1
|
Hamdan II, Tarawneh RT, Awwadi F, Al-Qattan D, Hamdan AI, Afifi F. Deferasirox and Ciprofloxacin: Potential Ternary Complex Formation With Ferric Iron, Pharmacodynamic, and Pharmacokinetic Interactions. ScientificWorldJournal 2024; 2024:9309491. [PMID: 39649814 PMCID: PMC11623990 DOI: 10.1155/tswj/9309491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/12/2024] [Accepted: 11/07/2024] [Indexed: 12/11/2024] Open
Abstract
The main aim of this work was to assess the potential formation of ternary chelate complexes, involving deferasirox (DFX), ciprofloxacin (CP), and ferric iron. The coadministration of CP along with DFX might modulate its efficacy, so it is important that it be investigated. A ternary complex involving DFX, CP, and iron (DFX-CP-Fe) was prepared and characterized. Theoretical chemistry calculations were performed to measure the equilibrium constants of complexes. Two groups of rats were exposed to DFX or DFX with CP. The level of DFX in plasma was measured, and histological assessments of relevant organs were made. Levels of iron in selected tissues were measured. The formation of ternary complexes was confirmed. Two ternary complexes are thermodynamically favored. The first one of ratio (DFX:CP:Fe) was shown to be favorable with an equilibrium constant of 2 × 107. The second one with ratio (DFX:CP:2Fe) is more thermodynamically favored with an equilibrium constant of 2.0 × 1060. Rats treated with a combination of DFX and CP exhibited lower levels of iron in dried red blood cells in comparison to those treated with DFX alone (p value = 0.012). They also exhibited lower levels of DFX in plasma. Histological assessments of the relevant tissues showed a clear difference in the level of deposited iron in the spleen. In conclusion, ternary complexes are formed, and some with exceptionally high constants. The obtained data indicate a potentially favorable role of CP because while it resulted in a decrease in the level of DFX, it pharmacodynamically produced more effect.
Collapse
Affiliation(s)
- Imad I. Hamdan
- Department of Pharmaceutical Sciences, The University of Jordan, Amman, Jordan
| | - Ruba T. Tarawneh
- Department of Pharmaceutical Sciences, The University of Jordan, Amman, Jordan
| | - Firas Awwadi
- Department of Chemistry, The University of Jordan, Amman, Jordan
| | - Duaa Al-Qattan
- School of Medicine, The University of Jordan, Amman, Jordan
| | | | - Fatma Afifi
- Department of Pharmaceutical Sciences, The University of Jordan, Amman, Jordan
| |
Collapse
|
2
|
Rajamohan R, Kamaraj E, Muthuraja P, Murugavel K, Govindasamy C, Prabakaran DS, Malik T, Lee YR. Enhancing ketoprofen's solubility and anti-inflammatory efficacy with safe methyl-β-cyclodextrin complexation. Sci Rep 2024; 14:21516. [PMID: 39277667 PMCID: PMC11401905 DOI: 10.1038/s41598-024-71615-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024] Open
Abstract
Improved solubility and anti-inflammatory (AI) properties are imperative for enhancing the effectiveness of poorly water-soluble drugs, particularly non-steroidal anti-inflammatory drugs (NSAIDs). To address these critical issues, our focus is on obtaining NSAID materials in the form of inclusion complexes (IC) with methyl-beta-cyclodextrin (MCD). Ketoprofen (KTP) is selected as the NSAID for this study due to its potency in treating various types of pain, inflammation, and arthritis. Our objective is to tackle the solubility challenge followed by enhancing the AI activity. Confirmation of complexation is achieved through observing changes in the absorbance and fluorescence intensities of KTP upon the addition of MCD, indicating a 1:1 stoichiometric ratio. Phase solubility studies demonstrated improved dissolution rates after the formation of ICs. Further analysis of the optimized IC is conducted using FT-IR, NMR, FE-SEM, and TG/DTA techniques. Notable shifts in chemical shift values and morphological alterations on the surface of the ICs are observed compared to their free form. Most significantly, the IC exhibited superior AI and anti-arthritic (AA) activity compared to KTP alone. These findings highlight the potential of ICs in expanding the application of KTP, particularly in pharmaceuticals, where enhanced stability and efficacy of natural AIs and AAs are paramount.
Collapse
Affiliation(s)
- Rajaram Rajamohan
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Eswaran Kamaraj
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Perumal Muthuraja
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Kuppusamy Murugavel
- PG & Research Department of Chemistry, Government Arts College, Chidambaram, 608 102, Tamil Nadu, India
| | - Chandramohan Govindasamy
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, 11433, Riyadh, Saudi Arabia
| | - D S Prabakaran
- Department of Radiation Oncology, College of Medicine, Chungbuk National University, Chungdae-ro Seowon-gu, Cheongju, 28644, Republic of Korea
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chennai, 603203, Tamil Nadu, India
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia.
- Division of Research & Development, Lovely Professional University, Phagwara, India, 144411.
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
3
|
Panthi VK, Fairfull-Smith KE, Islam N. Ciprofloxacin-Loaded Inhalable Formulations against Lower Respiratory Tract Infections: Challenges, Recent Advances, and Future Perspectives. Pharmaceutics 2024; 16:648. [PMID: 38794310 PMCID: PMC11125790 DOI: 10.3390/pharmaceutics16050648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Inhaled ciprofloxacin (CFX) has been investigated as a treatment for lower respiratory tract infections (LRTIs) associated with cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), and bronchiectasis. The challenges in CFX effectiveness for LRTI treatment include poor aqueous solubility and therapy resistance. CFX dry powder for inhalation (DPI) formulations were well-tolerated, showing a remarkable decline in overall bacterial burden compared to a placebo in bronchiectasis patients. Recent research using an inhalable powder combining Pseudomonas phage PEV20 with CFX exhibited a substantial reduction in bacterial density in mouse lungs infected with clinical P. aeruginosa strains and reduced inflammation. Currently, studies suggest that elevated biosynthesis of fatty acids could serve as a potential biomarker for detecting CFX resistance in LRTIs. Furthermore, inhaled CFX has successfully addressed various challenges associated with traditional CFX, including the incapacity to eliminate the pathogen, the recurrence of colonization, and the development of resistance. However, further exploration is needed to address three key unresolved issues: identifying the right patient group, determining the optimal treatment duration, and accurately assessing the risk of antibiotic resistance, with additional multicenter randomized controlled trials suggested to tackle these challenges. Importantly, future investigations will focus on the effectiveness of CFX DPI in bronchiectasis and COPD, aiming to differentiate prognoses between these two conditions. This review underscores the importance of CFX inhalable formulations against LRTIs in preclinical and clinical sectors, their challenges, recent advancements, and future perspectives.
Collapse
Affiliation(s)
- Vijay Kumar Panthi
- Pharmacy Discipline, School of Clinical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia;
| | - Kathryn E. Fairfull-Smith
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia;
- Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| | - Nazrul Islam
- Pharmacy Discipline, School of Clinical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia;
- Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
- Centre for Immunology and Infection Control (CIIC), Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| |
Collapse
|
4
|
Zhang S, Zhao G, Mahotra M, Ma S, Li W, Lee HW, Yu H, Sampathkumar K, Xie D, Guo J, Loo SCJ. Chitosan nanofibrous scaffold with graded and controlled release of ciprofloxacin and BMP-2 nanoparticles for the conception of bone regeneration. Int J Biol Macromol 2024; 254:127912. [PMID: 37939763 DOI: 10.1016/j.ijbiomac.2023.127912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/18/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
The repair of bone defects using grafts is commonly employed in clinical practice. However, the risk of infection poses a significant concern. Tissue engineering scaffolds with antibacterial functionalities offer a better approach for bone tissue repair. In this work, firstly, two kinds of nanoparticles were prepared using chitosan to complex with ciprofloxacin and BMP-2, respectively. The ciprofloxacin complex nanoparticles improved the dissolution efficiency of ciprofloxacin achieving a potent antibacterial effect and cumulative release reached 95 % in 7 h. For BMP-2 complexed nanoparticles, the release time points can be programmed at 80 h, 100 h or 180 h by regulating the number of coating chitosan layers. Secondly, a functional scaffold was prepared by combining the two nanoparticles with chitosan nanofibers. The microscopic nanofiber structure of the scaffold with 27.28 m2/g specific surface area promotes cell adhesion, high porosity provides space for cell growth, and facilitates drug loading and release. The multifunctional scaffold exhibits programmed release function, and has obvious antibacterial effect at the initial stage of implantation, and releases BMP-2 to promote osteogenic differentiation of mesenchymal stem cells after the antibacterial effect ends. The scaffold is expected to be applied in clinical bone repair and graft infection prevention.
Collapse
Affiliation(s)
- Sihan Zhang
- Department of Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou 510630, China
| | - Guanglei Zhao
- State Key Lab of Pulp and Papermaking Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Manish Mahotra
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Shiyuan Ma
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wenrui Li
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; NTU Institute for Health Technologies, Interdisciplinary Graduate Program, Nanyang Technological University, 61 Nanyang Drive, 637335, Singapore
| | - Hiang Wee Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Hong Yu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Kaarunya Sampathkumar
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Denghui Xie
- Department of Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou 510630, China.
| | - Jinshan Guo
- Department of Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou 510630, China; Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Say Chye Joachim Loo
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, 308232, Singapore.
| |
Collapse
|
5
|
Saha P, Rafe MR. Cyclodextrin: A prospective nanocarrier for the delivery of antibacterial agents against bacteria that are resistant to antibiotics. Heliyon 2023; 9:e19287. [PMID: 37662769 PMCID: PMC10472013 DOI: 10.1016/j.heliyon.2023.e19287] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023] Open
Abstract
Supramolecular chemistry introduces us to the macrocyclic host cyclodextrin, which has a hydrophobic cavity. The hydrophobic cavity has a higher affinity for hydrophobic guest molecules and forms host-guest complexation with non-covalent interaction. Three significant cyclodextrin kinds are α-cyclodextrin, β-cyclodextrin, and γ-cyclodextrin. The most often utilized is β-cyclodextrin (β-CD). An effective weapon against bacteria that are resistant to antibiotics is cyclodextrin. Several different kinds of cyclodextrin nanocarriers (β-CD, HP-β-CD, Meth-β-CD, cationic CD, sugar-grafted CD) are utilized to enhance the solubility, stability, dissolution, absorption, bioavailability, and permeability of the antibiotics. Cyclodextrin also improves the effectiveness of antibiotics, antimicrobial peptides, metallic nanoparticles, and photodynamic therapy (PDT). Again, cyclodextrin nanocarriers offer slow-release properties for sustained-release formulations where steady-state plasma antibiotic concentration is needed for an extended time. A novel strategy to combat bacterial resistance is a stimulus (pH, ROS)-responsive antibiotics released from cyclodextrin carrier. Once again, cyclodextrin traps autoinducer (AI), a crucial part of bacterial quorum sensing, and reduces virulence factors, including biofilm formation. Cyclodextrin helps to minimize MIC in particular bacterial strains, keep antibiotic concentrations above MIC in the infection site and minimize the possibility of antibiotic and biofilm resistance. Sessile bacteria trapped in biofilms are more resistant to antibiotic therapy than bacteria in a planktonic form. Cyclodextrin also involves delivering antibiotics to biofilm and resistant bacteria to combat bacterial resistance.
Collapse
Affiliation(s)
- Pranoy Saha
- Department of Pharmacy, Jagannath University, Dhaka, 1100, Bangladesh
| | - Md Rajdoula Rafe
- Department of Pharmacy, Jagannath University, Dhaka, 1100, Bangladesh
| |
Collapse
|
6
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Uhljar LÉ, Alshweiat A, Katona G, Chung M, Radacsi N, Kókai D, Burián K, Ambrus R. Comparison of Nozzle-Based and Nozzle-Free Electrospinning for Preparation of Fast-Dissolving Nanofibers Loaded with Ciprofloxacin. Pharmaceutics 2022; 14:pharmaceutics14081559. [PMID: 36015184 PMCID: PMC9413034 DOI: 10.3390/pharmaceutics14081559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
The study aimed to prepare ciprofloxacin-loaded polyvinylpyrrolidone electrospun nanofibers for oral drug delivery, using a conventional nozzle-based and a lab-built nozzle-free electrospinning equipment. To produce nanofibers, electrospinning is the process most often used. However, from the industry’s point of view, conventional electrospinning does not have sufficiently high productivity. By omitting the nozzle, productivity can be increased, and so the development of nozzle-free processes is worthwhile. In this study, a solution of ciprofloxacin and polyvinylpyrrolidone was electrospun under similar conditions, using both single-nozzle and nozzle-free methods. The two electrospinning methods were compared by investigating the morphological and physicochemical properties, homogeneity, in vitro drug release, and cytotoxicity. The stability of the nanofibers was monitored from different aspects in a 26 month stability study. The results showed that the use of the nozzle-free electrospinning was preferable due to a higher throughput, improved homogeneity, and the enhanced stability of nanofiber mats, compared to the nozzle-based method. Nevertheless, fast dissolving nanofibers loaded with poorly water-soluble ciprofloxacin were produced by both electrospinning methods. The beneficial properties of these nanofibers can be exploited in innovative drug development; e.g., nanofibers can be formulated into orodispersible films or per os tablets.
Collapse
Affiliation(s)
- Luca Éva Uhljar
- Faculty of Pharmacy, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös Street 6, 6720 Szeged, Hungary; (L.É.U.); (G.K.)
| | - Areen Alshweiat
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa 13133, Jordan;
| | - Gábor Katona
- Faculty of Pharmacy, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös Street 6, 6720 Szeged, Hungary; (L.É.U.); (G.K.)
| | - Michael Chung
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, King’s Buildings, Edinburgh EH9 3FB, UK; (M.C.); (N.R.)
| | - Norbert Radacsi
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, King’s Buildings, Edinburgh EH9 3FB, UK; (M.C.); (N.R.)
| | - Dávid Kókai
- Department of Medical Microbiology and Immunobiology, University of Szeged, Dóm Square 10, 6720 Szeged, Hungary; (D.K.); (K.B.)
| | - Katalin Burián
- Department of Medical Microbiology and Immunobiology, University of Szeged, Dóm Square 10, 6720 Szeged, Hungary; (D.K.); (K.B.)
| | - Rita Ambrus
- Faculty of Pharmacy, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös Street 6, 6720 Szeged, Hungary; (L.É.U.); (G.K.)
- Correspondence:
| |
Collapse
|
8
|
Guo S, He Y, Zhu Y, Tang Y, Yu B. Combatting Antibiotic Resistance Using Supramolecular Assemblies. Pharmaceuticals (Basel) 2022; 15:ph15070804. [PMID: 35890105 PMCID: PMC9322166 DOI: 10.3390/ph15070804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023] Open
Abstract
Antibiotic resistance has posed a great threat to human health. The emergence of antibiotic resistance has always outpaced the development of new antibiotics, and the investment in the development of new antibiotics is diminishing. Supramolecular self-assembly of the conventional antibacterial agents has been proved to be a promising and versatile strategy to tackle the serious problem of antibiotic resistance. In this review, the recent development of antibacterial agents based on supramolecular self-assembly strategies will be introduced.
Collapse
Affiliation(s)
- Shuwen Guo
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710100, China;
- Correspondence: (S.G.); (Y.T.); (B.Y.)
| | - Yuling He
- Institute of Basic and Translational Medicine, Xi’an Medical University, No. 1 Xinwang Road, Xi’an 710021, China;
| | - Yuanyuan Zhu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710100, China;
| | - Yanli Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710100, China;
- Correspondence: (S.G.); (Y.T.); (B.Y.)
| | - Bingran Yu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing 100029, China
- Correspondence: (S.G.); (Y.T.); (B.Y.)
| |
Collapse
|
9
|
Coba‐Jiménez L, Maza J, Guerra M, Deluque‐Gómez J, Cubillán N. Interaction of Ciprofloxacin with Arabinose, Glucosamine, Glucuronic Acid and Rhamnose: Insights from Genetic Algorithm and Quantum Chemistry. ChemistrySelect 2022. [DOI: 10.1002/slct.202103836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ludis Coba‐Jiménez
- Programa de Química Facultad de Ciencias Básicas Universidad del Atlántico Barranquilla Colombia
| | - Julio Maza
- Programa de Química Facultad de Ciencias Básicas Universidad del Atlántico Barranquilla Colombia
| | - Mayamarú Guerra
- Laboratorio de Óptica y Procesamiento de Imágenes Facultad de Ciencias Básicas Universidad Tecnológica de Bolívar Turbaco Colombia
| | - Julio Deluque‐Gómez
- Programa de Ingeniería Industrial Facultad de Ingenierías Universidad de la Guajira Riohacha Colombia
| | - Néstor Cubillán
- Programa de Química Facultad de Ciencias Básicas Universidad del Atlántico Barranquilla Colombia
| |
Collapse
|
10
|
Han X, Guo X, Shi Y, Li W, Zhang G. Novel amino-β-Cyclodextrins containing polymers: Fabrication, characterization, and biological evaluation. Colloids Surf B Biointerfaces 2020; 196:111311. [PMID: 32827948 DOI: 10.1016/j.colsurfb.2020.111311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 11/28/2022]
Abstract
In this study, poly (mPEGMA-co-MAA) (PA) based on monomers of mPEGMA and MAA were synthesized, and different amino-β-Cyclodextrins with various alkyl chains were conjugated to PA through carbodiimide-mediated coupling reactions. The obtained poly (mPEGMA-co-MAA-g-amino-β-CD) (PA-g-amino-β-CD) was characterized by FTIR, NMR and TGA. The fluorescence technique was used to investigate the micellization of PA-g-amino-β-CDs. The results indicated that these polymers could self-assemble into nano-micelles in water, and PA-g-HDA-β-CD possessed the lowest CMC value due to its long alkyl chains. In addition, the PA-g-HDA-β-CD micelles were in spherical shapes with the diameter of 78.5 ± 0.6 nm.The release of the model drug from PA-g-HDA-β-CD micelles was increased as the pH reduced from 7.4-5.5 at 37 °C. Cytotoxicity and cellular uptake experiments were performed in HepG2, which showed that the cargo-free PA-g-HDA-β-CD micelles did not have obvious cytotoxicity and were mainly distributed in the cytoplasm of HepG2 cells by endocytosis. Moreover, the study about in vivo distribution of the experimental rats indicated that the accumulation of PA-g-HDA-β-CD micelles mainly happened in the liver. Therefore, the novel amino-β-CD containing polymers exhibit good potential applications in drug delivery system.
Collapse
Affiliation(s)
- Xiao Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| | - Xin Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Yongli Shi
- College of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, China
| | - Wenhao Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Guoquan Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
11
|
Mohammed A, Zurek J, Madueke S, Al-Kassimy H, Yaqoob M, Houacine C, Ferraz A, Kalgudi R, Zariwala MG, Hawkins N, Al-Obaidi H. Generation of High Dose Inhalable Effervescent Dispersions against Pseudomonas aeruginosa Biofilms. Pharm Res 2020; 37:150. [PMID: 32686026 PMCID: PMC7369260 DOI: 10.1007/s11095-020-02878-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/08/2020] [Indexed: 11/29/2022]
Abstract
PURPOSE Novel particle engineering approach was used in this study to generate high dose inhalable effervescent particles with synergistic effects against Pseudomonas aeruginosa biofilms. METHODS Spray dried co-amorphous salt of ciprofloxacin (CFX) and tartaric acid (TA) was prepared and coated with external layer of sodium bicarbonate and silica coated silver nanobeads. Design of experiments (DOE) was used to optimize physicochemical properties of particles for enhanced lung deposition. RESULTS Generated particles were co-amorphous CFX/TA showing that CFX lost its zwitterionic form and exhibiting distinct properties to CFX/HCl as assessed by FTIR and thermal analysis. Particles exhibited mass mean aerodynamic diameter (MMAD) of 3.3 μm, emitted dose of 78% and fine particle dose of 85%. Particles were further evaluated via antimicrobial assessment of minimum inhibitory concentrations (MIC) and minimum biofilm eradication concentration (MBEC). MIC and MBEC results showed that the hybrid particles were around 3-5 times more effective when compared to CFX signifying that synergistic effect was achieved. Diffusing wave spectroscopy results showed that the silver containing particles had a disruptive effect on rheological properties as opposed to silver free particles. CONCLUSIONS Overall, these results showed the potential to use particle engineering to generate particles that are highly disruptive of bacterial biofilms.
Collapse
Affiliation(s)
- Aram Mohammed
- The School of Pharmacy, University of Reading, Reading, RG6 6AD, UK
| | - Jakub Zurek
- The School of Pharmacy, University of Reading, Reading, RG6 6AD, UK
| | - Somto Madueke
- The School of Pharmacy, University of Reading, Reading, RG6 6AD, UK
| | | | | | - Chahinez Houacine
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Amina Ferraz
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Rachith Kalgudi
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London, W1W 6UW, UK
| | - Mohammed Gulrez Zariwala
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London, W1W 6UW, UK
| | - Nicholas Hawkins
- Department of Engineering Science, University of Oxford, Parks Road, 0X1 3PJ, Oxford, UK
| | - Hisham Al-Obaidi
- The School of Pharmacy, University of Reading, Reading, RG6 6AD, UK.
| |
Collapse
|
12
|
Said Suliman A, Tom R, Palmer K, Tolaymat I, Younes HM, Arafat B, Elhissi AMA, Najlah M. Development, characterization and stability evaluation of ciprofloxacin-loaded parenteral nutrition nanoemulsions. Pharm Dev Technol 2020; 25:579-587. [PMID: 31967908 DOI: 10.1080/10837450.2020.1720237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In this study, two licensed total parenteral nanoemulsion formulations (Clinoleic® and Intralipid®) were loaded with ciprofloxacin (CP). The physicochemical characteristics and stability profiles of the formulations were investigated using a range of drug concentrations. Furthermore, formulation stability was evaluated over a period of six months at room temperature (RT) or 4 °C. Loading CP into nanoemulsions resulted in no significant differences in their measured droplet size, polydispersity index (PI), zeta potential, and pH. Drug entrapment efficiency (EE) was relatively high for all formulations, regardless of nanoemulsion type, and the drug release was sustained over 24 h. Stability studies of all formulations were performed at 4 °C and RT for 180 and 60 days, respectively. At 4 °C for 180 days, both Clinoleic® and Intralipid® formulations at a range of drug concentrations (1-10 mg/ml) showed high stabilities measured periodically by the average droplet sizes, PI, pH, and zeta potential values. Similar results, but pH values, were shown when the formulations for both nanoemulsion stored at RT for 60 days. Overall, this study has shown that CP was successfully loaded into clinically licensed TPN lipid nanoemulsions. The resultant CP-loaded nanoemulsion formulations demonstrated desirable physicochemical properties and were stable upon storage at 4 °C for up to six months.
Collapse
Affiliation(s)
- Ammar Said Suliman
- Pharmaceutical Research Group, School of Allied Health, Faculty of Health, Education, Medicine, and Social Care, Anglia Ruskin University, Chelmsford, UK
| | - Rose Tom
- Pharmaceutical Research Group, School of Allied Health, Faculty of Health, Education, Medicine, and Social Care, Anglia Ruskin University, Chelmsford, UK
| | - Kirsty Palmer
- Pharmaceutical Research Group, School of Allied Health, Faculty of Health, Education, Medicine, and Social Care, Anglia Ruskin University, Chelmsford, UK
| | - Ibrahim Tolaymat
- Pharmaceutical Research Group, School of Allied Health, Faculty of Health, Education, Medicine, and Social Care, Anglia Ruskin University, Chelmsford, UK
| | - Husam M Younes
- Office of Vice President for Research & Graduate Studies, Qatar University, Doha, Qatar
| | - Basel Arafat
- Pharmaceutical Research Group, School of Allied Health, Faculty of Health, Education, Medicine, and Social Care, Anglia Ruskin University, Chelmsford, UK
| | - Abdelbary M A Elhissi
- Office of Vice President for Research & Graduate Studies, Qatar University, Doha, Qatar.,Pharmaceutical Sciences Section, College of Pharmacy, Qatar University, Doha, Qatar
| | - Mohammad Najlah
- Pharmaceutical Research Group, School of Allied Health, Faculty of Health, Education, Medicine, and Social Care, Anglia Ruskin University, Chelmsford, UK
| |
Collapse
|
13
|
Tanwar AG, Date PB, Ottoor DP. In Vitro Investigation of Controlled Release of Ciprofloxacin and Its
β
‐Cyclodextrin Inclusion Complex from Gelatin Grafted Poly(vinyl alcohol) (GPVA) Nanoparticles. ChemistrySelect 2019. [DOI: 10.1002/slct.201901728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Archana G. Tanwar
- Department of ChemistrySavitribai Phule Pune University, Ganeshkhind Pune- 411007 India
- Department of ChemistryFergusson College (Autonomous), F.C. Road Pune 411004 India
| | - Pranjali B. Date
- Department of ChemistrySavitribai Phule Pune University, Ganeshkhind Pune- 411007 India
| | - Divya P. Ottoor
- Department of ChemistrySavitribai Phule Pune University, Ganeshkhind Pune- 411007 India
| |
Collapse
|
14
|
Mehta CH, Narayan R, Nayak UY. Computational modeling for formulation design. Drug Discov Today 2019; 24:781-788. [DOI: 10.1016/j.drudis.2018.11.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/10/2018] [Accepted: 11/22/2018] [Indexed: 10/27/2022]
|
15
|
Shinde VV, Jung S. Succinyl-β-cyclodextrin–driven synthesis of a nitrogen-fused five-ring heterocycle using GBB-based [4 + 1] cycloaddition via supramolecular host–guest interactions. Tetrahedron 2019. [DOI: 10.1016/j.tet.2018.12.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
16
|
Sun Q, Tang P, Zhao L, Pu H, Zhai Y, Li H. Mechanism and structure studies of cinnamaldehyde/cyclodextrins inclusions by computer simulation and NMR technology. Carbohydr Polym 2018; 194:294-302. [DOI: 10.1016/j.carbpol.2018.04.055] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/11/2018] [Accepted: 04/14/2018] [Indexed: 11/17/2022]
|
17
|
Sanbhal N, Saitaer X, Li Y, Mao Y, Zou T, Sun G, Wang L. Controlled Levofloxacin Release and Antibacterial Properties of β-Cyclodextrins-Grafted Polypropylene Mesh Devices for Hernia Repair. Polymers (Basel) 2018; 10:E493. [PMID: 30966527 PMCID: PMC6415403 DOI: 10.3390/polym10050493] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/29/2018] [Accepted: 05/01/2018] [Indexed: 01/08/2023] Open
Abstract
Mesh infection is a major complication of hernia repair. After knitted mesh implantation, bacteria can grow within textile structures causing infection. In this work, polypropylene (PP) mesh devices were two-step grafted with hexamethylene diisocyanate (HDI) and β⁻cyclodexrins (CD) and then loaded with suitable antimicrobial levofloxacin HCL for hernia mesh-infection prevention. First, oxygen plasma was able to create surface roughness, then HDI was successfully grafted onto PP fiber surfaces. Afterwards, CD was covalently grafted onto the HDI treated PP meshes, and levofloxacin HCL (LVFX) was loaded into the CD cavity of the modified meshes. The modified devices were evaluated for sustained antibiotic properties and drug-release profiles in a phosphate buffer, and sustained drug release was observed between interfaces of meshes and aqueous environment. The antibiotic-loaded PP mesh samples demonstrated sustained antibacterial properties for 7 and 10 days, respectively, against both Gram-negative and Gram-positive bacteria. The CD-captured levofloxacin HCL showed burst release after 6 h but later exhibited sustained release for the next 48 h. Among all samples, the modified mesh LVFX-6 was more stable and showed more sustained drug release and could be employed in future clinical applications.
Collapse
Affiliation(s)
- Noor Sanbhal
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, 2999 North Renmin Road, Songjiang, Shanghai 201620, China.
- Department of Textile Engineering, Mehran University of Engineering and Technology Jamshoro, Sindh 76062, Pakistan.
| | - Xiakeer Saitaer
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, 2999 North Renmin Road, Songjiang, Shanghai 201620, China.
- College of Textiles and Fashion, Xingjiang University, 666 Sheng Li Road, Tian Shan, Wulumuqi 830046, China.
| | - Yan Li
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, 2999 North Renmin Road, Songjiang, Shanghai 201620, China.
| | - Ying Mao
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, 2999 North Renmin Road, Songjiang, Shanghai 201620, China.
| | - Ting Zou
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, 2999 North Renmin Road, Songjiang, Shanghai 201620, China.
| | - Gang Sun
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, 2999 North Renmin Road, Songjiang, Shanghai 201620, China.
- Division of Textiles and Clothing, University of California, Davis, CA 95616, USA.
| | - Lu Wang
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, 2999 North Renmin Road, Songjiang, Shanghai 201620, China.
| |
Collapse
|
18
|
Neva T, Carmona T, Benito JM, Przybylski C, Ortiz Mellet C, Mendicuti F, García Fernández JM. Xylylene Clips for the Topology-Guided Control of the Inclusion and Self-Assembling Properties of Cyclodextrins. J Org Chem 2018; 83:5588-5597. [PMID: 29683327 DOI: 10.1021/acs.joc.8b00602] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The topology of β-cyclodextrin can be molded, from toroidal to ovoid basket-shaped, by the installation of an o- or m-xylylene moiety connecting two consecutive d-glucopyranosyl units through the secondary O-2(I) and O-3(II) positions. This strategy can be exploited advantageously to precast the cavity for preferential inclusion of globular or planar guests as well as to privilege dimeric or monomeric species in water solution.
Collapse
Affiliation(s)
- Tania Neva
- Instituto de Investigaciones Químicas (IIQ) , CSIC-University of Sevilla , Avda. Americo Vespucio 49 , 41092 Sevilla , Spain
| | - Thais Carmona
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Chemistry, Edificio de Farmacia , Campus Universitario Ctra. Madrid-Barcelona , Km 33.600 , 28871 Alcalá de Henares, Madrid , Spain
| | - Juan M Benito
- Instituto de Investigaciones Químicas (IIQ) , CSIC-University of Sevilla , Avda. Americo Vespucio 49 , 41092 Sevilla , Spain
| | - Cédric Przybylski
- Institut Parisien de Chimie Moléculaire (IPCM), CNRS UMR 8232 , Sorbonne Université , 4 place Jussieu , 75252 Paris Cedex 05 , France
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry , University of Sevilla , C/Profesor García González 1 , 41012 Sevilla , Spain
| | - Francisco Mendicuti
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Chemistry, Edificio de Farmacia , Campus Universitario Ctra. Madrid-Barcelona , Km 33.600 , 28871 Alcalá de Henares, Madrid , Spain
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ) , CSIC-University of Sevilla , Avda. Americo Vespucio 49 , 41092 Sevilla , Spain
| |
Collapse
|
19
|
Sanbhal N, Mao Y, Sun G, Li Y, Peerzada M, Wang L. Preparation and Characterization of Antibacterial Polypropylene Meshes with Covalently Incorporated β-Cyclodextrins and Captured Antimicrobial Agent for Hernia Repair. Polymers (Basel) 2018; 10:E58. [PMID: 30966099 PMCID: PMC6415163 DOI: 10.3390/polym10010058] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/20/2017] [Accepted: 01/05/2018] [Indexed: 11/30/2022] Open
Abstract
Polypropylene (PP) light weight meshes are commonly used as hernioplasty implants. Nevertheless, the growth of bacteria within textile knitted mesh intersections can occur after surgical mesh implantation, causing infections. Thus, bacterial reproduction has to be stopped in the very early stage of mesh implantation. Herein, novel antimicrobial PP meshes grafted with β-CD and complexes with triclosan were prepared for mesh infection prevention. Initially, PP mesh surfaces were functionalized with suitable cold oxygen plasma. Then, hexamethylene diisocyanate (HDI) was successfully grafted on the plasma-activated PP surfaces. Afterwards, β-CD was connected with the already HDI reacted PP meshes and triclosan, serving as a model antimicrobial agent, was loaded into the cyclodextrin (CD) cavity for desired antibacterial functions. The hydrophobic interior and hydrophilic exterior of β-CD are well suited to form complexes with hydrophobic host guest molecules. Thus, the prepared PP mesh samples, CD-TCL-2 and CD-TCL-6 demonstrated excellent antibacterial properties against Staphylococcus aureus and Escherichia coli that were sustained up to 11 and 13 days, respectively. The surfaces of chemically modified PP meshes showed dramatically reduced water contact angles. Moreover, X-ray diffractometer (XRD), differential scanning calorimeter (DSC), and Thermogravimetric (TGA) evidenced that there was no significant effect of grafted hexamethylene diisocyanate (HDI) and CD on the structural and thermal properties of the PP meshes.
Collapse
Affiliation(s)
- Noor Sanbhal
- Key Laboratory of Textile Science and Technology of Ministry of Education, Room 4023, College of Textiles, Donghua University, 2999 North Renmin Road, Songjiang, Shanghai 201620, China.
- Department of Textile Engineering, Mehran University of Engineering and Technology, Jamshoro 76062, Sindh, Pakistan.
| | - Ying Mao
- Key Laboratory of Textile Science and Technology of Ministry of Education, Room 4023, College of Textiles, Donghua University, 2999 North Renmin Road, Songjiang, Shanghai 201620, China.
| | - Gang Sun
- Key Laboratory of Textile Science and Technology of Ministry of Education, Room 4023, College of Textiles, Donghua University, 2999 North Renmin Road, Songjiang, Shanghai 201620, China.
- Division of Textiles and Clothing, University of California, Davis, CA 95616, USA.
| | - Yan Li
- Key Laboratory of Textile Science and Technology of Ministry of Education, Room 4023, College of Textiles, Donghua University, 2999 North Renmin Road, Songjiang, Shanghai 201620, China.
| | - Mazhar Peerzada
- Department of Textile Engineering, Mehran University of Engineering and Technology, Jamshoro 76062, Sindh, Pakistan.
| | - Lu Wang
- Key Laboratory of Textile Science and Technology of Ministry of Education, Room 4023, College of Textiles, Donghua University, 2999 North Renmin Road, Songjiang, Shanghai 201620, China.
| |
Collapse
|
20
|
Zhang J, Liu D, Shi Y, Sun C, Niu M, Wang R, Hu F, Xiao D, He H. Determination of quinolones in wastewater by porous β-cyclodextrin polymer based solid-phase extraction coupled with HPLC. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1068-1069:24-32. [DOI: 10.1016/j.jchromb.2017.09.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 08/09/2017] [Accepted: 09/29/2017] [Indexed: 10/18/2022]
|
21
|
Li M, Zhu L, Zhang T, Liu B, Du L, Jin Y. Pulmonary delivery of tea tree oil-β-cyclodextrin inclusion complexes for the treatment of fungal and bacterial pneumonia. J Pharm Pharmacol 2017; 69:1458-1467. [DOI: 10.1111/jphp.12788] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/01/2017] [Indexed: 12/16/2022]
Abstract
Abstract
Objectives
Bacterial pneumonia is a common cause of death worldwide. Tea tree oil (TTO) is a potent antimicrobial natural product, which is formulated in dry powder inhalers (DPIs) for the treatment of fungal and bacterial pneumonia.
Methods
Tea tree oil-β-cyclodextrin inclusion complexes (TTO-β-CD) were prepared and characterized. Aerodynamic properties of TTO-β-CD powders were measured. The rat models of fungal (Candida albicans) and bacterial (Acinetobacter baumannii) pneumonia were prepared. Saline, TTO, TTO-β-CD and the positive drug (fluconazole or penicillin) were directly delivered to the rat lungs. Pathological and biological assays were conducted.
Key findings
Tea tree oil-β-CD powders had an appropriate aerodynamic diameter of 5.59 μm and the fine particle fraction of 51.22%, suitable for pulmonary delivery. TTO-β-CD showed higher and similar antipneumonic effects on the rat models than fluconazole and penicillin, respectively. The effects of TTO-β-CD were higher than TTO alone. The antipneumonic mechanisms involved blocking the recruitment of leucocytes and neutrophils, eliminating the microbes, downregulating pro-inflammatory cytokines (including tumour necrosis factor-α, interleukin-1β and interleukin-6), suppressing cyclooxygenase 2 expression, and further reducing lung injury.
Conclusions
Inhaled TTO-β-CD powders have the advantages of portability, high stability, self-administration, high lung deposition and good antipneumonic effect. It is a promising DPI for the treatment of fungal and bacterial pneumonia.
Collapse
Affiliation(s)
- Miao Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Lifei Zhu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
- Anhui Medical University, Hefei, China
| | - Tongtong Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
- Anhui Medical University, Hefei, China
| | - Boming Liu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
- Pharmaceutical College of Henan University, Kaifeng, China
| | - Lina Du
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
- Anhui Medical University, Hefei, China
- Pharmaceutical College of Henan University, Kaifeng, China
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
- Anhui Medical University, Hefei, China
- Pharmaceutical College of Henan University, Kaifeng, China
| |
Collapse
|
22
|
Jeong D, Joo SW, Shinde VV, Cho E, Jung S. Carbohydrate-Based Host-Guest Complexation of Hydrophobic Antibiotics for the Enhancement of Antibacterial Activity. Molecules 2017; 22:E1311. [PMID: 28786953 PMCID: PMC6152325 DOI: 10.3390/molecules22081311] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/05/2017] [Indexed: 01/29/2023] Open
Abstract
Host-guest complexation with various hydrophobic drugs has been used to enhance the solubility, permeability, and stability of guest drugs. Physical changes in hydrophobic drugs by complexation have been related to corresponding increases in the bioavailability of these drugs. Carbohydrates, including various derivatives of cyclodextrins, cyclosophoraoses, and some linear oligosaccharides, are generally used as host complexation agents in drug delivery systems. Many antibiotics with low bioavailability have some limitations to their clinical use due to their intrinsically poor aqueous solubility. Bioavailability enhancement is therefore an important step to achieve the desired concentration of antibiotics in the treatment of bacterial infections. Antibiotics encapsulated in a complexation-based drug delivery system will display improved antibacterial activity making it possible to reduce dosages and overcome the serious global problem of antibiotic resistance. Here, we review the present research trends in carbohydrate-based host-guest complexation of various hydrophobic antibiotics as an efficient delivery system to improve solubility, permeability, stability, and controlled release.
Collapse
Affiliation(s)
- Daham Jeong
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Sang-Woo Joo
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Vijay Vilas Shinde
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Eunae Cho
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Seunho Jung
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
- Center for Biotechnology Research in UBITA (CBRU), Institute for Ubiquitous Information Technology and Applications (UBITA), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| |
Collapse
|
23
|
Park KH, Choi JM, Cho E, Jeong D, Shinde VV, Kim H, Choi Y, Jung S. Enhancement of Solubility and Bioavailability of Quercetin by Inclusion Complexation with the Cavity of Mono-6-deoxy-6-aminoethylamino-β-cyclodextrin. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11192] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kyeong Hui Park
- Department of Systems Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Center for Biotechnology Research in UBITA (CBRU); Konkuk University; Seoul 05029 Republic of Korea
| | - Jae Min Choi
- Institute for Ubiquitous Information Technology and Applications (UBITA), Center for Biotechnology Research in UBITA (CBRU); Konkuk University; Seoul 05029 Republic of Korea
| | - Eunae Cho
- Institute for Ubiquitous Information Technology and Applications (UBITA), Center for Biotechnology Research in UBITA (CBRU); Konkuk University; Seoul 05029 Republic of Korea
| | - Daham Jeong
- Department of Systems Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Center for Biotechnology Research in UBITA (CBRU); Konkuk University; Seoul 05029 Republic of Korea
| | - Vijay Vilas Shinde
- Institute for Ubiquitous Information Technology and Applications (UBITA), Center for Biotechnology Research in UBITA (CBRU); Konkuk University; Seoul 05029 Republic of Korea
| | - Hyungsup Kim
- Department of Organic and Nano System Engineering; Konkuk University; Seoul 05029 Republic of Korea
| | - Youngjin Choi
- Department of Food Science and Technology; BioChip Research Center, Hoseo University; Asan 31499 Republic of Korea
| | - Seunho Jung
- Department of Systems Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Center for Biotechnology Research in UBITA (CBRU); Konkuk University; Seoul 05029 Republic of Korea
- Institute for Ubiquitous Information Technology and Applications (UBITA), Center for Biotechnology Research in UBITA (CBRU); Konkuk University; Seoul 05029 Republic of Korea
| |
Collapse
|