390/ma17112620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
One of the most effective strategies for modifying the surface properties of nano-fillers and enhancing their composite characteristics is through polymer grafting. In this study, a coprecipitation method was employed to modify hydroxyapatite (HAP) with epoxidized soybean oleic acid (ESOA), resulting in ESOA-HAP. Subsequently, oligomeric poly(lactic acid) (OPLA) was grafted onto the surface of ESOA-HAP, yielding OPLA-ESOA-HAP. HAP, ESOA-HAP, and OPLA-ESOA-HAP were comprehensively characterized. The results demonstrate the progressive grafting of ESOA and OPLA onto the surface of HAP, resulting in enhanced hydrophobicity and improved dispersity in organic solvent for OPLA-ESOA-HAP compared to HAP. The vitality and adhesion of Wistar rat mesenchymal stem cells (MSCs) were assessed using HAP and modified HAP materials. Following culture with MSCs for 72 h, the OPLA-ESOA-HAP showed an inhibition rate lower than 23.0% at a relatively high concentration (1.0 mg/mL), which is three times lower compared to HAP under similar condition. The cell number for OPLA-ESOA-HAP was 4.5 times higher compared to HAP, indicating its superior biocompatibility. Furthermore, the mechanical properties of the OPLA-ESOA-HAP/PLLA composite almost remained unaltered ever after undergoing two stages of thermal processing involving melt extrusion and inject molding. The increase in the biocompatibility and relatively high mechanical properties render OPLA-ESOA-HAP/PLLA a potential material for the biodegradable fixation system.
Collapse
Affiliation(s)
- Chen Huang
- College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha 410082, China; (C.H.); (X.-Y.L.); (Z.-S.C.); (Y.-F.Z.)
| | - Xin-Yu Luo
- College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha 410082, China; (C.H.); (X.-Y.L.); (Z.-S.C.); (Y.-F.Z.)
| | - Zi-Sheng Chao
- College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha 410082, China; (C.H.); (X.-Y.L.); (Z.-S.C.); (Y.-F.Z.)
| | - Yue-Fei Zhang
- College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha 410082, China; (C.H.); (X.-Y.L.); (Z.-S.C.); (Y.-F.Z.)
| | - Kun Liu
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China;
| | - Wen-Jun Yi
- College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha 410082, China; (C.H.); (X.-Y.L.); (Z.-S.C.); (Y.-F.Z.)
| | - Li-Jun Li
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China;
| | - Zeyan Zhou
- College of Materials Science and Engineering, Hunan University, Changsha 410012, China
| |
Collapse
|
3
|
Alaithan F, Khalaf MM, Gouda M, Yousef TA, Kenawy SH, Abou-Krisha MM, Abou Taleb MF, Shaaban S, Alkars AM, Abd El-Lateef HM. Improving the Durability of Chitosan Films through Incorporation of Magnesium, Tungsten, and Graphene Oxides for Biomedical Applications. Chem Biodivers 2023; 20:e202301018. [PMID: 37695826 DOI: 10.1002/cbdv.202301018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/02/2023] [Accepted: 09/10/2023] [Indexed: 09/13/2023]
Abstract
Bacterial infections that cause chronic wounds provide a challenge to healthcare worldwide because they frequently impede healing and cause a variety of problems. In this study, loaded with tungsten oxide (WO3 ), Magnesium oxide (MgO), and graphene oxide (GO) on chitosan (CS) membrane, an inexpensive polymer casting method was successfully prepared for wound healing applications. All fabricated composites were characterized by X-ray powder diffraction (XRD), Fourier transforms infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA). A scanning electron microscope (SEM) was used to study the synthesized film samples' morphology as well as their microstructure. The formed WO3/MgO@CS shows a great enhancement in the UV/VIS analysis with a highly intense peak at 401 nm and a narrow band gap (3.69 eV) compared to pure CS. The enhanced electron-hole pair separation rate is responsible for the WO3/MgO/GO@CS scaffold's antibacterial activity. Additionally, human lung cells were used to determine the average cell viability of nanocomposite scaffolds and reached 121 % of WO3 /MgO/GO@CS nanocomposite, and the IC50 value was found to be 1654 μg/mL. The ability of the scaffold to inhibit the bacteria has been tested against both E. coli and S. aureus. The 4th sample showed an inhibition zone of 11.5±0.5 mm and 13.5±0.5 mm, respectively. These findings demonstrate the enormous potential for WO3 /MgO/GO@CS membrane as wound dressings in the clinical management of bacterially infected wounds.
Collapse
Affiliation(s)
- Fatimah Alaithan
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Mai M Khalaf
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Chemistry Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Mohamed Gouda
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - T A Yousef
- College of Science, Chemistry Department, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, KSA
- Department of Toxic and Narcotic Drug, Forensic Medicine, Mansoura Laboratory, Medicolegal organization, Ministry of Justice, Egypt
| | - Sayed H Kenawy
- College of Science, Chemistry Department, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, KSA
- Refractories, Ceramics and Building Materials Department, National Research Center, El-Buhouth St., Dokki, 12622, Giza, Egypt
| | - Mortaga M Abou-Krisha
- College of Science, Chemistry Department, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, KSA
- Department of Chemistry, South Valley University, Qena, 83523, Egypt
| | - Manal F Abou Taleb
- Department of Chemistry, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-kharj, 11942, Saudi Arabia
| | - Saad Shaaban
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Department of Chemistry, Faculty of Science, Mansoura University, 35516, Mansoura, Egypt
| | - Abdullah M Alkars
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Hany M Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Chemistry Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| |
Collapse
|
4
|
Ou L, Tan X, Qiao S, Wu J, Su Y, Xie W, Jin N, He J, Luo R, Lai X, Liu W, Zhang Y, Zhao F, Liu J, Kang Y, Shao L. Graphene-Based Material-Mediated Immunomodulation in Tissue Engineering and Regeneration: Mechanism and Significance. ACS NANO 2023; 17:18669-18687. [PMID: 37768738 DOI: 10.1021/acsnano.3c03857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Tissue engineering and regenerative medicine hold promise for improving or even restoring the function of damaged organs. Graphene-based materials (GBMs) have become a key player in biomaterials applied to tissue engineering and regenerative medicine. A series of cellular and molecular events, which affect the outcome of tissue regeneration, occur after GBMs are implanted into the body. The immunomodulatory function of GBMs is considered to be a key factor influencing tissue regeneration. This review introduces the applications of GBMs in bone, neural, skin, and cardiovascular tissue engineering, emphasizing that the immunomodulatory functions of GBMs significantly improve tissue regeneration. This review focuses on summarizing and discussing the mechanisms by which GBMs mediate the sequential regulation of the innate immune cell inflammatory response. During the process of tissue healing, multiple immune responses, such as the inflammatory response, foreign body reaction, tissue fibrosis, and biodegradation of GBMs, are interrelated and influential. We discuss the regulation of these immune responses by GBMs, as well as the immune cells and related immunomodulatory mechanisms involved. Finally, we summarize the limitations in the immunomodulatory strategies of GBMs and ideas for optimizing GBM applications in tissue engineering. This review demonstrates the significance and related mechanism of the immunomodulatory function of GBM application in tissue engineering; more importantly, it contributes insights into the design of GBMs to enhance wound healing and tissue regeneration in tissue engineering.
Collapse
Affiliation(s)
- Lingling Ou
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xiner Tan
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Shijia Qiao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Junrong Wu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yuan Su
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan 528399, China
| | - Wenqiang Xie
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Nianqiang Jin
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jiankang He
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Ruhui Luo
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xuan Lai
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Wenjing Liu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yanli Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Fujian Zhao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yiyuan Kang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
5
|
Sagadevan S, Schirhagl R, Rahman MZ, Bin Ismail MF, Lett JA, Fatimah I, Mohd Kaus NH, Oh WC. Recent advancements in polymer matrix nanocomposites for bone tissue engineering applications. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
6
|
Li S, Xiaowen Y, Yang Y, Liu L, Sun Y, Liu Y, Yin L, Chen Z. Osteogenic and anti-inflammatory effect of the multifunctional bionic hydrogel scaffold loaded with aspirin and nano-hydroxyapatite. Front Bioeng Biotechnol 2023; 11:1105248. [PMID: 36761294 PMCID: PMC9902883 DOI: 10.3389/fbioe.2023.1105248] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
Although tissue engineering offered new approaches to repair bone defects, it remains a great challenge to create a bone-friendly microenvironment and rebuild bone tissue rapidly by a scaffold with a bionic structure. In this study, a multifunctional structurally optimized hydrogel scaffold was designed by integrating polyvinyl alcohol (PVA), gelatin (Gel), and sodium alginate (SA) with aspirin (ASA) and nano-hydroxyapatite (nHAP). The fabrication procedure is through a dual-crosslinking process. The chemical constitution, crystal structure, microstructure, porosity, mechanical strength, swelling and degradation property, and drug-release behavior of the hydrogel scaffold were analyzed. Multi-hydrogen bonds, electrostatic interactions, and strong "egg-shell" structure contributed to the multi-network microstructure, bone tissue-matched properties, and desirable drug-release function of the hydrogel scaffold. The excellent performance in improving cell viability, promoting cell osteogenic differentiation, and regulating the inflammatory microenvironment of the prepared hydrogel scaffold was verified using mouse pre-osteoblasts (MC3T3-E1) cells. And the synergistic osteogenic and anti-inflammatory functions of aspirin and nano-hydroxyapatite were also verified. This study provided valuable insights into the design, fabrication, and biological potential of multifunctional bone tissue engineering materials with the premise of constructing a bone-friendly microenvironment.
Collapse
Affiliation(s)
- Shaoping Li
- Key Laboratory of Stomatology in Hebei Province, Hospital of Stomatology Hebei Medical University, Shijiazhuang, China
| | - Yundeng Xiaowen
- Key Laboratory of Stomatology in Hebei Province, Hospital of Stomatology Hebei Medical University, Shijiazhuang, China
| | - Yuqing Yang
- Key Laboratory of Stomatology in Hebei Province, Hospital of Stomatology Hebei Medical University, Shijiazhuang, China
| | - Libo Liu
- College of Dentistry, Hebei Medical University, Shijiazhuang, China
| | - Yifan Sun
- College of Dentistry, Hebei Medical University, Shijiazhuang, China
| | - Ying Liu
- College of Dentistry, Hebei Medical University, Shijiazhuang, China
| | - Lulu Yin
- College of Dentistry, Hebei Medical University, Shijiazhuang, China
| | - Zhiyu Chen
- Key Laboratory of Stomatology in Hebei Province, Hospital of Stomatology Hebei Medical University, Shijiazhuang, China,*Correspondence: Zhiyu Chen,
| |
Collapse
|
7
|
Fattahi R, Soleimani M, Khani MM, Rasouli M, Hosseinzadeh S. A three-dimensional structure with osteoconductive function made of O-carboxymethyl chitosan using aspirin as a cross-linker. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2022.2155156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Roya Fattahi
- Department of Tissue engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Mehdi Khani
- Department of Tissue engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Rasouli
- Department of Tissue engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simzar Hosseinzadeh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Kim SK, Murugan SS, Dalavi PA, Gupta S, Anil S, Seong GH, Venkatesan J. Biomimetic chitosan with biocomposite nanomaterials for bone tissue repair and regeneration. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:1051-1067. [PMID: 36247529 PMCID: PMC9531556 DOI: 10.3762/bjnano.13.92] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Biomimetic materials for better bone graft substitutes are a thrust area of research among researchers and clinicians. Autografts, allografts, and synthetic grafts are often utilized to repair and regenerate bone defects. Autografts are still considered the gold-standard method/material to treat bone-related issues with satisfactory outcomes. It is important that the material used for bone tissue repair is simultaneously osteoconductive, osteoinductive, and osteogenic. To overcome this problem, researchers have tried several ways to develop different materials using chitosan-based nanocomposites of silver, copper, gold, zinc oxide, titanium oxide, carbon nanotubes, graphene oxide, and biosilica. The combination of materials helps in the expression of ideal bone formation genes of alkaline phosphatase, bone morphogenic protein, runt-related transcription factor-2, bone sialoprotein, and osteocalcin. In vitro and in vivo studies highlight the scientific findings of antibacterial activity, tissue integration, stiffness, mechanical strength, and degradation behaviour of composite materials for tissue engineering applications.
Collapse
Affiliation(s)
- Se-Kwon Kim
- Department of Marine Science and Convergence Engineering, College of Science and Technology, Hanyang University, Gyeonggi-do 11558, Korea
| | - Sesha Subramanian Murugan
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India
| | - Pandurang Appana Dalavi
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India
| | - Sebanti Gupta
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India
| | - Sukumaran Anil
- Department of Dentistry, Oral Health Institute, Hamad Medical Corporation, College of Dental Medicine, Qatar University, Doha, Qatar
| | - Gi Hun Seong
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Jayachandran Venkatesan
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| |
Collapse
|
9
|
Pan X, Cheng D, Ruan C, Hong Y, Lin C. Development of Graphene-Based Materials in Bone Tissue Engineaering. GLOBAL CHALLENGES (HOBOKEN, NJ) 2022; 6:2100107. [PMID: 35140982 PMCID: PMC8812920 DOI: 10.1002/gch2.202100107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/31/2021] [Indexed: 06/14/2023]
Abstract
Bone regeneration-related graphene-based materials (bGBMs) are increasingly attracting attention in tissue engineering due to their special physical and chemical properties. The purpose of this review is to quantitatively analyze mass academic literature in the field of bGBMs through scientometrics software CiteSpace, to demonstrate the rules and trends of bGBMs, thus to analyze and summarize the mechanisms behind the rules, and to provide clues for future research. First, the research status, hotspots, and frontiers of bGBMs are analyzed in an intuitively and vividly visualized way. Next, the extracted important subjects such as fabrication techniques, cytotoxicity, biodegradability, and osteoinductivity of bGBMs are presented, and the different mechanisms, in turn, are also discussed. Finally, photothermal therapy, which is considered an emerging area of application of bGBMs, is also presented. Based on this approach, this work finds that different studies report differing opinions on the biological properties of bGBMS due to the lack of consistency of GBMs preparation. Therefore, it is necessary to establish more standards in fabrication, characterization, and testing for bGBMs to further promote scientific progress and clinical translation.
Collapse
Affiliation(s)
- Xiaoling Pan
- College of StomatologyXinjiang Medical UniversityUrumqiXinjiang830011P. R. China
- Department of Oral Maxillofacial SurgeryShenzhen HospitalSouthern Medical UniversityShenzhen518000P. R. China
| | - Delin Cheng
- Research Center for Human Tissue and Organs DegenerationInstitute of Biomedicine and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Changshun Ruan
- Research Center for Human Tissue and Organs DegenerationInstitute of Biomedicine and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Yonglong Hong
- Department of Oral Maxillofacial SurgeryShenzhen HospitalSouthern Medical UniversityShenzhen518000P. R. China
| | - Cheng Lin
- Department of Oral Maxillofacial SurgeryShenzhen HospitalSouthern Medical UniversityShenzhen518000P. R. China
| |
Collapse
|
10
|
Hu B, Guo Y, Li H, Liu X, Fu Y, Ding F. Recent advances in chitosan-based layer-by-layer biomaterials and their biomedical applications. Carbohydr Polym 2021; 271:118427. [PMID: 34364567 DOI: 10.1016/j.carbpol.2021.118427] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/16/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022]
Abstract
In recent years, chitosan-based biomaterials have been continually and extensively researched by using layer-by-layer (LBL) assembly, due to their potentials in biomedicine. Various chitosan-based LBL materials have been newly developed and applied in different areas along with the development of technologies. This work reviews the recent advances of chitosan-based biomaterials produced by LBL assembly. Driving forces of LBL, for example electrostatic interactions, hydrogen bond as well as Schiff base linkage have been discussed. Various forms of chitosan-based LBL materials such as films/coatings, capsules and fibers have been reviewed. The applications of these biomaterials in the field of antimicrobial applications, drug delivery, wound dressings and tissue engineering have been comprehensively reviewed.
Collapse
Affiliation(s)
- Biao Hu
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Yuchun Guo
- College of Food Science, Sichuan Agricultural University, No. 46, Xin Kang Road, Yaan, Sichuan Province 625014, China
| | - Houbin Li
- School of Printing and Packaging, Wuhan University, Wuhan 430079, China
| | - Xinghai Liu
- School of Printing and Packaging, Wuhan University, Wuhan 430079, China
| | - Yuanyu Fu
- College of Food Science, Sichuan Agricultural University, No. 46, Xin Kang Road, Yaan, Sichuan Province 625014, China
| | - Fuyuan Ding
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
11
|
Wang L, Liu S, Ren C, Xiang S, Li D, Hao X, Ni S, Chen Y, Zhang K, Sun H. Construction of hollow polydopamine nanoparticle based drug sustainable release system and its application in bone regeneration. Int J Oral Sci 2021; 13:27. [PMID: 34408132 PMCID: PMC8373924 DOI: 10.1038/s41368-021-00132-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/11/2021] [Accepted: 07/19/2021] [Indexed: 12/23/2022] Open
Abstract
Nanomaterial-based drug sustainable release systems have been tentatively applied to bone regeneration. They, however, still face disadvantages of high toxicity, low biocompatibility, and low drug-load capacity. In view of the low toxicity and high biocompatibility of polymer nanomaterials and the excellent load capacity of hollow nanomaterials with high specific surface area, we evaluated the hollow polydopamine nanoparticles (HPDA NPs), in order to find an optimal system to effectively deliver the osteogenic drugs to improve treatment of bone defect. Data demonstrated that the HPDA NPs synthesized herein could efficiently load four types of osteogenic drugs and the drugs can effectively release from the HPDA NPs for a relatively longer time in vitro and in vivo with low toxicity and high biocompatibility. Results of qRT-PCR, ALP, and alizarin red S staining showed that drugs released from the HPDA NPs could promote osteogenic differentiation and proliferation of rat bone marrow mesenchymal stem cells (rBMSCs) in vitro. Image data from micro-CT and H&E staining showed that all four osteogenic drugs released from the HPDA NPs effectively promoted bone regeneration in the defect of tooth extraction fossa in vivo, especially tacrolimus. These results suggest that the HPDA NPs, the biodegradable hollow polymer nanoparticles with high drug load rate and sustainable release ability, have good prospect to treat the bone defect in future clinical practice.
Collapse
Affiliation(s)
- Lu Wang
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Shuwei Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Chunxia Ren
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Siyuan Xiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Daowei Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Xinqing Hao
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Shilei Ni
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Yixin Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Kai Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China.
| | - Hongchen Sun
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China. .,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China.
| |
Collapse
|
12
|
Liu S, Wu X, Hu J, Wu Z, Zheng Y. Preparation and characterisation of a novel polylactic acid/hydroxyapatite/graphene oxide/aspirin drug-loaded biomimetic composite scaffold. NEW J CHEM 2021. [DOI: 10.1039/d1nj01045j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The prepared scaffold has good cytocompatibility, hemocompatibility and controlled drug release, and has biomimetic structure and drug loaded function.
Collapse
Affiliation(s)
- Shuqiong Liu
- College of Materials Science and Engineering
- Fuzhou University
- Fuzhou
- People's Republic of China
- College of Ecology and Resource Engineering
| | - Xiaoyan Wu
- College of Ecology and Resource Engineering
- Wuyi University
- Wuyishan 354300
- People's Republic of China
| | - Jiapeng Hu
- College of Ecology and Resource Engineering
- Wuyi University
- Wuyishan 354300
- People's Republic of China
| | - Zhenzeng Wu
- College of Ecology and Resource Engineering
- Wuyi University
- Wuyishan 354300
- People's Republic of China
| | - Yuying Zheng
- College of Materials Science and Engineering
- Fuzhou University
- Fuzhou
- People's Republic of China
| |
Collapse
|
13
|
Preparation and characterization of aspirin-loaded polylactic acid/graphene oxide biomimetic nanofibrous scaffolds. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.123093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Yılmaz Aykut D, Yolaçan Ö, Deligöz H. pH stimuli drug loading/release platforms from LbL single/blend films: QCM-D and in-vitro studies. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Ates B, Koytepe S, Ulu A, Gurses C, Thakur VK. Chemistry, Structures, and Advanced Applications of Nanocomposites from Biorenewable Resources. Chem Rev 2020; 120:9304-9362. [PMID: 32786427 DOI: 10.1021/acs.chemrev.9b00553] [Citation(s) in RCA: 253] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Researchers have recently focused on the advancement of new materials from biorenewable and sustainable sources because of great concerns about the environment, waste accumulation and destruction, and the inevitable depletion of fossil resources. Biorenewable materials have been extensively used as a matrix or reinforcement in many applications. In the development of innovative methods and materials, composites offer important advantages because of their excellent properties such as ease of fabrication, higher mechanical properties, high thermal stability, and many more. Especially, nanocomposites (obtained by using biorenewable sources) have significant advantages when compared to conventional composites. Nanocomposites have been utilized in many applications including food, biomedical, electroanalysis, energy storage, wastewater treatment, automotive, etc. This comprehensive review provides chemistry, structures, advanced applications, and recent developments about nanocomposites obtained from biorenewable sources.
Collapse
Affiliation(s)
- Burhan Ates
- Inonu University, Department of Chemistry, 44280 Malatya, Turkey
| | - Suleyman Koytepe
- Inonu University, Department of Chemistry, 44280 Malatya, Turkey
| | - Ahmet Ulu
- Inonu University, Department of Chemistry, 44280 Malatya, Turkey
| | - Canbolat Gurses
- Inonu University, Department of Molecular Biology and Genetics, 44280 Malatya, Turkey
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, U.K.,Enhanced Composites and Structures Center, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedfordshire MK43 0AL, U.K.,Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Greater Noida, Uttar Pradesh 201314, India
| |
Collapse
|
16
|
Jolly R, Khan AA, Ahmed SS, Alam S, Kazmi S, Owais M, Farooqi MA, Shakir M. Bioactive Phoenix dactylifera seeds incorporated chitosan/hydroxyapatite nanoconjugate for prospective bone tissue engineering applications: A bio-synergistic approach. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110554. [DOI: 10.1016/j.msec.2019.110554] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/16/2019] [Accepted: 12/12/2019] [Indexed: 01/10/2023]
|
17
|
Jamróz E, Kulawik P, Kopel P. The Effect of Nanofillers on the Functional Properties of Biopolymer-based Films: A Review. Polymers (Basel) 2019; 11:E675. [PMID: 31013855 PMCID: PMC6523406 DOI: 10.3390/polym11040675] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 12/30/2022] Open
Abstract
Waste from non-degradable plastics is becoming an increasingly serious problem. Therefore, more and more research focuses on the development of materials with biodegradable properties. Bio-polymers are excellent raw materials for the production of such materials. Bio-based biopolymer films reinforced with nanostructures have become an interesting area of research. Nanocomposite films are a group of materials that mainly consist of bio-based natural (e.g., chitosan, starch) and synthetic (e.g., poly(lactic acid)) polymers and nanofillers (clay, organic, inorganic, or carbon nanostructures), with different properties. The interaction between environmentally friendly biopolymers and nanofillers leads to the improved functionality of nanocomposite materials. Depending on the properties of nanofillers, new or improved properties of nanocomposites can be obtained such as: barrier properties, improved mechanical strength, antimicrobial, and antioxidant properties or thermal stability. This review compiles information about biopolymers used as the matrix for the films with nanofillers as the active agents. Particular emphasis has been placed on the influence of nanofillers on functional properties of biopolymer films and their possible use within the food industry and food packaging systems. The possible applications of those nanocomposite films within other industries (medicine, drug and chemical industry, tissue engineering) is also briefly summarized.
Collapse
Affiliation(s)
- Ewelina Jamróz
- Institute of Chemistry, University of Agriculture in Cracow, Balicka Street 122, PL-30-149 Kraków, Poland.
| | - Piotr Kulawik
- Department of Animal Products Processing, University of Agriculture, Balicka Street 122, PL-30-149 Kraków, Poland.
| | - Pavel Kopel
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic.
| |
Collapse
|
18
|
Zhang X, Yin X, Luo J, Zheng X, Wang H, Wang J, Xi Z, Liao X, Machuki JO, Guo K, Gao F. Novel Hierarchical Nitrogen-Doped Multiwalled Carbon Nanotubes/Cellulose/Nanohydroxyapatite Nanocomposite As an Osteoinductive Scaffold for Enhancing Bone Regeneration. ACS Biomater Sci Eng 2018; 5:294-307. [PMID: 33405875 DOI: 10.1021/acsbiomaterials.8b00908] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nanomaterials based on hybrid scaffolds have shown a high potential to promote osteointegration and bone regeneration. In this study, a novel nanocomposite scaffold was synthesized via a cross-linking/hydrothermal/freeze-drying method, resulting in layer-by-layer structures with functional and structural properties mimicking the natural bone. The hierarchical structures of the scaffold were reinforced with nitrogen-doped multiwalled carbon nanotubes (N-MWCNTs), cellulose, and nanohydroxyapatite. The N-MWCNT/Cel/nHA scaffolds were characterized and evaluated in terms of structure, morphology, biocompatibility, cellular responses, and bone repair efficiency in vivo. The resulting scaffolds showed that incorporation of 1 wt % N-MWCNTs into the hybrid scaffold with micropores (∼5 μm) significantly improved its mechanical properties, although the surface morphology of the scaffold tended to be rough and porous. Importantly, the resulting scaffolds supported in vitro cellular attachment, proliferation, viability, and mineralization of bone mesenchymal stem cells (BMSCs). On the other hand, incorporation of N-MWCNTs into the scaffold induced preferential differentiation of BMSCs to osteogenic lineage accompanied by increased alkaline phosphatase activity and expression of key osteogenic genes. Furthermore, 12 weeks after implantation, the 1%N-MWCNT/Cel/nHA porous scaffolds successfully cicatrized a distal femoral condyle critical size defect in rabbit without obvious inflammatory responses, as indicated by the results of the Micro-CT and histological analyses. In vitro and in vivo experiments confirmed that the scaffolds not only improved the interface bonding with bone tissue but also accelerated the new bone formation and regeneration by up-regulating signaling molecules that are involved in cell proliferation and differentiation. These results indicated that the novel N-MWCNT/Cel/nHA scaffold is an efficient platform for osteogenesis research and bone regeneration medicine.
Collapse
Affiliation(s)
- Xing Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.,Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou 221002, Jiangsu China
| | - Xianyong Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.,College of Clinical Medical Science, Taishan Medical University, Taian 271000, Shangdong, China
| | - Jianjun Luo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.,Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou 221002, Jiangsu China
| | - Xin Zheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.,Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou 221002, Jiangsu China
| | - Huiying Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.,Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou 221002, Jiangsu China
| | - Jin Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.,Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou 221002, Jiangsu China
| | - Zhongqian Xi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xianjiu Liao
- School of Pharmacy, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Jeremiah Ong'achwa Machuki
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Kaijin Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.,Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou 221002, Jiangsu China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
19
|
Solìs Moré Y, Panella G, Fioravanti G, Perrozzi F, Passacantando M, Giansanti F, Ardini M, Ottaviano L, Cimini A, Peniche C, Ippoliti R. Biocompatibility of composites based on chitosan, apatite, and graphene oxide for tissue applications. J Biomed Mater Res A 2018; 106:1585-1594. [PMID: 29424473 DOI: 10.1002/jbm.a.36361] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 01/19/2018] [Accepted: 01/29/2018] [Indexed: 01/22/2023]
Abstract
Novel two-dimensional films and three-dimensional (3D) scaffolds based on chitosan (CHI), apatite (Ap), and graphene oxide (GO) were developed by an in situ synthesis in which self-assembly process was conducted to direct partial reduction of GO by CHI in acidic medium. Physical-chemical characterization was carried out by optical microscopy, scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. In vitro biological studies using murine fibroblast (MC3T3) and human neuroblastoma (SH-SY5Y) cell lines were also performed. Cell growth and adherence on composites was also checked using SEM. Live and death staining by confocal microscope and 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium of the samples were investigated. The results confirmed the incorporation of both Ap and GO sheets, into CHI polymeric matrix. Furthermore, it was confirmed a physical integration between inorganic Ap and organic CHI and strong chemical interaction between CHI and GO in the obtained composites. SH-SY5Y cell line showed preferential adherence on CHI/GO films surface while MC3T3 cell line displayed a good compatibility for all 3D scaffolds. This study confirms the biocompatibility of materials based on CHI, Ap, and GO for future tissues applications. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1585-1594, 2018.
Collapse
Affiliation(s)
- Yaimara Solìs Moré
- Centro de Biomateriales, Universidad de La Habana, La Habana, 10400, Cuba
| | - Gloria Panella
- Dipartimento di Medicina Clinica, Sanità Pubblica, Scienze della Vita e dell'Ambiente/Università degli Studi dell'Aquila, L'Aquila, Italy
| | - Giulia Fioravanti
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, L'Aquila, Italy
| | - Francesco Perrozzi
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, L'Aquila, Italy
| | - Maurizio Passacantando
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, L'Aquila, Italy
| | - Francesco Giansanti
- Dipartimento di Medicina Clinica, Sanità Pubblica, Scienze della Vita e dell'Ambiente/Università degli Studi dell'Aquila, L'Aquila, Italy
| | - Matteo Ardini
- Dipartimento di Medicina Clinica, Sanità Pubblica, Scienze della Vita e dell'Ambiente/Università degli Studi dell'Aquila, L'Aquila, Italy
| | - Luca Ottaviano
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, L'Aquila, Italy
| | - Annamaria Cimini
- Dipartimento di Medicina Clinica, Sanità Pubblica, Scienze della Vita e dell'Ambiente/Università degli Studi dell'Aquila, L'Aquila, Italy
| | - Carlos Peniche
- Centro de Biomateriales, Universidad de La Habana, La Habana, 10400, Cuba
| | - Rodolfo Ippoliti
- Dipartimento di Medicina Clinica, Sanità Pubblica, Scienze della Vita e dell'Ambiente/Università degli Studi dell'Aquila, L'Aquila, Italy
| |
Collapse
|
20
|
Shakir M, Mirza S, Jolly R, Rauf A, Owais M. Synthesis, characterization and in vitro screening of a nano-hydroxyapatite/chitosan/Euryale ferox nanoensemble – an inimitable approach for bone tissue engineering. NEW J CHEM 2018. [DOI: 10.1039/c7nj02953e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In order to explore novel synthetic bone scaffolds, a biomimmetic, osteoinductive, tricomposite scaffold has been synthesized incorporating Euryale ferox (EF) with nano-hydroxyapatite and chitosan.
Collapse
Affiliation(s)
- Mohammad Shakir
- Inorganic Chemistry Laboratory
- Department of Chemistry
- Aligarh Muslim University
- Aligarh
- India
| | - Sumbul Mirza
- Inorganic Chemistry Laboratory
- Department of Chemistry
- Aligarh Muslim University
- Aligarh
- India
| | - Reshma Jolly
- Inorganic Chemistry Laboratory
- Department of Chemistry
- Aligarh Muslim University
- Aligarh
- India
| | - Ahmar Rauf
- Molecular Immunology Group Lab
- Interdisciplinary Biotechnology Unit
- Aligarh Muslim University
- Aligarh
- India
| | - Mohammad Owais
- Molecular Immunology Group Lab
- Interdisciplinary Biotechnology Unit
- Aligarh Muslim University
- Aligarh
- India
| |
Collapse
|
21
|
Li D, Liu T, Yu X, Wu D, Su Z. Fabrication of graphene–biomacromolecule hybrid materials for tissue engineering application. Polym Chem 2017. [DOI: 10.1039/c7py00935f] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In this review, we demonstrated the recent advances in the fabrication strategies of graphene–biomacromolecule hybrid materials and their applications in the field of tissue engineering, such as implant materials, cell culture scaffolds, and regenerative medicine.
Collapse
Affiliation(s)
- Dapeng Li
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- 100029 Beijing
- China
- Beijing Key Laboratory of Advanced Functional Polymer Composites
| | - Tianjiao Liu
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- 100029 Beijing
- China
- Beijing Key Laboratory of Advanced Functional Polymer Composites
| | - Xiaoqing Yu
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- 100029 Beijing
- China
- Beijing Key Laboratory of Advanced Functional Polymer Composites
| | - Di Wu
- Beijing Key Laboratory of Advanced Functional Polymer Composites
- Beijing University of Chemical Technology
- China
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- 100029 Beijing
- China
- Beijing Key Laboratory of Advanced Functional Polymer Composites
| |
Collapse
|