1
|
Moussa AK, Abd El-Rahman HA, Mohamed RR, Hanna DH. Multifunctional Plasticized Hyaluronic-Acid-Based Nanogel Dressing for Accelerating Diabetic and Nondiabetic Wounds. Biomacromolecules 2025. [PMID: 40340350 DOI: 10.1021/acs.biomac.5c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Diabetic ulcers are associated with oxidative stress, inflammation, decreased synthesis of pro-healing mediators, and impaired vascularization, which convert the wound from acute to chronic and delay healing. An extended duration of wound healing raises the possibility of complications such as infection, sepsis, and even amputation. The objective of this study is the synthesis of a plasticized cross-linked hyaluronic acid (HA)-grafted poly(acrylamide-co-itaconic acid) nanogel as a nontoxic adhesive, swellable, antibacterial wound dressing with good mechanical properties to protect the wound from pathogens and accelerate the healing process, in addition to decreasing oxidative stress and inflammatory cytokines while increasing anti-inflammatory cytokines and angiogenesis. Nanogel H3 with a ratio (AM/IA) (3:1) showed excellent adhesion with good mechanical properties, biocompatibility, swelling, antioxidant, and antibacterial efficiencies. It showed great wound closure in vitro and in vivo with downregulation of inflammatory cytokines, upregulation of anti-inflammatory cytokines, and enhanced angiogenesis in vivo on diabetic and nondiabetic wounds.
Collapse
Affiliation(s)
- Aalaa K Moussa
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | | | - Riham R Mohamed
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Demiana H Hanna
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
2
|
Moussa AK, Abd El-Rahman HA, Mohamed RR, Hanna DH. Hyaluronic Acid-Based pH-Sensitive Nanogel: Synthesis, Characterization, and Assessment for Acyclovir Delivery In Vitro and In Vivo. Biomacromolecules 2025; 26:341-362. [PMID: 39720889 DOI: 10.1021/acs.biomac.4c01189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Acyclovir (ACV) is a potentially effective antiviral medication; however, it has a serious drawback, which is its poor solubility, bioavailability, and short half-life. The goal of this study is to improve its drawbacks through the synthesis of nanogels. In this study, the cross-linked hyaluronic acid-grafted poly(acrylamide-co-itaconic acid) nanogel is synthesized successfully through free radical polymerization and used as a safe pH-responsive carrier for ACV. The nanogels showed pH response in vitro and in vivo. The prepared nanogel C5 (1:1 ratio of acrylamide: itaconic), which had the highest grafting efficiency, showed maximum swelling, drug loading, and release in pH 7.4, higher than pH 1.2. Also, nanogel C5, which had a large surface area, showed good stability, and its matrices shrank in acidic medium and protected the drug, while in basic medium, it expanded and released ACV in a sustained manner and improved the bioavailability and half-life of ACV in vivo.
Collapse
Affiliation(s)
- Aalaa K Moussa
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | | | - Riham R Mohamed
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Demiana H Hanna
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
3
|
Elli S, Sisto T, Nizzolo S, Freato N, Bertocchi L, Bianchini G, Yates EA, Guerrini M. Modeling the Detailed Conformational Effects of the Lactosylation of Hyaluronic Acid. Biomacromolecules 2025; 26:541-555. [PMID: 39680036 DOI: 10.1021/acs.biomac.4c01318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Hyaluronic acid (HA) is a natural and biocompatible polysaccharide that is able to interact with CD44 receptors to regulate inflammation, fibrosis, and tissue reconstruction. It is a suitable chemical scaffold for drug delivery that can be functionalized with pharmacophores and/or vectorizable groups. The derivatization of HA is achieved to varying extents by reacting 1-amino-1-deoxy-lactitol via the carboxyl group to form amide linkages, giving rise to the grafted polymer, HYLACH. This retains the broad properties of HA, even though, as in most HA-grafted polymers, the detailed conformational effects of such substitutions, while crucial in the design or optimization of drug delivery systems, remain unknown. Here, the conformation, size, secondary structure, hydrogen bond network, and hydration features of lactosylated HA derivatives were evaluated by using multiple independent molecular dynamics simulations. This revealed subtle but nevertheless significant changes in the HA scaffold, establishing the density of grafting as the key parameter determining its properties.
Collapse
Affiliation(s)
- Stefano Elli
- Istituto di Ricerche Chimiche e Biochimiche 'G. Ronzoni', via G. Colombo 81, Milano 20133, Italy
| | - Tommaso Sisto
- Istituto di Ricerche Chimiche e Biochimiche 'G. Ronzoni', via G. Colombo 81, Milano 20133, Italy
| | - Sofia Nizzolo
- Istituto di Ricerche Chimiche e Biochimiche 'G. Ronzoni', via G. Colombo 81, Milano 20133, Italy
- University of Milano-Bicocca, Piazza dell'Ateneo Nuovo, 1, Milano 20126, Italy
| | | | | | | | - Edwin A Yates
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7BE, U.K
- Molecular and Structural Biosciences, School of Life Sciences, Keele University, Newcastle-Under-Lyme,Staffordshire ST5 5BG, U.K
| | - Marco Guerrini
- Istituto di Ricerche Chimiche e Biochimiche 'G. Ronzoni', via G. Colombo 81, Milano 20133, Italy
| |
Collapse
|
4
|
Nashaat Alnagar A, Motawea A, Elamin KM, Abu Hashim II. Hyaluronic acid/lactoferrin-coated polydatin/PLGA nanoparticles for active targeting of CD44 receptors in lung cancer. Pharm Dev Technol 2024; 29:1016-1032. [PMID: 39392049 DOI: 10.1080/10837450.2024.2414937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Traditional chemotherapeutic drugs lack optimal efficacy and invoke severe adverse effects in cancer patients. Polydatin (PD), a phytomedicine, has gradually gained attention due to its antitumor activity. However, its low solubility and poor bioavailability are still cornerstone issues. The present study aimed to fabricate and develop hyaluronic acid/lactoferrin-double coated PD/PLGA nanoparticles via a layer-by-layer self-assembly technique for active targeting of CD44 receptors in lung cancer. Different molecular weights (M.wt.) of HA (32 and 110 kDa) were exploited to study the relationship between the HA M.wt. and the NPs targeting efficacy. The optimized formulations were fully characterized. Their cytotoxicity and cellular uptake were investigated against A549 cell line by CCK-8 kit and fluorescence imaging, respectively. Finally, HA110/Lf-coated PD/PLGA NPs (F9) were subjected to a competitive inhibition study to prove internalization through CD44 overexpressed receptors. The results verified the fabrication of F9 with a particle size of 174.87 ± 3.97 nm and a zeta potential of -24.37 ± 1.19 mV as well as spherical NPs architecture. Importantly, it provoked enhanced cytotoxicity (IC50 = 0.57 ± 0.02 µg/mL) and superior cellular uptake efficacy. To conclude, the current investigation lays the foundation for the prospective therapeutic avenue of F9 for active targeting of CD44 receptors in lung cancer.
Collapse
Affiliation(s)
- Ahmed Nashaat Alnagar
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahlia, Egypt
| | - Amira Motawea
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahlia, Egypt
| | - Khaled M Elamin
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Irhan Ibrahim Abu Hashim
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahlia, Egypt
| |
Collapse
|
5
|
Özcan N, Orakdogen N. Temperature-Regulated Synthesis of Hyaluronic Acid-Interpenetrated Polyacrylamide/Poly(Acrylic Acid Sodium Salt) Semi-Interpenetrated Polymer Network Gel for the Removal of Methyl Violet. Gels 2024; 10:556. [PMID: 39330158 PMCID: PMC11431609 DOI: 10.3390/gels10090556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
An alternative synthetic pathway was proposed for the optimization of synthesis to find a better correlation between the swelling and elasticity of hyaluronic acid-interpenetrated gels via temperature regulation. An experimental design methodology was presented for the synthesis of polyacrylamide/poly(acrylic acid sodium salt)/hyaluronic acid, PAAm/PSA/HyA, gels by modifying the one-pot procedure using free radical crosslinking copolymerization of AAm with the addition of anionic linear PSA chains in the presence of various amount of HyA, ranging between 0.05% and 0.20% (w/v). Semi-interpenetrated polymer network (IPN)-structured gels were designed with tunable elasticity, in which the extent of covalent crosslinking interactions is controlled by polymerization temperature ranging between -18 and 45 °C. Depending on the HyA content added in the synthesis and the polymerization temperature, the swelling ratio could be controlled. The addition of 0.05% (w/v) HyA increased the swelling of semi-IPNs, while the elastic modulus increased with increasing HyA content and decreased with the polymerization temperature. PAAm/PSA/HyA semi-IPNs showed the typical pH-sensitive swelling of anionic gels, and the swelling reached a maximum at a pH of 11.2. PAAm/PSA/HyA gels were tested for the removal of methyl violet from wastewater. Adsorption kinetics were shown to be well-fitted with the pseudo-second-order model using linear and nonlinear regression analysis. With the clear relationship between increased modulus and composition, this study enabled the fine-tuning of semi-IPN interactions by varying the polymerization temperature.
Collapse
Affiliation(s)
- Nida Özcan
- Department of Chemistry, Graduate School of Science Engineering and Technology, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Nermin Orakdogen
- Soft Materials Research Laboratory, Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, 34469 Istanbul, Turkey
| |
Collapse
|
6
|
Atiroğlu V, Atiroğlu A, Atiroğlu A, Al-Hajri AS, Özacar M. Green immobilization: Enhancing enzyme stability and reusability on eco-friendly support. Food Chem 2024; 448:138978. [PMID: 38522291 DOI: 10.1016/j.foodchem.2024.138978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/26/2024]
Abstract
In the current years of heightened focus on green chemistry and sustainable materials, this study delves into the untapped potential of hyaluronic acid (HA), chitin, and chitosan-prominent polysaccharides for groundbreaking applications. The primary aim is to effectively immobilize catalase enzymes onto matrices composed of chitosan, chitin, HA/chitin, and HA/chitosan. The rigorous investigation covers a spectrum of structural enhancements encompassing pH and temperature stability, thermal resilience, half-life extension, storage durability, reusability, and comprehensive FTIR analyses of the catalase immobilization. Notably, catalase activity demonstrated remarkable resilience on HA/chitin and HA/chitosan matrices, maintaining 73.80% and 79.55% efficacy even after 25 cycles. The introduction of covalent cross-linking between catalase and HA/chitin or HA/chitosan, facilitated by a cross-linking agent, significantly amplified stability and recycling efficiency. Consequently, the immobilized catalase showcases substantial promise across a spectrum of industrial applications, spanning from food and detergent production to bioremediation and diverse commercial processes. This underscores its pivotal role as a versatile and invaluable innovation in the realm of sustainable technologies.
Collapse
Affiliation(s)
- Vesen Atiroğlu
- Sakarya University, Biomedical, Magnetic and Semiconductor Materials Application and Research Center (BIMAS-RC), 54050, Sakarya, Turkey; Sakarya University, Biomaterials, Energy, Photocatalysis, EnzymeTechnology, Nan &Advanced Materials, Additive Manufacturing, Environmental Applications, and Sustainability Research & Development Group (BIOENAMS R & D Group), 54050, Sakarya, Turkey.
| | - Atheer Atiroğlu
- Sakarya University, Biomedical, Magnetic and Semiconductor Materials Application and Research Center (BIMAS-RC), 54050, Sakarya, Turkey; Sakarya University, Biomaterials, Energy, Photocatalysis, EnzymeTechnology, Nan &Advanced Materials, Additive Manufacturing, Environmental Applications, and Sustainability Research & Development Group (BIOENAMS R & D Group), 54050, Sakarya, Turkey
| | - Ahmed Atiroğlu
- Sakarya University, Faculty of Medicine, 54290, Sakarya, Turkey
| | | | - Mahmut Özacar
- Sakarya University, Biomaterials, Energy, Photocatalysis, EnzymeTechnology, Nan &Advanced Materials, Additive Manufacturing, Environmental Applications, and Sustainability Research & Development Group (BIOENAMS R & D Group), 54050, Sakarya, Turkey; Sakarya University, Faculty of Science, Department of Chemistry, 54050, Sakarya, Turkey
| |
Collapse
|
7
|
Valamla B, Charry S, Rajana N, Urati A, Devabattula G, Sau S, Godugu C, Kalia NP, Mehra NK. Multifunctional Wound Curation Dressing Material FemuFrost─An Antioxidant-Loaded Nanoemulsion Frosted Patch of Poly(vinyl alcohol) and Hyaluronic Acid. ACS APPLIED BIO MATERIALS 2024; 7:1028-1040. [PMID: 38275087 DOI: 10.1021/acsabm.3c00996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
The wound curation dressing material should own explicit elements to aggrandize wound cessation. The cryogel of poly(vinyl alcohol) (PVA) and hyaluronic acid (HA) is deemed to promote the angiogenesis, production of extracellular matrix components, granulation, and epithelialization. The research aims to tailor and evaluate the composite PVA/HA cryogel ingrained ferulic acid-loaded nanoemulsion patch labeled as PH-FemuFrost to improve the therapeutic properties and mechanical strength of the patches. The PH-FemuFrost exhibited a water uptake capacity of 268 ± 15.07%, porosity of 70.52 ± 7.4%, and 48.62 ± 2.2% in vitro degradation. The texture analysis revealed the improved mechanical properties of PH-FemuFrost in terms of burst strength and stiffness. The PH-FemuFrost exhibited in vitro antioxidant and antimicrobial activity against Staphylococcus aureus and Candida albicans species. The wound healing efficiency of PH-FemuFrost patches was significantly increased than blank PVA-HA patches. The groups treated with PH-FemuFrost exhibited a dense network of collagen type 1 in comparison to negative and PVA-HA groups. The normal skin and healed skin exhibited parallel arrangement of type I collagen fibers toward the skin. The levels of inflammatory mediators such as IL-6 (p value < 0.0001), IL-22 (p value 0.0098), and TNF-α levels (p value < 0.0001) of PH-FemuFrost is significantly reduced compared to the negative group.
Collapse
Affiliation(s)
- Bhavana Valamla
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Sandeep Charry
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Naveen Rajana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Anuradha Urati
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Geetanjali Devabattula
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Shashikanta Sau
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Chandraiah Godugu
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Nitin Pal Kalia
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| |
Collapse
|
8
|
Ma B, Li Q, Mi Y, Zhang J, Tan W, Guo Z. pH-responsive nanogels with enhanced antioxidant and antitumor activities on drug delivery and smart drug release. Int J Biol Macromol 2024; 257:128590. [PMID: 38056756 DOI: 10.1016/j.ijbiomac.2023.128590] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/12/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
pH-responsive nanogels have played an increasingly momentous role in tumor treatment. The focus of this study is to design and develop pH-responsive benzimidazole-chitosan quaternary ammonium salt (BIMIXHAC) nanogels for the controlled release of doxorubicin hydrochloride (DOX) while enhancing its hydrophilicity. BIMIXHAC is crosslinked with carboxymethyl chitosan (CMC), hyaluronic acid sodium salt (HA), and sodium alginates (SA) using an ion crosslinking method. The chemical structure of chitosan derivatives was verified by 1H NMR and FT-IR techniques. Compared to hydroxypropyl trimethyl ammonium chloride chitosan (HACC)-based nanogels, BIMIXHAC-based nanogels exhibit better drug encapsulation efficiency and loading capacity (BIMIXHAC-D-HA 91.76 %, and 32.23 %), with pH-responsive release profiles and accelerated release in vitro. The series of nanogels formed by crosslinking with three different polyanionic crosslinkers have different particle size potentials and antioxidant properties. BIMIXHAC-HA, BIMIXHAC-SA and BIMIXHAC-CMC demonstrate favorable antioxidant capability. In addition, cytotoxicity tests showed that BIMIXHAC-based nanogels have high biocompatibility. BIMIXHAC-based nanogels exhibit preferable anticancer effects on MCF-7 and A549 cells. Furthermore, the BIMIXHAC-D-HA nanogel was 2.62 times less toxic than DOX to L929 cells. These results suggest that BIMIXHAC-based nanogels can serve as pH-responsive nanoplatforms for the delivery of anticancer drugs.
Collapse
Affiliation(s)
- Bing Ma
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Yingqi Mi
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Jingjing Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Wenqiang Tan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| |
Collapse
|
9
|
Anbardan MA, Alipour S, Mahdavinia GR, Rezaei PF. Synthesis of magnetic chitosan/hyaluronic acid/κ-carrageenan nanocarriers for drug delivery. Int J Biol Macromol 2023; 253:126805. [PMID: 37689291 DOI: 10.1016/j.ijbiomac.2023.126805] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/01/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
The magnetic nanocarriers containing chitosan/hyaluronic acid complexed with κ-carrageenan were synthesized by solution method, as the drug delivery system. Doxorubicin (DOX) was used as the model drug. Characterization assessments were performed to identify the functional groups, determine the structure and morphology, and magnetic properties of nanodelivery system. Furthermore, their impacts on MCF-7 and MDA-MB-237 cell lines were evaluated by MTT assay. Analyses confirm polymers physical interaction, chemical bonding in the structure, moreover presence of spherical shape magnetic nanoparticles in the 100-150 nm range. The DOX loading was 74.1 ± 2.5 %. Results indicate that the drug loading was raised to 83.0±2.2 % by increasing the amount of κ-carrageenan in specimens. The swelling of samples in the acidic environment (e.g. pH 5.5) was verified by the Dynamic Light Scattering analysis. Consequently, pH stimulus-responsive drug release in the sustained stream and a considerable amount of DOX release (84±3.1 %) was detected as compared to a higher pH medium (27±1.5 % at pH 7.4). According to the MTT assay results, MNPs showed no inhibitory effect on both cell lines. Also, 10 and 15 μg/ml of MNPs-DOX was considered as IC50 value on MDA-MB-237 and MCF-7 cells, respectively. The DOX 25 μg/ml caused 50 % antiproliferative activity in both cell lines.
Collapse
Affiliation(s)
- Maghsoud Amirfarhangi Anbardan
- Department of Chemical Engineering, Faculty of Engineering, University of Maragheh, P.O. Box 83111-55181, Maragheh, Iran
| | - Siamak Alipour
- Department of Chemical Engineering, Faculty of Engineering, University of Maragheh, P.O. Box 83111-55181, Maragheh, Iran.
| | - Gholam Reza Mahdavinia
- Polymer Research Laboratory, Department of Chemistry, Faculty of Science, University of Maragheh, P.O. Box 55181-83111, Maragheh, Iran
| | - Parisa Fathi Rezaei
- Department of Biology, Faculty of Science, University of Maragheh, Maragheh, P.O. Box 83111-55181, Maragheh, Iran
| |
Collapse
|
10
|
Ma B, Zhang J, Mi Y, Miao Q, Tan W, Guo Z. Preparation of imidazole acids grafted chitosan with enhanced antioxidant, antibacterial and antitumor activities. Carbohydr Polym 2023; 315:120978. [PMID: 37230617 DOI: 10.1016/j.carbpol.2023.120978] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/27/2023]
Abstract
Herein, imidazole acids grafted chitosan derivatives were synthesized, including HACC, HACC derivatives, TMC, TMC derivatives, amidated chitosan and amidated chitosan bearing imidazolium salts. The prepared chitosan derivatives were characterized by FT-IR and 1H NMR. The tests evaluated the biological antioxidant, antibacterial, and cytotoxic activities of chitosan derivatives. The antioxidant capacity (DPPH radical, superoxide anion radical and hydroxyl radical) of chitosan derivatives was 2.4-8.3 times higher than that of chitosan. The antibacterial capacity against E. coli and S. aureus of cationic derivatives (HACC derivatives, TMC derivatives, and amidated chitosan bearing imidazolium salts) was more active than only imidazole-chitosan (amidated chitosan). In particular, the inhibition effect of HACC derivatives on E. coli was 15.625 μg/mL. Moreover, the series of chitosan derivatives bearing imidazole acids showed certain activity against MCF-7 and A549 cells. The present results suggest that the chitosan derivatives in this paper seem to be promising carrier materials for use in drug delivery systems.
Collapse
Affiliation(s)
- Bing Ma
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Jingjing Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Yingqi Mi
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Qin Miao
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Wenqiang Tan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| |
Collapse
|
11
|
Khaliq T, Sohail M, Minhas MU, Mahmood A, Munir A, Qalawlus AHM, Jabeen N, Kousar M, Anwar Z. Hyaluronic acid/alginate-based biomimetic hydrogel membranes for accelerated diabetic wound repair. Int J Pharm 2023; 643:123244. [PMID: 37463619 DOI: 10.1016/j.ijpharm.2023.123244] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/16/2023] [Accepted: 07/15/2023] [Indexed: 07/20/2023]
Abstract
The study aims to develop a new multifunctional biopolymer-based hydrogel membrane dressing by adopting a solvent casting method for the controlled release of cefotaxime sodium at the wound site. Sodium alginate enhances collagen production in the skin, which provides tensile strength to healing tissue. Moreover, the significance of extracellular molecules such as hyaluronic acid in the wound the healing cascade renders these biopolymers an essential ingredient for the fabrication of hydrogel membranes via physical crosslinking (hydrogen bonding). These membranes were further investigated in terms of their structure, and surface morphology, as well as cell viability analysis. A membrane with the most suitable characteristics was chosen as a candidate for cefotaxime sodium loading and in vivo analysis. Results show that the 3D porous nature of developed membranes allows optimum water vapor and oxygen transmission (>8.21 mg/mL) to divert excessive wound exudate away from the diabetic wound bed, MTT assay confirmed cell viability at more than 80%. In vivo results confirmed that the CTX-HA-Alg-PVA hydrogel group showed rapid wound healing with accelerated re-epithelization and a decreased inflammatory response. Conclusively, these findings indicate that CTX-HA-Alg-PVA hydrogel membranes exhibit a suitable niche for use as dressing membranes for healing of diabetic wounds.
Collapse
Affiliation(s)
- Touba Khaliq
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan
| | - Muhammad Sohail
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan; Faculty of Pharmacy, Cyprus International University, Nicosia 99258, Cyprus.
| | | | - Arshad Mahmood
- Collage of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates; AU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Abubakar Munir
- Department of Pharmaceutical Sciences, The Superior University, Lahore 54600, Pakistan
| | | | - Nazish Jabeen
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan
| | - Mubeen Kousar
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan
| | - Zobia Anwar
- Govt. Postgraduate College Mandian, Abbottabad 22010, Pakistan
| |
Collapse
|
12
|
Chen R, Li Y, Jin Y, Sun Y, Zhao Z, Xu Y, Xu JF, Dong Y, Liu D. Reinforcing supramolecular hyaluronan hydrogels via kinetically interlocking multiple-units strategy. Carbohydr Polym 2023; 310:120703. [PMID: 36925240 DOI: 10.1016/j.carbpol.2023.120703] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/11/2023] [Accepted: 02/13/2023] [Indexed: 02/21/2023]
Abstract
Supramolecular hydrogels exhibit promising potential in biological and clinical fields due to their special dynamic properties. However, most existing supramolecular hydrogels suffer from poor mechanical strength, which severely limits their applications. Here in this study, the Kinetically Interlocking Multiple-Units (KIMU) strategy was applied to the hyaluronan networks by introducing different supramolecular interaction motifs in an organized and alternative manner. Our strategy successfully elevated the energy barrier of crosslinker dissociation to 103.0 kJ mol-1 and increased the storage modulus of hydrogels by 78 % with the intrinsic dynamic properties preserved. It can be expected that this method would bring a convenient and effective route to fabricate novel supramolecular materials with excellent mechanical properties.
Collapse
Affiliation(s)
- Ruofan Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China; Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084 China
| | - Yujie Li
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China; Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084 China
| | - Yu Jin
- Department of ophthalmology, Peking Union Medical College Hospital, Beijing 100005, China
| | - Yawei Sun
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (Huadong), Qingdao, 266580, China
| | - Zhiyong Zhao
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Yun Xu
- Center for Medical Device Evaluation, National Medical Products Administration, Qixiang Road No.50, Haidian District, Beijing 100081, China
| | - Jiang-Fei Xu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuanchen Dong
- CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Dongsheng Liu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China; Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084 China.
| |
Collapse
|
13
|
Quevedo BV, Komatsu D, de Lourdes Rezende M, de Rezende Duek EA. Synthesis of epoxidized natural rubber grafted with hyaluronic acid for the development of biomaterials. Int J Biol Macromol 2023; 244:125359. [PMID: 37321441 DOI: 10.1016/j.ijbiomac.2023.125359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/06/2023] [Accepted: 06/10/2023] [Indexed: 06/17/2023]
Abstract
Natural Rubber (NR), extracted from Hevea brasiliensis rubber trees, is a biocompatible biopolymer with properties that support in the tissue repair process. However, its biomedical applications are limited due to the presence of allergenic proteins, hydrophobicity, and unsaturated bonds. To overcome these limitations and contribute to the development of new biomaterials, this study aims to deproteinize, epoxidize, and subject NR to copolymerization by grafting with hyaluronic acid (HA), which is widely recognized for its bioactive properties in the medical field. The deproteinization, epoxidation, and graft copolymerization through the esterification reaction were confirmed by Fourier Transform Infrared Spectroscopy and Hydrogen Nuclear Magnetic Resonance Spectroscopy analysis. Thermogravimetry and Differential Scanning Calorimetry demonstrated that the grafted sample exhibited a lower degradation rate and a higher glass transition temperature, indicating strong intermolecular interactions. Moreover, contact angle measurement revealed that the grafted NR exhibited a high hydrophilic character. The results obtained suggest the formation of a novel material with great potential for application in biomaterials involved in tissue repair processes.
Collapse
Affiliation(s)
- Bruna V Quevedo
- Postgraduate Program in Materials Sciences (PPGCM), Federal University of São Carlos (UFSCar), Sorocaba, SP 13565-905, Brazil; Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba, SP 18030-070, Brazil.
| | - Daniel Komatsu
- Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba, SP 18030-070, Brazil; Department of Polymer, José Crespo Gonzales Faculty of Technology (FATEC), Sorocaba, SP 18013-280, Brazil
| | - Maira de Lourdes Rezende
- Department of Polymer, José Crespo Gonzales Faculty of Technology (FATEC), Sorocaba, SP 18013-280, Brazil
| | - Eliana Aparecida de Rezende Duek
- Postgraduate Program in Materials Sciences (PPGCM), Federal University of São Carlos (UFSCar), Sorocaba, SP 13565-905, Brazil; Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba, SP 18030-070, Brazil
| |
Collapse
|
14
|
Gwon K, Lee S, Kim Y, Choi J, Kim S, Kim SJ, Hong HJ, Hwang Y, Mori M, Lee DN. Construction of a bioactive copper-based metal organic framework-embedded dual-crosslinked alginate hydrogel for antimicrobial applications. Int J Biol Macromol 2023; 242:124840. [PMID: 37169053 DOI: 10.1016/j.ijbiomac.2023.124840] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
Metal-organic frameworks (MOFs) containing bioactive metals have the potential to exhibit antimicrobial activity by releasing metal ions or ligands through the cleavage of metal-ligand bonds. Recently, copper-based MOFs (Cu-MOFs) with sustained release capability, porosity, and structural flexibility have shown promising antimicrobial properties. However, for clinical use, the controlled release of Cu2+ over an extended time period is crucial to prevent toxicity. In this study, we developed an alginate-based antimicrobial scaffold and encapsulated MOFs within a dual-crosslinked alginate polymer network. We synthesized Cu-MOFs containing glutarate (Glu) and 4,4'-azopyridine (AZPY) (Cu(AZPY)-MOF) and encapsulated them in an alginate-based hydrogel through a combination of visible light-induced photo and calcium ion-induced chemical crosslinking processes. We confirmed Cu(AZPY)-MOF synthesis using scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction, and thermogravimetric analysis. This antimicrobial hydrogel demonstrated excellent antibacterial and antifungal properties against two bacterial strains (MRSA and S. mutans, with >99.9 % antibacterial rate) and one fungal strain (C. albicans, with >78.7 % antifungal rate) as well as negligible cytotoxicity towards mouse embryonic fibroblasts, making it a promising candidate for various tissue engineering applications in biomedical fields.
Collapse
Affiliation(s)
- Kihak Gwon
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University, Seoul 01897, Republic of Korea; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55902, USA
| | - Seonhwa Lee
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University, Seoul 01897, Republic of Korea
| | - Youngmee Kim
- Department of Chemistry and Nano Science, NanoBio-Energy Materials Center, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jun Choi
- Department of Chemistry and Nano Science, NanoBio-Energy Materials Center, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sujin Kim
- Department of Chemistry and Nano Science, NanoBio-Energy Materials Center, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sung-Jin Kim
- Department of Chemistry and Nano Science, NanoBio-Energy Materials Center, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hye Jin Hong
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55902, USA
| | - Youngmin Hwang
- Columbia Center for Human Development (CCHD), Pulmonary Allergy & Critical Care Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Munemasa Mori
- Columbia Center for Human Development (CCHD), Pulmonary Allergy & Critical Care Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Do Nam Lee
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University, Seoul 01897, Republic of Korea.
| |
Collapse
|
15
|
Zhuo Y, Huang X, Lin NL, Yu FQ, Chen YX, Guan MH, Yi WQ, Lai FC. SiO 2/hyaluronic acid nanoparticles carry CaO 2, DOX and p53 plasmid to effectively achieve ion interference/chemical/gene multimodal therapy of lung cancer. Biomater Sci 2023. [PMID: 37140070 DOI: 10.1039/d2bm02075k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Monotherapy of lung cancer shows limited therapeutic effects due to its poorly targeted enrichment and low bioavailability. Using nanomaterials as carriers to form drug delivery systems has become a popular method to improve the targeting of anticancer drug therapy and patients' safety. However, the uniformity of the loaded drugs and the unsatisfactory effects are still the bottleneck in this field up to now. This study aims to construct a novel nanocomposite carrying 3 different types of anticancer drugs to enhance treatment efficacy. Herein, mesoporous silica (MSN) with high loading rate was constructed by dilute sulfuric acid thermal etching as the framework. Hyaluronic acid (HA) was loaded with CaO2, p53 and DOX to construct nanoparticle complexes-SiO2@CaO2@DOX@P53-HA. First, MSN was proved to be a porous sorbent with a mesoporous structure through BET analysis. The images obtained from the uptake experiment clearly show the gradual enrichment of the DOX and Ca2+ within the target cell. For in vitro experiments, the pro-apoptotic effects of SiO2@CaO2@DOX@P53-HA significantly increased compared to that of the single-agent group at different time points. Furthermore, in the tumor-bearing mouse experiment, the tumor volume was remarkably inhibited in the SiO2@CaO2@DOX@P53-HA group compared to that in the single-agent group. By observing the pathological sections of the euthanized mice, it is obvious that the tissues of the mice treated with the nanoparticles were more intact. Based on these beneficial results, it is believed that multimodal therapy is a meaningful treatment strategy for lung cancer.
Collapse
Affiliation(s)
- Yi Zhuo
- Department of Thoracic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China.
- Department of Thoracic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Xuan Huang
- Department of Thoracic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China.
- Department of Thoracic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Nan-Long Lin
- Department of Thoracic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China.
- Department of Thoracic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Feng-Qiang Yu
- Department of Thoracic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China.
- Department of Thoracic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Yan-Xun Chen
- Department of Thoracic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China.
- Department of Thoracic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
- Department of Thoracic Surgery, Quangang District Hospital, Quanzhou 362100, China
| | - Mao-Hao Guan
- Department of Thoracic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China.
- Department of Thoracic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Wei-Qiang Yi
- Department of Thoracic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China.
- Department of Thoracic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Fan-Cai Lai
- Department of Thoracic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China.
- Department of Thoracic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| |
Collapse
|
16
|
Alcântara LO, de Sousa JR, Andrade FK, Teixeira EH, Cerqueira MÂ, da Silva ALC, Souza Filho MDSM, de Souza BWS. Extraction and characterization of hyaluronic acid from the eyeball of Nile Tilapia (Oreochromis niloticus). Int J Biol Macromol 2023; 226:172-183. [PMID: 36495987 DOI: 10.1016/j.ijbiomac.2022.12.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/04/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
Hyaluronic acid (HA) is a biopolymer of enormous value aggregation for in general industry. The vitreous humor of the eyeball from Nile tilapia contains appreciable amounts of hyaluronic acid. In this sense, the aim of this work was to extract and characterize hyaluronic acid from the eyeball of the Nile tilapia for biomedical applications, adding value to fish industry residues. The characterization by infra-red (FTIR), 13C nuclear magnetic resonance (NMR) and high performance liquid chromatography (HPLC) confirmed that hyaluronic acid was obtained. The gel permeation chromatography (GPC) showed that the obtained material presents a low molecular mass (37 KDa). Thermogravimetry (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) analysis showed that the materials present a thermal stability superior to the commercial hyaluronic acid from Streptococcus equi, with a partially crystalline character. The cytotoxicity assay (MTT method) with fibroblast cells (L929) demonstrated that the extracted biopolymer besides not being cytotoxic, was able to stimulate cell proliferation. Therefore, the hyaluronic acid extracted from this source of residue constitutes a product with biotechnological potential, which has adequate quality for wide biomedical applications.
Collapse
Affiliation(s)
- Lyndervan Oliveira Alcântara
- Department of Fishing Engineering, Federal University of Ceara, Campus do Pici, 825, CEP: 60356-000 Fortaleza, CE, Brazil
| | - Juliana Rabelo de Sousa
- Department of Fishing Engineering, Federal University of Ceara, Campus do Pici, 825, CEP: 60356-000 Fortaleza, CE, Brazil
| | - Fábia Karine Andrade
- Department of Chemical Engineering, Graduate Program of Chemical Engineering, Federal University of Ceara, Campus do Pici, 709, CEP: 60455-760 Fortaleza, CE, Brazil
| | - Edson Holanda Teixeira
- Department of Pathology and Forensic Medicine, Faculty of Medicine, Federal University of Ceara, UFC, CEP: 60430-160 Fortaleza, CE, Brazil
| | - Miguel Ângelo Cerqueira
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - André Luis Coelho da Silva
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Campus do Pici, 907 CEP: 60451-970, Fortaleza, CE, Brazil
| | | | | |
Collapse
|
17
|
Hou X, Zhong D, Chen H, Gu Z, Gong Q, Ma X, Zhang H, Zhu H, Luo K. Recent advances in hyaluronic acid-based nanomedicines: Preparation and application in cancer therapy. Carbohydr Polym 2022; 292:119662. [PMID: 35725165 DOI: 10.1016/j.carbpol.2022.119662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/06/2022] [Accepted: 05/23/2022] [Indexed: 12/11/2022]
|
18
|
Bhatt K, Patil P, Jani P, Thakkar P, Sawant K. Design and evaluation of hyaluronic acid-coated PLGA nanoparticles of raloxifene hydrochloride for treatment of breast cancer. Drug Dev Ind Pharm 2022; 47:2013-2024. [PMID: 35686735 DOI: 10.1080/03639045.2022.2088784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
CONTEXT In the present study, hyaluronic acid (HA)-coated raloxifene-loaded poly(l-lactic-co-glycolic acid) (PLGA) nanoparticles have been developed to improve the anticancer potential and reduce side effects associated with the drug. AIM AND OBJECTIVES The investigation was aimed to formulate and optimize raloxifene hydrochloride (RALH)-loaded PLGA nanoparticles with surface modification using HA as a targeting moiety. To perform physicochemical characterization, in vitro cytotoxicity study (using MCF-7), in vitro drug release study and in vivo pharmacodynamic study of optimized formulation. METHODOLOGY Raloxifene hydrochloride-loaded PLGA nanoparticles were prepared by nanoprecipitation technique, followed by surface modification with HA. Formulation was optimized by using 23 factorial design and characterized by physicochemical, in vitro drug release, in vitro cytotoxicity studies, and in vivo pharmacokinetics. RESULTS AND DISCUSSION The particle size, PDI, zeta potential, entrapment efficiency, and loading capacity of spherically shaped RALH-loaded nanoparticles were 207.3 ± 4.2 d.nm, 0.218 ± 0.127, -.127 mV, 43.75 ± 1.2%, and 7.55 ± 1.14%, respectively. The in vitro drug release showed sustained release and followed Korsmeyer-Peppas model with non-Fickian release pattern. The in vitro cytotoxicity study of drug-loaded NPs by MTT assay on MCF-7 breast carcinoma cell showed anti-cancer activity after 48 h of treatment. CONCLUSION The results of the present investigation suggested that RALH-loaded HA-modified PLGA nanoparticles showed sustained drug release with anticancer activity and can be a promising approach for treatment of breast cancer.
Collapse
Affiliation(s)
- Kajol Bhatt
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Pravin Patil
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Parva Jani
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Parth Thakkar
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Krutika Sawant
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, India
| |
Collapse
|
19
|
Gwon K, Park JD, Lee S, Choi WI, Hwang Y, Mori M, Yu JS, Lee DN. Injectable hyaluronic acid hydrogel encapsulated with Si-based NiO nanoflower by visible light cross-linking: Its antibacterial applications. Int J Biol Macromol 2022; 208:149-158. [PMID: 35304194 DOI: 10.1016/j.ijbiomac.2022.03.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 12/26/2022]
Abstract
Bacterial infections have become a severe threat to human health and antibiotics have been developed to treat them. However, extensive use of antibiotics has led to multidrug-resistant bacteria and reduction of their therapeutic effects. An efficient solution may be localized application of antibiotics using a drug delivery system. For clinical application, they need to be biodegradable and should offer a prolonged antibacterial effect. In this study, a new injectable and visible-light-crosslinked hyaluronic acid (HA) hydrogel loaded with silicon (Si)-based nickel oxide (NiO) nanoflowers (Si@NiO) as an antibacterial scaffold was developed. Si@NiO nanoflowers were synthesized using chemical bath deposition before encapsulating them in the HA hydrogel under a mild visible-light-crosslinking conditions to generate a Si@NiO-hydrogel. Si@NiO synthesis was confirmed using scanning electron microscopy, transmission electron microscopy, and powder X-ray diffraction. As-prepared Si@NiO-hydrogel exhibited enhanced mechanical properties compared to a control bare hydrogel sample. Moreover, Si@NiO-hydrogel exhibits excellent antibacterial properties against three bacterial strains (P. aeruginosa, K. pneumoniae, and methicillin-resistant Staphylococcus aureus (>99.9% bactericidal rate)) and negligible cytotoxicity toward mouse embryonic fibroblasts. Therefore, Si@NiO-hydrogel has the potential for use in tissue engineering and biomedical applications owing to its injectability, visible-light crosslink ability, degradability, biosafety, and superior antibacterial property.
Collapse
Affiliation(s)
- Kihak Gwon
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University, Seoul 01897, Republic of Korea; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55902, USA
| | - Jong-Deok Park
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Seonhwa Lee
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University, Seoul 01897, Republic of Korea
| | - Won Il Choi
- Center for Convergence Bioceramic Materials, Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Youngmin Hwang
- Columbia Center for Human Development (CCHD), Pulmonary Allergy & Critical Care Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Munemasa Mori
- Columbia Center for Human Development (CCHD), Pulmonary Allergy & Critical Care Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jong-Sung Yu
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
| | - Do Nam Lee
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University, Seoul 01897, Republic of Korea.
| |
Collapse
|
20
|
Green synthesis of polyacrylamide grafted Neem Gum for gastro retentive floating drug delivery of Ciprofloxacin Hydrochloride: In vitro and in vivo evaluation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Silva-Carvalho R, Leão T, Gama FM, Tomás AM. Covalent Conjugation of Amphotericin B to Hyaluronic Acid: An Injectable Water-Soluble Conjugate with Reduced Toxicity and Anti-Leishmanial Potential. Biomacromolecules 2022; 23:1169-1182. [DOI: 10.1021/acs.biomac.1c01451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ricardo Silva-Carvalho
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Teresa Leão
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Francisco M. Gama
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Ana M. Tomás
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
22
|
Lin YK, Wang SW, Lee RS. Redox-responsive dasatinib-containing hyaluronic acid prodrug and co-delivery of doxorubicin for cancer therapy. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2020.1798434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Yin-Ku Lin
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan
| | - Shiu-Wei Wang
- Division of Natural Science, Center of General Education, Chang Gung University, Tao-Yuan, Taiwan
| | - Ren-Shen Lee
- Division of Natural Science, Center of General Education, Chang Gung University, Tao-Yuan, Taiwan
| |
Collapse
|
23
|
Kotla NG, Bonam SR, Rasala S, Wankar J, Bohara RA, Bayry J, Rochev Y, Pandit A. Recent advances and prospects of hyaluronan as a multifunctional therapeutic system. J Control Release 2021; 336:598-620. [PMID: 34237401 DOI: 10.1016/j.jconrel.2021.07.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022]
Abstract
Hyaluronan (HA) is a naturally occurring non-sulfated glycosaminoglycan (GAG), cell-surface-associated biopolymer and is the key component of tissue extracellular matrix (ECM). Along with remarkable physicochemical properties, HA also has multifaceted biological effects that include but not limited to ECM organization, immunomodulation, and various cellular processes. Environmental cues such as tissue injury, infection or cancer change downstream signaling functionalities of HA. Unlike native HA, the fragments of HA have diversified effects on inflammation, cancer, fibrosis, angiogenesis and autoimmune response. In this review, we aim to discuss HA as a therapeutic delivery system development process, source, biophysical-chemical properties, and associated biological pathways (especially via cell surface receptors) of native and fragmented HA. We also tried to address an overview of the potential role of HA (native HA vs fragments) in the modulation of inflammation, immune response and various cancer targeting delivery applications. This review will also highlight the HA based therapeutic systems, medical devices and future perspectives of various biomedical applications were discussed in detail.
Collapse
Affiliation(s)
- Niranjan G Kotla
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, H91 W2TY, Ireland
| | - Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, Paris F-75006, France
| | - Swetha Rasala
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, H91 W2TY, Ireland
| | - Jitendra Wankar
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, H91 W2TY, Ireland
| | - Raghvendra A Bohara
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, H91 W2TY, Ireland
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, Paris F-75006, France; Indian Institute of Technology Palakkad, Palakkad 678 623, Kerala, India
| | - Yury Rochev
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, H91 W2TY, Ireland; Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow 119992, Russia.
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, H91 W2TY, Ireland.
| |
Collapse
|
24
|
Shah SA, Sohail M, Minhas MU, Khan S, Hussain Z, Mahmood A, Kousar M, Thu HE, Abbasi M, Kashif MUR. Curcumin-laden hyaluronic acid-co-Pullulan-based biomaterials as a potential platform to synergistically enhance the diabetic wound repair. Int J Biol Macromol 2021; 185:350-368. [PMID: 34171251 DOI: 10.1016/j.ijbiomac.2021.06.119] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 01/13/2023]
Abstract
Injectable hydrogel with multifunctional tunable properties comprising biocompatibility, anti-oxidative, anti-bacterial, and/or anti-infection are highly preferred to efficiently promote diabetic wound repair and its development remains a challenge. In this study, we report hyaluronic acid and Pullulan-based injectable hydrogel loaded with curcumin that could potentiate reepithelization, increase angiogenesis, and collagen deposition at wound microenvironment to endorse healing cascade compared to other treatment groups. The physical interaction and self-assembly of hyaluronic acid-Pullulan-grafted-pluronic F127 injectable hydrogel were confirmed using nuclear magnetic resonance (1H NMR) and Fourier transformed infrared spectroscopy (FT-IR), and cytocompatibility was confirmed by fibroblast viability assay. The CUR-laden hyaluronic acid-Pullulan-g-F127 injectable hydrogel promptly undergoes a sol-gel transition and has proved to potentiate wound healing in a streptozotocin-induced diabetic rat model by promoting 93% of wound closure compared to other groups having 35%, 38%, and 62%. The comparative in vivo study and histological examination was conducted which demonstrated an expeditious recovery rate by significantly reducing the wound healing days i.e. 35 days in a control group, 33 days in the CUR suspension group, 21 days in unloaded injectable, and 13 days was observed in CUR loaded hydrogel group. Furthermore, we suggest that the injectable hydrogel laden with CUR showed a prompt wound healing potential by increasing the cell proliferation and serves as a drug delivery platform for sustained and targeted delivery of hydrophobic moieties.
Collapse
Affiliation(s)
- Syed Ahmed Shah
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan
| | - Muhammad Sohail
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan.
| | | | - Shahzeb Khan
- Department of Pharmacy, University of Malakand, Lower Dir, KPK, Pakistan; Discipline of Pharmaceutical Sciences, School of Health Sciences, UKZN, Durban, South Africa
| | - Zahid Hussain
- Department of Pharmaceutics & Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Arshad Mahmood
- Collage of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Mubeen Kousar
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan
| | - Hnin Ei Thu
- Innoscience Research Sdn. Bhd., Suites B-5-7, Level 5, Skypark@ One City, Jalan Ust 25/1, Subang Jaya 47650, Selangor, Malaysia; Department of Pharmacology, Faculty of Medicine, Lincoln University College, Petaling Jaya 47301, Selangor, Malaysia
| | - Mudassir Abbasi
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan
| | | |
Collapse
|
25
|
Lin YK, Wang SW, Lee RS. Reductive responsive hyaluronic acid conjugated S-nitrothiol prodrugs as drug carriers. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1931207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Yin-Ku Lin
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan
| | - Shiu-Wei Wang
- Division of Natural Science, Center of General Education, Chang Gung University, Tao-Yuan, Taiwan
| | - Ren-Shen Lee
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan
- Division of Natural Science, Center of General Education, Chang Gung University, Tao-Yuan, Taiwan
| |
Collapse
|
26
|
Lan W, Chen S, Nong G. An Efficient Synthesis of Novel Dextran-Arsenite Nanoparticles intended for Potential Antitumor Drug Material. AN ACAD BRAS CIENC 2021; 93:e20190551. [PMID: 33729378 DOI: 10.1590/0001-3765202120190551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/05/2019] [Indexed: 11/22/2022] Open
Abstract
The functionalization of polysaccharides with synthetic nanopolymers has attracted great attention owing to the applications of this method in many industrial fields. This work aimed to investigate the effect of arsenic trioxide on the functionalization of dextran. Dextran-arsenite nanoparticle formation was induced by microwave with sulfuric acid as a catalyst. Various analytical techniques were used to verify the structure of the nanopolymers. Besides, various reaction conditions, such as dextran concentration, arsenic trioxide concentration and pH, were investigated to determine their impact on particle size. The results indicated that the product was an arsenite-based nanomaterial retaining the basic configuration of dextran and that the product size was positively correlated with pH but negatively correlated with arsenic trioxide concentration. Moreover, the inhibitory effects of the dextran-arsenite nanoparticles on the growth of the human colorectal cancer cell line HCT-116 and human hepatoma carcinoma cell lines Huh-7 and SMMC-7721 were studied. The results showed that the product could inhibit the proliferation of these three tumor cell lines in a dose-dependent manner. Therefore, the product could be a new type of functional nanomaterial for further study on the synthesis, biological activity and development of polysaccharide drugs.
Collapse
Affiliation(s)
- Weibing Lan
- Guangxi University, College of Light Industry and Food Engineering, No.100, Daxue East Road, Nanning, 530004, Guangxi, China.,Beibu Gulf University, College of Food Engineering, No.12, Binhai Avenue, Qinzhou 535011, China
| | - Shan Chen
- Guangxi University, College of Light Industry and Food Engineering, No.100, Daxue East Road, Nanning, 530004, Guangxi, China
| | - Guangzai Nong
- Guangxi University, College of Light Industry and Food Engineering, No.100, Daxue East Road, Nanning, 530004, Guangxi, China
| |
Collapse
|
27
|
de Moura HC, Novello CR, Balbinot-Alfaro E, Düsman E, Barddal HPO, Almeida IV, Vicentini VEP, Prentice-Hernández C, Alfaro AT. Obtaining glycosaminoglycans from tilapia (oreochromis niloticus) scales and evaluation of its anticoagulant and cytotoxic activities: Glycosaminoglycans from tilapia scales: anticoagulant and cytotoxic activities. Food Res Int 2021; 140:110012. [PMID: 33648244 DOI: 10.1016/j.foodres.2020.110012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/24/2020] [Accepted: 12/08/2020] [Indexed: 11/24/2022]
Abstract
Large amounts of by-products are generated during fish processing. The study aimed to assess whether tilapia scales are a potential source for obtaining glycosaminoglycans, as well as to determine their anticoagulant and cytotoxic/antiproliferative activities, against different tumor lines. The glycosaminoglycans were extracted, purified, and fractionated. The fractions that indicated the presence of uronic acid and sulfated GAGs were characterized by electrophoresis, NMR, and degree of sulfation (DS). The extraction process using the papain enzyme had a yield of 0.86%. Fraction V (FV) revealed the presence of chondroitin sulfate chains CS-A and CS-C, with DS of 0.146. FV demonstrated anticoagulant potential, as it was able to increase aPTT time. FV showed a cytotoxic effect for HTC metabolizing cells at 24, 48, and 72 h. However, it did not show activity for neuroblastoma cells in any of the evaluated times. The results indicate that the tilapia scales are a possible source for obtaining chondroitin sulfate, with potential use as anticoagulant and cytotoxic/antitumor.
Collapse
Affiliation(s)
- Heloisa C de Moura
- Department of Food Technology, Federal University of Technology - Paraná, Francisco Beltrão, PR, Brazil
| | - Claudio R Novello
- Department of Food Technology, Federal University of Technology - Paraná, Francisco Beltrão, PR, Brazil
| | | | - Elisângela Düsman
- Department of Food Technology, Federal University of Technology - Paraná, Francisco Beltrão, PR, Brazil
| | - Helyn P O Barddal
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Igor V Almeida
- Federal Rural University of Amazonia, Capitão Poço, PA, Brazil
| | | | | | - Alexandre T Alfaro
- Department of Food Technology, Federal University of Technology - Paraná, Francisco Beltrão, PR, Brazil.
| |
Collapse
|
28
|
Cheng H, Zhang X, Cui Z, Mao S. Grafted polysaccharides as advanced pharmaceutical excipients. ADVANCES AND CHALLENGES IN PHARMACEUTICAL TECHNOLOGY 2021:75-129. [DOI: 10.1016/b978-0-12-820043-8.00010-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
29
|
Racovita S, Baranov N, Macsim AM, Lionte C, Cheptea C, Sunel V, Popa M, Vasiliu S, Desbrieres J. New Grafted Copolymers Carrying Betaine Units Based on Gellan and N-Vinylimidazole as Precursors for Design of Drug Delivery Systems. Molecules 2020; 25:E5451. [PMID: 33233752 PMCID: PMC7699957 DOI: 10.3390/molecules25225451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/14/2020] [Accepted: 11/20/2020] [Indexed: 01/02/2023] Open
Abstract
New grafted copolymers possessing structural units of 1-vinyl-3-(1-carboxymethyl) imidazolium betaine were obtained by graft copolymerization of N-vinylimidazole onto gellan gum followed by the polymer-analogous reactions on grafted polymer with the highest grafting percentage using sodium chloroacetate as the betainization agent. The grafted copolymers were prepared using ammonium persulfate/N,N,N',N' tetramethylethylenediamine in a nitrogen atmosphere. The grafting reaction conditions were optimized by changing one of the following reaction parameters: initiator concentration, monomer concentration, polymer concentration, reaction time or temperature, while the other parameters remained constant. The highest grafting yield was obtained under the following reaction conditions: ci = 0.08 mol/L, cm = 0.8 mol/L, cp = 8 g/L, tr = 4 h and T = 50 °C. The kinetics of the graft copolymerization of N-vinylimidazole onto gellan was discussed and a suitable reaction mechanism was proposed. The evidence of the grafting reaction was confirmed through FTIR spectroscopy, X-ray diffraction, 1H-NMR spectroscopy and scanning electron microscopy. The grafted copolymer with betaine structure was obtained by a nucleophilic substitution reaction where the betainization agent was sodium chloroacetate. Preliminary results prove the ability of the grafted copolymers to bind amphoteric drugs (cefotaxime) and, therefore, the possibility of developing the new sustained drug release systems.
Collapse
Affiliation(s)
- Stefania Racovita
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, No. 41A, 700487 Iasi, Romania; (S.R.); (A.M.M.); (S.V.)
| | - Nicolae Baranov
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engienering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, Prof. Dr. Docent Dimitrie Mangeron Street, No. 73, 700050 Iasi, Romania; (N.B.); (M.P.)
- Faculty of Chemistry, “Al. I. Cuza” University, Carol 1 Bvd., No. 11, 700506 Iasi, Romania;
| | - Ana Maria Macsim
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, No. 41A, 700487 Iasi, Romania; (S.R.); (A.M.M.); (S.V.)
| | - Catalina Lionte
- Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, Universitatii Street, No.16, 700115 Iasi, Romania;
| | - Corina Cheptea
- Department of Biomedical Sciences, Faculty of Biomedical Bioengineering, “Gr. T. Popa” University of Medicine and Pharmacy, Kogalniceanu Street No. 9-13, 700454 Iasi, Romania;
| | - Valeriu Sunel
- Faculty of Chemistry, “Al. I. Cuza” University, Carol 1 Bvd., No. 11, 700506 Iasi, Romania;
| | - Marcel Popa
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engienering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, Prof. Dr. Docent Dimitrie Mangeron Street, No. 73, 700050 Iasi, Romania; (N.B.); (M.P.)
- Academy of Romanian Scientists, Splaiul Independentei Street No. 54, 050085 Bucuresti, Romania
| | - Silvia Vasiliu
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, No. 41A, 700487 Iasi, Romania; (S.R.); (A.M.M.); (S.V.)
| | - Jacques Desbrieres
- Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Materiaux (IPREM), Pau and Pays de l’Adour University (UPPA), UMR CNRS 5254, Helioparc Pau Pyrenees, 2, av. President Angot, 64053 Pau CEDEX 09, France
| |
Collapse
|
30
|
Nguyen TT, Neri TA, Choi BD. Characterization of hyaluronic acid extracted from Liparis tessellatus eggs grafted with phenolic acids and nisin. Int J Biol Macromol 2020; 157:45-50. [PMID: 32335113 DOI: 10.1016/j.ijbiomac.2020.04.137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 03/19/2020] [Accepted: 04/18/2020] [Indexed: 01/11/2023]
Abstract
In polymer therapeutics, polymer-based carrier systems conjugated with antioxidants have been synthesized and studied to improve diagnosis and treatment of diseases, such as, in cancer and tumor. The natural bioactive compound hyaluronic acid (HA), which is essential in medical and pharmaceutical fields, is a linear polymer composed of repeating disaccharide units of β-1,3-N-acetyl glucosamine and β-1,4-glucuronic acid. In this study, HA fractions of enzyme-assisted glycosaminoglycans (GAGs) extract from Liparis tessellatus eggs were grafted with gallic acid (GA), caffeic acid (CA), and ferulic acid (FA) via a free radical-mediated method, and with nisin via amide bond formation. The modification has been confirmed through FTIR and 1H NMR spectroscopy and quantified by Folin-Ciocalteu and Bradford assay. FTIR spectra of grafted HA samples exhibited the typical phenolic characteristics within 1450-1650 cm-1, and the formation of amide bond in nisin-grafted HA was shown by absorption peak within 1545-1646 cm-1. 1H NMR spectra showed new peaks of phenyl protons at 6.3-7.7 ppm and new peaks at 0.9-2.9 ppm of amino acids residues protons. These results all confirmed the successful grafting of GA, CA, FA and nisin onto the HA backbone extracted from L. tessellatus eggs.
Collapse
Affiliation(s)
- Thanh Tri Nguyen
- Department of Aquatic Nutrition and Products Processing, Can Tho University, Can Tho, Viet Nam.
| | - Therese Ariane Neri
- Department of Seafood Science and Technology/The Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Republic of Korea.
| | - Byeong-Dae Choi
- Department of Seafood Science and Technology/The Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Republic of Korea.
| |
Collapse
|
31
|
|
32
|
Tan J, Tay J, Hedrick J, Yang YY. Synthetic macromolecules as therapeutics that overcome resistance in cancer and microbial infection. Biomaterials 2020; 252:120078. [PMID: 32417653 DOI: 10.1016/j.biomaterials.2020.120078] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023]
Abstract
Synthetic macromolecular antimicrobials have shown efficacy in the treatment of multidrug resistant (MDR) pathogens. These synthetic macromolecules, inspired by Nature's antimicrobial peptides (AMPs), mitigate resistance by disrupting microbial cell membrane or targeting multiple intracellular proteins or genes. Unlike AMPs, these polymers are less prone to degradation by proteases and are easier to synthesize on a large scale. Recently, various studies have revealed that cancer cell membrane, like that of microbes, is negatively charged, and AMPs can be used as anticancer agents. Nevertheless, efforts in developing polymers as anticancer agents has remained limited. This review highlights the recent advancement in the development of synthetic biodegradable antimicrobial polymers (e.g. polycarbonates, polyesters and polypeptides) and anticancer macromolecules including peptides and polymers. Additionally, strategies to improve their in vivo bioavailability and selectivity towards bacteria and cancer cells are examined. Lastly, future perspectives, including use of artificial intelligence or machine learning, in the development of antimicrobial and anticancer macromolecules are discussed.
Collapse
Affiliation(s)
- Jason Tan
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore, 138669, Singapore; Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Joyce Tay
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore, 138669, Singapore; Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - James Hedrick
- IBM Almaden Research Center, 650 Harry Road, San Jose, CA, 95120, United States
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore, 138669, Singapore.
| |
Collapse
|
33
|
Xue Y, Chen H, Xu C, Yu D, Xu H, Hu Y. Synthesis of hyaluronic acid hydrogels by crosslinking the mixture of high-molecular-weight hyaluronic acid and low-molecular-weight hyaluronic acid with 1,4-butanediol diglycidyl ether. RSC Adv 2020; 10:7206-7213. [PMID: 35493875 PMCID: PMC9049836 DOI: 10.1039/c9ra09271d] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/31/2020] [Indexed: 12/03/2022] Open
Abstract
High molecular weight hyaluronic acid (HMW-HA) and low molecular weight hyaluronic acid (LMW-HA) were mixed at different ratios and cross-linked with 1,4-butanediol diglycidyl ether (BDDE) to prepare five hyaluronic acid hydrogels A–E. Enzymolysis stability, swelling rate, crosslinking degree, rheological characteristics, BDDE residual rate, surface microstructure, and cytotoxicity of different hydrogels were investigated. The results showed that hydrogel B obtained by 10% HA (w/v, HMW-HA and LMW-HA having a mass ratio of 4 : 1) crosslinking with 1% BDDE (v/v) had stronger in vitro anti-degradation ability, better mechanical properties and lower cytotoxicity than those prepared by mixing in different proportions. Hydrogel B has potential applications in regenerative medicine and tissue engineering. High molecular weight hyaluronic acid (HMW-HA) and low molecular weight hyaluronic acid (LMW-HA) were mixed at different ratios and cross-linked with 1,4-butanediol diglycidyl ether (BDDE) to prepare five hyaluronic acid hydrogels A–E.![]()
Collapse
Affiliation(s)
- Yu Xue
- School of Pharmaceutical Sciences
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- China
| | - Hongyue Chen
- School of Pharmaceutical Sciences
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- China
| | - Chao Xu
- School of Pharmaceutical Sciences
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- China
| | - Dinghua Yu
- School of Pharmaceutical Sciences
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- China
| | - Huajin Xu
- School of Pharmaceutical Sciences
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- China
| | - Yi Hu
- School of Pharmaceutical Sciences
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- China
| |
Collapse
|
34
|
Fan R, Chuan D, Hou H, Chen H, Han B, Zhang X, Zhou L, Tong A, Xu J, Guo G. Development of a hybrid nanocarrier-recognizing tumor vasculature and penetrating the BBB for glioblastoma multi-targeting therapy. NANOSCALE 2019; 11:11285-11304. [PMID: 31165845 DOI: 10.1039/c9nr01320b] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The success of glioma chemotherapy is hampered by poor drug penetration ability across the blood-brain barrier (BBB) and low intratumoral drug concentration. Novel tumor-targeted delivery systems are useful in specifically accumulating in the tumor foci and penetrating into the glioma core after entering into the brain. Here we show that a multi-targeting hybrid nanocarrier (Pep-MLHA HNPs) system based on hyaluronic acid (HA)-modified polymer and a functional peptide possesses multi-target capability and stronger penetration ability into the core of three-dimensional tumor spheroids, could migrate efficiently across the BBB in vitro. The intensity of the Pep-MLHA HNPs after transporting across the BBB was 5.2-fold and 5.6-fold higher than that of ML NPs in C6 and U87 cells, respectively. More interestingly, this multi-targeting hybrid system displayed high colloidal stability in PBS solution, and weak negative zeta potential (-1.99 ± 0.655 mV) minimizing nonspecific interactions with plasma proteins and promoting long-term circulation in vivo. Additionally, the multi-targeting hybrid system induced enhanced tumor localization in U87 in situ-bearing nude mice and xenograft-bearing nude mice after systemic administration. Furthermore, docetaxel (DTX)-loaded Pep-MLHA HNPs showed negligible systemic toxicity and enhanced therapeutic efficacy, with significantly improved survival rates in intracranial C6 glioma-bearing rats. The 50% survival rate of DTX/Pep-MLHA HNPs-treated rats (40 days) was significantly longer than that of rats treated with NS (22 days), Taxotere® (25 days), DTX/ML NPs (25 days), DTX/Pep NPs (32 days) and DTX/MLHA NPs (29 days). All the results suggested that the multi-targeting hybrid nanocarrier system is promising for glioma treatment.
Collapse
Affiliation(s)
- Rangrang Fan
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Lin S, Quan G, Hou A, Yang P, Peng T, Gu Y, Qin W, Liu R, Ma X, Pan X, Liu H, Wang L, Wu C. Strategy for hypertrophic scar therapy: Improved delivery of triamcinolone acetonide using mechanically robust tip-concentrated dissolving microneedle array. J Control Release 2019; 306:69-82. [DOI: 10.1016/j.jconrel.2019.05.038] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 05/24/2019] [Accepted: 05/25/2019] [Indexed: 12/22/2022]
|
37
|
Karimi Dehkordi N, Minaiyan M, Talebi A, Akbari V, Taheri A. Nanocrystalline cellulose-hyaluronic acid composite enriched with GM-CSF loaded chitosan nanoparticles for enhanced wound healing. ACTA ACUST UNITED AC 2019; 14:035003. [PMID: 30690433 DOI: 10.1088/1748-605x/ab026c] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In recent years, applications of biopolymers such as hyaluronic acid (HA) for wound dressing have attracted more attention. However, the poor mechanical properties of HA-based wound dressings limit their clinical applications. Incorporation of reinforcing agents such as nanocrystalline cellulose (CNC) in HA-based wound dressings can improve their mechanical properties. In addition, controlled delivery of growth factors to the wound site using nanoparticles can significantly improve the healing process. In this study, we focus on development and characterization of a novel CNC reinforced HA-based composite containing chitosan nanoparticles loaded with GM-CSF (CNC-HA/GM-CSF-Chi-NPs composite) as an effective wound dressing. CNC-HA/GM-CSF-Chi-NPs composite showed some physicochemical characteristics such as appropriate mechanical properties, high swelling capacity (swelling ratio: 2622.1% ± 35.2%) and controlled release of GM-CSF up to 48 h which make it an excellent candidate for wound dressing. In vivo investigation showed that, after 13 d, the wounds covered with CNC-HA/GM-CSF-Chi-NPs composite could reach to nearly full wound closure and complete re-epithelialization compared to the normal saline treated wounds which exhibited nearly 70% of wound size reduction. Furthermore, the CNC-HA/GM-CSF-Chi-NPs composite treated wounds exhibited significantly lower inflammatory reaction, enhanced re-epithelialization and improved granulation tissue formation compared with CNC-HA/Chi-NPs composite treated wound; it might be due to positive effects of GM-CSF on the wound healing process. Our results suggest that CNC-HA/GM-CSF-Chi-NPs composite can be potentially applied in clinical practice for wound treatment.
Collapse
Affiliation(s)
- Nakisa Karimi Dehkordi
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | | | | | |
Collapse
|
38
|
Hezarkhani M, Yilmaz E. Pullulan modification via poly(N-vinylimidazole) grafting. Int J Biol Macromol 2019; 123:149-156. [DOI: 10.1016/j.ijbiomac.2018.11.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/22/2018] [Accepted: 11/04/2018] [Indexed: 12/21/2022]
|
39
|
Tiwari S, Bahadur P. Modified hyaluronic acid based materials for biomedical applications. Int J Biol Macromol 2019; 121:556-571. [DOI: 10.1016/j.ijbiomac.2018.10.049] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/02/2018] [Accepted: 10/11/2018] [Indexed: 12/22/2022]
|
40
|
Lee SY, Hong EH, Jeong JY, Cho J, Seo JH, Ko HJ, Cho HJ. Esterase-sensitive cleavable histone deacetylase inhibitor-coupled hyaluronic acid nanoparticles for boosting anticancer activities against lung adenocarcinoma. Biomater Sci 2019; 7:4624-4635. [DOI: 10.1039/c9bm00895k] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
4-Phenylbutyric acid (PBA)-installed hyaluronic acid (HA)-based nanoparticles (NPs) were developed for amplifying the anticancer potential of curcumin (CUR) for lung cancer therapy.
Collapse
Affiliation(s)
- Song Yi Lee
- College of Pharmacy
- Kangwon National University
- Chuncheon
- Republic of Korea
| | - Eun-Hye Hong
- Laboratory of Microbiology and Immunology
- College of Pharmacy
- Kangwon National University
- Chuncheon
- Republic of Korea
| | - Jae Young Jeong
- College of Pharmacy
- Kangwon National University
- Chuncheon
- Republic of Korea
| | - Jaewon Cho
- Laboratory of Microbiology and Immunology
- College of Pharmacy
- Kangwon National University
- Chuncheon
- Republic of Korea
| | - Ji-Hye Seo
- College of Pharmacy
- Kangwon National University
- Chuncheon
- Republic of Korea
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology
- College of Pharmacy
- Kangwon National University
- Chuncheon
- Republic of Korea
| | - Hyun-Jong Cho
- College of Pharmacy
- Kangwon National University
- Chuncheon
- Republic of Korea
| |
Collapse
|
41
|
Hu H, Zhao P, Liu J, Ke Q, Zhang C, Guo Y, Ding H. Lanthanum phosphate/chitosan scaffolds enhance cytocompatibility and osteogenic efficiency via the Wnt/β-catenin pathway. J Nanobiotechnology 2018; 16:98. [PMID: 30497456 PMCID: PMC6263548 DOI: 10.1186/s12951-018-0411-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/10/2018] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Fabrication of porous scaffolds with great biocompatibility and osteoinductivity to promote bone defect healing has attracted extensive attention. METHODS In a previous study, novel lanthanum phosphate (LaPO4)/chitosan (CS) scaffolds were prepared by distributing 40- to 60-nm LaPO4 nanoparticles throughout plate-like CS films. RESULTS Interconnected three dimensional (3D) macropores within the scaffolds increased the scaffold osteoconductivity, thereby promoting cell adhesion and bone tissue in-growth. The LaPO4/CS scaffolds showed no obvious toxicity and accelerated bone generation in a rat cranial defect model. Notably, the element La in the scaffolds was found to promote osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) through the Wnt/β-catenin signalling pathway and induced high expression of the osteogenesis-related genes alkaline phosphatase, osteocalcin and Collagen I (Col-I). Moreover, the LaPO4/CS scaffolds enhanced bone regeneration and collagen fibre deposition in rat critical-sized calvarial defect sites. CONCLUSION The novel LaPO4/CS scaffolds provide an admirable and promising platform for the repair of bone defects.
Collapse
Affiliation(s)
- Haoran Hu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Peipei Zhao
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| | - Jiayu Liu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| | - Qinfei Ke
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Yaping Guo
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China.
| | - Hao Ding
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China.
| |
Collapse
|