1
|
Huang K, Zhang C, Hu Y, Lacroix M, Wang Y. Holocellulose nanofibrils as effective nisin immobilization substrates for antimicrobial food packaging. Int J Biol Macromol 2025; 304:140741. [PMID: 39922342 DOI: 10.1016/j.ijbiomac.2025.140741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/20/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Holocellulose nanofibrils (HCNF), a type of nanocellulose with abundant amorphous regions suitable for chemical modification, show promise for sustainable food packaging but remain underutilized. This study employed HCNF to immobilize nisin and then spray-coated on the surface of soy protein isolate (SPI) films to improve mechanical, barrier, and antimicrobial properties. HCNF was extracted from wood sheet through chemical delignification and low-energy defibrillation, and then oxidized to introduce aldehyde groups for efficient nisin conjugation. The abundant amorphous regions led to a high immobilization rate of 3.4 mg/g, and conjugated HCNF and nisin coatings on SPI films significantly enhanced tensile strength to 3.43 ± 0.09 MPa, reduced water vapor permeability to 2.48 ± 0.07 × 10-6 g m-1 h-1 Pa-1, and decreased oxygen permeability to 4.29 ± 0.46 × 10-4 cm3 m-1 day-1 atm-1. The conjugate sustained inhibition of S. aureus and L. monocytogenes, and the coating of 9 wt% conjugate on SPI films resulted in a 6-log reduction in bacterial count for both bacteria, while free nisin lost its antimicrobial efficacy during 24 h of pre-incubation. This work suggests feasibility of using HCNF as an effective substrate for nisin immobilization, providing a sustainable functional packaging solution with extended antimicrobial activity.
Collapse
Affiliation(s)
- Kehao Huang
- Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, Québec H9X 3V9, Canada.
| | - Cunzhi Zhang
- Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, Québec H9X 3V9, Canada; College of Textiles and Clothing, Qingdao University, Qingdao, Shandong 266071, China.
| | - Yuxin Hu
- Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, Québec H9X 3V9, Canada; Department of Food Science, Canadian Research Institute for Food Safety, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | - Monique Lacroix
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec H7V 1B7, Canada.
| | - Yixiang Wang
- Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, Québec H9X 3V9, Canada.
| |
Collapse
|
2
|
Li W, Zhao Y, Li S, Yun L, Wu T, Zhang M. Improving the physical stability of Lactobacillus plantarum LP90 during storage by mixing carboxymethylated dextran-whey protein conjugates and small-molecule sugars. Food Res Int 2025; 203:115834. [PMID: 40022358 DOI: 10.1016/j.foodres.2025.115834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/29/2024] [Accepted: 01/23/2025] [Indexed: 03/03/2025]
Abstract
To explore the effect of small-molecule sugars on the physical stability of microcapsules and enhance probiotic preservation, carboxymethylated dextran and whey protein conjugate (WP-CD5d) by Maillard reaction were used as the wall material. Trehalose, lactose, and sucrose were used as lyoprotectants to encapsulate Lactobacillus plantarum LP90 (LP90) during storage, forming microcapsules labeled as WP-CD5dH, WP-CD5dR, and WP-CD5dZ, respectively. WP-CD5dH and WP-CD5dR exhibited the highest viability after freeze-drying, with survival rates of 97.8 % ± 0.9 % and 98.5 % ± 0.5 % respectively. LP90 microcapsules exhibited strong resistance to simulated gastrointestinal fluid over 5 h. The Guggenheim-Anderson-de Boer (GAB) and Gordon-Taylor model showed that WP-CD5dH had the best reduction in water plasticization (k was 4.0). 1H NMR spectra confirmed that WP-CD5dH exhibited the lowest molecular mobility. Furthermore, the storage experiment showed that WP-CD5dH provided the best protection for LP90 at 11 % RH, with a K value of 0.021. These results suggest that the probiotic mechanism of small-molecule sugars involves forming intermolecular forces with WP-CD5d, which helps to maintain the glassy state.
Collapse
Affiliation(s)
- Wen Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Yunjiao Zhao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Shunqin Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Liyuan Yun
- China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300392, PR China
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300392, PR China.
| |
Collapse
|
3
|
Li W, Xu R, Qin S, Song Q, Guo B, Li M, Zhang Y, Zhang B. Cereal dietary fiber regulates the quality of whole grain products: Interaction between composition, modification and processing adaptability. Int J Biol Macromol 2024; 274:133223. [PMID: 38897509 DOI: 10.1016/j.ijbiomac.2024.133223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/27/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
The coarse texture and difficulty in processing dietary fiber (DF) in cereal bran have become limiting factors for the development of the whole cereal grain (WCG) food industry. To promote the development of the WCG industry, this review comprehensively summarizes the various forms and structures of cereal DF, including key features such as molecular weight, chain structure, and substitution groups. Different modification methods for changing the chemical structure of DF and their effects on the modification methods on physicochemical properties and biological activities of DF are discussed systematically. Furthermore, the review focusses on exploring the interactions between DF and dough components and discusses the effects on the gluten network structure, starch gelatinization and retrogradation, fermentation, glass transition, gelation, and rheological and crystalline characteristics of dough. Additionally, opportunities and challenges regarding the further development of DF for the flour products are also reviewed. The objective of this review is to establish a comprehensive foundation for the precise modification of cereal DF, particularly focusing on its application in dough-related products, and to advance the development and production of WCG products.
Collapse
Affiliation(s)
- Wen Li
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China
| | - Rui Xu
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China
| | - Shaoshuang Qin
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China
| | - Qiaozhi Song
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China
| | - Boli Guo
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China.
| | - Ming Li
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China.
| | - Yingquan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China
| | - Bo Zhang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China
| |
Collapse
|
4
|
Janewithayapun R, Hedenqvist MS, Cousin F, Idström A, Evenäs L, Lopez-Sanchez P, Westman G, Larsson A, Ström A. Nanostructures of etherified arabinoxylans and the effect of arabinose content on material properties. Carbohydr Polym 2024; 331:121846. [PMID: 38388051 DOI: 10.1016/j.carbpol.2024.121846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/01/2024] [Accepted: 01/18/2024] [Indexed: 02/24/2024]
Abstract
To further our understanding of a thermoplastic arabinoxylan (AX) material obtained through an oxidation-reduction-etherification pathway, the role of the initial arabinose:xylose ratio on the material properties was investigated. Compression molded films with one molar substitution of butyl glycidyl ether (BGE) showed markedly different tensile behaviors. Films made from low arabinose AX were less ductile, while those made from high arabinose AX exhibited elastomer-like behaviors. X-ray scattering confirmed the presence of nanostructure formation resulting in nano-domains rich in either AX or BGE, from side chain grafting. The scattering data showed variations in the presence of ordered structures, nano-domain sizes and their temperature response between AX with different arabinose contents. In dynamic mechanical testing, three transitions were observed at approximately -90 °C, -50 °C and 80 °C, with a correlation between samples with more structured nano-domains and those with higher onset transition temperatures and lower storage modulus decrease. The mechanical properties of the final thermoplastic AX material can therefore be tuned by controlling the composition of the starting material.
Collapse
Affiliation(s)
- Ratchawit Janewithayapun
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; FibRe Center for Lignocellulose-based Thermoplastics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Mikael S Hedenqvist
- FibRe Center for Lignocellulose-based Thermoplastics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; Department of Fibre and Polymer Technology, School of Engineering Science in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden; Wallenberg Wood Science Center, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden
| | - Fabrice Cousin
- Laboratoire Léon Brillouin, Université Paris-Saclay, UMR 12, CEA-CNRS, 91191 Gif Sur Yvette, France
| | - Alexander Idström
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Lars Evenäs
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; FibRe Center for Lignocellulose-based Thermoplastics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; Wallenberg Wood Science Center, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Patricia Lopez-Sanchez
- Department of Analytical Chemistry, Nutrition, and Food Science. Facultad de Ciencias, Instituto de Materiales (IMATUS), Universidade de Santiago de Compostela, Campus Terra, 27002 Lugo, Spain
| | - Gunnar Westman
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; FibRe Center for Lignocellulose-based Thermoplastics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; Wallenberg Wood Science Center, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Anette Larsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; FibRe Center for Lignocellulose-based Thermoplastics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; Wallenberg Wood Science Center, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Anna Ström
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; FibRe Center for Lignocellulose-based Thermoplastics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
| |
Collapse
|
5
|
Wang J, Han X, Wu W, Wang X, Ding L, Wang Y, Li S, Hu J, Yang W, Zhang C, Jiang S. Oxidation of cellulose molecules toward delignified oxidated hot-pressed wood with improved mechanical properties. Int J Biol Macromol 2023; 231:123343. [PMID: 36682656 DOI: 10.1016/j.ijbiomac.2023.123343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/10/2023] [Accepted: 01/15/2023] [Indexed: 01/21/2023]
Abstract
Wooden building materials have advantages in terms of biodegradability, non-toxicity, pollution-free and recycling. Currently, applications of natural wood are extremely limited because of low density, low strength and toughness. Therefore, we reported an effective modification strategy with nano-scale cellulose nanofibrils design to prepare a synergistically enhanced cellulosic material. Via three steps: i) the secondary alcohol hydroxyl groups in C2, C3 position were cut; ii) oxidize the hydroxyl group at C2, C3 position to achieve dialdehyde cellulose; and iii) oxidized again to obtain dicarboxylic cellulose. Subsequently, thanks to the regulation of the average moisture content, the moisture content in the wood surface and subsurface increased in a short time. The wood softening layer contributes to the hotpressing treatment of the wood. The mechanical properties and dimensionality have been greatly improved. The obtained delignified oxidated hot-pressed wood with 0.55 mmol/g carboxyl group content demonstrates excellent strength of 328.8 ± 7.43 MPa and Young's modulus of 8.1 ± 0.14 GPa, which is twice than that of natural wood. Delignified oxidated hot-pressed wood also shows exceptional toughness of 8.3 ± 0.28 MJ/m3. Other than that, the shore hardness indicates 0.55 mmol/g carboxylic group, which could increase the hardness at the wood surface hardness to 72.5 ± 4.29°.
Collapse
Affiliation(s)
- Jingwen Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoshuai Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Weijie Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Xiaoyi Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Linhu Ding
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yuli Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shanshan Li
- College of Pharmacy, Southwest Minzu University, Chengdu 610000, China.
| | - Jiapeng Hu
- Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecological and Resources Engineering, Wuyi University, Wuyishan 354300, China
| | - Weisen Yang
- Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecological and Resources Engineering, Wuyi University, Wuyishan 354300, China.
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
6
|
Palasingh C, Kargl R, Kleinschek KS, Schaubeder J, Spirk S, Ström A, Nypelö T. Morphology and swelling of thin films of dialcohol xylan. Carbohydr Polym 2023; 313:120810. [PMID: 37182942 DOI: 10.1016/j.carbpol.2023.120810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/26/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023]
Abstract
Polysaccharides are excellent network formers and are often processed into films from water solutions. Despite being hydrophilic polysaccharides, the typical xylans liberated from wood are sparsely soluble in water. We have previously suggested that an additional piece to the solubilization puzzle is modification of the xylan backbone via oxidative cleavage of the saccharide ring. Here, we demonstrate the influence of the degree of modification, i.e., degree of oxidation (DO) on xylan solubilization and consequent film formation and stability. Oxidized and reduced wood xylans (i.e., dialcohol xylans) with the highest DO (77 %) within the series exhibited the smallest hydrodynamic diameter (dh) of 60 nm in dimethylsulfoxide (DMSO). We transferred the modified xylans into films credit to their established solubility and then quantified the film water interactions. Dialcohol xylans with intermediate DOs (42 and 63 %) did not form continuous films. The films swelled slightly when subjected to humidity. However, the film with the highest DO demonstrated a significant moisture uptake that depended on the film mass and was not observed with the other modified grades or with unmodified xylan.
Collapse
|
7
|
Hemicellulose: Structure, Chemical Modification, and Application. Prog Polym Sci 2023. [DOI: 10.1016/j.progpolymsci.2023.101675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
8
|
Zhang X, Gao D, Luo W, Xiao N, Xiao G, Li Z, Liu C. Hemicelluloses-based sprayable and biodegradable pesticide mulch films for Chinese cabbage growth. Int J Biol Macromol 2023; 225:1350-1360. [PMID: 36436596 DOI: 10.1016/j.ijbiomac.2022.11.193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
In this study, one high-performance hemicelluloses (HC)-based sprayable and biodegradable pesticide mulch film was developed. Firstly, HC was transesterified with vinyl acetate (VA) to improve its solubility and film-forming ability. Then abamectin (ABA) was encapsulated by β-cyclodextrin (β-CD) to endow mulch film persistent anti-pesticide activity. After that, sodium alginate (SA) and gelatin were added to develop the mechanical performances of the mulch film. As a result, the obtained mulch film showed good characteristics, with optimum mechanical strength, elongation at break, water vapor permeability (WVP), swelling ratio (SR), and weight loss (biodegradability) of 7.9 ± 0.3 MPa, 43.6 ± 2.0 %, 2.1 ± 0.1 × 10-11 g mm m-2 s-1 kPa-1, 73.8 ± 2.0 %, and 69.3 %, respectively. After covering with mulch film, the soil moisture and temperature were developed to 90.8 % and 19.3 ± 0.2 °C, respectively, which could facilitate Chinese cabbage growth, with optimum germination rate of 98.6 ± 6.4 %.
Collapse
Affiliation(s)
- Xueqin Zhang
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Dahui Gao
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wenhan Luo
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Naiyu Xiao
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Gengsheng Xiao
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Zengyong Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Chuanfu Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
9
|
Aggarwal R, Garg AK, Saini D, Sonkar SK, Sonker AK, Westman G. Cellulose Nanocrystals Derived from Microcrystalline Cellulose for Selective Removal of Janus Green Azo Dye. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Ruchi Aggarwal
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur302017, India
| | - Anjali Kumari Garg
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur302017, India
| | - Deepika Saini
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur302017, India
| | - Sumit Kumar Sonkar
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur302017, India
| | - Amit Kumar Sonker
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg41296, Sweden
- Wallenberg Wood Science Center (WWSC), Chalmers University of Technology, Gothenburg41296, Sweden
| | - Gunnar Westman
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg41296, Sweden
- Wallenberg Wood Science Center (WWSC), Chalmers University of Technology, Gothenburg41296, Sweden
| |
Collapse
|
10
|
Palasingh C, Nakayama K, Abik F, Mikkonen KS, Evenäs L, Ström A, Nypelö T. Modification of xylan via an oxidation-reduction reaction. Carbohydr Polym 2022; 292:119660. [PMID: 35725206 DOI: 10.1016/j.carbpol.2022.119660] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/15/2022] [Accepted: 05/23/2022] [Indexed: 11/15/2022]
Abstract
Xylan is a biopolymer readily available from forest resources. Various modification methods, including oxidation with sodium periodate, have been shown to facilitate the engineering applications of xylan. However, modification procedures are often optimized for semicrystalline high molecular weight polysaccharide cellulose rather than for lower molecular weight and amorphous polysaccharide xylan. This paper elucidates the procedure for the periodate oxidation of xylan into dialdehyde xylan and its further reduction into a dialcohol form and is focused on the modification work up. The oxidation-reduction reaction decreased the molecular weight of xylan while increased the dispersity more than 50%. Unlike the unmodified xylan, all the modified grades could be solubilized in water, which we see essential for facilitating the future engineering applications of xylan. The selection of quenching and purification procedures and pH-adjustment of the reduction step had no significant effect on the degree of oxidation, molecular weight and only a minor effect on the hydrodynamic radius in water. Hence, it is possible to choose the simplest oxidation-reduction route without time consuming purification steps within the sequence.
Collapse
Affiliation(s)
- Chonnipa Palasingh
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Koyuru Nakayama
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden; Wallenberg Wood Science Center, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Felix Abik
- Department of Food and Nutrition, 00014 University of Helsinki, Finland
| | - Kirsi S Mikkonen
- Department of Food and Nutrition, 00014 University of Helsinki, Finland; Helsinki Institute of Sustainability Science, 00014 University of Helsinki, Finland
| | - Lars Evenäs
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden; Wallenberg Wood Science Center, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Anna Ström
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Tiina Nypelö
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden; Wallenberg Wood Science Center, Chalmers University of Technology, 412 96 Gothenburg, Sweden.
| |
Collapse
|
11
|
Effect of physicochemical properties, pre-processing, and extraction on the functionality of wheat bran arabinoxylans in breadmaking - A review. Food Chem 2022; 383:132584. [PMID: 35413756 DOI: 10.1016/j.foodchem.2022.132584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/27/2022] [Accepted: 02/25/2022] [Indexed: 12/25/2022]
Abstract
Arabinoxylan (AX) is an abundant hemicellulose in wheat bran and an important functional component in bakery products. This review compares preprocessing and extraction methods, and evaluates their effect on AX properties and functionality as a bread ingredient. The extraction process results in AX isolates or concentrates with varying molecular characteristics, indicating that the process can be adjusted to produce AX with targeted functionality. AX functionality in bread seems to depend on AX properties but also on AX addition level and interactions with other components. This review suggests that the use of AX with tailored properties together with properly optimized baking process could help increasing the amount of added fiber in bread while maintaining or even improving bread quality.
Collapse
|
12
|
Deralia PK, Sonker AK, Lund A, Larsson A, Ström A, Westman G. Side chains affect the melt processing and stretchability of arabinoxylan biomass-based thermoplastic films. CHEMOSPHERE 2022; 294:133618. [PMID: 35066072 DOI: 10.1016/j.chemosphere.2022.133618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/03/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Hydrophobization of hemicellulose causes melt processing and makes them stretchable thermoplastics. Understanding how native and/or appended side chains in various hemicelluloses after chemical modification affect melt processing and material properties can help in the development of products for film packaging and substrates for stretchable electronics applications. Herein, we describe a one-step and two-step strategy for the fabrication of flexible and stretchable thermoplastics prepared by compression molding of two structurally different arabinoxylans (AX). For one-step synthesis, the n-butyl glycidyl ether epoxide ring was opened to the hydroxyl group, resulting in the introduction of alkoxide side chains. The first step in the two-step synthesis was periodate oxidation. Because the melt processability for AXs having low arabinose to xylose ratio (araf/xylp<0.5) have been limited, two structurally distinct AXs extracted from wheat bran (AXWB, araf/xylp = 3/4) and barley husk (AXBH, araf/xylp = 1/4) were used to investigate the effect of araf/xylp and hydrophobization on the melt processability and properties of the final material. Melt compression processability was achieved in AXBH derived samples. DSC and DMA confirmed that the thermoplastics derived from AXWB and AXBH had dual and single glass transition (Tg) characteristics, respectively, but the thermoplastics derived from AXBH had lower stretchability (maximum 160%) compared to the AXWB samples (maximum 300%). Higher araf/xylp values, and thus longer alkoxide side chains in AXWB-derived thermoplastics, explain the stretchability differences.
Collapse
Affiliation(s)
- Parveen Kumar Deralia
- Chemistry and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296, Gothenburg, Sweden.
| | - Amit Kumar Sonker
- Chemistry and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296, Gothenburg, Sweden
| | - Anja Lund
- Applied Chemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296, Gothenburg, Sweden
| | - Anette Larsson
- Applied Chemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296, Gothenburg, Sweden
| | - Anna Ström
- Applied Chemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296, Gothenburg, Sweden
| | - Gunnar Westman
- Chemistry and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296, Gothenburg, Sweden.
| |
Collapse
|
13
|
Lupo C, Boulos S, Gramm F, Wu X, Nyström L. A microcalorimetric and microscopic strategy to assess the interaction between neutral soluble dietary fibers and small molecules. Carbohydr Polym 2022; 287:119229. [DOI: 10.1016/j.carbpol.2022.119229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/02/2022]
|
14
|
Schnell CN, Galván MV, Solier YN, Inalbon MC, Zanuttini MA, Mocchiutti P. High strength biobased films prepared from xylan/chitosan polyelectrolyte complexes in the presence of ethanol. Carbohydr Polym 2021; 273:118602. [PMID: 34561002 DOI: 10.1016/j.carbpol.2021.118602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/06/2021] [Accepted: 08/22/2021] [Indexed: 12/18/2022]
Abstract
The effect of different ethanol concentrations (0; 3; 9; 12 and 16 wt%) on the degree of ionization of xylan and chitosan, the characteristics of polyelectrolyte complex (PEC) suspensions, and the derived films, were exhaustively analyzed through several analytical techniques. Results indicate that the degree of ionization of both polyelectrolytes was reduced, whereas particle sizes and z-potential values of PEC suspensions were remarkably modified. As ethanol concentration was increased up to 12 wt%, the crystallinity of films decreased. Furthermore, the stress at break increased from 45 to 75 MPa. Wet stress-strain results were promising (up to 5.0 MPa, 55%) for all films. Although water vapor permeability was not modified, the swelling capacity was favorably reduced (12%). Results reveal that, for preparing films, it might not be necessary to remove all the ethanol used for xylan precipitation and purification.
Collapse
Affiliation(s)
- Carla N Schnell
- Instituto de Tecnología Celulósica, Facultad de Ingeniería Química (FIQ-CONICET), Universidad Nacional del Litoral, Santiago del Estero 2654, S3000AOJ Santa Fe, Argentina.
| | - María V Galván
- Instituto de Tecnología Celulósica, Facultad de Ingeniería Química (FIQ-CONICET), Universidad Nacional del Litoral, Santiago del Estero 2654, S3000AOJ Santa Fe, Argentina.
| | - Yamil N Solier
- Instituto de Tecnología Celulósica, Facultad de Ingeniería Química (FIQ-CONICET), Universidad Nacional del Litoral, Santiago del Estero 2654, S3000AOJ Santa Fe, Argentina.
| | - María C Inalbon
- Instituto de Tecnología Celulósica, Facultad de Ingeniería Química (FIQ-CONICET), Universidad Nacional del Litoral, Santiago del Estero 2654, S3000AOJ Santa Fe, Argentina.
| | - Miguel A Zanuttini
- Instituto de Tecnología Celulósica, Facultad de Ingeniería Química (FIQ-CONICET), Universidad Nacional del Litoral, Santiago del Estero 2654, S3000AOJ Santa Fe, Argentina.
| | - Paulina Mocchiutti
- Instituto de Tecnología Celulósica, Facultad de Ingeniería Química (FIQ-CONICET), Universidad Nacional del Litoral, Santiago del Estero 2654, S3000AOJ Santa Fe, Argentina.
| |
Collapse
|
15
|
Hu M, Peng X, Zhao Y, Yu X, Cheng C, Yu X. Dialdehyde pectin-crosslinked and hirudin-loaded decellularized porcine pericardium with improved matrix stability, enhanced anti-calcification and anticoagulant for bioprosthetic heart valves. Biomater Sci 2021; 9:7617-7635. [PMID: 34671797 DOI: 10.1039/d1bm01297e] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To conveniently and effectively cure heart valve diseases or defects, combined with transcatheter valve technology, bioprosthetic heart valves (BHVs) originated from the decellularized porcine pericardium (D-PP) have been broadly used in clinics. Unfortunately, most clinically available BHVs crosslinked with glutaraldehyde (GA) were challenged in their long-term tolerance, degenerative structural changes, and even failure, owing to the synergistic impact of multitudinous elements (cytotoxicity, calcification, immune responses, etc.). In this work, dialdehyde pectin (AP) was prepared by oxidizing the o-dihydroxy of pectin with sodium periodate. Hereafter, the AP-fixed PP model was obtained by crosslinking D-PP with AP with high aldehyde content (6.85 mmol g-1), for acquiring excellent mechanical properties and outstanding biocompatibility. To further improve the hemocompatibility of the AP-fixed PP, a natural and specific inhibitor of thrombin (hirudin) was introduced to achieve surface modification of the AP-fixed PP. The feasibility of crosslinking and functionalizing AP-fixed PP, which was a potential leaflet material of BHVs, was exhaustively and systematically evaluated. In vitro studies found that hirudin-loaded and AP-fixed PP (AP + Hirudin-PP) had synchronously achieved effective fixation of collagen, highly effective anticoagulation, and good HUVECs-cytocompatibility. In vivo results revealed that the AP + Hirudin-PP specimens recruited the minimum immune cells in the implantation experiment, and also presented an excellent anti-calcification effect. Overall, AP + Hirudin-PP was endowed with competitive collagen stability (compared with GA-fixed PP), excellent hemocompatibility, good HUVECs-cytocompatibility, low immunogenicity and outstanding anti-calcification, suggesting that AP + Hirudin-PP might be a promising alternative to GA-fixed PP and exhibited a bright prospect in the clinical applications of BHVs.
Collapse
Affiliation(s)
- Mengyue Hu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China.
| | - Xu Peng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China. .,Experimental and Research Animal Institute, Sichuan University, Chengdu 610065, P.R. China
| | - Yang Zhao
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China.
| | - Xiaoshuang Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China.
| | - Can Cheng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China.
| | - Xixun Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China.
| |
Collapse
|
16
|
Deralia PK, du Poset AM, Lund A, Larsson A, Ström A, Westman G. Hydrophobization of arabinoxylan with n-butyl glycidyl ether yields stretchable thermoplastic materials. Int J Biol Macromol 2021; 188:491-500. [PMID: 34389389 DOI: 10.1016/j.ijbiomac.2021.08.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/14/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022]
Abstract
Hemicelluloses are regarded as one of the first candidates for the development of value-added materials due to their renewability, abundance, and functionality. However, because most hemicelluloses are brittle, they can only be processed as a solution and cannot be processed using industrial melt-based polymer processing techniques. In this study, arabinoxylan (AX) was hydrophobized by incorporating butyl glycidyl ether (BuGE) into the hydroxyl groups through the opening of the BuGE epoxide ring, yielding alkoxy alcohols with terminal ethers. The formed BuGE derivatives were melt processable and can be manufactured into stretchable thermoplastic films through compression molding, which has never been done before with hemicellulose modified in a single step. The structural and thermomechanical properties of the one-step synthesis approach were compared to those of a two-step synthesis with a pre-activation step to demonstrate its robustness. The strain at break for the one-step synthesized AX thermoplastic with 3 mol of BuGE is ≈200%. These findings suggest that thermoplastic polymers can be composited with hemicelluloses or that thermoplastic polymers made entirely of hemicelluloses can be designed as packaging and stretchable electronics supports.
Collapse
Affiliation(s)
- Parveen Kumar Deralia
- Chemistry and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden.
| | - Aline Maire du Poset
- Applied Chemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE- Gothenburg, Sweden
| | - Anja Lund
- Applied Chemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE- Gothenburg, Sweden
| | - Anette Larsson
- Applied Chemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE- Gothenburg, Sweden
| | - Anna Ström
- Applied Chemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE- Gothenburg, Sweden
| | - Gunnar Westman
- Chemistry and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden.
| |
Collapse
|
17
|
Molecular modification, structural characterization, and biological activity of xylans. Carbohydr Polym 2021; 269:118248. [PMID: 34294285 DOI: 10.1016/j.carbpol.2021.118248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 12/17/2022]
Abstract
The differences in the source and structure of xylans make them have various biological activities. However, due to their inherent structural limitations, the various biological activities of xylans are far lower than those of commercial drugs. Currently, several types of molecular modification methods have been developed to address these limitations, and many derivatives with specific biological activity have been obtained. Further research on structural characteristics, structure-activity relationship and mechanism of action is of great significance for the development of xylan derivatives. Therefore, the major molecular modification methods of xylans are introduced in this paper, and the primary structure and conformation characteristics of xylans and their derivatives are summarized. In addition, the biological activity and structure-activity relationship of the modified xylans are also discussed.
Collapse
|
18
|
Wang LX, Li CY, Hu C, Gong PS, Zhao SH. Purification and Structural Characterization of Dendrobium officinale Polysaccharides and Its Activities. Chem Biodivers 2021; 18:e2001023. [PMID: 33721383 DOI: 10.1002/cbdv.202001023] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023]
Abstract
In this study, Dendrobium officinale polysaccharide (named DOPS-1) was isolated from the stems of Dendrobium officinale by hot-water extraction and purified by using Sephadex G-150 column chromatography. The structural characterization, antioxidant and cytotoxic activity were carried out. Based on the results of HPLC, GC, Congo red experiment, together with periodate oxidation, Smith degradation, SEM, FT-IR, and NMR spectral analysis, it expressed that DOPS-1 was largely composed of mannose, glucose and galacturonic acid in a molar ratio of 3.2 : 1.3 : 1. The molecular weight of DOPS-1 was 1530 kDa and the main chain was composed of (1→4)-β-D-Glcp, (1→4)-β-D-Manp and 2-O-acetyl-(1→4)-β-D-Manp. The measurement results of antioxidant activity showed that DOPS-1 had the strong scavenging activities on hydroxyl radicals, DPPH radicals and superoxide radicals and the high reducing ability in vitro. Moreover, DOPS-1 was cytotoxic to all three human cancer cells of MDA-MB-231, A549 and HepG2.
Collapse
Affiliation(s)
- Li-Xia Wang
- Tianjin Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Chi-Yu Li
- Tianjin Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Chen Hu
- Tianjin Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Pi-Sen Gong
- Tianjin Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Shao-Hua Zhao
- Shijiazhuang Yiling Pharmaceutical Co., Ltd., No. 238 Tianshan Road, Hi Tech Industrial Development Zone, Shijiazhuang, 050035, P. R. China
| |
Collapse
|
19
|
Palasingh C, Ström A, Amer H, Nypelö T. Oxidized xylan additive for nanocellulose films - A swelling modifier. Int J Biol Macromol 2021; 180:753-759. [PMID: 33727189 DOI: 10.1016/j.ijbiomac.2021.03.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/05/2021] [Accepted: 03/12/2021] [Indexed: 12/16/2022]
Abstract
Polymeric wood hemicelluloses are depicted to join cellulose, starch and chitosan as key polysaccharides for sustainable materials engineering. However, the approaches to incorporate hemicelluloses in emerging bio-based products are challenged by lack of specific benefit, other than the biomass-origin, although their utilization would contribute to sustainable material use since they currently are a side stream that is not valorized. Here we demonstrate wood-xylans as swelling modifiers for neutral and charged nanocellulose films that have already entered the sustainable packaging applications, however, suffer from humidity sensitivity. The oxidative modification is used to modulate the water-solubility of xylan and hence enable adsorption in an aqueous environment. A high molecular weight grade, hence less water-soluble, adsorbed preferentially on the neutral surface while the adsorbed amount on a negatively charged surface was independent of the molecular weight, and hence, solubility. The adsorption of the oxidized xylans on a neutral cellulose surface resulted in an increase in the amount of water in the film while on the negatively charged cellulose the total amount of water decreased. The finding of synergy of two hygroscopic materials to decrease swelling in hydrophilic bio-polymer films demonstrates the oxidized macromolecule xylan as structurally functional component in emerging cellulose products.
Collapse
Affiliation(s)
- Chonnipa Palasingh
- Applied Chemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Anna Ström
- Applied Chemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Hassan Amer
- Institute of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources and Life Sciences, Tulln, Konrad-Lorenz Straße 24, 3430 Tulln, Austria; Department of Natural and Microbial Products Chemistry, National Research Centre, 33 AlBohous St., Dokki, Giza, Egypt
| | - Tiina Nypelö
- Applied Chemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden; Wallenberg Wood Science Center, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
20
|
Deralia PK, du Poset AM, Lund A, Larsson A, Ström A, Westman G. Oxidation Level and Glycidyl Ether Structure Determine Thermal Processability and Thermomechanical Properties of Arabinoxylan-Derived Thermoplastics. ACS APPLIED BIO MATERIALS 2021; 4:3133-3144. [DOI: 10.1021/acsabm.0c01550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Parveen Kumar Deralia
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96 Gothenburg, Sweden
| | - Aline Maire du Poset
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96 Gothenburg, Sweden
| | - Anja Lund
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96 Gothenburg, Sweden
| | - Anette Larsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96 Gothenburg, Sweden
| | - Anna Ström
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96 Gothenburg, Sweden
| | - Gunnar Westman
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
21
|
da Silva LM, Araújo LFS, Alvez RC, Ono L, Sá DAT, da Cunha PLR, Monteiro de Paula RC, Maciel JS. Promising alternative gum: Extraction, characterization, and oxidation of the galactomannan of Cassia fistula. Int J Biol Macromol 2020; 165:436-444. [PMID: 32980410 DOI: 10.1016/j.ijbiomac.2020.09.164] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/12/2020] [Accepted: 09/20/2020] [Indexed: 11/18/2022]
Abstract
Galactomannan extracted from Cassia fistula seed endosperm present little data related to the its structural characterization. This study reports the chemical characterization of the galactomannan from Cassia fistula (CF) and their oxidized derivatives. The extracted CF presented a yield of 26.5% (w/w) and the intrinsic viscosity [η] was 9.73 dL/g. 1D and 2D nuclear magnetic resonance spectroscopy (NMR) confirmed that the polysaccharide has a backbone of 4-linked β-D-mannose units, and contains galactose units as pending groups. These galactose units are linked to the central core through a (1→6) linkage and the galactomannan presented Man/Gal ratio of 3.1/1. The galactomannan from Cassia fistula presents low cytotoxicity in Vero cells with a CC50 > 1000 μg/ml. The properties of CF resemble other commercially important galactomannans such as Locust bean gum. Three oxidized derivatives of CF were produced by periodate oxidation, which were carefully characterized by different structural techniques. It was observed that as the degree of oxidation increased, there was an increase in the Man/Gal ratio and a reduction in molar mass and viscosity. The polialdehyde produced may be explored as a versality material to react with amine group of the protein and amined polysaccharide to produce biomaterials.
Collapse
Affiliation(s)
- Leonira M da Silva
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, CP 12200, 60455-760 Fortaleza, CE, Brazil
| | - Luis Felipe Santos Araújo
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, CP 12200, 60455-760 Fortaleza, CE, Brazil
| | - Rômulo Couto Alvez
- Federal Institute Catarinense, IFC, Campus Luzerna, Santa Catarina, Brazil
| | - Lucy Ono
- Yasuyoshi Hayashi Microbiology Laboratory, Department of Basic Pathology, UFPR, Curitiba, PR, Brazil
| | | | - Pablyana L R da Cunha
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, CP 12200, 60455-760 Fortaleza, CE, Brazil
| | - Regina C Monteiro de Paula
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, CP 12200, 60455-760 Fortaleza, CE, Brazil
| | - Jeanny S Maciel
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, CP 12200, 60455-760 Fortaleza, CE, Brazil.
| |
Collapse
|
22
|
Nypelö T, Berke B, Spirk S, Sirviö JA. Review: Periodate oxidation of wood polysaccharides-Modulation of hierarchies. Carbohydr Polym 2020; 252:117105. [PMID: 33183584 DOI: 10.1016/j.carbpol.2020.117105] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/16/2022]
Abstract
Periodate oxidation of polysaccharides has transitioned from structural analysis into a modification method for engineered materials. This review summarizes the research on this topic. Fibers, fibrils, crystals, and molecules originating from forests that have been subjected to periodate oxidation can be crosslinked with other entities via the generated aldehyde functionality, that can also be oxidized or reduced to carboxyl or alcohol functionality or used as a starting point for further modification. Periodate-oxidized materials can be subjected to thermal transitions that differ from the native cellulose. Oxidation of polysaccharides originating from forests often features oxidation of structures rather than liberated molecules. This leads to changes in macro, micro, and supramolecular assemblies and consequently to alterations in physical properties. This review focuses on these aspects of the modulation of structural hierarchies due to periodate oxidation.
Collapse
Affiliation(s)
- Tiina Nypelö
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden; Wallenberg Wood Science Center, Chalmers University of Technology, Gothenburg, Sweden.
| | - Barbara Berke
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Stefan Spirk
- Institute of Bioproducts and Paper Technology, Graz University of Technology, Graz, Austria
| | - Juho Antti Sirviö
- Fibre and Particle Engineering Research Unit, University of Oulu, Oulu, Finland
| |
Collapse
|
23
|
A Health-Friendly Strategy for Covalent-Bonded Immobilization of Pectinase on the Functionalized Glass Beads. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02524-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Fu GQ, Zhang SC, Chen GG, Hao X, Bian J, Peng F. Xylan-based hydrogels for potential skin care application. Int J Biol Macromol 2020; 158:244-250. [PMID: 32360465 DOI: 10.1016/j.ijbiomac.2020.04.235] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/05/2020] [Accepted: 04/27/2020] [Indexed: 12/19/2022]
Abstract
Skin care biomaterials from natural compounds are increasingly needed in recent. We demonstrate a simple strategy to fabricate the dialdehyde xylan (DAX) crosslinked hydrogel with skin care potential. The hydrogel mainly consists of dialdehyde xylan, which is used as crosslinker for gelatin (G). Glycerol (Gly) and nicotinamide (NCA) are introduced here for improving the texture, antibacterial property as well as skin care functionality. The in vitro release results demonstrate that NCA can be released smoothly from the xylan-based gel, whereby the xylan-based fabricated gel can be utilized as an ideal matrix gel in skin care with loading and release function. The antibacterial ability is in the following order: Yeast > Bacillus subtilis > Staphylococcus aureus. The cytocompatibility experiments confirm the excellent viability of the gel. These merits demonstrate the fabricated hydrogel as a potential material in skin care.
Collapse
Affiliation(s)
- Gen-Que Fu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Sheng-Chun Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Ge-Gu Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Xiang Hao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| | - Jing Bian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Feng Peng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
25
|
Hosseini SS, Khodaiyan F, E. Mousavi SM, Azimi SZ, Gharaghani M. Immobilization of pectinase on the glass bead using polyaldehyde kefiran as a new safe cross-linker and its effect on the activity and kinetic parameters. Food Chem 2020; 309:125777. [DOI: 10.1016/j.foodchem.2019.125777] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/05/2019] [Accepted: 10/21/2019] [Indexed: 12/19/2022]
|
26
|
Use of Statistical Design Strategies to Produce Biodegradable and Eco-Friendly Films from Cashew Gum Polysaccharide and Polyvinyl Alcohol. MATERIALS 2019; 12:ma12071149. [PMID: 30970591 PMCID: PMC6479310 DOI: 10.3390/ma12071149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/01/2019] [Accepted: 04/05/2019] [Indexed: 02/02/2023]
Abstract
This work reports the production and characterization of biodegradable and eco-friendly films based on cashew gum polysaccharide (CGP) and polyvinyl alcohol (PVA), using the statistical design strategy. Results show that CGP/PVA films are pH stimuli-responsive, allowing their use in a magnitude of biotechnological applications. The morphological and dimensional characterization evidences a positive influence of polymers in the dimensional properties. In addition, the microstructural analysis shows that films have different morphologies depending on the content of polymers and oxidant agent. On the other hand, the thickness and light transmission values are positively influenced by CGP and PVA and negatively influenced by NaIO₄. Results from mechanical properties show that the traction force is positively influenced by NaIO₄, while the elongation is only affected by the PVA concentration. In summary, considering the morphological, optical and mechanical properties of the CGP/PVA films it is possible to suggest their utilization in different fields as promising packaging materials or matrices for immobilization and/or encapsulation of biomolecules.
Collapse
|
27
|
Effect of Dilute Acid and Alkali Pretreatments on the Catalytic Performance of Bamboo-Derived Carbonaceous Magnetic Solid Acid. Catalysts 2019. [DOI: 10.3390/catal9030245] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Lignocellulose is a widely used renewable energy source on the Earth that is rich in carbon skeletons. The catalytic hydrolysis of lignocellulose over magnetic solid acid is an efficient pathway for the conversion of biomass into fuels and chemicals. In this study, a bamboo-derived carbonaceous magnetic solid acid catalyst was synthesized by FeCl3 impregnation, followed by carbonization and –SO3H group functionalization. The prepared catalyst was further subjected as the solid acid catalyst for the catalytic conversion of corncob polysaccharides into reducing sugars. The results showed that the as-prepared magnetic solid acid contained –SO3H, –COOH, and polycyclic aromatic, and presented good catalytic performance for the hydrolysis of corncob in the aqueous phase. The concentration of H+ was in the range of 0.6487 to 2.3204 mmol/g. Dilute acid and alkali pretreatments of raw material can greatly improve the catalytic activity of bamboo-derived carbonaceous magnetic solid acid. Using the catalyst prepared by 0.25% H2SO4-pretreated bamboo, 6417.5 mg/L of reducing sugars corresponding to 37.17% carbohydrates conversion could be obtained under the reaction conditions of 120 °C for 30 min.
Collapse
|